EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronosnitguns I'Hémisphére Austral
Européische Organisation fiir astronomische Forschungrisigdlichen Hemisphéare

VERY LARGE TELESCOPE

Common Pipeline Library
User Manual

VLT-MAN-ESO-19500-2720

Issue 4.1.0
Date 2008-03-28

Prepared: CPL Project Team 2008- 03- 28

Approved: P. Ballester

Released: M Peron

Name Date Signature

This page was intentionally left blank

Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 3 of 100
Change record

Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks

1.0 15/12/2003| All First version

1.0.1 24/08/2003| All Corrected errors in cpl_plugin interface examples

2.0.0 01/04/2005] All Major changes for CPL 2.0 release

2.01 14/04/2005| All Remove obsolete references to CPL 1.0

2.1.0 20/07/2005| All Update for CPL 2.1

3.0.0 24/08/2006| All Update for CPL 3.0

4.0.0 27/08/2007| All Update for CPL 4.0

4.1.0 28/03/2008| All Update for CPL 4.1

This page was intentionally left blank

Doc: VLT-MAN-ES0-19500-272
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 5 of 100
Contents
1 Introduction 9
1.1 TheCommon Pipeline Library. e 9
1.2 Futurework 9
1.3 Acknowledgements e e e e e 10
1.4 Abbreviations and acronyms e e e e e e 10
2 Installation 11
2.1 Supported platforms e e e e 11
2.2 Building the CPL from the source distribution 11
2.21 Requirements e e e e e e 11
2.2.2 Downloading the CPL source distribution 12
2.2.3 Compiling th&Common Pipeline Library. 12
3 Software development with the CPL 15
3.1 Gettingstarted e e e e 15
3.2 Using theCommon Pipeline Libraryn your project 15
3.3 Linking your application withthe CPL @ 16
3.4 Writing a simpleCommon Pipeline Librargpplication 17
3.5 How to implement a Pluggable Data Reduction Module 18
3.6 A specificCommon Pipeline Librarapplication : the VLT instrument pipeline 23
4 CPL general design features 25
4.1 OOapproach e e 25
4.2 Portability e e e 25
4.3 The extended memory model e e 26
4.3.1 Advantages of using the extended memory functions 26
4.3.2 Drawbacks of using the extended memory functions 26
4.3.3 Usingthe extended memory i v i i it e e 27
4.4 Errorhandling e e e e e 27

4.5 Librarystability e e 27

Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 6 of 100

46 CodeconventionS e 27
4.6.1 ODbjects e e e e e 28
4.6.2 Methods e 28
4.6.3 FUNCLONS e e 28
4.7 Naming ConventionS 0 e e e e e e e e 28
4.7.1 MeaningofFields e e 29
4.7.2 LeXiCON o e e 30
The CPL components 34
5.1 Componentlibraries. e e e 34

5.2 Coreobjectsifibcplcore. e 34
521 Images e e 34
5,22 MasKS 39
5.2.3 Listofimages. e e 40
5.24 Tables e 41
525 StatistiCs e e 57
5.2.6 VECIOIS e e e 57
5.2.7 BIVECIOIS e 58
5.2.8 Polynomials e 58
529 MatriCes. 59
5.2.10 Messagingandlogging e e 62
5.2.11 Errorhandling e 64
B5.2.12 Properties e e e e e e e 71
5.2.13 Property lists e e e 72

5.3 The CPLinterfacesilbcplui 73
531 Frames e 73
5.3.2 Frameset e 74
5.3.3 Parameters e 75

5.4 Standard data reduction algorithmdifrepldrs o oL 76
5.4.1 ApPertures e e e e 76

5.4.2 Geometrical transformations e e e 77

o _ Doc: VLT-MAN-ESO-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(

User Manual Date: Date 2008-03-28
Page: 7 of 100

5.4.3 Detectors e 78

5.4.4 Photometry e e e e e 79

545 Nonlinearfitting e e e 79

5.4.6 World Coordinate System e e 79

5.5 ESOI/DFS specific routineslibcpldfs o 81

Bibliography 82
A The PDRM source code 83
B Comment conventions 86
C Naming conventions 90

D Function renaming and APl changes from CPL 3.0 to CPL 4.0 96
D.1 Newfunctionson CPL4.0 e e 96

D.2 APIchangeson CPL4.0 e e e e e 97

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2

Page:

8 of 100

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 9 of 100

1 Introduction

1.1 TheCommon Pipeline Library

TheCommon Pipeline LibraryCPL) consists of a set of C libraries, which have been dgezldo standardise
the way VLT instrument pipelines are built, to shorten tlgryelopment cycle and to ease their maintenance.
The Common Pipeline Libraryvas not designed as a general purpose image processing,libua rather to
address two primary requirements. The first of these wasavige an interface to the VLT pipeline runtime-
environment. The second was to provide a software kit of mmedevel tools, which allows astronomical
data-reduction tasks to be built rapidly.

TheCommon Pipeline Librarprovides:

e Many useful data types (images, tables, matrix, vectoysand their associated methodibg¢plicore).

e Support for dynamic loading of recipe modules and standaddapplication interfaces for pipeline recipes
(libcplui).

e Image and signal processing capabilities and standarc&mmeitations of commonly used data reduction
tasks (ibcpldrs).

e DFS specific functionalities to insure the DFS compliancthefpipelinesIbcpldfs).

Despite the bias towards instrument pipeline developntieatjbrary core provides a variety of general-purpose
image and signal-processing functions. Thus, it also semedl as a basis for any generic data-handling pack-
age.

1.2 Future work

For the official release of th€ommon Pipeline Libraryersion 4.0 the underlying FITS 1/O library was ex-
changed: instead of the ESO internal librgfyi t s, now NASAsCFI TSI Olibrary is used.

Standardised versions of the most common calibration steggemoval of instrument signature are now of-
fered. Of course the data reduction system developers nilagiesine any specific procedure to support bias
subtraction, flat fielding, wavelength calibration, instent response linearisation, cosmic ray removal, object
detection, bad pixel determination, etc., as needed fortecpkar instrument.

More sophisticated methods for signal processing will @ls@dded to any CPL basic component as they will
be needed in the development of future pipelines.

Major areas of growth foreseen for future releases are geastronomical utility functions enabling spherical
coordinate transformations, date and time conversiores;gssion, atmospheric extinction determination and
other common operations in astronomy. It is consideredasbedesirable to support celestial WCS on CPL
image frames, their determination on the basis of identifiagls, and any related application such as image
alignment and resampling.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 10 of 100

1.3 Acknowledgements

In June 2001, N. Devillard and R. Palsa first proposed a consufiware library in order to ease and acceler-
ate the development efforts for the different VLT instrumpipelines. This software library, callddommon
Pipeline Library (CPL), would essentially be built up from already existimgde. In particular, théclipse
library (used for ISAAC and NACO pipelines) and conceptstaf VIMOS data reduction software would be
the main pillars of the CPL software.

In September 2001, M. Peron formed a CPL project team, dionggisf N. Devillard and Y. Jung (working
for ISAAC, NAOS/CONICA), together with R. Palsa and C. I1zzeofking for VIMOS, FORS1/2), as well as
P. Ballester and C. Sabet from the VLTI pipeline project. lanBe served as mediator and chairman.

In the past, also M. Kiesgen, and D.J.-McKay made major daritons to CPL.

Currently, the CPL project team consists of: K. Banse, StrGa€. Izzo, Y. Jung, L. Lundin.

A preliminary version of the CPL was released in May 2002. Idng on this basic version, the first official
release of the CPL was made available to the public by ESO aember 2003.

1.4 Abbreviations and acronyms

CONICA COudé Near Infrared Camera Array

CPL Common Pipeline Library

DHS Data Handling Server

DFS Data Flow System

DO Data Organiser

DRS Data Reduction System

ESO European Southern Observatory
ESO-MIDAS ESO’s Munich Image Data Analysis System
FORS FOcal Reducer/low dispersion Spectrograph
FTP File Transfer Protocol

ISAAC Infrared Spectrometer And Array Camera
GNU GNU'’s Not Unix!

LSS Long Slit Spectroscopy

MOS Multi Object Spectroscopy

NAOS Nasmyth Adaptive Optics System

PDRM Pluggable Data Reduction Module

RB Reduction Block

RBS Reduction Block Scheduler

SDK Software Development Kit

uT Unit Telescope

VIMOS Visible Multi-Object Spectrograph

VLT Very Large Telescope

VLTI Very Large Telescope Interferometer

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 11 of 100

2 Installation

This chapter gives generic instructions on how to obtaifldand install theCommon Pipeline LibraryEven

if this chapter is kept as up-to-date as much as possibleaytmot be fully applicable to a particular release.
This might especially happen for patch releases. You arefibre advised to read the installation instructions
delivered with theCommon Pipeline Librarglistribution. These release-specific instructions canobied in

the file README located in the top-level directory of the unpackeédmmon Pipeline Librargource tree. The
supported platforms are listed in Section 2.1. It is recomuhed that you read through Section 2.2.3 before you
start the installation procedure.

2.1 Supported platforms

The utilisation of the GNU build tools should allow you to loiand install theCommon Pipeline Librargn a
variety of UNIX platforms. The goal is to support the followg target platforms:

e HP-UX 11.00

e Sun Solaris 8

Linux (glibc 2.1 or later)

Mac OSX 10.0 or later

BSD compatibles

However, only the VLT target platforms and operating systehiP-UX 11, Solaris 8 and Linux (glibc 2.1 or
later), are officially supported, right now.

2.2 Building the CPL from the source distribution

This section shows how to obtain, build and install @emmon Pipeline Librarypn your system from the
official source distribution.

2.2.1 Requirements

To compile and install th€ommon Pipeline Libraryou need:

e An ANSI/ISO-C99 compliant C compiler (preferabdycc 3.2 or later)
e The GNUgzi p data compression program
e Aversion of thet ar file-archiving program

e The GNUmake utility

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 12 of 100

e If you want to usegasgang also the Java SDK (Software Develpment Kit) from Sun
To actually use th€ommon Pipeline Libraryou need:
e TheCFITSIO FITS utility library from NASA

As mentioned before, since CPL 4.0 we @elTSIO as FITS /O library, nogfits anymore.

The CPL library must be synchronized with the ESO VLT-sofewahich uses CFITSIO rel. 2.510, right now.
Therefore, CPL uses CFITSIO rel. 2.510, and is tested anplostgnl only for this specific CFITSIO version.
Whenever, ESO’s VLT software project upgrades to a neweasimeof CFITSIO, then CPL will follow.

2.2.2 Downloading the CPL source distribution

You may always obtain the latest release of@mmmon Pipeline Librargources from the ESO CPL web page.
To download the source distribution, point your browser to:

http://ww. eso. org/ sci/ dat a- processi ng/ sof t war e/ cpl / donw oad. ht n

The CPL sources are distributed as a gzipped tar archivechantbe formatcpl - X. Y. Z. t ar. gz, where
XandY are the major and minor release numbers, Ani@notes the patch level (which might be missing if no
patch has been released).

In addition, sinceCommon Pipeline Librarylepends on release 2.510 of tB€ITSIO library (see section
2.2.1), this specific version &@FITSIO is also available from the official ESO-CPL download pagepassied
above.

2.2.3 Compiling theCommon Pipeline Library

It is recommended that you completely read through this@etiefore you actually begin with the installation.

1. First, if an appropriate version @FITSIO (c.f. section 2.2.1) does not already exist on your system,
compile and install th€FITSIO library. For detailed instructions on how to install GEITSIO library,
please, refer to thEFITSIO documentation.

Typically, for an installation into the default directofyusr /| ocal (you might needoot privileges to
do this) you must execute:

$ zcat -d CFITSIOtar.gz | tar -xvf -
$ cd cfitsio

$./configure --prefix=/usr/local
$ make

$ make shared

$ nmake install

The following assumes th&FITSIO is installed in/ usr/ | ocal .

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 13 of 100

2. Unpack the CPL sources in a directory of your choice using

$ zcat -d cpl-X Y. Z. tar.gz | tar -xvf -
at the system prompt. This will create a directory catted - X. Y. Z containing the source tree.

. Before running the configuration script it is recommentled you add some variables to your environ-
ment.

The environment variabl€F1 TSI ODI Rtells the configuration script where tieFITSIO libraries and
header files can be found. Actually, this variable needs tddimed only ifCFITSIO has not been
installed in the default directorjyusr /| ocal or any of the system’s standard directories. The environ-
ment variableCPLDI R determines the installation prefix for the CPL. The defattisr /| ocal and
usually the installation must be donerast.

It is not mandatory to have the variabl€PLDI R and CFI TSI ODI R defined since you may pass the
installation prefixes as command line options to the condigom script (c.f. 4). But packages depending
on the CPL might look for these definitions at build time (seet®n 3.3 for instance), so that it is simply
convenient to have them defined as part of your environmenthd following, it is assumed that both

CPLDI RandCFI TSI CDI Rare set correctly.

Please note that assigning the default installation prefigehe environment variables in the example
below is just for demonstration purposes. In principleytbeuld be set to any directory for which you
have write access with one exception: it is not recommeniiiybu install the CPL into its own source
tree.

If your shell is theBourneor a compatible shell.g. sh bash ksh zsh etc.) you should add:

CFI TSI ODI R=/ usr /| ocal

CPLDI R=/ usr /| ocal

LD LI BRARY_PATH=$CPLDI R/ I'i b: $CFI TSI ODI R/ | i b: $LD LI BRARY_PATH
export CPLDIR CFI TSI ODI R LD LI BRARY_PATH

to the file. profi | e (or. bashr c if you are usingoash). If you are using the C-shell.é. cshor tcsh
the commands above translate into:

setenv CFI TSI ODIR /usr/l ocal
setenv CPLDIR /usr/| ocal
setenv LD LI BRARY_PATH \
$CPLDI R/ 1'i b: $CFI TSI ODI R/ 1'i b: $LD_LI BRARY_PATH

and should be added to the C-shell startup.fdshr c.

The variableLD_LI BRARY_PATHis the dynamic linker's search path and allows an applioatiiofind

the CPL libraries at run-time if they are not installed in afi¢he system’s standard directories. Please
note that the name of this variable may depend on the plat@orrwhich you are working. The name
LD_LI BRARY_PATHis used on Linux and Solaris platforms whereas on an HP-UXesy4 is called
SHLI BS_PATH. For details please refer to the documentation of your systige dynamic linker's man-
ual pages are a good starting point.

To activate these settings you may either logout and logiinagource the startup script manually. Alter-
natively, you may use the command line options of the corditiom script, as described in step 4. Note

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 14 of 100

that if you are going to install dependent packages you niighe to repeat these command line options
for each of these packages, if the varialB%.DI RandCFI TSI ODI Rare not set.

4. To compile and install the CPL on your system run the folhgasequence of commands:

$ cdcpl-XYVY.Z

$./configure --prefix=/usr/local
$ make

$ make install

$ nmake install-htn

Before installing the CPL on your system you may want to yetifat the CPL was built correctly. This
can be done by running the commamake check before executingreke i nst al | . This will build
and run some test cases and it will output a short summaryedgest results at the end.

The last commandyake i nstal | - ht m | is optional and installs th€ommon Pipeline Librar®n-
Line Reference Manual into the directd®CPLDI R/ shar e/ doc/ cpl / ht M . The on-line documen-
tation forl i bcext , the C Extension Library, which is used inside CPL, can bedoin

$CPLDI R/ shar e/ doc/ cext/htmnl .

The conf i gur e script provides a variety of command-line options to cussenthe CPL installation.
The list of available options can be obtained by runnirigconf i gur e - - hel p in the top-level di-
rectory of the source tree. Using a command line option adwakes precedence over any previously
set environment variable. In particular, the variadBP. Dl RandCFI TSI ODI Rare overridden by the
options- - pr ef i x and- - wi t h- CFl TSI Orespectively.

At this point, the installation of th€ommon Pipeline Librarys complete and you can start using it. If the
installation did complete successfully, you may also sadelete the whole source tree to save disk space, as it
is no longer needed.

If the CPL has been installed into one of the system'’s stahd@ectories, the dynamic linker search path does
not need to be modified, as these directories are searchexfdaytd But on Linux systems, it might be necessary
to update the dynamic loader’s cache by executing the comiindaonf i g asroot at the system prompt.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 15 of 100

3 Software development with the CPL

This section gives a short overview on how fBemmon Pipeline Librargan be used to develop your own
software, either simple applications, just using the ited provided by the CPL libraries, &luggable Data
Reduction Module€PDRM), to be used as part of one of ESO’s VLT instrument s,

3.1 Getting started

In this document we assume that you know the ANSI C programmrainguage, your C compiler and that you
are also familiar with the GNUunhakeutility.

Before you start coding it is recommended that you, at leskéty through this manual to get a short overview
of the components provided by the CPL. In the following ckaptyou will also find code snippets which
demonstrate the typical usage of the various components sfmall examples illustrating the two different
kinds of CPL ‘applications’ can be found in the Sections 314 8.5. Section 3.6 will describe the procedure to
follow in case you want to develop an ESO’s VLT instrumentgfiige.

After making yourself familiar with main CPL components aimhcepts, you can start working on your project
by having a look at the CPL on-line reference manual to geepild knowledge of the CPL components you
want to use.

3.2 Using theCommon Pipeline Library in your project

If you want to use the CPL, you need to know where the headerditd the libraries are installed. By default,
the CPL header files and libraries can be found in the sulidiiesi ncl ude andl i b of the root directory of
your CPL installation, but the actual location might bealifint depending on the configuration options used at
build time.

In the following, it is assumed that the CPL has been ingtatigts default locatiori usr/ | ocal , so that the
header files are located irusr / | ocal /i ncl ude and the libraries can be foundfrusr /I ocal /| i b.

Alternatively, the GNU build toolsautoconf automakeand libtool may be used. In general, this is the rec-
ommended way to compile and link your application. Espgciflyou are going to develop CPL plugins,
the use of the GNU build tools makes dealing with shared olijg@ries for different platforms a lot easier.
Comprehensive information on the GNU build tool can be fouviacht t p: / / www. gnu. or g.

The CPL provides support for the GNU build tools by providemgmall collection of autoconf macros in the
two macro archivegpl . ™l andeso. md. These archives contain, among others, macros to locat€Rlhe
header files and libraries on your system and to setup th@ppate Makef i | e symbols needed to compile
and link a CPL application. You can find them in the CPL souree in the subdirectories¥nacr os and

I i bcext/ mimacr os. To use them copy the two files to the source tree of your owjeprgo that they can
be found by theaclocaltool, which is part of the GNlautomakepackage.

If you are going to develop a fully-fledged VLT instrument glipe, the use of the GNU build tools is not only
recommended, but required. An appropriate CPL SDK contgitiie necessary tools and a pipeline template
directory tree is available on the CPL web page.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 16 of 100

3.3 Linking your application with the CPL

The CPL librariedibcpldfs libcpldrs, libcplui andlibcplcore, together withlibcext and thelibcfitsio library,
form a hierarchyj.e. there are inter-library dependencies, of which you neecdetavare, when linking your
application. Figure 1 shows the library dependencies of b &plication using functionalities from all the
CPL libraries.

ybiH

Application

Application specific Libraries (optional)

%]

0 5 .

£ libcplui

2 e >
2 . 3
2 libcpldrs 5
>0 1 e re———— 3
S a

2 libcplcore

-

System Libraries

‘
-
MO

Figure 1: Library dependencies of a CPL application

For an application as shown in Figure 1, the linker commandlavtook like the following, with the trailing
ellipsis being a placeholder for any system libraries tihataedso used:

$ gcc -o nyapplication myapplication.o -lnylibrary \
> -L$CPLDIR/Iib -1cpldfs -lcpldrs -lcplui -lcplcore -Ilcext \
> -L$CFITSIODIR -l cfitsio ...

The order in which the libraries are linked matters and i®wheined by the inter-library dependencies. This
implies that the order of linking for the two librariéibcextandlibcfitsio does not matter in the above example.
Actually, these two libraries may even be skipped, since@Rd library libcplcore usually includes these
dependencies, so that running the command

$ gcc -o nyapplication myapplication.o -lnylibrary \
> -L$CPLDIR/Iib -1cpldfs -lcpldrs -lcplui -lcplcore ...

should be sufficient.

An application programmer is free to choose which CPL faesihe or she wishes to use and therefore needs
to link only with the libraries upon which the highest-leVidrary used depends. Therefore, for an application
which uses only components frdibcplcore the above linker command would become:

$ gcc -o nyapplication nmyapplication.o -Inylibrary \
> -L$CPLDIR/lib -lcplcore -lcext -LSCFITSIODIR -lcfitsio ...

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 17 of 100

3.4 Writing a simple Common Pipeline Library application

The CPL libraries can be used as any other library on youesy$b write applications. This section provides
you with a simple example of how to do this; CPLIdéllo, world!” program:

#i ncl ude <cpl . h>

int main()

{
cpl _init(CPL_I NI T_DEFAULT);
cpl _nmsg_info("hello()", "Hello, world!");
cpl _end();

return O;

Compiling this program and running it at the system promptpces the output:

$./hello
[INFO] Hello, world!

Line-by-line Walkthrough
The first line
#i ncl ude <cpl . h>

includes the prototype of all the CPL functions. You mustude this file wherever you are using any CPL
function.

As with every C-program, a CPL application has to start whith disual i definition of thenain-function:

int main()

{

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 18 of 100

The first function call

cpl _init();
initialises the CPL. In particular, the library’s memory magement system is initialised. The functmoml _i nit ()
must be called before any other CPL function is called!

Now the application can start doing the real work. The fuorctall
cpl _nmsg_info("hello()", "Hello, world!");

writes the well-known message to the terminal, with a prefiidating the message severity. The first argument,
the string hel | o() ", is the component tag and indicates the program, moduleratibn which emits the
message. The component tag is not printed by default andftnrerdoes not appear on the screen. The last
function call in this example

cpl _end();

shuts down the CPL system.

The program ends with a successful return froen n() :

return O;

The previous example shows the basic layout of any CPL agiit. After the library initialisation and the
setup of the messaging system your application can usecdtdilities provided by the CPL.

For further details on the messaging component please teefeection 5.2.10 and the CPL reference manual

[1].

3.5 How to implement a Pluggable Data Reduction Module

This section shows how a simple data reduction task, nanwhgdasic arithmetic with two images, can be
implemented using the CPL plugin interface.

What is a plugin

A plugin is a unit of code that can be incorporated into a parent agmic at run-time. Unlike a static or
dynamic library, the details of the plugin’s existence do meed to be known by the parent application when
it is built and vice versa. As such, plugins are extremelyfulder pipeline-management software or GUIs,
where the developers may wish to modify parts of the pipedimge, without necessarily restarting the parent
application (let alone recompiling it).

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 19 of 100

In a way, this is similar to spawning a child process (althoptygins are, in general, executed synchronously).
However, the child-process method then needs to take imsideration communication with the parent ap-

plication, which means the definition of, and strict confamoe to, an interface specification, which is then

difficult to check outside the run-time environment. It alseans that the child process needs to implement
some interprocess communication methods.

In comparison, a plugin implements its interface simplhotigh the provision of four function calls, that are

expected by the CPL plugin interface in the parent appticatiThe parent application does not need to know
about the plugin’s existence at compile time, but can ledroutthe plugin’s existence via user input or a
configuration file, during normal execution. It can then guie existence of the plugin, and again handle the
case where the plugin is not available in a graceful manner.

If the plugin is available, then the code within it may be iked by this standard interface. Of course, the
downside is that, unlike a completely separate child pmdie plugin is executed within the address space of
the parent application, which means that fatal errors @gmentation fault) will take down both components,
unless the appropriate provisions are made.

What is a PDRM

A Pluggable Data Reduction Modu{@DRM) is just a specialised type of plugin, suitable for lempenting a
data reduction task.e. arecipe In other words, if aecipe is implemented using the CPL plugin interface, it is
called aPluggable Data Reduction Module

This section demonstrates how easy it is to implement suéluggable Data Reduction Moduldt is easy,

because a plugin developer does not need to know how the fioptite data reduction task is created. He or
she can expect that the complete information the data redustsk needs is available when it executes. All the
"nitty-gritty" details of command line parsing, file managent, etc., are left to the application using the plugin.

What is needed

To implement a PDRM, four functions have to be implementeithvhre used by the application to obtain some
information about the plugin, to initialise, execute antk&m it up”. In addition, one or more functions doing
the real work are needed too.

An Example

The example shown below describes a PDRM which supports batiimetic with images. It will provide one
option, for selecting the arithmetic operation to be exedut

The first function to implement is the one that the applicatmll call initially in order to obtain the necessary
information about the plugin. This function is describedpast of the plugin interfacei.e. the function’s
prototype and its name are defined by the interface but theiumneeds to be re-implemented by each plugin.
This is the only function which needs to be exported by the FDIR. this is the only function which must not
be declaredt at i ¢ in the module’s source file.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 20 of 100

The function is calleg pl _pl ugi n_get _i nf o, returns an nt , takes a pointer topl _pl ugi nl i st asits
only argument and it can be implemented either using thegurerface of the plugin directly or the provided
convenience function. An implementation, completely igmg error handling to keep it simple, would look
like:

#i ncl ude <cpl . h>
#define MY_PLUG N_VERSI ON 1
/* Plugin detailed description */

static const char =

nmypl ugi n_hel p = "The plugi n adds, subtracts, multiplies or divides "
"two i mages dependi ng on the operati on choosen by the "
"paraneter ‘operation’ ."

i nt myplugin_create(cpl _plugin *);
i nt mypl ugi n_exec(cpl _plugin *);
i nt myplugin_destroy(cpl _plugin *);

i nt
cpl _plugin_get_info(cpl _pluginlist =list)
{

cpl _recipe *recipe
cpl _plugin *plugin

cpl _calloc(1, sizeof =recipe);
(cpl _plugin *)recipe

cpl _plugi n_init(plugin,
CPL_PLUGQ N_API
MY_PLUG N_VERSI ON
CPL_PLUGQ N_TYPE_RECI PE,
"nypl ugi n",
"Do basic arithnetic on two i mages”

mypl ugi n_hel p,

"Gl Bates",
"gbat es@racr ohar d. cont',
"GPL"

mypl ugi n_create,

mypl ugi n_exec,

mypl ugi n_destroy);
cpl _pluginlist_append(list, plugin);

return O;

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 21 of 100

The first three lines include the definitions of the CPL mensamyices, thepl _reci pe,cpl _pl ugi nand
cpl _pluginli st types.

The symbolMy_PLUG N_VERSI ON is defined to be the recipe’s version number and the statiablar
nypl ugi n_hel p is assigned to the recipe’s detailed description. This lisie@d by the forward declara-
tions of the three remaining functions which must be impletad to create, execute and destroy the recipe.

The functioncpl _pl ugi n_get _i nf o is implemented as follows. First, memory to hold the recipgct

is allocated. The subsequent cast of the varialglei pe, which is a pointer tepl _r eci pe, into a pointer
to cpl _pl ugi nis possible because the classl _reci pe is a subclass ofpl _pl ugi n (see the ISO-C
standard ISO/IEC:9899:1999(E) 6.7.2.1 for details).

Thecpl _pl ugi n part of the recipe object is then initialised with the versiof the cpl _pl ugi n class
implementation, the recipe’s version, the name of thisaeeplugin, a short description of its purpose, a longer
help text and license information. The last three argumpassed in the call topl _pl ugi n_i ni t are the
functions the application will use to initialise, executelalestroy the recipe plugin. Their implementations are
discussed below.

As a last step, the plugin is appended to the list of plugingis Tist must be provided by the application
callingcpl _pl ugi n_i ni t. At this point, the creation of the recipe plugin with all eesary information is
completed and the function returns successfully.

What is left to be done is the implementation of the inititlisn, execution and cleanup functions. In the be-
ginning, it was mentioned that our example should be cordigerinsofar, that a user may select the arithmetic
operation to be performed. It is the duty of the PDRM to previde information about any options it accepts
to an application which uses the PDRM. In our example, we teéefine our arithmetic operator option. The
correct place to do this is the PDRM'’s initialiser functiofhe created parameter(s) are stored in a parameter
list, which can be queried and updated by the calling apiplica These configuration parameters may, for
instance, be mapped into command line options by the calipdication. Since the recipe configuration is cre-
ated during the plugin’s initialisation, it has to be degéw in the end, namely, in the plugin’s cleanup handler.
A typical implementation of these two functions looks like:

static int
nmypl ugi n_creat e(cpl _pl ugi n =pl ugi n)
{

(cpl _recipe *)plugin;

cpl _recipe *recipe
cpl _paraneter =*p;

reci pe->paranmeters = cpl_paraneterlist_new);
p = cpl _paraneter_enum new "mnypl ugi n. operation”,

CPL_TYPE_STRI NG,
"Arithnetic operation to apply.",

"nypl ugi n",
"add", 4,
"add", "subtract", "multiply", "divide");

cpl _paraneter_set_alias(p, CPL_PARAMETER MODE_CLI, "op");
cpl _parameterlist_append(reci pe->paraneters, p);

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 22 of 100
return O;
}

static int
nmypl ugi n_destroy(cpl _pl ugi n *pl ugi n)

{
cpl _recipe *recipe = (cpl _recipe *)plugin;
cpl _paraneterlist_del ete(reci pe->paraneters);
return O;

}

In the very beginning, both functions must convert the plughich has been passed to them from a pointer to
cpl _pl ugi ninto a pointer tacpl _r eci pe to get access to the additional members thatthle r eci pe
class provides. This cast operation is safe since the phagrbeen explicitly instantiated aspl _r eci pe
inthecpl _pl ugi n_get _i nf o function, that was called initially.

The recipe subclass has two additional members comparégidoperclass, the generic plugin. These two data
members are the list of recipe configuration parameterstanget of input data frames which it should process.
The list of accepted configuration options is created by ¢oge while the set of input frames must be filled in
by the calling application.

In the remainder of the initialisation function, a paraméite and an enumeration parameter is created (please
refer to [1] for the technical details on how to create thdows kind of parameters). The created parameter
will allow the selection of the arithmetic operations sugpipd by the recipe. Changing its value, via the calling
application’s user interface, will configure the PDRM usthg requested operator during its execution. For
the user’s convenience, a short alias name for the paraisgtesvided which may be used by an application
instead of, or in addition to, the parameter’s fully quatifieame. Finally, the parameter is appended to the
parameter list. The only operation which is necessary irckhanup handler is the one required to destroy the
parameter list and all its contents, therefore its impletaigon is straight forward.

The last interface function which is needed is the functmexecute the recipe. Again the implementation is
straight forward, assuming that the actual processingtiomay _i mage_ari t hnet i ¢s does all the work.

static int
nypl ugi n_exec(cpl _pl ugi n *pl ugin)
{

cpl _recipe *recipe = (cpl _recipe *)plugin;

return my_inage_arithnetics(reci pe->paraneters, recipe->franes);

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 23 of 100
}

The implementation of the processing function i mage_ari t hnet i csis left to the reader as an exercise.

The three functions initialising, executing and destrgyihe recipe plugin are defined atat i ¢ functions.
There is no need to make them publicly available becausedteegxported by the plugin interface itself and
they are only called through this interface.

As mentioned before, the example does not implement any earadling. For the three handler functions and
the function to obtain the plugin information it is requirtcht they returr® on success and a non-zero value to
indicate an error.

The complete source code of the example can be found in appAndlo try it, you should build a shared
object library from the source and you must provide the dgit@essing function.

3.6 A specificCommon Pipeline Library application : the VLT instrument pipeline

A VLT instrument pipeline is a very specific CPL-based amtlimn. Because of the big number of different
pipelines it needs to maintain and develop, ESO imposesaseth series of standards and/or constraints that
must be strictly followed:

e The coding style must follow a series of common rules (therezhecking must be done extensively, the
code must be well documented using the same doxygen docatoentags, etc.).

e The pipeline source directory tree structure must folloe steandard (organisation, usage of the GNU
toolsautoconfandautomaken a standard way, etc.).

e The FITS header keywords access must be done in a standard way
e The DFS-related parts must be defined in a standard place.
e Thelibcext library must not be used.

e The CFITSIO functions may be used directly if they are compatible withdfficially supportedCFIT-
SIO version, currently rel. 2.510; mixing different CFITBVersions may produce strange errors - no
support from ESO can be expected in that case.

e The pipeline products must be written with the proper forrkaywords, etc. The information about their
existence must be given &sor ex for further processing.

These are only the main constraints that need to be followed\lLT instrument pipeline. The total list can be
very long, and difficult to describe in a document (espegiathen it comes to error handling or coding style).

If you want to know more about these specifications, see the Déliverables Specification document [2] and
the Data Flow Pipeline and Quality Control Users Manual doent [3]. See the ESO DICB — Data Interface
Control Document [4] for informations about FITS headerkeyds.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 24 of 100

To make it easy for anybody to develop a standard VLT instntrp@eline, without having to care in details
about all these specific technical requirements, we pravigipeline template that already implements all these
constraints. This template is ready to be installed and ltus.available in the SDK (see the CPL web page),
and comes with the Technical Developers Manual [5]. Thisumaexplains in details how to install the pipeline
template, and how to use it to develop your own VLT instrungpeline.

Of course, if you want to develop your own CPL-based appboathat is not a pipeline, you still can use the

pipeline template and benefit from the fact that the plugialisady properly defined and ready to be executed
with esorex

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 25 of 100

4 CPL general design features

4.1 OO approach

The CPL has been written in C, but following an object-oieh{OO) approach wherever it makes sense.
Modules are built around a class, which comprisésyaedef (usually astruct) and a list of associated
methods to work on it.

For example, the image class is built like this:

[+ Class definition =/

typedef struct _cpl _imge_{
CPL image attributes ...

} cpl _i nage ;

/= Associ ated met hods =/

cpl _image *cpl _i mage_new(...);
cpl __imge *cpl __imge_load(...);
voi d cpl __image_delete(...);

Understanding the library means parsing through the lisffefed components and looking at the implemented
methods. There are components for the handling of the dgt@tess (images, images lists, masks, tables, vec-
tors, ...) and purely functional components to help prognams, such as the messaging and the error handling
components.

‘Data hiding’ is used everywhere. All objects remain opagnd are only manipulated through accessor func-
tions. See the documentation for each component.

Polymorphism is hard to achieve in C, and is seldom usedaif,ah the CPL. The OO approach is limited here
to defining objects with attributes and methods.

4.2 Portability

The CPL is intended to have a long service life and evolve aoatance with the needs of the VLT. To avoid
locking the code to any particular platform, portabilityshzeen considered throughout the design of the CPL.
Achieving portable code is done in the CPL through tools kg oconf andaut omake that try to catch

all system dependencies and make them look the same toylibsars, ironing out any local peculiaritg.g,
HP-UX lacks many standard tools or has them with differemi@s). But this is not the end of the story. During
development, we kept in mind all the basic portability rutesl relied on the use of compiler options (like
-ansi ,-pedantic-errors,- Wl |), andtools such dsi nt . The aim was that the CPL should be usable
on any kind of POSIX-compatible system.

System-specific optimisations may be added later if they @oinvolve modifying any API in the code. If
optimisations are introduced, they shall be resolved atpilertime and hidden from library users.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 26 of 100

4.3 The extended memory model

The library offers a set of memory allocation/deallocationctions:

cpl _mall oc()
cpl _calloc()
cpl _realloc()
cpl _free()
cpl _strdup()

These functions are meant to replace the default standaahyifunctions that control and handle all memory
allocation in applications. The behaviour of these funwtids controled with the configuration of CPL. By
default, they use the standard system memory handlingifunsct Nevertheless, it is possible to switch on
(—enable-memory-mode option of configure) the extended amgfanctions described here.

4.3.1 Advantages of using the extended memory functions

By using these functions, some information about the alémtand deallocated pointers is internally kept. This
way, the system know at any moment the list/size of the diitated pointers, making it easier to track memory
leaks.

It is possible to check for memory leaks at any moment usiegtpropriate memory-report functions:

cpl _nmenory_is_enmpty()
cpl _menory_dunp()

4.3.2 Drawbacks of using the extended memory functions

These functions keep internally various informations oargsingle pointer that is currently allocated. Thus,
you need to know when you install CPL which value you are nga#ng to exceed in terms of number of
pointers allocated at the same time in your programs. Theuttds currently set to 200000, which should be
enough for most applications.

Note that the cpl_propertylist uses a lot of pointers wheawittains large FITS headers. In order not to exceed
this limit, you may try not to load all your input files headensproperty lists at the same time if this is not
necessary.

If the maximum number of pointers your application may needigger than that (say around 300000), you
need to specify this when you install CPL.:

Instead of typing:
$./configure --enabl e-nmenory-node=2

you may type:

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 27 of 100

$./configure --enabl e- max-ptrs=500000 --enabl e- nenory-node=2

To increase the supported number of pointers, you just reeggtonfigure, recompile and reinstall CPL.

Note that the pointers information table is statically edited, and that using enormous values (i.e. table size)
would cause the memory consumption of CPL unreasonably high

4.3.3 Using the extended memory

The memory allocated inside the CPL has to be deallocated) uke provided memory handling functions.
This can be done either with the CPL objects destruaay, (cpl _i mage_del et e()) to deallocate CPL
objects or withcpl _free() for normal arrays created by CPL functions.

You are free to use CPL memory functions to allocate/deat®ogour memory in your code wittpl _mal | oc(),
cpl _calloc(),cpl _realloc(),cpl_strdup() orcpl _free().

The only rule is that all the memory allocated with the CPL rogyrfunctions must be deallocated with them.

If you do not want to use the extended memory system in youicagpion, and do not want it to be used in CPL,
you can configure CPL with the option —enable-memory-modiketthis:

$./configure --enabl e-nmenory-node=0 --prefix=/usr/Ilocal

This way, the offered functionspl _nal | oc(),cpl _cal l oc(),cpl _realloc(),cpl _strdup() or
cpl _free() will simply call the associated system functions.

This is the default behaviour from CPL version 4.0 on.
4.4 Error handling

Error handling in the CPL is done through thpl _er r or component (see Section 5.2.11).

4.5 Library stability

The CPL group will strive to keep the API stable, in order towlfor an easier maintenance of the many VLT
pipelines. New releases will mostly provide new functidgigahnd bug fixes, but radical design changes will be
avoided as much as possible.

4.6 Code conventions

The coding conventions adopted in the CPL are basicallyies described in Recommended C Style and Cod-
ing Standards [6]. Although the coding language used is GSI5O/IEC:9899:1999(E)], the CPL developers
have adopted an object oriented approach. A series of shieetdefined (image, table, etc.) in the library and
methods are associated to them.

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 28 of 100

4.6.1 Obijects

An object is a Gstructurethat contains all the information needed to describe it. difjects chosen to populate
the CPL have been designed to be as small as possible. Atttireites associated with an object are mandatory.

An image, for example is defined by an array of pixels, the ie&ige in X and Y, the pixel type and a bad pixel
map; nothing more.

Adding more fields that are used only for some particular gseg in particular cases is an open door to end up
with huge objects in which we never know which attribute hasrbinitialised/updated and which not.

If more complicated objects are needed, it is left to the libger to define his or her own local object composed
of the basic objects and other additional parameters defisediributes.

Each object has oneonstructorthat allocates the memory it needs, andestructorthat deallocates it. The
destruction of objects shouldlwaysbe done through its dedicated method.

4.6.2 Methods
Apart from the constructor and destructor, other methodsssociated with an object. Basically, each function
that does something with an object or that modifies an objécbeconsidered as a method of this object.

Any method can create or modify an object. In the latter cémemodified object should be passed as the first
parameter to the function. Of course, a method can also uass&g object without modifying it.

In the case of a failure, the input object shaillvaysremain unchanged.

4.6.3 Functions

All functions shall be able to inform their caller about théceess of their execution, either by returning an
error code (CPL_ERROR_NONE in case of success, the propmr @de otherwise) or by returning a con-

ventional value (as a NULL pointer when a pointer is expectatl setting appropriately the error code (see
section 5.2.11).

4.7 Naming Conventions

The following defines the construction of a CPL function namend other types of identifiers in the CPL
namespace. This permits uniformity of nomenclature and mdhe identification of an unknown function or
in searching for the name of a known functionality.

Symbolic constants shall conform to the following namingwantions:

e A CPL symbolic constant name consists of fields, which ararsged by the the underscore character

Q).

o A field starts with an upper-case letter and is followed byargmase letters and digits.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 29 of 100

e The first field shall be&CPL.
A CPL function name adheres to the following rules of syntax:

e A CPL function name consists of fields, which are separatetthéyhe underscore character ().
¢ A field starts with a lower-case letter and is followed by lowase letters and digits.

e Each field carries a meaning, depending on its place in theepeg of fields.

A CPL macro (that is &def i ne that take argument(s), as opposed to symbolic constants)

shall conform to the same naming conventions as those of GRdtibns.

4.7.1 Meaning of Fields

The different fields of a CPL function name carry a specific miveg, dictated by their place in the sequence of
fields that make up a given name.

The fields are:

Library The first field is the library, which specifies the library toiatnthe function belongs. In the case of
CPL, is it alwayscpl . The library field is mandatory.

Subject The subject is the principle division, in which the functiies. It may be one of several subject types:
1. Object - This is the CPL object that is being handled by timetion. Examples includemage and
tabl e.

2. Domain - This is the functional area, in which the functimes been grouped. These typically
apply to groups of related, high-level data reduction ofdtiag functions. Examples includgeom
(geometry) anghhot om(photometry).

3. Exceptions - There are a few CPL functions that do not dpeva a CPL object or within a
given domain. These functions use thasbject freeverbs: cpl _{init,free, assure} (),
cpl _{malloc,realloc,calloc,strdup}().

The subject field is mandatory, with the mentioned exception
Verb The verb defines the action on the subject.

1. Existentials - These indicate the creation or destroatifcan object. The type of this object will ei-
ther be of typepl _<subj ect >orvoi d. Thus the function will be of typepl _<subj ect >*.
E.g.cpl _vector_new().

2. Morphologicals - Change the size of an existing CPL objdtte number of elements within the
object is changed. E.gpl _matri x_append() .

3. Elementwise operators - These are functions that actiedtignon each specified element in the
CPL object. E.gcpl _i nage_add().

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 30 of 100

4. Global operators - These are functions that act collelgtion elements of a CPL object. E.g.
cpl _vector_correl ate().

5. Generic - The following do not fall into the above categerget ,set,i s, cont ai ns, has and
dunp.

6. Exceptions - These are verbs which do not apply to a CPLcbbjedomain. Strictly speaking, they
are subject free. See the above exceptions.

The verb field is mandatory.

Qualifier A qualifier specifes the object or concept upon which the \aats, in the context of the subject.
There are three types of qualifiers:

1. Read/Write Attributes - These are attributes of a CPL abjleat may be set or retrieved. E.g.
cpl _polynom al _{set,get} coeff().

2. Read-only Attributes - These are attributes of a CPL dbgcwhich it is not meaningful to set a
value, although the object possesses one that may be eetrievg.cpl _i nage_get nedi an().

3. Others E.gcpl _tabl e_new from nodel ().
The qualifier field is optional.
Item/Concept A further specification of the functionality, e.g.

1. CPL object(s)
2. attributes of an existing CPL object (egj.ze).
3. primitive Ctype Gt ri ng forchar * andi nt,fl oat,doubl e)

This field is optional.
Sub-item A further specification of the functionality, e.g.

1. attributes of an existing CPL objectd! umm, r owandw ndow).
2. primitive Ctype (st ri ng forchar * andi nt,fl oat,doubl e)

This field is optional.

4.7.2 Lexicon

Subject The following words are permitted as subjects. These reptahe modules in CPL. Objects that end
with set or list are collective objects, while the rest argsiar objects. list indicates that the collection of
objects is ordered, while set indicates that the colledsamordered. (Strictly speakingabl e is thus
acol um-set).

e bivector

e col um — Internal to CPL
e error

e frane

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—03-28
Page: 31 of 100
e franeset
e i mage
e i magel i st
e mask
e matrix
e NMENDIY
e NB(Q

e paraneter

e paraneterli st
e plugin

e pluginlist

e pol ynom al

e property

e propertylist
e Stats

e table

e t 00l s — Internal to CPL
e type

e vector

The following words are also permitted as subjects. Thgseesent functional areas in the higher-level
sections of the CPL. This list will likely be extended.

e apertures

e detector

e dfs

e geom

e flux

e phot om

Verb The following words are permitted as verbs.

Existentials

del et e (Destructor)

unwr ap (Destroys object, leaving internal components intact,va.&ap)

wr ap (Constructor of a new object composed around existing ddtaynwr ap)
dupl i cat e (Copy constructor)

ext ract (Create a new object that contains a part of another objertceeate a vector from
part of another vector)

ESO

Common Pipeline Library

User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 32 of 100

| oad (Constructor from file, c.fsave)
new (Constructor)

save (Create file of an existing object, clfoad)

of f set (Image combination icpl dr s)

filter (Filtering always create a new object)

cast (Casting always create a new object)

Morphologicals

e append (Add an element to the tail of an object)
col | apse (Remove a dimension of a multi-dimensional object)

er ase (Remove element(s) from an object, ¢.hsert)

i nsert (Add an element to an object, cdr ase)
pr epend (Add an element to the head of an object)

Global operators

corr el at e (Compute the cross-correlation between two objects)
count (Get the number of occurrences of some object attribute)

shi ft (Rearrange elements in a CPL object)

f i nd (Locate an element within a CPL collective object)

i nt er pol at e (Compute an interpolated value)

f1i p (Reverse the order of elements in a CPL object)

fft (Compute the FFT of a CPL object)

t ur n (Rotate the elements of a CPL object through a multiple of &frekes)

i nvert (Compute the inverse (matrix))

Elementwise operators

abs (Absolute value of each element)
add (Add elements at equivalent positions)

and (Binary AND on elements at equivalent positions)

aver age (Determine the average of elements at equivalent posjtions

cast (Convert the type of elements in an existing object)
copy (Overwrite some/all elements in an existing object)

di vi de (Divide elements at equivalent positions)
fill (Assign values to specified elements within a CPL object)

rej ect (Flag element, e.qg. set bad-pixel, @atcept)

| abel i se (Assign numeric labels to associated elements)

mul ti pl y (Multiply elements at equivalent positions)

nor mal i se (Rescale elements to lie within a given range)

not (Binary NOT on elements)

or (Binary OR on elements at equivalent positions)

subt ract (Subtract elements at equivalent positions)

t hr eshol d (Assign a value to elements whose value lies outside a spacdinge)

- _ Doc: VLT-MAN-ESO-19500-272
ESO Common Pipeline Library Issue: Issue 4.1.(

User Manual Date: Date 2008-03-2
Page: 33 of 100

e accept (Unflag element, e.g. remove bad-pixel, ¢.&j ect)
e xor (Binary XOR on elements at equivalent positions)

Generic

e get (Retrieve the value of an attribute associated with an dpjec
e set (Assign a value to an attribute associated with an object)

e dunp (Print the object content to stream, for debugging)

e i s (Used for checking existence or state)

e has (Used for checking existence or state)

e cont ai ns (Used for checking existence or state)

Additionally, the following words are permitted as verbsimject free function names.

assur e (Ensure the presence of a given condition and handle thendaze this is not true)

cal | oc (Allocate memory initiliased to zero)

f r ee (Deallocate memory associated with a pointer)

i ni t (Initialise an object and system)

mal | oc (Allocate memory)

r eal | oc (Reallocate the memory associated with a pointer)

st r dup (Duplicate a character array)

Qualifiers The words permitted as qualifiers are listed in appendix C.
Items The words permitted as items are listed in appendix C.
Sub-items The following words are permitted as sub-items:

e col um
e doubl e
fl oat

e int
o I'OW

string

wi ndow

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 34 of 100

5 The CPL components

5.1 Component libraries

The functionality of the CPL is provided by four componettrdries, implementing the low-, medium- and
high-level CPL interfaces respectively, plus a DFS speéifitctions library. This allows applications to be
linked with only the parts of th€ommon Pipeline Libraryhat are necessary.

The core librarylibcplcore, provides the basic types like vectors, images and tabdesel as the basic signal
and image processing functionalities. It also providesifigs for accessing data files, for error signalling, and
a set of functions for displaying messages and maintairugdiles.

Thelibcplui library implements the medium-level data types and w#itserving as an interface to the pipeline
run-time environment.

Standard implementations for instrument-independera-daduction functions and functions for monitoring the
data quality are provided by thiécpldrs library.

Finally, thelibcpldfs library is there to insure the compliance of the pipelineduicis by implementing some of
the important DFS requirements on the pipeline products.

For the low-level implementation of container data typegksas lists, or dictionaries), or utilities not available
on every UNIX system, the CPL libraries themselves deperasmall C libraryflibcextextending the standard
C library.

For access to FITS data files, the CPL internally relies onGRETSIO FITS I/O library. Since the CPL
provides high-level facilities to read and write data frtord FITS file, direct calling oCFITSIO functions is
only needed to read or write files with a "special” format lkeg. 3D tables.

The low-level librarylibcext, delivered together with CPL, is an undocumented, intelibedry for CPL and
shall NOT be used by any VLT/VLTI pipeline.

5.2 Core objects inlibcplcore
5.2.1 Images

A cpl_imageis conceptually a 2-dimensional array of pixels with two meharacteristics. Firstly, gl_image
can be of several different types (currently supported dareble float, int and comple}. Secondly, each
cpl_imagecan carry with it the knowledge of its own bad pixels, refdrte as a bad pixel map.

All the CPL functions whose name start withl_imagedeal with images. Some of them return a newly al-
located imagedpl_image_xxx_create(xxx_new() xxx_wrap_xxx(r xxx_load()functions) and some others
work locally on the passed image. The newly allocated imagest later be deallocated with one of the de-
structors ¢pl _i mage_del et e() orcpl _i mage_unwrap()).

The following operations can be performed throughdpk imagemethods’ interface:

e creating, loading from FITS files, saving to FITS files or dsedting images

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 35 of 100

e copying images, converting images from one type to anothaccessing image information

e set or unset bad pixels in an image, count them, set the batsghom an ASCII file or from a binary
image

e basic image operations, normalisation, thresholdingraairg, collapsing, extraction or flipping
e various statistical computations on images

¢ linear, median or morphological filtering operations

e resampling functionalities

e generation of images with random uniform noise, or with gersfunctions

The different image components are described in the foligvgiections. For some of themmgl _i mage and

cpl _i mage_bpn), the way the data are stored internally is described. Thjsst to give a better idea on
what the CPL can do and how efficient it can be. But these iatatnucturecannotbe accessed directly; every
developer must/can only use the accessor functions prbuidkhe library. By doing so, you ensure that you do
not need to change your code after any CPL update, as theahttructures may change from one release to
the next.

1. The image structure

An image comprises a size in x and y (in pixels), and a poirtemtarray of pixels. The type field, and
the fact that the pixels are defined as void, allows this sirecto contain any of the supported image
types (float, double, integer or even complex images).

The image-processing functions provided in the CPL can leaamay meaningful kind of image. A user
would call the same function to filter a double or a float image.

Moreover, it is possible to attach to any image the knowleafges bad pixels with the badpixelmap field.
Again, any image processing function in the CPL takes thikgigel map into account whenever one is
defined.

The implementation of thepl_imagestructure looks like:

t ypedef struct _cpl i mge_

{ -
I nt nx, ny;
cpl _type type;
voi d * pi xel s;
cpl _mask * badpi xel map;

} cpl _i mage;

The image pixel buffer is two-dimensional but stored in airhehsional array of pixels for efficiency
reasons. Pixels are numbered (like arrays in C) from®@udony — 1.

Note that this pixel organisation does not pre-suppose amngrientation for the lines in the image.
The CPL convention, like the FITS convention (and as oppésedost other image formats), numbers

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 36 of 100
Image Pixels array in cpl_image

5

i=2,j=3,nx=3 i-1)+(-1)*nx=7

Figure 2: Pixel storage in the 1D data array

lines from bottom to top. However, this is not an issue for miwegge operators. The pixel in thgh
column and thg-th row (starting at the lower left corner, conventionaltyriesponding to column 1 and
row 1) would be the pixel numbéi — 1) + (7 — 1) x nx in the array (see Figure 2).

These fieldgannotbe accessed directly. They are shown here for informatipoger Accessor functions
are provided to access the pixels or the image informatises IO routines description).

. The image 10 routines
There are four kind of functions that can be used to genegtémageobjects.

Thecpl _i mage_new() function will create a new image of the specified size and,tyyth pixels
values set to 0 and an empty bad pixel map.

Thecpl _i mage_| oad() function will load an image from a FITS file. If you load an ineaffom a
FITS file, you have to specify which plane (you can store cubé&sTS files) in which extension, which
type of image you require, and the function will give back ¢ayhe specified newly allocatepl_image

Thecpl _i mage_w ap_xxx() functions will create apl_imageobject around an already existing
passed data array. This image will have to be deallocatddtiagtcpl_image_unwrap(junction.

Thecpl _i mage_new_from xxx() functions will create newly allocated images using dataiogm
from other CPL objects.

Examples:

cpl _image =*ini;
cpl _image =*ing;
cpl _matrix *=kernel;

| *
* Create a new i mage.
* CREATES A NEW.Y ALLOCATED OBJECT THAT MJUST BE DESTROYED.
*/

im = cpl _i mage_new(1024, 512, CPL_TYPE FLQOAT);

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 37 of 100

/= Define the kernel =x/

| *
* Apply a median filter on inl.
* CREATES A NEW.Y ALLOCATED OBJECT THAT MJST BE DESTROYED.
*
/
im2 = cpl _image_filter_nedian(inl, kernel);
cpl _matrix_del ete(kernel);

| *
* Subtract inR2 frominl, a | ocal operation.
* DOES NOT CREATE ANY NEWLY ALLOCATED OBJECT.
*/

cpl _image_subtract (i nd, inR);

/+ Delete both imges */
cpl _i mage_del ete(iml);
cpl _i mage_del ete(i n2);

Please note that sonapl _imagegeneration functions are provided in tbpl_image_gercomponent.
These ones are mainly used in our testing facilities.

This component also provides the possibility to convertgesato another type, to save images to a FITS
file or to duplicate images. It also provides a series of amresinctions to retrieve the image size, type,
number of bad pixels or a pointer to the data buffer.

Thecpl /test s/ cpl _i mage_i o-t est. cfile contains examples afpl _i mage_i o function us-
age.
. The basic image operations

This component offers the possibility to apply basic operst between images, including element-wise
addition, subtraction, multiplication and division.

Since all but unary operators may have image operands eféliff types we define the type of the result
to be that of the first operand. This means that with the CRLatidition or multiplication of two images
of different types is non-commutative.

We define the result of an arithmetic operation on two pixél&loich one or both are bad to be a bad
pixel.

The resulting bad pixel map of an element-wise-operatiotwanmages is therefore the union of the bad
pixel maps of the two operands. See Figure 3.

136 8 5 9 11
4 7 +17 14
5|42 3] 26 s |6 |8

Figure 3: Bad pixel map handling in basic images operations

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 38 of 100

For performance reasons, the operations are actually dechpn all pixels (including any bad ones).

Functions between an image and a scalar variable are alm®dffaddition, subtraction, multiplication,
division, logarithm and exponential). In this case, the pael map and the image type remain un-
changed.

Extraction, rotation, thresholding, collapsing and ndisaion functions are also available. The handling
of the bad pixels in these functions is intuitive.

In the normalisation, the scaling factor is computed usneg@PL image statistics functions which ignores
the bad pixels.

In the collapsing function, bad pixels are ignored in the Burnmation (normal behaviour of the statistics
function), with a result that has a bad pixel only in the raasecwhere all pixels along the collapsing
direction are bad (see Figure 4).

3|6 9
A —
5(4]|2 11
5(7(8

Figure 4: Bad pixel map handling in the collapsing function

Thecpl /tests/ cpl _i mage_basi c-t est. cfile contains examples afpl _i mage_basi c¢ func-
tion usage.

4. Statistics on images

Several functions providing various statisticsapt_imageobjects are offered: the value and position of
the minimum and maximum pixels, the mean, standard dewiatiedian, absolute flux and flux in the
image or just in a rectangular part of the image. Real-vasiatistical functions are implemented as type
doubleregardless of the type of the input image. The statisticerighad pixels as shown in Figure 5.

image cpl_image_get_xxx_window(image, 4, 2, 6, ¢
23 9|6 5
0(3([5]6

maximum at position : 5, 3
2 9 11|73 maximum value: 14
7 14 4 minimum at position: 5, 2
6l o s l6lslo minimum value: 6
mean = (9+11+14+8+8+6)/6 = 9.33333
1{12 1|51 median = 9
etc...

o\IHCD

Figure 5: Bad pixel map handling in statistics computations

ESO

Doc: VLT-MAN-ES0-19500-2720

Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 39 of 100

5. The image filtering functions

This component offers linear filtering, morphological filtey, median filtering and standard deviation
filtering.

Without a separate handling of bad pixels, filtering inviotyia bad pixel will typically corrupt the neigh-
bouring pixels as shown in Figure 6.

Linear filtering with the following

3x3 kernel: 11
11
11

N
L 1

Figure 6: Filtering without bad pixels handling

In filtering it is therefore a significant improvement to bdeato identify bad pixels and handle them
properly. In the CPL, the filter functions simply ignore thedipixels, and use only the good ones in the
neighbourhood to compute the new value.

Figure 7 shows the result obtained when the bad pixel is cilyreagged.

Linear filtering with the following

3x3 kernel: 1
1
1

Figure 7: Filtering with the pixel (16, 6) tagged as bad

s
s

This example shows that it is very important to flag the baeélsias such; the neighbours are not affected
by the filtering, and the bad pixel itself can be recomputddguthe good neighbours. The only case
where a bad pixel stays bad in the filtered image is when it bag/bad pixels as neighbours.

Please note that the borders of the filtered image are setigsss in the filtered image.

Thecpl/tests/cpl __image_filter-test. cfile contains examples afpl _i mage_filter
function usage.

5.2.2 Masks

A cpl_maskis a two dimensions map in which the elements can only havedtfferent values. This object is
used to represent bad pixel maps or binary images.

Binary images are widely used (and very useful) in imagegssing for object or edge detection.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 40 of 100

This object comes with the basic morphological operatidtesdrosion, dilation, closing and opening, and also
the logical operations likand, or , not andxor .

A basic thresholding functioncpl_mask_threshold_image_creajet) “binarise” an image is provided. Fig-
ure 8 illustrates its effect on an example, where the thidsisccomputed with thepl_image_statéunctions
on the input image to obtainapl_maskobject.

Threshold
(Mean+2*Sigma)

Figure 8: Use of thresholding to binarise an image to a mask

Some simple morphological operation can be applied to thekr@make one connected object out of each
detected star as shown in Figure 9. The operation appliediferclosing (erosion + dilation).

Morphological

Closing

Figure 9: Effect of a morphological closing

Once the different objects are connected, we can apply &datien (withcpl_image_labelise_mask_creale()
on the mask to differentiate them automatically (see Figl®® The mask is transformed into an integer image
where the non-selected pixels are set to 0 and pixels of egmdrate object are set to a label value. In this
example, the labels go from 1 to 9.

Such an integer image is a convenient tool to apply some ctatipas on one and only one specific object at a
time like it is done in the section 5.4.1.

Thecpl _mask-t est. cfile in the CPLt est s directory contains examples opl _rmask function usage.
5.2.3 List of images
The cpl_imagelistobject is an extension of thepl_imageobject. It is a container for several images. A list of

images can only contain images of the same type, and of the s To ensure the validity of an image list
(basically that these conditions are verified), one canhise_imagelist_is_uniform(junction.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 41 of 100

Labelise

Figure 10: Labelisation of a mask to an integer image

The two main ways to create an image list are either to loadronea FITS file extension witbpl_imagelist_load()
or from a set of frames witbpl_imagelist_load_frameset@Qr to create one "by hand” with calls tpl_imagelist_new()
andcpl_imagelist_set()

Every image list must be deallocated usopgl_imagelist_delete()Note that if you set images in an image list,
you have to leave those images allocated, they will be destbal by thespl_imagelist_delete(@all.

Once you have your image list created, you can perform sefissnple operations between an image list and
an image, or a scalar. You also can collapse an image lighalse it or threshold it.

5.2.4 Tables

Tablesare generally defined as rectangular arrangements of edikre cells belonging to the same column
contain data of the same type, while cells from the same reweadated by some unifying characteristics. The
cpl_tablecomponent is strictly based on this definition.

Currently, three basic numerical types are supported fd?lat@ble columnCPL_TYPE | NT,CPL_TYPE_FLOAT,
and CPL_TYPE DQOUBLE. A type indicating columns made of character strirf@Rl. TYPE_STRI NG, is also
supported. From the above mentioned basic types, arrag tgrebe derived,e., a table column element may
be an array of numbers, or an array of character strings.

A table column should only be accessed throughcipietableinterface, by specifying its name. The ordering
of the columns within a table is undefinedgfa_tableis not an-tuple of columns, but just a set of columns. The
N elements of a column are counted frono N — 1, with element®) on top. The set of all the table columns’
elements with the same index constitutes a table row. It $sipte to flag eackpl_tablerow as ‘selected’ or
‘unselected’, and each column element as ‘valid’ or ‘imyaliSelecting table rows is mainly a way to extract
just those table parts fulfilling any given condition, whikealidating column elements is a way to exclude such
elements from any computation.

The cpl_tablecomponent ensures optimal performance and memory hanflimguost purposes. However,
a pointer to the primitive data types contained in a specibiciran or cell may be obtained, whenever the
developer finds that some table system performance drawisstls to be overcome.

A cpl_tablemay be created by means of its specific constructors, andfosstbrage and handling of informa-
tion that was generated within a program. The code in this oasy look like this (error checking is omitted for
clarity):

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ES0O-19500-2720
Issue: Issue 4.1.(
Date: Date 2008-03-28
Page: 42 of 100

#i ncl ude <cpl . h>

i nt

{

mai n()

cpl _table xtable;
i nt nunber _of rows;
i nt dept h;

cpl _init(CPL_I NI T_DEFAULT);

nunber of rows = 100;
depth = 5;

table = cpl _tabl e_new(nunber _of rows);

cpl _table _new colum(table, "Player",
cpl _table new colum(table, "Ganes won",
cpl _table new colum(table, "Ganes | ost”
cpl _table_new colum(table, "Success rate"
"Scores",

cpl _tabl e_new columm_array(table,

CPL_TYPE_STRI NG ;

CPL_TYPE_I NT);

CPL_TYPE_I NT) ;
CPL_TYPE_FLOAT);
CPL_TYPE_I NT, depth):

cpl _table_new colum_array(table, "OQher players", CPL_TYPE STRI NG depth);

cpl _tabl e _del ete(table);

cpl _end();
return O;

Alternatively, acpl_tablemay simply be loaded from a FITS file table extension, as irfahewing example:

#i ncl ude <cpl . h>

i nt

{

mai n()

cpl _table xtable;
i nt nunber _of rows;

cpl _init(CPL_I NI T_DEFAULT);

fl agged.
/

* %k X %

Loading a table fromextension 2 of a FITS file. The | ast
argunent indicates that invalid table elenments should be

))) Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 43 of 100
table = cpl _tabl e_l oad(" Chanpi onshi p_2005.fits", 2, 1);
nunber _of rows = cpl _table _get nrow(table);
| *
* Wite the processed table to disk in FITS format (using a default
* FITS header), clean nmenory, then exit.
*/
cpl _table_save(tabl e, NULL, NULL, "Revised_Chanpionship 2005.fits", 0);
cpl _table_del ete(table);
cpl _end();
return O;
}

It is also possible to load part of a FITS table into memoris thay turn advantageous in case of very large ta-
bles. This can be done using the functiopl _t abl e_| oad_wi ndow() instead otpl tabl e | oad().

For instance, in order to load 4 rows starting from row 2, mabove example the calltpl _t abl e_| oad()
should be replaced by

table = cpl _tabl e_| oad_wi ndow(" Chanpi onshi p_2005. fits", 2, 1, NULL, 2, 4);

The fourth argument of this function may also be used, fomitgjia subset of columns to be loaded.

The following operations can be performed throughdpk tablemethods’ interface:

e Defining and allocating new columns.

e Creating new columns pointing to external data.

e Reading and writing table cells.

e Shifting positions of column values.

e Supporting invalid table cells, and invalid array elements

e Computing statistical quantities, performing arithmetith scalar columns, etc., excluding invalid cells
from the computations.

e Exporting column data, assigning a code of choice to invalicherical cells.

e Column duplication, casting, moving from one table to arath

e Resizing tables.

e Merging tables.

e Duplicating tables.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 44 of 100

Creating new tables modelled on existing tables.

Sorting table rows.

Selecting and extracting subtables from existing tables.

Loading and saving tables as FITS files.

The methods to support these and other operations are alifukxd in detail in theCPL Reference Manugl]
but, in the following, some of the functionalities are expéal with the help of a number of simple examples.

1. Accessing table elements

A table column can be accessed by specifying its name, whikead its elements can be accessed by
specifying its table row number. As mentioned above, a tablemn may also consist of arrays of the
basic supported types. In this case by specifying a colummerend a table row number an array will be
returned, whose elements will then be accessed by speagifiyair position along the array.

Note that, in the same way as all the columns of a table mu#t t@/same length (corresponding to the
number of rows in the table), all the arrays in a given colunusinmave the same size. The length of the
arrays belonging to the same column is conventionally ddte depth of the column. In the following
example it is shown how to access table elements both fromplsioolumns and from columns of arrays
(error checking is omitted for clarity):

#i ncl ude <cpl . h>
int main()
{

cpl _table xtable;
cpl _array =*array;

i nt nunber of rows = 100;
i nt depth = 5;

char *pl ayer;

i nt score;

cpl _init(CPL_I NI T_DEFAULT);
table = cpl _tabl e_new(nunber _of rows);

cpl _table new colum(table, "Player", CPL_TYPE STRING;

cpl _table _new colum(table, "Games won", CPL_TYPE | NT);

cpl _table new colum(table, "Ganes |ost", CPL_TYPE |INT);

cpl _table_new colum_array(table, "Scores", CPL_TYPE_|INT, depth);

cpl _table_new colum_array(table, "Qher players", CPL_TYPE STRI NG depth);

| *
* Witing the name "Ren" as a Player at row 42, and the nunber of
* games won and | ost.

ESO

Doc: VLT-MAN-ES0-19500-2720
Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 45 of 100

*/

cpl _table set _string(table, "Player", 42, "Ren");
cpl _table set int(table, "Ganes won", 42, 0);
cpl _table set _int(table, "Ganes lost", 42, 5);

| *

* Now wite the scores: an array of as many val ues as the depth
* that was declared for the colums to access. In this case the
* array is filled with 0.

*/

array = cpl _array_new(depth, CPL_TYPE_INT);

cpl _array fill_w ndow.int(array, 0, depth, 0);
cpl _table_set _array(table, "Scores", 42, array);
cpl _array_del ete(array);

| *
* At the end the array can (and nust) be deleted, since it was
* physically copied to the table. If efficiency reasons nake this
* duplication of an array inpracticable, the cpl _table set_array()
* call may be replaced by:
* cpl _table_get_data array(table, "Scores")[42] = array;
*
* where the created array is directly "plugged" into the appropriate
* columm element. OF course in this case cpl_array_del ete(array) nust
* not be used.
*/
| *

* Now wite the players to the colum of arrays of character strings:
* |

array = cpl _array_new(5, CPL_TYPE STRI NG ;

cpl _array_set _string(array, 0, "Stinpy");

cpl _array_set _string(array, 1, "Goofy");

cpl _array_set _string(array, 2, "Mcky");

cpl _array_set _string(array, 3, "Donal d");

cpl _array_set _string(array, 4, "Pluto");

cpl _table _set array(table, "OQher players", 42, array);
cpl _array_del ete(array);

/
Again, the last two calls nmay be replaced by the nore efficient

cpl _table get _data array(table, "Qther players")[42] = array;

Not e that the anal ogous

L I T

cpl __array_get data_string(array)[0] = "Stimy";

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 46 of 100

*

* cannot be used in this case, because "Stinmpy" is a constant string
* that cannot be rel eased by the table destructor
*/

| *
* Now access sone of the witten data:
* [

pl ayer = cpl _table get string(table, "Player", 42);
score = cpl _table_get _int(table, "Ganmes won", 42);

array = cpl _table_get_array(table, "OQther players", 42);
pl ayer = cpl _array_get _string(array, 2);

array = cpl _table get _array(table, "Scores", 42);
score = cpl _array_get _int(array, 2);

| *

* Do not use:

*

* cpl _free(pl ayer);

* cpl _array_del ete(array);

*

* The accessors just return a pointer to an internal el enent, that
* Will be released at table destruction

*/

cpl _table_del ete(table);

cpl _end();
return O;

}

2. Support of invalid table cells

Table cells may be flagged as invalid. This is, in general, g tovaexclude some of the values from a
given operation, for instance the computation of a meanf anarithmetic operation, as in the following
example (error checking is omitted for clarity):

#i ncl ude <cpl . h>

int main()
{
cpl _table xtable;
i nt i;
i nt nrows = 10;

doubl e nean;

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 47 of 100

cpl _init(CPL_I NI T_DEFAULT);

| *
* Create a table with a predefined

*/

table = cpl _tabl e_new(nrows);

cpl _table new colum(table, "Nunbers",

for (i = 0; i < nrows; i++)

| ength of 10 rows, and create
* an integer columm naned "Nunbers"” with the nunmbers from1 to 10:

cpl _table_set_int(table, "Numbers",

CPL_TYPE_I NT);

+ 1);

/+* Flag the "Nunmbers" colum’s first and third elenents as invalid */

cpl _table_set _invalid(table, "Nunbers",
cpl _table_set_invalid(table, "Nunbers",

| *

0);
2);

* Conpute the nean value: the values flagged as invalid are
* autonmatically excluded fromthe conputation

*/

mean = cpl _tabl e_get_col utm_mean(t abl e,

| *

* Now write again sone valid val ues.

* now conput ed.
*/

cpl _table set _int(table, "Nunbers",
cpl _table set _int(table, "Nunbers",

mean = cpl _tabl e_get_col utm_mean(t abl e,

| *

* |n the case of a columm of arrays,

“Nurbers");

A different mean value is

“Nurbers");

or also of character strings,

* invalidating an el ement neans to release it from nenory:

*/

cpl _table _new colum(table, "Character strings", CPL_TYPE STRING;

| *

* Wite a character string to table elenent 5 of col um
* "Character strings". The test string is duplicated:

*/

cpl _table set string(table, "Character strings", 5, "test string");

| *

* |nvalidating this string neans to destroy it:

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 48 of 100
x]

cpl _table_set _invalid(table, "Character strings", 5);

/
The sane happens with a columm of arrays: here a columm of integer
arrays of size 12 is created; then one integer array is created,

all its elements are set to 5240, and finally the array is inserted
at the cells 5 and 6 of the table colum. Note that the created array
must have exactly 12 el enents, according to the declaration of the

* col um.

*/

L S

cpl _table new colum_array(table, "Arrays of integers", CPL_TYPE INT, 12);
array = cpl _array_new(12, CPL_TYPE I NT);

cpl _array fill_w ndow.int(array, 0, 12, 5240);

cpl _table_set_array(table, "Arrays of integers", 5, array);

cpl _table_set_array(table, "Arrays of integers", 6, array);

| *

* Since the array is physically copied to the table, it can (and it
* shoul d!') be rel eased:

*/

cpl _array_del ete(array);

| *

* As with the character string colum, invalidating a table cel
* means to destroy the copy of the array:

*/

cpl _table_set _invalid(table, "Arrays of integers", 5);

| *

* How to invalidate a single array elenent? Here i s shown how to
* invalidate elenment 2 of array 6:

*/

array = cpl _table_get_array(table, "Arrays of integers", 6);
if (array)
cpl _array_set _invalid(array, 2);

~

L S

The array read fromthe table should not be rel eased, because it
belongs to the table itself: cpl_table_get_array() just returns
a handle to an internal object. Al the nenory associated to
the table is rel eased when the table is destroyed:
/

cpl _table_del ete(table);

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 49 of 100
cpl _end();
return O;
}

It should be underscored that when any table column valuaggéd asnvalid, it is lost: there is no
function to set an invalid element back to its original vallibe only way to validate a table element is to
write a value to the corresponding position. It is importarbe aware of this every time the data array of
a table column is exported to another procesg,(a fitting routine), as in the following code section:

#i ncl ude <cpl . h>

int main()

{
cpl _table *table;
fl oat xdat a;
i nt si ze;

cpl _init(CPL_I NI T_DEFAULT);

It is here assuned that the float colum "Data" contains some
invalid values. The data buffer of the table colum is extracted
and passed to an external fitting routine, but this is a

m stake: in fact the buffer elenents corresponding to an

* invalid el ement contain garbage.

L I

* |
data = cpl __table get data float(table, "Data");
size = cpl _table_get _nrow(table);

<result of the fit> = fit(data, size);

| *
* | n case the external fitting routine would support a speci al
* "code" to identify invalid values that woul d be excluded from
* the fit - for instance, 0.0 - such code nmay be witten to the
* internal data buffer before exporting:

*/

cpl _table fill invalid float(table, "Data", 0.0);

| *

* |n this way the invalid values would still remain flagged as

* invalid, but the exported data woul d not contain any garbage
* and the fitting routine would work properly:
* |

ESO

Common Pipeline Library

User Manual

Doc: VLT-MAN-ES0O-19500-2720
Issue: Issue 4.1.(
Date: Date 2008-03-28
Page: 50 of 100

dat a
size

<result of the fit> = fit(data,

/

* %k % X %

* any row contai ni ng at

*/

cpl _table erase_invalid(table);

dat a
si ze

<result of the fit> = fit(data,

It

i nt er nal
woul d be npodi fi ed,

cpl _table_get _data_float(table,

cpl _table get nrow(table);

si ze);

cpl _table_get _data_float(table,

cpl _table_get _nrow(table);

cpl _table_del ete(table);

cpl _end();
return O;

si ze);

"Data");

is likely that a nmore common solution would be to physically
renove any invalid value froma table before exporting the

data buffer to the foreign routine. Here the table

and its size would be smaller than before:
the function cpl _table_erase_invalid() renmoves froma table

| east one invalid val ue.

"Data");

The most obvious example of exporting a column’s interngd thaffer to an external process is when a ta-
ble is converted to FITS format and written to disk. This is€dy the functioncpl _t abl e_save(),
that converts any invalid column value into the FITS conienfor null values: invalid values in numer-
ical columns of typeCPL_TYPE_FLOAT and CPL_TYPE_DOUBLE are replaced by their owmNaN

bit pattern, while invalid character strings @BPL_TYPE_STRI NG columns are replaced by sequences
of blanks. The only exception is represented by invalid @alin columns of typeCPL_TYPE_| NT,
that are the only ones that need a specific code to be explasigned to them. This can be realised
by calling the functioncpl table fill _invalid_int() foreach table column of type nt
containing invalid values, and this should be done just teegaving the table to FITS. The numerical
values identifying invalid integer column elements aretteri to the FITS keywordsSTNULLn (where n

is the column sequence number). Here is a simple example:

#i ncl ude <cpl . h>

i nt

{

mai n()

cpl _table xtable;

i nt

nrows = 10;

))) Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 51 of 100
cpl _init(CPL_I NI T_DEFAULT);
| *
* Create a table with a predefined length of 10 rows, create
* an integer columm nanmed "Numbers", and fill it with the value 3:
*/
table = cpl _tabl e _new(nrows);
cpl _table_new colum(table, "Nunmbers", CPL_TYPE_INT);
cpl _table fill_colum_wi ndow_ int(table, "Nunbers", 0, nrows, 3);
/* Flag the "Nunmbers" colum’s first and third cells as invalid =/
cpl _table_set _invalid(table, "Nunbers", 0);
cpl _table_set _invalid(table, "Nunbers", 2);
| *
* Save to a FITS file, but give first the code 999 for the NULL
* values. The output FITS file header will contain the TNULL
* keyword (corresponding to this columm) set to 999.
*/
cpl _table fill _invalid_int(table, "Nunmbers", 999);
cpl _table_save(tabl e, NULL, NULL, "output_table.fits", 0);
cpl _table_del ete(table);
cpl _end();
return O;
}

Beware that if valid column elements have the value idehtiacéne chosemull-code, they will mistakenly
be considered invalid within the FITS convention.

3. Shifting position of column values

It may be useful in some cases to shift the positions of alVttees of a given table column by a specified
amount. This is done with the table functioopl _t abl e_shi ft _col unm(). The most obvious
application of this functionality is in the computation bitfinite differences of a sequence of numbers,
the discrete analogue of the differential operation.

In the following example the finite forward difference of tedues in thef | oat table column” Val ues”
is written to the newf | oat table column” Forward di fferences" (error checking is omitted
for clarity):

#i ncl ude <cpl . h>

))) Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 52 of 100
int main()
{
cpl _table xtable;
char input[] = "input_table.fits";
char output[] = "output_table.fits";
cpl _init(CPL_I NI T_DEFAULT);
| *
* Load the table data froma given FITS file. W assune here
* that the table contains a float colum named "Val ues"
*/
table = cpl _table_l oad(input, 1, 1);
| *
* A sinple procedure: duplicate the input colum, nove the val ues
* of the duplicated colum upward by one position, and finally
* subtract the original colum values fromthe shifted ones,
* witing the result to the duplicated colum itself.
*/
cpl _table duplicate colum(table, "Forward differences", table, "Values");
cpl _table_shift_colum(table, "Forward differences", -1);
cpl _table_subtract_colums(table, "Forward differences", "Values");
| *
* Wite the newtable to disk in FITS format (using a default FITS
* header), clean nenory, then exit.
*/
cpl _table _save(table, NULL, NULL, output, 0);
cpl _tabl e _del ete(table);
cpl _end();
return O;
}

In this example the last element of thd-or war d di f f er ences™ column turns out to be flagged as
invalid: the upward shift leaves the corresponding table cell ensptyhat it is automatically excluded by
the subtraction operation.

Elements shifting is not supported for character stringiewis and for columns of arrays.

4. Selecting and extracting subtables from existing tables

A set of functions of thepl_tablecomponent is used to select a number of rows from an existinig t
before copying them to a new table. The selection functisasuaed to apply simple selection criteria,

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 53 of 100

that can be logically combined to define more complex catewith the only exception of the function
cpl _tabl e _not_sel ected(), all the selection functions names include the wordand_ or
_or _, toindicate how a given selection criterion should be caraiwith the existing row selection of a
given table. The_and_ tag indicates that between the existing selection and tesekection criterion
an intersectionis made, while the_or _ tag indicates that between the existing selection and the ne
selection criterion ainionis made. The initial state of any table is that all of its rows selected, and
therefore the first selection applied to a table would alwagsan _and_ selection, as shown in the
following example:

#iﬁclude <cpl . h>
int main()
{

cpl _table xtable;
cpl _tabl e *subtabl e;

char input[] = "input_table.fits";
char output[] = "output_table.fits";
i nt sel ect ed;

cpl _init(CPL_I NI T_DEFAULT);

/
Load the table data froma given FITS file. W assune here
that the table contains a float colum naned "Day", a string
col umm naned "Month", and an integer columm naned "Year".
This table begins with all rows selected, but in this
exanpl e we ensure this explicitly:

/

* 0% * % X X X

table = cpl __table_|load(input, 1, 1);

cpl _table_select_all(table); /* Not really necessary... =*/
| *

* Here we select all rows containing the year 1958 and the year

* 2006; fromthose we sel ect those having a nonth beginning with

* the letter "A" or "a", and a day between 5.5 (included) and 12.3
* (excluded). Finally, we add to all these any row contai ni ng

* the nonth "May" (no matter what year or day). Each function

* call returns the total nunber of selected rows, that in this

* exanple is always discarded, with the exception of the |ast

+ call.

*/

cpl _table_and_select_int(table, "Year", EQUAL_TO 1958);

cpl _table or_select _int(table, "Year", EQUAL TO 2005);

cpl _table_and select_string(table, "Month", EQUAL TO, ""[Aa].=*");
cpl _table_and_sel ect _float(table, "Day", NOT_LESS THAN, 5.5);

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 54 of 100

cpl _table_and_sel ect _float(table, "Day", LESS THAN, 12.3);
sel ected = cpl _table_or_select_string(table, "Mnth", EQIAL_TO, "My");

| *
* |f some rows survived, a new table is created fromthe sel ected
* rows and it is saved to a FITS file:
* [

if (selected '=0) {
subtabl e = cpl _table_extract_sel ected(table);
cpl _tabl e_save(subtable, NULL, NULL, output, 0);
cpl _tabl e_del et e(subt abl e);

}

cpl _tabl e _delete(table);
cpl _end();

return O;

}

Note that in matching strings the reference value is ingtgat as a regular expression. All the se-
lection functions involving comparisons with a constarguiee that the constant has the same type of
the referred column. For this reason there is a function &heavailable column type. The functions
cpl _table and_select() andcpl table or_sel ect (), without any type suffix, are used
in the comparison of the values from two numerical columns.

. Tables of images

As seen above, it is possible to define tables containingromdlof arrays. In principle, each array can be
viewed as a storage for values that may be cast into more esrdgka structures — for instance images,
cubes, etc.. The concept afolumn dimensionhas been introduced for this purpose. In the following
example it is shown how to create a table containing a coluraderof 2-dimensional images (error
checking is omitted for clarity):

#i ncl ude <cpl . h>

int main()
{
cpl _table xtable;

cpl _array =array;
cpl _i mage i mage;

i nt rows = 12; /+* Number of inmages = rows in table =«/
i nt naxi s = 2; [+ Number of axis of each inmmge */
i nt size[] = {25, 33}; [+ Size of one image: x = 25, y = 33 */
i nt dept h;

i nt i;

cpl _init(CPL_I NI T_DEFAULT);

Doc: VLT-MAN-ESO-19500-272

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-2
Page: 55 of 100
| *
* Create table
*/
table = cpl _table_new(rows);
| *
* Conpute depth of columm of arrays, and create colum of inages:
*/
for (i = 0; i < naxis; i++)

depth == size[i];
cpl _table new colum_array(table, "Inmages", CPL_TYPE FLOAT, depth);
| *
* Set the columm dinmensions: an array of two el enents carries the
* size in x and y of each inmge
*/

array = cpl _array_new(naxis, CPL_TYPE_INT);

for (i = 0; i < naxis; i++)
cpl __array_set _int(array, i, size[i]);
cpl _table_set _col um_di nensi ons(table, "Inages", array);

cpl _array_del ete(array);

| *
* Now al | ocate an external inage of the appropriate sizes, and fill
* it with sone data:

*/

i mage = cpl _i mage_new(si ze[0], size[l], CPL_TYPE FLQAT);
cpl __image fill _noise_ uniforminmage, -1, 1);
| *

* Copy the image to the columm el enment 4

*/

array = cpl _array_wrap_float(cpl _i mage_get data(i nage));
cpl _table_set_array(table, "lInages", 4, array);

cpl _array_unw ap(array);

cpl _i mage_del et e(i mage) ;

| *
* At the end the array can (and nust) be unw apped, since it was
* physically copied to the table. If efficiency reasons nake this
* duplication of data inpracticable, the last two calls nay be

ESO

- _ Doc: VLT-MAN-ES0-19500-272p
Common Pipeline Library Issue: Issue 4.1.(

User Manual Date: Date 2008-03-28
Page: 56 of 100

/

L R SR T

*

*

*

*

*

repl aced by:
cpl _table get data array(table, "lImages")[4] = array;

where the created array is directly "plugged" into the appropriate
columm elenment. OF course in this case cpl_array_unwap() should
not be called, and cpl _i nage_del et e(i nage) shoul d not be used,
because it woul d destroy data that belong also to the table.
cpl i mage_unwrap(i nage) should be used instead, to destroy the
i mage data wrapper.

/

Here is an exanple on how the i mage could be extracted fromthe
corresponding table el enent: we assune here that the colum
di nensi ons are not known.

/

naxis = cpl _table _get col um_di mensi ons(table, "lnmages");
if (naxis == 2) {

}

for (i = 0; i < naxis; i++)

size[i] = cpl _table_get_columm_di nension(table, "Images", i);
array = cpl _table get _array(table, "Inages", 4);
i mge = cpl _inmage_wap _float(size[0], size[l],

cpl _array_get _data_float(array));

| *
* Process inmage...
*/

| *
* Cl eanup when done. Note that the array nust not be rel eased.
*/

cpl _i mage_unwr ap(i mage);

cpl _table _delete(table);

cpl _end();
return O;

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 57 of 100

5.2.5 Statistics

Thecpl_statsobject provided in CPL is a container of different statistibat have been computed. They may
have been computed on an image, a matrix, a table columneradeéable columns, or from many other objects.
For the moment, only functions to create this statisticectdrom an image or an image window are provided.

Thecpl_statobject must be deallocated withl_stats_delete(and can be saved in atext file withl_stats_dump()

5.2.6 Vectors

In the Common Pipeline Librarythe vector component is namegl_vector It is a simple structure with
an array ofdoublevalues and a size. This basic object can be used to build noonplicated types, such
as a complex array (combination of a vector for the real \saled a vector for the imaginary values) or a
1-dimension function (see 5.2.7).

To create or delete@pl_vectorobject, you must use the dedicated functiopk vector_new(andcpl_vector_delete()

Here is an example that shows how _vectorcan be used to load a values list from a text file, to subtraect th
mean and write the result into another text file:

int main()

{
cpl _vector = vect
doubl e nean ;
FI LE * out ;

cpl _init(CPL_I NI T_DEFAULT);

| *

* Load values froman ASCI| file and store it in a cpl_vector

* nmyfile.txt contains a list of the vector values (one per line)
*/

vect = cpl _vector_load("nyfile.txt");

/+* Compute the nmean of the vector x/
nmean = cpl _vector _get nean(vect);

[+ Subtract the mean =/
cpl _vector_subtract_scal ar(vect, nean);

[+ Wite out the result to a file */
out = fopen("output file.txt", "w');
cpl _vector _dunp(vect, out);

fcl ose(out);

[+ Delete */
cpl _vector _del ete(vect);

/* Return =/

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 58 of 100
cpl _end();
return O;
}

Some of the functionalities provided by this component are :

Vector constructor and destructor.

Routines to read/write a vector from/to a file.

Sorting functionality.

Basic arithmetic operations between vectors or betweertaand a constant.

Statistics computed on a vector (find the minimum, the marimealculate the mean, ...).

Derive the low frequency signal from a vector.

Vectors comparison methods.

The functionalities implemented at the moment are basie.alim is not to try to forsee every conceivable func-
tion that could be needed. If new requirements come, thedatieated functions will be designed accordingly.
This approach keeps tt@ommon Pipeline Librargs small as possible, but not excluding the possibility trla
extension.

5.2.7 Bivectors

Thecpl_bivectorobject is simply composed with twapl_vectorobjects. Its goal is typically to contain a list of
positions in an image, a list of offsets, a list of points defina one-dimension signal, etc...

The functionality provided by the bivector methods inclside

e A constructor and a destructor.

e Accessor functions to its two vectors.
e Read/write functionalities.

e Interpolation function.

The accessor functions give access to the vectors, so thia¢ apl_vectormethods are available to the bivector
members.

5.2.8 Polynomials

A n dimensions polynomial objectil_polynomial is provided in CPL, with several methods to create it,
deallocate it, set its coefficients, and do some simple tipason it.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 59 of 100

5.2.9 Matrices

Matricesare generally defined as a set of numbers arranged in a retiamgid of rows and columns. The
cpl_matrixcomponent only supports sets of numbers in double precision

The cpl_matrixis an opaque object; access and manipulation of matrix dat@ne through an interface of
methods and accessors designed for that purpose. Suchdseiteintended to support basic matrix handling,
ensuring optimal performance and memory usage. Besidesintepto the data buffer of matrix elements
is available whenever the developer finds that a particdgorithm is missing from the library, or specific
performance requirements need to be fulfilled. The intedaéh buffer of acpl_matrixis a simple array of
doubl e values, where the first value refers to the upper left positibthe matrix, and the last value to the
lower right position. The values are listed row by row, widtchk row running from left to right and starting with
the top row. The elements ofapl_matrixare indexed starting from, i.e., the first matrix element at the upper
left position has index, 0.

A cpl_matrixmay be created with one of its specific constructors, and {mestorage and handling of in-
formation that was generated within a program. The code maly like this (error checking is omitted for
clarity):

#i ncl ude <cpl . h>

int main()

{
cpl _matrix »matri x;
doubl e »data_buffer;
i nt nunber _of rows = 20;
i nt nunber of colums = 4;
doubl e val ue;

cpl _init(CPL_I NI T_DEFAULT);
matrix = cpl_matri x_new nunber _of _rows, nunber_of _col ums);

/+* Copy the value of a matrix elenents to another |ocation =/
value = cpl _matrix_get(matrix, 0, 3);

cpl _matrix_set(matrix, 4, 1, value);

| *
* Direct access to the matri x data buffer
* [

data_buffer = cpl_matrix_get _data(matrix);

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 60 of 100

cpl _matrix_delete(matrix);

cpl _end();

return O;

Currentlycpl_matrixsupports the following operations with matrices:

e Creating different types of matrices, duplicating matsicetc.
e Reading and writing matrix elements.

e Transposing, shifting, removing row/column intervalsg gerforming any other elementary row/column
operations.

e Extracting submatrices, expanding existing matricesgimgrof matrices.
e Performing arithmetic, computing scalar products, deteamts, etc.

e Computing statistical quantities.

e Sorting of matrix rows or columns, gaussian eliminatiog, et

e Solving systems of linear equations.

e Inversion.

The methods to support these and other operations are afilules in detail in theCPL Reference Manudl],

but in the following some of the functionalities are expkdrwith the help of one single example, adapted from
a higher-level function of thepl_matrixcomponentcpl matri x_sol ve_normal (). This function is
used to solve redundant linear systenss, linear systems with too many equations or too many unknowns

The theory: given the matrix of the linear system coeffidg&htand the non-homogeneous teinthe system
C-X=H

is defined, wher& is the column matrix of the unknowns. The pseudo-inversatisol of this system is given

by
X =H-CT.inv(C-CT))

whereC” represents the transposed matrixCofandinv the matrix inversion operation. In the following code,
a system of 100 equations in 10 unknowns is solved:

#i ncl ude <cpl . h>

int main()

{

_) _ Doc: VLT-MAN-ESO-19500-272
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-2
Page: 61 of 100
cpl _matrix *coeff;
cpl _matrix *t_coeff;
cpl _matri x *nonhono;
cpl _matrix *solution
cpl _matrix *mi;
cpl _matrix *ng;
cpl _matrix *nB;
i nt equations = 100;
i nt unknowns = 10;
i nt i, g

cpl _init(CPL_I NI T_DEFAULT);

/* Creating the coefficient and the non-honbgeneous termmatrices */

coeff = cpl _matri x_new equati ons,

| *

unknowns) ;
nonhono = cpl _matri x_new(equati ons,

* The matrices are filled in sone way with the appropriate data,
* for instance using the function cpl_matrix_set():

*/
cpl _matrix_set(coeff, i, j, value);
cpl _matrix_set(nonhono, i, 1, value);

/+* Now that the matrices are available we can apply the theory =/

t _coeff = cpl_matrix_transpose_create(coeff);
mL = cpl _nmatrix_product _create(coeff,

n2 = cpl _matrix_invert _create(nl);
if (n2 == NULL)
return 1;

n8 = cpl _matrix_product _creat e(nhonhono,
solution = cpl_matrix_product _create(ns, nR);

[+ C eanup =/

cpl _matrix_del ete(coeff);
cpl _matrix_del et e(nonhono) ;
cpl _matrix_del ete(t_coeff);
cpl _matrix_del ete(ml);

cpl _matrix_del et e(n);

cpl _matrix_del et e(nB);

| *

t _coeff);

t_coeff);

Singular matrix =/

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 62 of 100

/* Here the solution is avail abl e and can be used =*/

/+* Finally, also the solution matrix is deleted and the program cl osed =*/

cpl _matrix_del ete(sol ution);

cpl _end();
return O;

5.2.10 Messaging and logging

A simple component for displaying informative text to temaili and for maintaining logfiles is available in the
CPL. The following operations are supported:

e Controlling whether or not messages are written to the testh@nd/or to a lodfile.

Optionally adding informative tags to messages.

Setting width for message line wrapping.

Controlling the message indentation level.

Filtering messages according to their severity level.

Messages may be printed using any of the following functions

e cpl _nmsg_debug()

e cpl _msg_info()

e cpl _msg_war ni ng()

e cpl _nmsg _error()
Choosing from these functions means assigning a level @frggvo a given message. The messaging system
can then be set to display just messages having sufficieatisgxhoosing a verbosity level from the following
list:

e CPL_MSG_DEBUG

e CPL_MSG_| NFO

e CPL_MSG_WARNI NG

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 63 of 100

e CPL_MSG_ERROR
e CPL_MBG OFF

The highest verbosity level of the messaging systef@Rs_MSG_DEBUG. That would ensure thail the mes-
sages are printed. The verbosity would progressively dserthrough the level6PL_MSG _| NFO, CPL_MSG _
WARNI NG, and CPL_MSG_ERRCR, where only messages served by tt)@d _nmsg_err or () function would
be printed. The lowest verbosity lev€lPL_MSG_OFF, would inhibit the printing of any message to the termi-
nal.

To output the messages to a logfile, a calctpl _nsg_set | og | evel () isalso required, while output to
terminal is automatically enabled at a verbosity le@PL._ M5G _| NFG; the functioncpl _nsg_set | evel ()
may be used just to modify this default verbosity. The namthefcreated log file may be set with the func-
tion cpl _nsg_set | og_nane() before callingcpl _nmsg_set | og_| evel (), otherwise it is left to
a default ".logfile".

Three different tags may be attached to any mesdage; domain andcomponentThetimetag is the time of
the printing of the message, and can optionally be turned off with the functionscpl _nsg_set _ti me_on()
and _of f (). Thedomaintag is an identifier of the main program (typically, a pipelirecipe), and can be
optionally turned on or off with the functiongpl nsg_set donmi n_on() and _of f (). Finally, the
componentag is used to identify a component of the program (typicalyunction), and can be optionally
turned on or off with the functioncpl _nsg _set conponent _on() and _of f (). However, thecom-
ponenttag is always shown when the verbosity level is seCeL._ MSG_DEBUG.

As a default, none of the above tags are attached to messagiet® she terminal, but all the tags are always
shown in messages sent to the logfile. A further tagstheeritytag, can never be turned off. This tag depends
on the function used to print any given message. The taggepepded to all messages, and are not affected by
the message indentation controlled by the functieqd _nsg_i ndent (),cpl _nmsg_i ndent _nore(),

cpl _nsg_indent less(),andcpl _nsg_set indent _step().

The messaging component takes care of breaking long linexiofo the actual terminal width or to a specific
maximum value, and will always add a new line character aétiteof any message if it is missing. If the width
of the output device cannot be determined, lines of text ateplitted when written to output. If line breaking

is not wanted, the functiorcpl _nsg_set _wi dt h() should be called specifying a non positive width. To
enforce breaking a line of text, new line characters canysvie inserted within the message.

In the following, an illustration of writing messages tortenal and to a logfile is given.

#i ncl ude <cpl . h>

int main()
{
char domain[] = "Exanple"
char conponent[] = "messagi ng"

cpl _init(CPL_I NI T_DEFAULT);

))) Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 64 of 100
| *
* |nitialising the messagi ng system Messages are sent both to
* termnal and to logfile.
*/
cpl _nsg_set _tinme_on();
cpl _nmsg_conponent _on();
cpl _nsg_set _donmai n(donmi n);
cpl _nsg_set _domain_on();
cpl _nsg_set | evel (CPL_MSG WARNI NG ;
cpl _nsg_set | og_Il evel (CPL_MSG_DEBUG) ;
| *
* Printing sonething...
*/
cpl _nmsg_debug(conponent, "Log is witten to %", cpl_nsg _log file());
cpl _nsg_i nfo(conponent, "This is nmessage nunber % of %", 2, 4);
cpl _nsg_war ni ng(conponent, "This is a % nessage", "warning");
cpl _nsg_error(conmponent, "This is the final error nessage");
cpl _end();
return O;
}

A complete description of the functions available in the saging component is given in the on-liGPL
Reference ManudlL].

5.2.11 Error handling

This component provides a means to detect, display ande&edmm errors in CPL-functions. It also allows

the CPL API programmer to write functions that sets errors.

A CPL error consists of the following information:

e The CPL error code, amnumthat defines the type of error, similarly to taeno variable of the standard
C library. The possible values of CPL error code incl@Rrt._ ERROR _NONE, which equals zero.

e A human-readable text describing the type of error, optlgriallowed by more details about the specific
error. This text may be used by the caller for error reporting

o The name of the function in which the error occured.

e The name of the source file in which the error occured.

e The line number where the error occured in that source file.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 65 of 100

The CPL errorstate consists of the (possibly empty) sequeh€PL errors that has occurred and from which
no recovery has been done.

The most recent CPL error can be queried with these functions

cpl _error_get _code().

cpl _error_get _nessage().
cpl __error_get function().
cpl __error_get file().

cpl _error_get line().

cpl _error_get _where(),which combines the location information from the above¢hiunctions
into a single, colon-separated string.

CPL functions modify the CPL error code as follows:

The CPL error code is initialized by the callégl _i ni t () . If no error happens inpl _i ni t () ,then
cpl _error_get code() returnsCPL_ERROR_NONE. (If an error does happen mpl _init (),
then it is unlikely that the application can do anything usefith CPL).

If no error occurs in other CPL functions, then the CPL etrdes and therefore the return value of
cpl _error_get _code() is unchanged.

If an error does happen in a CPL function, a new CPL error igtectand appended to the CPL errorstate
and the return value afpl _err or _get code() is updated accordingly.

The behaviour of all CPL functions, except those that imgetithe CPL error handling, is not affected
by the CPL errorstate, i.e. the CPL errorstate is not an itgpthtese functions. This means that if an error
has happened, CPL functions can still be called to get irdétion about the conditions that have led to
the error.

In general CPL functions do not themselves display any enessages, instead it is left to the caller to decide
if and how to display error messages.

If cpl _error_get code() returnsCPL_ERROR_NONEthe CPL errorstate is said to be empty or clean. In
this case calls to the other accessors of the CPL error mandie still allowed, but they provide no meaningful
information.

Some CPL functions are of tympl _error _code. A function of this type return€PL_ ERROR _NONE if it
did not create a new CPL error. If it did create one or more n®&A\k €rrors, it returns the CPL error code of the
most recent error.

Other CPL functions have return values that indicate if a @& error has been created, e.g. most of the CPL
functions that return a pointer.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 66 of 100

A third group of CPL functions cannot indicate with theiruet value if an error ocurred. If the CPL errorstate
is clean prior to a call to such a function, thepl _error _get _code() can indicate if an error was created.
This method cannot be used if the CPL errorstate containssaprior to the call.

In this case the most general method for error detectiondhbs tised. This consists of defining a variable of
typecpl _error st at e to the value of the errorstate prior to the call, and then amng this value to the
errorstate after the call. Thus to robustly detect whetimeeraor has happened in a call to the function that
returns the minimum pixel value in a CPL image, one could do:

cpl __errorstate prestate = cpl _errorstate_get();
doubl e val max = cpl _i rage_get max(i nage);

if (cpl _errorstate is _equal (prestate)) {

[+ No error happened in cpl _inmage_get_max(). =*/
} else {

[+ An error happened in cpl _inmage_get_max(). =*/

}

In some cases a CPL application can recover from a (sequénC&hb error(s).
There are two methods for doing this.

The first and simplest consists of a single calcygl _error _reset (), which will empty the entire CPL
errorstate and thus cause a subsequent cappto er r or _get _code() to returnCPL_ERROR_NONE. This
method can be used if the CPL errorstate is guaranteed te@be ptior to the code that created the error(s).

The second and more general method consists of defining ableaf typecpl _err or st at e to the value
of the errorstate prior to the code from which recovery issgme, and then setting the errorstate back to this
value after the execution of the code from which the recoiety be done.

For example:
cpl __errorstate prestate = cpl _errorstate_get();
my function();
if (cpl _errorstate is _equal (prestate)) {

/* No error happened in nmy_function() */
[+ - thus no recovery is needed

} else {
[+ Error(s) happened in ny_function(). =/

[+ - set the errorstate back to what it was before and discard the
i nformati on about the errors that happened in my_function(). */

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 67 of 100

cpl _errorstate_set(prestate);

}

assert(cpl __errorstate_is_equal (prestate));

The CPL errorstate can contain a limited number of CPL errdiisis number is defined by the cpp-macro
CPL_ERROR HI STORY_SI ZEwhich currently has a default size of 20. The default size of
CPL_ERROR_HI STORY_SI ZE ensures that no CPL function overflows the errorstate.

If more thanCPL_ERROR_HI STORY_SI ZECPL errors are appended to the CPL errorstate, then themafor
tion about the oldest CPL errors is lost. This has implicegitor error recovery, which are best explained with
an example that includes the above code example. SuppdsgRhehas been built with the default value (20)
for CPL_ERROR _HI STORY_SI ZE, that the abover est at e has been defined when the errorstate contains
5 CPL errors, and that the aborg_f uncti on() appends 30 CPL errors to the CPL errorstate.

After the recovery, the CPL errorstate again consists of&@®ri.e. the above assertion,

cpl _errorstate_is_equal (prestate),still holds. Also, when prestate was defined,

cpl _error_get _code() would return a value different fror®PL_ ERROR_NONE. At the point of the
aboveassert (),cpl _error_get code() would still return a value different frol@PL_ ERROR _NONE.

The information that has been lost at the recovery are:

e cpl __error_get code() returnsCPL_ERROR _UNSPECI FI EDregardless of what it returned when
pr est at e was defined.

e The text message of the error has been lost.

e All location information about the error has been lost.

If further recovery is done back to an even older error, tmesholds for that error.

The sequence of CPL errors in a non-empty CPL errorstateecdisplayed usingpl _error state_dunp() .
To display the errors that have occurred after a certaintfpoia could do:

cpl _errorstate prestate = cpl _errorstate_get();
my function();

if (cpl _errorstate is _equal (prestate)) {
[+ No error happened in ny_function() =*/

} else {
[+ Error(s) happened in ny_function(). =/
/= Dunp themall in chronol ogical order, oldest first =*/

cpl _errorstate_dunp(prestate, CPL_FALSE, cpl _errorstate_dunp_one);

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 68 of 100
}

cpl _errorstate_dunp() takes a boolean, if this evaluates@L_TRUE, then the order of the dump
is reversed.cpl _errorstate_dunp() takes a function pointer, each CPL error is dumped with a call
to that function. To get the default dump, the caller may cpé_errorstate_dunp_one or NULL.

cpl _errorstate_dunp_one dumps using the CPL messaging system at error level.

The CPL application may define its own functions for dumpin@RL error, the CPL application programmer
is referred to the documentation opl _error st at e_dunp_one() for more details about this.

If the dump consists of more th&@PL_ERROR _HI STORY_SI ZE errors, then all but the newest
CPL_ERROR _HI STORY_SI ZEwill be displayed with the error codePL_ ERROR_UNSPECI FI EDand empty
text and location information.

The currently available CPL error codes are:

CPL_ERROR_NONE No error

CPL_ERROR_UNSPECI FI ED An unspecified error

CPL_ERROR _DUPLI CATI NG_STREAM Cannot duplicate output stream
CPL_ERROR_ASSI GNI NG_STREAM Cannot associate a stream with a file descriptor
CPL_ERROR _FI LE I O File access permission denied
CPL_ERROR _BAD FI LE_FORVAT Bad file format

CPL_ERROR _FI LE_ALREADY_OPEN File already open
CPL_ERROR _FI LE_NOT_CREATED File cannot be created
CPL_ERRCR _FI LE_NOT_FOUND File not found
CPL_ERROR _DATA NOT_FOUND Data not found

CPL_ERROR _ACCESS QUT_COF RANGE Access beyond boundaries
CPL_ERROR_NULL_I NPUT Null input data

CPL_ERROR | NCOVPATI BLE_I NPUT Input data do not match
CPL_ERROR | LLEGAL_I NPUT lllegal input

CPL_ERROR | LLEGAL QUTPUT lllegal output
CPL_ERROR_UNSUPPORTED MODE Unsupported mode
CPL_ERROR_SI NGULAR_MATRI X Singular matrix

CPL_ERRCR DI VI SI ON_BY_ZERO Division by zero

ESO

Doc: VLT-MAN-ES0-19500-2720
Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 69 of 100

CPL_ERROR _TYPE M SMATCH Type mismatch

CPL_ERROR_| NVALI D_TYPE Invalid type

CPL_ERROR_CONTI NUE The iterative process did not converge

CPL_ERROR _EQOL A user-defined error

CPL_ERROR_EQL is guaranteed to not be used within CPL itself, and to be greaan any of the CPL other
error codesCPL_ERROR_EQL can therefore be used by the CPL application to extend tloe leandling with
new error codes.

Here is an example of a program with CPL error handling.

#i ncl ude <cpl . h>

cpl _error_code ny_func(void);

i nt

{

cpl

mai n(voi d)
cpl _errorstate prestate;
cpl _init (CPL_I NI T_DEFAULT);
prestate = cpl _errorstate_get();
if (my_func() != CPL_ERROR_NONE) ({

[+ At this point error recovery is not possible

- instead dunp the error state. */

cpl _msg_error(cpl _func, "my_func() failed:");

cpl _errorstate_dunp(prestate, CPL_FALSE, cpl _errorstate_dunp_one);
}

return cpl _error_get_code() ? EXIT_FAILURE : EXI T_SUCCESS;

_error_code nmy_func(voi d)

[+ Decl arations needed for error handling =/
cpl _errorstate prestate = cpl _errorstate_get();
cpl _error_code status;

/* Other declarations */

cpl _matrix *matrix = cpl_matri x_new 10, 10);
cpl _matrix *i nverse
doubl e nmean;

| *

ESO

Common Pipeline Library
User Manual

Doc:

VLT-MAN-ESO-19500-272

Issue:

Issue 4.1.(

Date:

Date 2008—03-2

Page:

70 of 100

* Propagate the error froma function of type cpl _error_code.

*/

st at us

=ny_matrix _fill(mtrix);

if (status != CPL_ERROR NONE) {
[+ Free menory and propagate the unrecoverable error */

cpl

}

| *

_matrix_delete(matrix);
return cpl _error_set_nessage(cpl _func,
"Could not fill

cpl _error_get _code(),

matri x");

* Propagate the error in a function returning a valid pointer
uccess, or a NULL in case of failure.

* on s
*/

i nver se
if (inv

= cpl _matrix_invert_create(mtrix);

erse == NULL) {

/+ Free nmenory and propagate the unrecoverable error */

cpl

}

| *
* Prop
* i ndi
*/

nean =

_matrix_delete(matrix);
return cpl _error_set nessage(cpl _func,
"Coul d not

cpl _error_get code(),
invert matrix");

agate error in a function whose return val ue cannot

cate the error status.

cpl _matrix_get _nmean(nmatrix);

if ('cpl _errorstate_is _equal (prestate)) {
/+ Free nmenory and propagate the unrecoverable error */

cpl
cpl

~

L IR T

can

whi |

/

_matrix_delete(matrix);
_matrix_del ete(inverse);
return cpl _error_set _nessage(cpl func,

cpl _error_get_code(),

"Coul d not conpute nean of nmatrix");

be handl ed. In this exanple,

e others cannot. Note that,

the errors

Handl e failure of a function of type cpl _error_code.
A switch nmay be used to catch specific error codes, which

CPL_ERROR DI VI SI ON_BY_ZERO and CPL_ERROR_CONTI NUE can be handl ed,

for those errors that can be

status = ny_nmatrix_correction(matrix, inverse,

swi tch

{

(status)

handl ed the errors are discarded fromthe CPL error state.

mean) ;

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 71 of 100

case CPL_ERROR_NONE
break; /* No action needed =*/

case CPL_ERRCR DI VI SI ON_BY_ZERO
cpl _nsg_warni ng(cpl _func, "Correction caused division by zero,
"matri x correction skipped.");
cpl _errorstate_set(prestate); /+ Recover fromerror(s) =*/
br eak;

case CPL_ERROR_CONTI NUE
cpl _nmsg_war ni ng(cpl _func, "Correction did not converge,
"trying robust nethod.");

cpl _errorstate _set(prestate); /+ Recover fromerror(s) =*/

nmy_matrix_correction_robust(mtrix, nean);
assert(cpl _errorstate_is_equal (prestate));

br eak;

defaul t:
/* Free nmenory and propagate the unrecoverable error */
cpl _matrix_delete(matrix);
cpl _matrix_del ete(i nverse);

return cpl _error_set _nessage(cpl _func, cpl_error_get code(),
"Correction caused an unexpected error");

}

/+* Free menory and return successfully */
cpl _matrix_delete(matrix);
cpl _matrix_del ete(i nverse);

return CPL_ERROR _NONE;

The functions to support error handling are all describedkitail in the onlinegCPL Reference Manudl].

5.2.12 Properties

A cpl_propertyis a name/value pair used for storing meta-data. Althoughfrility is made available to
the programmer for implementing his or her own data strestuit is expected that the “property list” facility
would be used in most applications requiring this sort otfionality (see Section 5.2.13). Note the difference
between apl_property(an atomic variable storage mechanism) arapla propertylist(which organises and
stores complete sets of associated variables).

Thecpl_propertysupports several different primitive datatypes for theestosalue. In particular, all the types

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 72 of 100

foreseen by the FITS standard for header keywords are mavié single complex datatype, namely that of
strings, is also available.

As the values of properties are stored in binary form, a ptgpeEn be used as lossless storage for such named
parameters within the application. This eliminates theceom of loss of information due to conversion to, for
example, text strings, etc..

In addition to the name and value, it is possible to assocalescriptive comment with the property. This
comment could be used to store explanatory text, informagioout units or whatever is required. Note that
there is no explicit field for the units within the propertgetf.

5.2.13 Property lists

The property list facility provided by the CPL offers a waydtwre meta-data as a sequence of name/value
pairs. Although the internals of thepl_propertylistmake use of thepl_propertytype (see Section 5.2.12), the
property list interface completely hides this detail, alidves the user to manipulate his or her data through a
single interface. Thus, unlike parameter lists, it is natgiole (or even necessary) to extract/insert properties
from the property list.

Thecpl_propertylistwas designed for supporting the FITS header informatiodedd, it is possible, using a
single function, to load a header file into a property listegi the filename and the number of the extension.

To obtain a value from a property list, the list is queried dgling for the value’'s name as shown below. New
values can be added to a property list and entries can badefrsmertieswhich belong to a property list can
be extracted using the functionpl propertyli st _get property() and its constant related version,
cpl _propertylist_get _property_const().

#i ncl ude <cpl . h>

int main()

int i, status;
float f;
char =*s;

cpl _propertylist =*list;

cpl _init(CPL_I NI T_DEFAULT);

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 73 of 100

list = cpl _propertylist_new);

cpl _propertylist _append_int(list, "MyInt", 42);
cpl _propertylist_append float(list, "MyFloat", 1.e-6);
cpl _propertylist_append_string(list, "MyString", "text");

cpl _propertylist _get_int(list, "Mylnt");
cpl _propertylist_get float(list, "MyFloat");
cpl _propertylist_get string(list, "MyString");

—h
i n

cpl _propertylist_delete(list)

cpl _end();

return O;

Within the CPL, property lists are used to store the headeRs TS files. The translation from and to a FITS
header is done on the fly.

5.3 The CPL interfaces inlibcplui
5.3.1 Frames

A cpl_frameis a way of associating attributes to files. It is used as a conication method between a data
reduction organiser and a data reduction task. Becauséptaudata files are often required in the processing
of a single observation (dark, flat, bias, target, etc.} dften necessary to associate these different files for any
data reduction task. The frame component of the CPL makeptssible.

Among the data set attributes are the filename to which tmeefria associated, its type, the group to which it
belongs and, if the frame describes a processing produssjliy a processing level.

The cpl_framecomponent provides the functions to set and query framibatiss, as shown in the example
below:

#i ncl ude <cpl . h>

ESO

Doc: VLT-MAN-ES0-19500-2720
Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 74 of 100

cpl _frame +xadd(cpl _i nage =i magel, cpl _imge *i nage2)

{

cpl _franme *product _frane;

cpl _i mage_add(i magel, inmage2);

product frame = cpl _franme_new);

cpl _frame_set _fil enane(product_frame, "inmagel2.fits");

cpl _frame_set _tag(product_frame, "ADDED | MAGE");

cpl _frane_set type(product franme, CPL_FRAME TYPE | MAGE)

cpl _frane_set group(product frame, CPL_FRAME GROUP_PRODUCT) ;
cpl _frane_set | evel (product frame, CPL_FRAME LEVEL_ FI NAL);

return product _frane;

5.3.2 Frameset

A frameset is just a container for frames. Frames can be addeffameset and can be looked up by a tag or by
sequentially traversing the container. The frameset isqdahe CPL recipe plugin interface (see Section 3.5).
In this context, it is used to pass input files to a data redodiask and obtain the products from it after it has
been completed.

#i ncl ude <cpl . h>

cpl _franmeset *subtract_bias(cpl _i mage *i nage, cpl _franeset *set)

{

cpl _frane xbias_frane,
cpl _frame xresult_frane;
cpl _i mage *bi as;

bias_frame = cpl _frameset find(set, "BlIAS");
bi as = cpl _i mage_| oad(cpl _frane_get fil enane(bi as_frane),
CPL_TYPE_DOUBLE, 0, 0);

result _frame = cpl _frame_new();

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 75 of 100

cpl _franeset _insert(set, result _frane);

return set;

5.3.3 Parameters

A parameter is a datatype with an associated name, desarigtid value-checking. Parameters are designed to
handle monitor/control data and they provide a standardtargass for instance command line information to
different components of an application.

The implementation supports three classes of parametgtainavalue, a value within a given range, or a value
as part of an enumeration. When a parameter is created d@asect for a particular value type. In the latter two
cases, validation is performed whenever the value is set.

The type of a parameter’s current and default value may baleba, integer, double or string.

In addition to the name, parameters provide an associate@xto Parameter names must be unique — they
define the identity of a given parameter. The context is useabsociate parameters together. A context, for
example, may be the name of the part of the application, frévarevthe parameter value originated.

Parameters were designed to be used by the PDRM interfaeanathod of passing command data between a
host application and a recipe.

Parameters vary from properties, in that they have thesiassd data constraints and additional descriptive
parameters. While properties are primitive units of datmagfe without any overhead, parameters offer self-
description and data integrity checking which are esskfatialealing with interfaces within the application.

Parameters may be grouped using the "parameter list" coempoA parameter lisgpl_parameterlistis simply

a mechanism for grouping lists of parameters. It provide®ravenient way for passing large numbers of
parameters to a function. For instance, it is used in theiplungerface to pass the parameters a recipe accepts
from the plugin to the calling application and vice versa.

It is possible to extract/insert parameters within paramigts. For a complete documentation of the parameter
component please refer to the onliGeL Reference Manudl].

#i ncl ude <cpl . h>

cpl _paraneterlist *make _paraneter list(int i, double d, const char =*s)

{

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 76 of 100

cpl _parameterlist xplist = cpl_paraneterlist_new();
cpl _parameter =*p

p = cpl _paraneter_new val ue("config.integer_val ue",

CPL_TYPE_I NT,

"An integer val ue",
"config",

0);

cpl _parameter_set_int(p, i);
cpl _paraneterlist_append(plist, p);

p = cpl _paraneter_new range("config. doubl e_range"
CPL_TYPE_DOUBLE,
"An range of doubles",
"config",
0.5, 0., 1.);

cpl _paraneter_set _doubl e(p, d);
cpl _paraneterlist_append(plist, p);

p = cpl _paraneter_new enunm("config.string_enunt,
CPL_TYPE_STRI NG
"An enuneration of strings"
"config",
"one", 3, "one", "two", "three");

cpl _paraneter_set_string(p, S);
cpl _paraneterlist_append(plist, p);

return plist;

5.4 Standard data reduction algorithms inlibcpldrs

The CPLlibcpldrs library provides standard astronomical data reductioorélyms.

5.4.1 Apertures

Thecpl_apertobject can contain informations or statistics of a list gfeals or zones in an image. The function
that creates this object &pl_apertures_new_from_image() takes in input the image in which the objects are,
and a labels image (an integer image) that defines the diffe@es or objects positions in the input image.
This labels image has the same size as the input image artdiatewith its labels the different zones, negative
values identify the background.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—03-28

Page: 77 of 100

So if the labels image contains pixels with n different gesitvalues,cpl_apertures_new_from_imagegjll
create acpl_apertobject containing n different apertures with various stais computed on each of them (see
Figure 11).

l cpl_apertures_new_from_image()

X Y XCENTROID YCENTROID pix max min mean med de\v

255.9 102.1 2559 102.0 993 8.76 1.21 4.01 3.65 1.88 3980.7
409.1 1529 409.1 153.0 733 6.26 1.25 3.22 3.08 1.15 2357.1
203.8 203.9 204.0 204.0 1408 16.69 1.22 6.33 5.19 3.98 8914.
102.3 358.0 102.2 357.9 365 3.99 1.23 246 247 0.65 896.8(
52.3 358.6 52.3 358.6 33 2.62 1.27 2.03 2.01 0.44 66.88

356.5 3585 356.5 358.4 16 2.38 1.26 1.82 1.77 0.37 29.13
255.8 409.3 255.8 409.3 258 3.61 1.22 217 2.14 0.59 560.5¢
153.3 405.1 153.2 405.1 45 2.81 1.22 214 221 041 096.42
459.9 460.2 4599 460.1 828 6.95 1.22 3.47 3.27 1.39 2875.2

©CO~NOUTAWNE

Figure 11: Usage afpl_apertures_new_from_image()

The objects detection itself is done by the computation efdbels image, this here is just statistics computation
of the specified already detected objects.

However, this module provides a very simple objects daiadiinction namedpl_apertures_extract() You
just need to pass a list of sigma values (icph vector(), and the function will apply a sigma threshold to find
objects in the passed image. It will internally create theels image, call thepl_apertures_new_from_image()
function and return thepl_apertobject. If nothing is detected with the first sigma value, sleeond is used
and so on until something is detectaghl_apertures_extract_sigmadpes it with only one passed sigma, and
cpl_apertures_extract_window@pes it on a window of the image.

Besides, this module provides functions to sort the diffe@pertures according to th number of pixels, the
maximum value or the flux.

5.4.2 Geometrical transformations

The functions currently contained in this part can combiménaage list into a single image. The input image
list is typically a jitter observation (observation teotpe commonly used in infra red to remove the strong
background) and the fuction shifts and adds the imagesheget

The functioncpl_geom_img_offset_combinég)very flexible, the offsets can be specified or not, they can b
refined or not with cross-correlation, the anchor point uledhe cross-correlation can be specified or not,

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 78 of 100

sigma values can be specified if the function needs to fint itde anchor point, and the stacked image can be
the union or the intersection of the input images. The diagraFigure 12 shows what the function does.

o]

Offsets provided n
by user
yes succeed [Bjind offsets| fail
estimation
. no
Offsets refining requestel
by user
yes
Anchor object fo no
cross—correlation provid
by user
yes succeed | Anchor objectail
detection

Cross—correlation fal

succeed

Shift-and-add Shift-and-add
with refined offsets with estimate offsets

Figure 12:cpl_geom_img_offset_combind®ghaviour

5.4.3 Detectors

This part contains high-level functions commonly used tbdgtector characteristics like the non-linearity or
the read-out noise, or to correct detector defaults likeotek pixels.

1. Read-out noise computation

The noise computed by the functioopl_flux_get noise_window@ndcpl_flux_get_noise_ring(s the
median of the standard deviation values computed in a numbemall windows scattered optimally
using a Poisson law in the specified region of the input imageitdow or a ring).

2. Bad pixels reconstruction

Thecpl_detector_interpolate_rejectedig@gcomputes the bad pixels of an image by using the good pixels
in the neighborhood. An iterative procees is used until adl pixels have been corrected.

3. Non-linearity computation

The functioncpl_imagelist_fit_polynomial(¢an be used to compute the non-linearity of a detector. It
takes a list of images in input, and the DIT (detector intdgmatime) values for each of the images.
For each pixel, a polynomial P defined BY/T" = P(pixel,alue) is fitted, where DIT is the detector
integration time. The returned images contain the diffepmiynomials coefficients for the different
pixels.

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 79 of 100

5.4.4 Photometry

This part currently contains a functioep]_photom_fill_blackbody))that computes the Planck black-body
radiance.

5.4.5 Nonlinear fitting

This part contains one high-level function for general iredr fitting.

1. Levenberg-Marquardt

The functioncpl_fit_Ilvmg()provides a LeVenberg-MarQuardt routine for fitting nonéinene-dimensional
or multi-dimensional data.

5.4.6 World Coordinate System

The World Coordinate System facility provided by CPL offarsvay to create and manipulate the WCS de-
scriptions for a given image. At the heart gbl_wcsis Marc Calabretta’dVCSLIBpackage available from
(http://ww. at nf. csiro. au/ peopl e/ ntal abr e/ WCS/). The current implementation afpl_wcs
allows the user to

¢ load a WCS from a propertylist containing a valid FITS WCSadiggion,
e do basic coordinate conversions

e use standard object positions to define an image WCS.

A typical use forcpl_wcswould be to work out the RA and Dec of an object given its phaisivordinates on

an image. In the following fragment the Cartesian coor@isaif two objects is given in the static double array
phys. The header of the original image is parsed into a propsttghd the WCS information is recovered from
it. The physical coordinates are wrapped ioph matrixstructure and passed to the conversion routine. Output
is anothercpl_matrix structure with the world coordinates of the two objects. HI€S header of the input
image will determine the type of coordinates produced aadthbjection geometry used. Thus this conversion
routine could be used to produce any type of world coorditfaeis supported by FITS.

#i ncl ude <cpl . h>

static double phys[] = {382.252, 36.261,
18. 097, 738.428};
int main()

{

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 80 of 100

char =fil enane

const cpl_wcs *wcs;

const cpl _propertylist =plist;
cpl _matrix *=from=*to;

cpl _array =status;

cpl _init(CPL_I NI T_DEFAULT);

plist = cpl _propertylist_|load(filenane,1);

wes = cpl _wes_new from propertylist(plist);

from= cpl_matrix_wap(2, 2, phys);

cpl _wes_convert (wes, from &t o, &t at us, CPL_WCS PHYS2WORLD) ;

cpl _matrix_unwap(from;

cpl _matrix_del ete(to);

cpl _array_del et e(status);

cpl _propertylist_delete(plist);
cpl _wecs_del et e(wes);

cpl _end();

return O;

Thecpl_wcs_conventoutine can do conversions between three types of coosdinat

physical A physical location of an object in pixel space.
world Space/time coordinates of an object in a given astronorayesdem.

standard An intermediate coordinate defined as an offset from the edfiorld coordinate system reference
point. This will be in the natural coordinate units for the &/.C

and currently supports several conversion modes:

CPL_WCS_PHYS2WORLD Physical coordinates are converted to world coordinatas.dltput coordinate
system depends entirely on the values defined incfilewcsstructure and ultimately from the FITS
header from which it was derived.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 81 of 100

CPL_WCS_WORLD2PHYS World coordinates are converted to physical coordinatds.dntirely up to the
user to ensure that the coordinates given are consistdnthveitwWCS coordinate geometry that is provided
by the input FITS header.

CPL_WCS_WORLD2STD World coordinates are converted to standard coordinates.

CPL_WCS_PHYS2STD Physical coordinates are converted to standard coordinate

The WCS facility also offers a routine to fit a two-dimensibW&CS to a list of objects with known world
and physical coordinatespl_wcs_platesol The desired form of the WCS is defined by an input propettylis
In most cases this would probably be parsed from the headan aiput FITS image, but in fact could also
be built from scratch by the user. A full explanation of thereénts needed to define a WCS in FITS is way
beyond the scope of this manual and the reader is referreldetavéb pages of the FITS support office at
NASA/GSFC pttp://fits.gsfc. nasa. gov/fits_wcs. htnl) and to the references therein. The
output propertylist contains the new FITS WCS descriptibis worth noting that this routine will fit for offset,
scale and rotation, but will not fit any of the parameters li@r pprojection geometry. These must be fixed in the
input WCS description.

Accessor functions are not included in ttyl_wcsAPI. Any modifications that the user wishes to make to a
WCS must be done to the input propertylist before it is pamstxithecpl_wcsstructure.

5.5 ESO/DFS specific routines inibcpldfs

The functions contained in this library implement DFS sfiecequirements on keywords for pipeline products.
These functions are called by all pipelines, and insureetipgseline to have products that are compliant with
the last requirements.

Common Pipeline Library
ESO User Manual

Doc: VLT-MAN-ES0O-19500-2720
Issue: Issue 4.1.(
Date: Date 2008-03-28
Page: 82 of 100

[1] Common Pipeline Library reference manual.

[2] P. Ballester. Data flow for VLT/VLTI instruments — delailes specification. 2004.

[3] P. Grosbol P. Ballester, K. Banse. Data flow pipeline andlity control - users manual. 1999.

[4] ESO DICB — data interface control document. 1996.

[5] D. J. McKay. Common Pipeline Library — technical devedopmanual. 2005.

[6] Recommended C style and coding standards.

ESO

Doc:

VLT-MAN-ESO-19500-272

Common Pipeline Library

User Manual

Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 83 of 100

A The PDRM source code

This appendix provides the complete source of the PDRM eladigcussed in 3.5.

#i ncl ude <cpl . h>

/* For the ny_inmage _arithmetics prototype =/

#i nclude "ny_i mage_arithnetics. h"

#define MY_PLUG N VERSION 1

| *

* Plugin detail ed description

*/

static const char =
nypl ugi n_hel p = "The plugi n adds, subtracts,
"two i mages dependi ng on the operation choosen by the "

| *

* Forward declarations of the initalization,

"paraneter ‘operation ."

* cl eanup handl ers

* [
i nt
i nt
i nt

i nt

cpl _
{

nmypl ugi n_create(cpl _plugin *);
nmypl ugi n_exec(cpl _plugin *);
nmypl ugi n_destroy(cpl _plugin *);

pl ugi n_get i nfo(cpl _pluginlist =list)

cpl _recipe *recipe
cpl _plugin *plugin

cpl _plugin_init(plugin,
CPL_PLUGQ N_API
MY_PLUG N_VERSI ON
CPL_PLUGQ N_TYPE_RECI PE,

"nypl ugi n",

mul tiplies or divides "

execut e and

cpl _calloc(1, sizeof =recipe);
(cpl _plugin *)recipe

"Do basic arithnetics on two i nages”

mypl ugi n_hel p,
"Gl Bates",
" gbat es@racr ohar d. cont',

_) _ Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 84 of 100
"GPL",
mypl ugi n_create,
mypl ugi n_exec,
mypl ugi n_destroy);
cpl _pluginlist_append(list, plugin);
return O;
}

static int
nypl ugi n_creat e(cpl _plugi n *=pl ugin)

{
cpl _recipe *recipe = (cpl_recipe *)plugin;
cpl _parameter =*p
reci pe->paraneters = cpl_paraneterlist_new);
p = cpl _paraneter_enum new " mypl ugi n. operati on"
CPL_TYPE_STRI NG
"Arithnetic operation to apply.",
"nypl ugi n",
"add", 4,
"add", "subtract", "multiply", "divide");
cpl _parameter_set _alias(p, CPL_PARAMETER MODE CLI, "op");
cpl _paraneterlist_append(reci pe->paraneters, p);
return O;
}
static int
nmypl ugi n_exec(cpl _pl ugi n =pl ugi n)
{
cpl _recipe *recipe = (cpl _recipe *)plugin;
return nmy_image_arithnetics(reci pe->paraneters, recipe->franmes);
}
static int

nmypl ugi n_destroy(cpl _pl ugi n *pl ugi n)
{

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 85 of 100

cpl _recipe *recipe = (cpl _recipe *)plugin;

cpl _paraneterlist_del ete(reci pe->paraneters);

return O;

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 86 of 100

B Comment conventions

Each file in the library begins with a header containing infation about the file, such as the file version, the
file author, what is contained in the file, etc..

Here is a template of what is put at the head of eactsource file in the library:

/+ $ld: conventions.tex,v 1.17 2003/12/15 16:03: 06 dntkay Exp $

*

* This file is part of the ESO Conmon Pipeline Library
* Copyright (C) 2001-2003 European Sout hern Cbservatory
*
* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This programis distributed in the hope that it will be useful
* but W THOUT ANY WARRANTY; without even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
* GNU General Public License for nore details.
*
* You shoul d have received a copy of the GNU General Public License
* along with this program if not, wite to the Free Software
* Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
* |
| *
* $Aut hor: dnctkay $
* $Date: 2003/12/15 16:03:06 $
» $Revision: 1.17 $
* $Name: $
* |

#i f def HAVE_CONFI G H
#i ncl ude <config. h>
#endi f

#i ncl ude ..
#def i ne

[**

* @lef group <grouptag> <nodul e nane>
*

* [Mbdul e descri ption]

*

*/

/**@*/

/* The function code is placed here */

/**@*/

Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 87 of 100

Here is a template that should be filled and put at the headcbf.dasource file in the library:

/+ $ld: conventions.tex,v 1.17 2003/12/15 16:03: 06 dntkay Exp $

*

* This file is part of the ESO Conmon Pipeline Library
* Copyright (C) 2001-2003 European Sout hern Cbservatory
*
* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This programis distributed in the hope that it will be useful,
* but W THOUT ANY WARRANTY; without even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
* GNU General Public License for nore details.
*
* You shoul d have received a copy of the GNU General Public License
* along with this program if not, wite to the Free Software
* Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
* |
| *
* $Aut hor: dnctkay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
* |

#i f ndef TEMPLATE_H
#defi ne TEMPLATE_H

#i ncl ude <cpl _nacros. h>
#i ncl ude ...
#defi ne

CPL_BEQ N_DECLS
[+ The function declarations are placed here */
CPL_END_DECLS

#endi f /+ TEMPLATE_H */

The fieldsld, Author, Date andRevisionare automatically filled by the configuration control systemS

The functions are themselves documented using the follptgmplate that has to be filled and put just before
the function:

o _ Doc: VLT-MAN-ES0-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28
Page: 88 of 100
@ar am
@ar am
@eturn
*/
2 * [

Online documentation may then be generated udoxygen

The functions must be documented in thefile. Function documentation must contain information atiba
function interface (how to call it, what to expect, where &, ...) and information about how the function
has been written (algorithm used, has it been optimised, ...

As an example, here is a very simplhg file, which illustrates the conventions described above.

[+ $ld: cpl _imge_io.h,v 1.48 2005/02/16 17:56:33 yjung Exp $

*

* This file is part of the ESO Cormon Pi peline Library

* Copyright (C) 2001-2004 European Sout hern Cbservatory

*

* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any |ater version.

*

* This programis distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the

* CGNU General Public License for nore details.

*

* You shoul d have received a copy of the GNU General Public License

* along with this program if not, wite to the Free Software

* Foundation, Inc., 59 Tenmple Place, Suite 330, Boston, MA 02111-1307 USA
*/

| *

* $Author: yjung $

*» $Date: 2005/02/16 17:56:33 $

* $Revision: 1.48 $

* $Name: $

*/

#i f ndef CPL_I MAGE | O H
#define CPL_IMAGE IO H

))) Doc: VLT-MAN-ESO-19500-2720
ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008-03-28
Page: 89 of 100
I ncl udes
... * [
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#include <linits. h>
#i nclude "cpl _io.h"
#i nclude "cpl _propertylist.h"
#i ncl ude "cpl _nmask. h"
CPL_BEGQ N_DECLS
2
Def i ne
... * [
#defi ne CPL_PI XEL_MAXVAL (doubl e) (LONG_MAX)
#define CPL_PI XEL_M NVAL (doubl e) (LONG_M N)
2
Function prototypes
--- * /[

/* 1 mage constructors */

cp
cp
cp
cp
cp
cp

mage
mage
mage
mage
mage
mage

* cpl _image_new(int, int, cpl_type);

* cpl _i mage_wrap_doubl e(int, int, const double *)

* cpl _image_wap _float(int, int, const float *) ;

* cpl _image_wap_int(int, int, const int *) ;

* cpl _i mage_| oad(const char *, const cpl _type, const int, const int) ;
* cpl _i mage_new from mask(const cpl _mask =*)

CPL_END DECLS

#endi f
/* end of cpl _inmage_io.h =/

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 90 of 100

C Naming conventions

The naming conventions are described in section 4.7.

Quialifiers

The following words are permitted as qualifiersgiat /set operations:

absf | ux
alias

api

aut hor
bool
bottom
centroid
char

cl ass
code
coef f

col um
comment
conponent
cont ext
copyri ght
cputinme
dat a

def aul t
degr ee
deinit
description
det er mi nant
di mensi on
domai n
doubl e
emai |
enum
exec
file
filename

ESO

Common Pipeline Library
User Manual

Doc:

VLT-MAN-ESO-19500-272

Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 91 of 100

first

fl oat
flux

f or mat
franme
function
f whm
group
hel p

id

i ndent ati on
i nfo
init

i nt

i nterpol at ed
invalid
keywor d
| ast

| eft

| evel
line

| og

| ong
macr o
max
maxpos
nmean
medi an
nmessage
mn

nm npos
name
ncol

next

next ensi ons
noi se

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 92 of 100

The following words are permitted as qualifiers for otherragiens:

npi x

nr ow
range
right

si ze

si zeof
sgf | ux
st dev
string
synopsi s
tag
tinme

t op
type
unit
versi on
wher e
wi dt h

X

y

1d

2d
after
al |
array
bl ackbody
bool

but

by

char
coar se
col um
col ums
combi ne

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 93 of 100

cont ext
create
dat a

di agonal
doubl e
echel on
enpty
enabl ed
enum
fine
fits

fl oat
forward
frame
franmeset
from
gaussi an
identity
i mge

i nt
invalid
ker nel

| ess

i near

| og

| ong

| owpass
mask
medi an
nor e

nor pho
noi se
nor mal
overwitable
pol ynom al
power

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 94 of 100

pr oduct
property
range
regexp
rejected
r ow

r owcol um
r ows

saa

scal ar
segment
sel ected
si gma
smal |

st dev
string
structure
subsanpl e
t ag

t ags

t est

to

type
valid

val ue
vectors
wi ndow
zero

Items The following words are permitted as items:

accept ed
bool

char
create
dat a

dev

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 95 of 100

doubl e
flag

fl oat

f 1 ux

f or mat
header

i mge

i nt

i nvalid
| evel

| ong
macr o
mask
max
Maxpos
mean
medi an
nmn

nm npos
nanme
npi x

of

of f

on
profile
regexp
rej ected
ring

r ows

si ze

st dev
string
strings
type
uni form
uni t

wi hdow
X

y

Common Pipeline Library

ESO User Manual

Doc: VLT-MAN-ES0O-19500-2720
Issue: Issue 4.1.(
Date: Date 2008-03-28
Page: 96 of 100

D Function renaming and API changes from CPL 3.0 to CPL 4.0

In the fourth official release of theommon Pipeline Librarya number of API changes and functions renaming

needed to be carried out.

In order to make it easier to adapt to CPL 4.0 any existing d@ded on CPL 3.0, the necessary modifications

and the available extensions are described in the followaggions.

D.1 New functions on CPL 4.0

General:

cpl _dfs_updat e _product header ()
cpl _error_get _nessage()

cpl __error_get nessage defaul t()
cpl _error_set_nessage()

cpl _errorstate _dunp()

cpl _errorstate_dunp_one()

cpl _errorstate_get()

cpl _errorstate_is_equal ()

cpl _errorstate_set()

cpl _fit _inmagelist polynomal ()
cpl _nmeg_set | evel _fromenv()
cpl _propertylist _get property()
cpl _sprintf()

cpl table | oad_w ndow)

cpl _vsprintf()

Constant accessor functions:

cpl _array_get _data_int_const()
cpl _array_get _data float_ const ()
cpl _array_get data_doubl e _const ()
cpl _array_get _data_string_const()
cpl _bivector _get x_const()

cpl _bivector_get_y const()

cpl _bivector _get x data const()
cpl _bivector _get_y data const ()
cpl _frameset find const()

cpl _franmeset _get first_const()
cpl _franmeset get next const()

cpl _franmeset _get franme_const()
cpl i mage_get _bpm const ()

cpl i mage_get data_const ()

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 97 of 100

cpl i mage_get data_doubl e_const ()
cpl _image_get _data_fl oat _const ()
cpl _imge _get _data_ int_const ()

cpl _imagel i st _get _const ()

cpl _nask _get data const()

cpl _matrix_get_data_const ()

cpl _paraneterlist find const()

cpl _paraneterlist _find_context _const()
cpl _paraneterlist _find tag const()
cpl _parameterlist_find_type_const()
cpl _paraneterlist _get first_const()
cpl _paraneterlist _get next _const()
cpl _paraneterlist_get last_const()
cpl _propertylist _get const()

cpl _propertylist_get _property_const()
cpl _table get data int _const()

cpl _table _get _data float_const ()
cpl table get data_doubl e const ()
cpl _table get _data_string _const()
cpl _table get _data array_const()
cpl _vector _get data const()

D.2 APIchanges on CPL 4.0

Standard headers:

Removed standard header files frampl _*. h where they are not neededt di 0. h, stdlib. h,
uni std. h, Iimts. h;the only include that was eliminated from everywhere
is st ring. h, that the user would have to include himself (if needed).

string. h,

Dropped const modifier from accessor functions:

cpl __array_get _data_int()
cpl _array_get _data float ()
cpl _array_get data_doubl e()
cpl _array_get _data_string()
cpl _bivector_get x()

cpl _bivector_get_y()

cpl _bivector _get x data()
cpl _bivector_get_y data()
cpl _frame_get tag()

cpl _franme_get fil enanme()
cpl _franmeset _find()

cpl _franeset _get _first()

- _ Doc: VLT-MAN-ESO-19500-272
ESO Common Pipeline Library Issue: Issue 4.1.(

User Manual Date: Date 2008-03-2
Page: 98 of 100

cpl _franmeset get next()

cpl _franeset _get frame()

cpl _i mage_get bpm()

cpl _i mage_get data()

cpl i mage_get data_doubl e()
|
i

cpl _image_get _data_fl oat ()
cpl __image _get _data_int()
cpl _i magel i st _get ()

cpl _mask_get data()

cpl _matrix_get_data()

cpl _parameterlist _find()

cpl _paraneterlist find context()
cpl _paraneterlist_find_ tag()
cpl _paraneterlist find type()
cpl _parameterlist _get first()
cpl _paraneterlist _get next()
cpl _paraneterlist_get last()
cpl _propertylist _get()

cpl _propertylist_get property()
cpl _table get _data_int()

cpl _table get data float()

cpl _tabl e_get data_doubl e()

cpl _table get data string()

cpl _table_get _data_array()

cpl _vector _get data()

cpl_dfs_setup_product _header():

e CPL_ERROR_BAD_FILE_FORMAT is now returned for an invaligput file,e.g, a directory.
e CPL_ERROR_DATA NOT_FOUND is now also returned for a fram#hna missing filename.
e CPL_ERROR_UNSPECIFIED is now never returned.

cpl_flux_get_noise_ring():

Second argument is now of typedoubl e *) ratherthan(i nt =).
cpl_frameset_extract():

Added const modifiers.
cpl_frameset_labelise():

Added const modifiers.

Doc: VLT-MAN-ES0-19500-2720

ESO Common Pipeline Library Issue: Issue 4.1.(
User Manual Date: Date 2008—-03-28

Page: 99 of 100

cpl_image_fill_noise_uniform():

Now also CPL_TYPE_INT is supported.
cpl_imagelist_fit_polynomial():

Removed.
cpl_init():

Now it must be called passing the argument CPL_INIT_DEFAULT
cpl_polynomial_fit_1d_create():

Now CPL_ERROR_DATA NOT_FOUND is returned if this functiemcalled with a cpl_vector
X_pos of size less than the int degree+1. Before CPL_ERROREGAL_INPUT was returned.

cpl_polynomial_fit_2d_create():

Now CPL_ERROR_DATA NOT_FOUND is returned if this functigscalled with a cpl_vector
Xy_pos of size less than the int N. Before CPL_ERROR_ILLEGMNPUT was returned.

cpl_propertylist_contains():
Renamed to cpl_propertylist_has().

cpl_vector_get_median():
Renamed to cpl_vector_get _median_const(). If your CPLsadapplication calls cpl_vector_get _median(),
then you must check if a permutation of the cpl_vector pags#ds function will have an effect. If
not, you can leave the call as it is (and benefit from lower nrgrasage and faster execution), but if
your code depends on the order of the elements of the cpbnidetn youmustreplace the call with
one to cpl_vector_get_median_const(). If in doubt, replde call of cpl_vector_get_median()
with one to cpl_vector_get_median_const().

cpl_vector_get_median_modify():
Renamed to cpl_vector_get_median().

CPL_BPP_DEFAULT:
Removed (replace with CPL_BPP_IEEE_FLOAT).

CPL_PIXEL_MAXVAL, CPL_PIXEL_MINVAL:

Removed.

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 4.1.(
Date: Date 2008-03-2
Page: 100 of 100

— End of document —

