EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches AstronomiquekHiamssphére Austral
Europdische Organisation fUr astronomische Forschung in der séidliédmisphére

VERY LARGE TELESCOPE

Common Pipeline Library
User Manual

VLT-MAN-ESO-19500-2720

Issue 5.3.1
Date 2011-03-23

Prepared: CPL Project Team 2011-03-23

Approved: P. Ballester

Released: M Peron

Name Date Signature

This page was intentionally left blank

Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 3 0of 98
Change record
Issue/Rev. Date Section/Parag. affecte Reason/Initiation/Documents/Remarks
1.0 15/12/2003| All First version
1.0.1 24/08/2003| All Corrected errors in cpl_plugin interface examples
2.0.0 01/04/2005| All Major changes for CPL 2.0 release
2.0.1 14/04/2005| All Remove obsolete references to CPL 1.0
2.1.0 20/07/2005| All Update for CPL 2.1
3.0.0 24/08/2006| All Update for CPL 3.0
4.0.0 27/08/2007| All Update for CPL 4.0
4.1.0 28/03/2008| All Update for CPL 4.1
5.0.0 28/04/2009| All Update for CPL 5.0
5.2.0 11/10/2010]| All Update for CPL 5.2
53.1 23/03/2011| All Update for CPL 5.3.1,
include License for CPL based code

This page was intentionally left blank

- _ Doc: VLT-MAN—-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23
Page: 5 of 98
Contents
1 Introduction 9

1.1 TheCommon Pipeline Library.

1.2 Futurework e 9
1.3 Acknowledgements e e 9
1.4 Abbreviations and acronyms e e e 10
Installation 11
2.1 Supported platforms e 11
2.2 Building the CPL from the source distribution 11
2.21 Requirements e e e e 11
2.2.2 Downloading the CPL source distribution 12
2.2.3 Compiling theCommon Pipeline Library. 12
Software development with the CPL 15
3.1 Gettingstarted 15
3.2 Using theCommon Pipeline Librarynyour project 15
3.3 Linking your applicationwiththe CPL 16
3.4 Writing a simpleCommon Pipeline Librargpplication 17
3.5 How to implement a Pluggable Data Reduction Module 19
3.6 A specificCommon Pipeline Librargpplication : the VLT instrument pipeline
CPL general design features 25
4.1 OOapproach e e 25
4.2 Portability 25
4.3 Theextended memorymodel e 26
4.3.1 Advantages of using the extended memory functions 26
4.3.2 Drawbacks of using the extended memory functions 26
4.3.3 Usingtheextended memory 27
4.4 Errorhandling L e e e e 27

4.5 Librarystability e e 27

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23
Page: 6 of 98
4.6 Codeconventions v i it e e e e e e e 27
4.6.1 ODJECtS 28
4.6.2 Methods 28
4.6.3 FUNCLiONS e 28
4.7 Naming Conventions o e 28
4.7.1 MeaningofFields e 29
4.7.2 LeXICON . . . o v 30
The CPL components 34
5.1 Componentlibraries. e e 34

5.2 Coreobjectsifibcplcore. e 34
521 Images e e e 34
522 Masks 39
5.2.3 Listofimages. e e 40
524 Tables 41

525 Statistics 75
526 MeClOrs e 57
5.2.7 BIVECIOIS o 58

5.2.8 Polynomials e e 95
529 Matrices. 59
5.2.10 Messagingand logging e 62
5.2.11 Errorhandling e e e e 64
5.2.12 Properties e e 71
5.2.13 Property lists e 72
5.2.14 Plotting e e e 73

5.3 The CPLinterfacesilibcplui 75
531 Frames e 75
532 Frameset e ... A6
5.3.3 Parameters 77

5.4 Standard data reduction algorithmdilicpldrs oL Lo L 78

54.1 APertures e e e e e e e e e 78

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 7 of 98
542 DeteCtors e 79
5.4.3 Geometrical transformations e 80
544 Photometry 80
5.45 Nonlinearfitting e 80
5.4.6 World Coordinate System e 81

5.5 ESO/DFS specific routineslibepldfs 83
Bibliography 84
A The PDRM source code 85
B Comment conventions 88
C Naming conventions 92

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 8 of 98

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 9 of 98

1 Introduction

1.1 TheCommon Pipeline Library

TheCommon Pipeline LibraryCPL) consists of a set of C libraries, which have been developed tdestdine
the way VLT instrument pipelines are built, to shorten their development cycldamease their maintenance.
The Common Pipeline Libraryvas not designed as a general purpose image processing librargtloer to
address two primary requirements. The first of these was to provide afag#e¢o the VLT pipeline runtime-
environment. The second was to provide a software kit of medium-level, talieh allows astronomical
data-reduction tasks to be built rapidly.

TheCommon Pipeline Librarprovides:

e Many useful data types (images, tables, matrix, vectors, ...) and theiiassbmethodslipcplcore).

e Support for dynamic loading of recipe modules and standardised applica#goiaces for pipeline recipes
(libcplui).

e Image and signal processing capabilities and standard implementations of nbnused data reduction
tasks (ibcpldrs).

e DFS specific functionalities to insure the DFS compliance of the pipelliEp(dfs).

Despite the bias towards instrument pipeline development, the library corie@sa variety of general-purpose
image and signal-processing functions. Thus, it also serves well essafbaany generic data-handling pack-
age.

1.2 Future work

Standardised versions of the most common calibration steps and removatrafrient signature are now of-
fered. Of course the data reduction system developers may still defjrgpanific procedure to support bias
subtraction, flat fielding, wavelength calibration, instrument responsarigation, cosmic ray removal, object
detection, bad pixel determination, etc., as needed for a particular instrumen

More sophisticated methods for signal processing will also be added tGRIhyasic component as they will
be needed in the development of future pipelines.

Major areas of growth foreseen for future releases are gendérahamical utility functions enabling spherical
coordinate transformations, date and time conversions, precessionphtriogextinction determination and
other common operations in astronomy.

1.3 Acknowledgements

In June 2001, N. Devillard and R. Palsa first proposed a common seftilbaary in order to ease and acceler-
ate the development efforts for the different VLT instrument pipeliness $bftware library, calledCommon
Pipeline Library (CPL), would essentially be built up from already existing code. In pddicthe Eclipse

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 10 of 98

library (used for ISAAC and NACO pipelines) and concepts of the VIMia$a reduction software would be
the main pillars of the CPL software.

In September 2001, M. Peron formed a CPL project team, consisting ofeMll&d and Y. Jung (working
for ISAAC, NAOS/CONICA), together with R. Palsa and C. 1zzo (workfogVIMOS, FORS1/2), as well as
P. Ballester and C. Sabet from the VLTI pipeline project. K. Banse daaganediator and chairman.

In the past, also M. Kiesgen, and D.J.-McKay made major contributions to CPL.

Currently, the CPL project team consists of: K. Banse, S. CastrozG, Iz de Bilbao, L. Lundin.

A preliminary version of the CPL was released in May 2002. Building on thiicbzersion, the first official
release of the CPL was made available to the public by ESO in December 2003.

1.4 Abbreviations and acronyms

CONICA COudé Near Infrared Camera Array

CPL Common Pipeline Library

DHS Data Handling Server

DFS Data Flow System

DO Data Organiser

DRS Data Reduction System

ESO European Southern Observatory
ESO-MIDAS ESO'’s Munich Image Data Analysis System
FORS FOcal Reducer/low dispersion Spectrograph
FTP File Transfer Protocol

ISAAC Infrared Spectrometer And Array Camera
GNU GNU’s Not Unix!

LSS Long Slit Spectroscopy

MOS Multi Object Spectroscopy

NAOS Nasmyth Adaptive Optics System

PDRM Pluggable Data Reduction Module

RB Reduction Block

RBS Reduction Block Scheduler

SDK Software Development Kit

uT Unit Telescope

VIMOS Visible Multi-Object Spectrograph

VLT Very Large Telescope

VLTI Very Large Telescope Interferometer

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 11 of 98

2 Installation

This chapter gives generic instructions on how to obtain, build and instatéinemon Pipeline LibraryEven

if this chapter is kept as up-to-date as much as possible, it may not be fpligage to a particular release.
This might especially happen for patch releases. You are therefoigeddoe read the installation instructions
delivered with theCommon Pipeline Librarylistribution. These release-specific instructions can be found in
the file README located in the top-level directory of the unpackedmmon Pipeline Librargource tree. The
supported platforms are listed in Section 2.1. It is recommended that yothreagh Section 2.2.3 before you
start the installation procedure.

2.1 Supported platforms

The utilisation of the GNU build tools should allow you to build and install@@mmmon Pipeline Librarpn a
variety of UNIX platforms. The goal is to support the following target platfe:

e Linux (glibc 2.1 or later)
e Mac OSX 10.0 or later

e BSD compatibles

However, only the VLT target platforms and operating systems, ScientifigxLnx and Linux (glibc 2.1 or
later), are officially supported, right now.

2.2 Building the CPL from the source distribution

This section shows how to obtain, build and install @@mmon Pipeline Librarpn your system from the
official source distribution.

2.2.1 Requirements

To compile and install th€ommon Pipeline Libraryou need:

e An ANSI/ISO-C99 compliant C compiler (preferaldyc 3.2 or later)
e The GNUgzi p data compression program

e Aversion of thet ar file-archiving program

e The GNUmake utility

¢ If you want to usegasgang also the Java SDK (Software Develpment Kit) from Sun

To actually use th€ommon Pipeline Libraryou need:

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 12 of 98

e TheCFITSIO FITS utility library from NASA
e TheWCSLIB library from Mark Calabretta (http://www.atnf.csiro.au/ mcalabre/WCS)
e TheFFTW library for FFT calculations (http://www.fftw.org)

CPL use<CFITSIO as FITS I/O library.

The CPL library is synchronized with the ESO VLT-software which usedSFO rel. 3.0.9, right now. Thus,
CPL also uses CFITSIO 3.0.9, and is tested right now for this specific®&BIVersion. Support will be for the
CFITSIO versions 3.x.y in the future. Whenever, ESO’s VLT softwamgget upgrades to a newer version of
CFITSIO, then CPL will follow.

The CPL functions related to the World Coord. System are based on the.\B€8de. Currently, CPL uses

WCSLIB 4.4.4 - higher versions of WCSLIB may work as well with CPL, degiag about the backwards
compatibility of this higher version.

Fast Fourier transforms in CPL functions rely on the FFTW library. Thsiga 3.1.2 of FFTW is currently

used in CPL. Again, higher versions of FFTW may work as well with CPIpetheling about the backwards
compatibility of this higher version.

Please, note that FFTW and WCSLIB functions are used only by a fewf@ftions, so your pipeline code may
well work without these additional libraries. However, when installing ssv@€PL based pipelines, chances
are much higher that one pipeline code might need also WCSLIB or FFTW.

2.2.2 Downloading the CPL source distribution

You may always obtain the latest release of@memmon Pipeline Librargources from the ESO CPL web page.
To download the source distribution, point your browser to:

http://ww. eso. org/ sci/ dat a- processi ng/ sof t war e/ cpl / donw oad. ht ml

The CPL sources are distributed as a gzipped tar archive named in thatfqul - X. Y. Z. t ar. gz, where
XandY are the major and minor release numbers, Ani@gnotes the patch level (which might be missing if no
patch has been released).

In addition, sinceCommon Pipeline Librardepends on release 3.0.9 of tREITSIO library (see section 2.2.1),
this specific version oEFITSIO is also available from the official ESO-CPL download page as specifiageab

2.2.3 Compiling theCommon Pipeline Library
It is recommended that you completely read through this section beforecyallg begin with the installation.

1. First, if an appropriate version @FITSIO (c.f. section 2.2.1) does not already exist on your system,
compile and install th€FITSIO library. For detailed instructions on how to install tBEITSIO library,
please, refer to thEFITSIO documentation.

Typically, for an installation into the default directofyisr /| ocal (you might needoot privileges to
do this) you must execute:

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23
Page: 13 of 98
$ zcat -d CFITSIOtar.gz | tar -xvf -
$ cd cfitsio
$./configure --prefix=/usr/local
$ make
$ make shared
$ nmake install

The following assumes th&FITSIO is installed in/ usr/ | ocal .
. Unpack the CPL sources in a directory of your choice using
$ zcat -d cpl-X Y.Z tar.gz | tar -xvf -
at the system prompt. This will create a directory caligdl - X. Y. Z containing the source tree.

. Before running the configuration script it is recommended that yowsadt variables to your environ-
ment.

The environment variabl€Fl TSI ODI Rtells the configuration script where tiiFITSIO libraries and
header files can be found. Actually, this variable needs to be definedfo@lyITSIO has not been
installed in the default directoryusr / | ocal or any of the system’s standard directories. The environ-
ment variableCPLDI R determines the installation prefix for the CPL. The defaultisr /| ocal and
usually the installation must be donerast.

It is not mandatory to have the variablEBLDI R and CFl TSI ODI R defined since you may pass the
installation prefixes as command line options to the configuration script (cBu)packages depending
on the CPL might look for these definitions at build time (see Section 3.3 for iTestaso that it is simply
convenient to have them defined as part of your environment. In thevialip it is assumed that both
CPLDI RandCFI TSI ODI Rare set correctly.

Please note that assigning the default installation prefixes to the environarétiles in the example
below is just for demonstration purposes. In principle, they could be satytalirectory for which you
have write access with one exception: it is not recommended that you inst&@Rh into its own source
tree.

If your shell is theBourneor a compatible sheli.g. sh bash ksh zsh etc.) you should add:

CFI TSI ODI R=/ usr/ | ocal

CPLDI R=/ usr/ | ocal

LD LI BRARY PATH=$CPLDI R/l i b: $CFI TSI ODI R/ | i b: $LD LI BRARY_PATH
export CPLDI R CFI TSI ODI R LD LI BRARY _PATH

to the file. profi |l e (or. bashr c if you are usingrash). If you are using the C-shell.é. cshortcsh
the commands above translate into:

setenv CFI TSI ODI R /usr/ | ocal
setenv CPLDIR /usr/| ocal
setenv LD LI BRARY_PATH \
SCPLDIR/ i b: $CFI TSI CDI R/ 1'i b: $LD LI BRARY_PATH

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 14 of 98

and should be added to the C-shell startup.fits hr c.

The variableLD_LI BRARY_PATH s the dynamic linker’'s search path and allows an application to find
the CPL libraries at run-time if they are not installed in one of the system’s atdmtirectories. Please
note that the name of this variable may depend on the platform on which youoskéng. The name
LD LI BRARY_ PATH s used on Linux and Solaris platforms whereas on an HP-UX system it iglcalle
SHLI BS_PATH. For details please refer to the documentation of your system; the dynamicdinian-

ual pages are a good starting point.

To activate these settings you may either logout and login again, sourderthup script manually. Alter-
natively, you may use the command line options of the configuration scripgsasided in step 4. Note
that if you are going to install dependent packages you might have tatrépese command line options
for each of these packages, if the variall®s. Dl RandCFI TSI ODI Rare not set.

. To compile and install the CPL on your system run the following sequeinmmnamands:

$ cdcpl-XVY.Z

$./configure --prefix=/usr/local
$ make

$ make install

$ nake install-htn

Before installing the CPL on your system you may want to verify that the C&& built correctly. This
can be done by running the commamake check before executingreke i nst al | . This will build
and run some test cases and it will output a short summary of the test reshksend.

The last commandyake i nstall - htnl, is optional and installs thEommon Pipeline Librar{On-
Line Reference Manual into the directd®PLDI R/ shar e/ doc/ cpl / ht m . The on-line documen-
tation forl i bcext , the C Extension Library, which is used inside CPL, can be found in

$CPLDI R/ shar e/ doc/ cext/ htni .

The conf i gur e script provides a variety of command-line options to customise the CPL installation
The list of available options can be obtained by runnidgonfi gure --hel p in the top-level di-
rectory of the source tree. Using a command line option always takesdereme over any previously
set environment variable. In particular, the varialll®. Dl R andCFI TSI ODI R are overridden by the
options- - pr ef i x and- - wi t h- CFI TSI Orespectively.

At this point, the installation of th€ommon Pipeline Librarys complete and you can start using it. If the
installation did complete successfully, you may also safely delete the wholeesiee to save disk space, as it
is no longer needed.

If the CPL has been installed into one of the system’s standard directogedytiamic linker search path does
not need to be modified, as these directories are searched by defaulh Baoux systems, it might be necessary
to update the dynamic loader’s cache by executing the comindadnf i g asroot at the system prompt.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 15 of 98

3 Software development with the CPL

This section gives a short overview on how tiemmon Pipeline Librargan be used to develop your own
software, either simple applications, just using the facilities provided by theliBRries, orPluggable Data
Reduction Module@PDRM), to be used as part of one of ESO’s VLT instrument pipelines.

3.1 Getting started

In this document we assume that you know the ANSI C programming languaigeC compiler and that you
are also familiar with the GNUuhakeutility.

Before you start coding it is recommended that you, at least, skim thriigyimnanual to get a short overview
of the components provided by the CPL. In the following chapters you witl fild code shippets which
demonstrate the typical usage of the various components. Two small exahuysieating the two different
kinds of CPL ‘applications’ can be found in the Sections 3.4 and 3.5. Se®#owill describe the procedure to
follow in case you want to develop an ESO'’s VLT instrument pipeline.

After making yourself familiar with main CPL components and concepts, yosteatiworking on your project
by having a look at the CPL on-line reference manual to get in depth kdgelef the CPL components you
want to use.

3.2 Using theCommon Pipeline Library in your project
Licenses

All CPL based development code shall use the GNU Public License, ardiedhe following text (also in-
cluded in the standard header of every CPL module):

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-130%AU

- _ Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 16 of 98
Build Tools

If you want to use the CPL, you need to know where the header files arlibtharies are installed. By default,
the CPL header files and libraries can be found in the subdirectaniglsude andl i b of the root directory of
your CPL installation, but the actual location might be different dependmitp® configuration options used at
build time.

In the following, it is assumed that the CPL has been installed in its default lodatier / | ocal , so that the
header files are located irusr /| ocal /i ncl ude and the libraries can be foundfmusr /| ocal /| i b.

Alternatively, the GNU build toolsautoconf automakeandlibtool may be used. In general, this is the rec-
ommended way to compile and link your application. Especially if you are goingveldp CPL plugins,
the use of the GNU build tools makes dealing with shared object libraries fereafit platforms a lot easier.
Comprehensive information on the GNU build tool can be founchtiaip: / / www. gnu. or g.

The CPL provides support for the GNU build tools by providing a small cotlecof autoconf macros in the
two macro archivespl . M4 andeso. md. These archives contain, among others, macros to locate the CPL
header files and libraries on your system and to setup the approlghkesf i | e symbols needed to compile
and link a CPL application. You can find them in the CPL source tree in thersgbatiesmdmacr os and

i bcext/ mimacr os. To use them copy the two files to the source tree of your own project sthihyacan

be found by theaclocaltool, which is part of the GNWutomakegpackage.

If you are going to develop a fully-fledged VLT instrument pipeline, theafsbe GNU build tools is not only
recommended, but required. An appropriate CPL SDK containing thessa@getools and a pipeline template
directory tree is available on the CPL web page.

3.3 Linking your application with the CPL

The CPL librariedibcpldfs, libcpldrs, libcplui andlibcplcore together withlibcextand thelibcfitsio library,
form a hierarchyj.e. there are inter-library dependencies, of which you need to be awaen linking your
application. Figure 1 shows the library dependencies of a CPL applicatiog tunctionalities from all the
CPL libraries.

For an application as shown in Figure 1, the linker command would look like fleviag, with the trailing
ellipsis being a placeholder for any system libraries that are also used:

$ gcc -0 nyapplication myapplication.o -Inylibrary \
> -L$CPLDIR/lib -lcpldfs -lcpldrs -lcplui -lcplcore -lcext \
> -LSCFITSIODI R -l cfitsio ...

The order in which the libraries are linked matters and is determined by thdibray dependencies. This
implies that the order of linking for the two librariébcextandlibcfitsio does not matter in the above example.
Actually, these two libraries may even be skipped, since the CPL lidilacplcore usually includes these
dependencies, so that running the command

$ gcc -0 nyapplication nyapplication.o -Inylibrary \
> -L$CPLDIR/lib -lcpldfs -lcpldrs -lcplui -lcplcore ...

o _ Doc: VLT-MAN-ES0O-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 17 of 98
é

Application

Application specific Libraries (optional)

libcplui

libcpldrs

Library Dependencies
[19A87 IV

System Libraries

-
Mo

Figure 1: Library dependencies of a CPL application

should be sufficient.

An application programmer is free to choose which CPL facilities he or sheewighuse and therefore needs
to link only with the libraries upon which the highest-level library used depeiitierefore, for an application
which uses only components frdibcplcore, the above linker command would become:

$ gcc -0 nyapplication myapplication.o -Inylibrary \
> -L$CPLDIR/lib -lcplcore -lcext -L$CFITSIODIR -lcfitsio ...

3.4 Writing a simple Common Pipeline Library application

The CPL libraries can be used as any other library on your system to \pptieations. This section provides
you with a simple example of how to do this; CPLIdéllo, world!” program:

#i ncl ude <cpl. h>

int main()
{
cpl _init(CPL_I NI T_DEFAULT);
cpl _nsg_info("hello()", "Hello, world!'");
cpl _end();
return O;
}

Compiling this program and running it at the system prompt produces thatoutp

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 18 of 98
$./hello

[INFO] Hello, world!

Line-by-line Walkthrough
The first line
#i ncl ude <cpl. h>

includes the prototype of all the CPL functions. You must include this file eresryou are using any CPL
function.

As with every C-program, a CPL application has to start with the usual defiréfithemain-function:

int main()

{

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 19 of 98

The first function call
cpl _init(CPL_I NI T_DEFAULT):
initialises the CPL. In particular, the library’s memory management system is irétlalishe functiorcpl _i ni t ()

must be called before any other CPL function is called!

Now the application can start doing the real work. The function call
cpl _nmsg_info("hello()", "Hello, world!");

writes the well-known message to the terminal, with a prefix indicating the messagpiys The first argument,
the string hel | o() ", is the component tag and indicates the program, module or function which thmits
message. The component tag is not printed by default and therefasendbappear on the screen. The last
function call in this example

cpl _end();

shuts down the CPL system.

The program ends with a successful return froai n() :

return O;

The previous example shows the basic layout of any CPL application. #hiéelibrary initialisation and the
setup of the messaging system your application can use all the facilities gadwydhe CPL.

For further details on the messaging component please refer to Sectiob &r2ithe CPL reference manual

[1].

3.5 How to implement a Pluggable Data Reduction Module

This section shows how a simple data reduction task, namely doing basic arithwitetievo images, can be
implemented using the CPL plugin interface.

What is a plugin

A pluginis a unit of code that can be incorporated into a parent application atmen- Unlike a static or
dynamic library, the details of the plugin’s existence do not need to be kibgvihe parent application when
it is built and vice versa. As such, plugins are extremely useful for pipatianagement software or GUIs,
where the developers may wish to modify parts of the pipeline code, witha@essarily restarting the parent
application (let alone recompiling it).

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 20 of 98

In a way, this is similar to spawning a child process (although plugins areniergke executed synchronously).
However, the child-process method then needs to take into considerationwuocation with the parent ap-
plication, which means the definition of, and strict conformance to, an isgegpecification, which is then
difficult to check outside the run-time environment. It also means that the clultbgs needs to implement
some interprocess communication methods.

In comparison, a plugin implements its interface simply through the provisionuoffémction calls, that are
expected by the CPL plugin interface in the parent application. The pappfitation does not need to know
about the plugin’s existence at compile time, but can learn about the pluagistence via user input or a
configuration file, during normal execution. It can then query the existenthe plugin, and again handle the
case where the plugin is not available in a graceful manner.

If the plugin is available, then the code within it may be invoked by this standsediace. Of course, the
downside is that, unlike a completely separate child process, the plugin istedeaxithin the address space of
the parent application, which means that fatal errors (e.g. segmentailgrwidl take down both components,
unless the appropriate provisions are made.

What is a PDRM

A Pluggable Data Reduction Modu{@DRM) is just a specialised type of plugin, suitable for implementing a
data reduction task.e. arecipe In other words, if aecipeis implemented using the CPL plugin interface, it is
called aPluggable Data Reduction Module

This section demonstrates how easy it is to implement sueluggable Data Reduction Modulédt is easy,
because a plugin developer does not need to know how the input foathgatuction task is created. He or
she can expect that the complete information the data reduction task neegitaisla when it executes. All the
"nitty-gritty" details of command line parsing, file management, etc., are left togghiecation using the plugin.

What is needed

To implement a PDRM, four functions have to be implemented which are useé bygiication to obtain some
information about the plugin, to initialise, execute and "clean it up”. In additoe or more functions doing
the real work are needed too.

An Example

The example shown below describes a PDRM which supports basic arithnithtionages. It will provide one
option, for selecting the arithmetic operation to be executed.

The first function to implement is the one that the application will call initially in otdesbtain the necessary
information about the plugin. This function is described as part of the plugérfate,i.e. the function’s
prototype and its name are defined by the interface but the function neleesgemplemented by each plugin.
This is the only function which needs to be exported by the PDRMthis is the only function which must not
be declaredt at i ¢ in the module’s source file.

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-2720
Issue: Issue 5.3.1
Date: Date 2011-03-283
Page: 21 of 98

The functionis calledpl _pl ugi n_get _i nf o, returns an nt , takes a pointer topl _pl ugi nl i st asits
only argument and it can be implemented either using the public interface diddie girectly or the provided
convenience function. An implementation, completely ignoring error handlirkgép it simple, would look

like:

#i ncl ude <cpl . h>

#define MY_PLUG N_VERSION 1

/+ Plugin detail ed description =/

static const char =*

nypl ugi n_hel p = "This plugin adds,

subtracts,

multiplies or divides "

"two i mages dependi ng on the operation choosen by the "

"paraneter ‘operation’

static int nmyplugin_create(cpl _plugin *);

static int nyplugin_exec(cpl_plugin *);

static int nyplugin_destroy(cpl_plugin *);

i nt

cpl _

{

pl ugi n_get i nfo(cpl _pluginlist

cpl _reci pe *recipe
cpl _plugin *xplugin

cpl _call oc(1,

cpl _pl ugi n_i ni t (pl ugin,
CPL_PLUG N_API,
My_PLUG N_VERSI ON

«1ist)

si zeof =recipe);

(cpl _plugin *)recipe;

CPL_PLUG N_TYPE_RECI PE,

"nypl ugi n",

"Do basic arithnetic on two inages"”,

nypl ugi n_hel p,
"G Il Bates"

"gbat es@racr ohar d. cont',

"GPL",

mypl ugi n_creat e,
nypl ugi n_exec,
nmypl ugi n_destroy);

cpl _pluginlist_append(list,

return O;

pl ugin);

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 22 of 98

The first line includes all the definitions of the CPL.

The symbolMY_PLUG N_VERSI ON is defined to be the recipe’s version number and the static variable
nypl ugi n_hel p is assigned to the recipe’s detailed description. This is followed by the fdrdeclara-
tions of the three remaining functions which must be implemented to create texecldestroy the recipe.

The functioncpl _pl ugi n_get _i nf o is implemented as follows. First, memory to hold the recipe object
is allocated. The subsequent cast of the varialelei pe, which is a pointer tapl _r eci pe, into a pointer

to cpl _pl ugi n is possible because the clagsl _reci pe is a subclass ofpl _pl ugi n (see the ISO-C
standard ISO/IEC:9899:1999(E) 6.7.2.1 for details).

The cpl _pl ugi n part of the recipe object is then initialised with the version of ¢lp¢ _pl ugi n class
implementation, the recipe’s version, the name of this recipe plugin, a stsaripléon of its purpose, a longer
help text and license information. The last three arguments passed in th@apall _pl ugi n_i ni t are the
functions the application will use to initialise, execute and destroy the recigeplliheir implementations are
discussed below.

As a last step, the plugin is appended to the list of plugins. This list must hedptbby the application
callingcpl _pl ugi n_i ni t. At this point, the creation of the recipe plugin with all necessary information is
completed and the function returns successfully.

What is left to be done is the implementation of the initialisation, execution and gldanations. In the be-
ginning, it was mentioned that our example should be configurable influddig user may select the arithmetic
operation to be performed. It is the duty of the PDRM to provide the informatimut any options it accepts
to an application which uses the PDRM. In our example, we need to defirsithunetic operator option. The
correct place to do this is the PDRM's initialiser function. The created pasa(sgare stored in a parameter
list, which can be queried and updated by the calling application. Theseyomatfon parameters may, for
instance, be mapped into command line options by the calling application. Sinezijpe configuration is cre-
ated during the plugin’s initialisation, it has to be destroyed in the end, naméhg lugin’s cleanup handler.
A typical implementation of these two functions looks like:

static int
mypl ugi n_create(cpl _pl ugi n *pl ugin)
{

cpl _recipe *xrecipe = (cpl _reci pe *)plugin;
cpl _paraneter *p;

reci pe->paraneters = cpl_paraneterlist_new();

p = cpl_paraneter_enum new " nypl ugi n. operation",

CPL_TYPE_STRI NG,

"Arithmetic operation to apply.",

"nypl ugi n",

"add", 4,

"add", "subtract", "multiply", "divide");
cpl _paraneter_set _alias(p, CPL_PARAMETER MODE CLI, "op");
cpl _paraneterlist_append(reci pe->paraneters, p);

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-28
Page: 23 of 98
return O;
}
static int
nmypl ugi n_destroy(cpl _plugin =*plugin)
{
cpl _recipe *xrecipe = (cpl _recipe *)plugin;
cpl _paraneterli st _del ete(reci pe->paraneters);
return O;
}

In the very beginning, both functions must convert the plugin which haa pbassed to them from a pointer to
cpl _pl ugi ninto a pointer tacpl _r eci pe to get access to the additional members thatghle r eci pe
class provides. This cast operation is safe since the plugin has beaitlgxpstantiated as &pl _r eci pe
inthecpl _pl ugi n_get _i nf o function, that was called initially.

The recipe subclass has two additional members compared to its supahdagsneric plugin. These two data
members are the list of recipe configuration parameters and the set oflatpiftames which it should process.
The list of accepted configuration options is created by the recipe whiletlod mput frames must be filled in
by the calling application.

In the remainder of the initialisation function, a parameter list and an enumepstiameter is created (please
refer to [1] for the technical details on how to create the various kind mrpaters). The created parameter
will allow the selection of the arithmetic operations supported by the recipeadiimits value, via the calling
application’s user interface, will configure the PDRM using the requespedator during its execution. For
the user’s convenience, a short alias name for the parameter is proviiied may be used by an application
instead of, or in addition to, the parameter’s fully qualified name. Finally, thenpeter is appended to the
parameter list. The only operation which is necessary in the cleanup hathierone required to destroy the
parameter list and all its contents, therefore its implementation is straight thrwar

The last interface function which is needed is the function to execute tiperesgain the implementation is
straight forward, assuming that the actual processing funatjon mage_ari t hnet i cs does all the work.

static int
nmypl ugi n_exec(cpl _plugi n *pl ugin)
{

cpl _recipe *recipe = (cpl _recipe *)plugin;

return my_inmage_arithmetics(reci pe->paraneters, recipe->frames);

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 24 of 98

The implementation of the processing function i mage_ari t hnet i cs is left to the reader as an exercise.

The three functions initialising, executing and destroying the recipe plugidefined ast at i ¢ functions.
There is no need to make them publicly available because they are exppttieel lugin interface itself and
they are only called through this interface.

As mentioned before, the example does not implement any error handlinthetree handler functions and
the function to obtain the plugin information it is required that they re@uam success and a non-zero value to
indicate an error.

The complete source code of the example can be found in appendix A. o you should build a shared
object library from the source and you must provide the actual priogeisction.

3.6 A specificCommon Pipeline Library application : the VLT instrument pipeline

A VLT instrument pipeline is a very specific CPL-based application. Bexafithe big number of different
pipelines it needs to maintain and develop, ESO imposes on those a serigxdafdsaand/or constraints that
must be strictly followed:

e The coding style must follow a series of common rules (the error checkingbrwdone extensively, the
code must be well documented using the same doxygen documentation tggs, etc

e The pipeline source directory tree structure must follow the standardr{s@ion, usage of the GNU
toolsautoconfandautomaken a standard way, etc.).

e The FITS header keywords access must be done in a standard way.
e The DFS-related parts must be defined in a standard place.
e Thelibcext library must not be used.

e TheCFITSIO functions may be used directly if they are compatible withdffecially supportedCFIT-
SIO version, currently rel. 3.0.9; mixing different CFITSIO versions meyduce unexpected behaviour
- no support from ESO can be expected in that case.

e The pipeline products must be written with the proper format, keywordsTa&information about their
existence must be given &sor ex for further processing.

These are only the main constraints that need to be followed by a VLT insttympetine. The total list can be
very long, and difficult to describe in a document (especially when it camesor handling or coding style).

If you want to know more about these specifications, see the DFS Daddiesr Specification document [2] and
the Data Flow Pipeline and Quality Control Users Manual document [3].ti#eESO DICB — Data Interface
Control Document [4] for informations about FITS header keywords.

Of course, if you want to develop your own CPL-based application thatti® pipeline, you still can use the
pipeline template and benefit from the fact that the plugin is already progefilyed and ready to be executed
with esorex

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 25 of 98

4 CPL general design features

4.1 OO approach

The CPL has been written in C, but following an object-oriented (OO) ambravherever it makes sense.
Modules are built around a class, which comprisésypedef (usually astruct) and a list of associated
methods to work on it.

For example, the image class is built like this:

[+ Class definition =/

typedef struct _cpl _image_ {
CPL image attributes ...

} cpl _i mage ;

/= Associ ated nmet hods =/

cpl __image *cpl _inmage _new...);
cpl _image *cpl _image |l oad(...);
voi d cpl _image delete(...);

Understanding the library means parsing through the list of offered coemg® and looking at the implemented
methods. There are components for the handling of the data to procesegirmgges lists, masks, tables, vec-
tors, ...) and purely functional components to help programmers, such age#saging and the error handling
components.

‘Data hiding’ is used everywhere. All objects remain opaque and arerahjipulated through accessor func-
tions. See the documentation for each component.

Polymorphism is hard to achieve in C, and is seldom used, if at all, in the GRLOD approach is limited here
to defining objects with attributes and methods.

4.2 Portability

The CPL is intended to have a long service life and evolve in accordanceheitieeds of the VLT. To avoid
locking the code to any particular platform, portability has been consideredghout the design of the CPL.
Achieving portable code is done in the CPL through tools Bkg oconf andaut onake that try to catch
all system dependencies and make them look the same to library usersy ioomiany local peculiarityd.g,
HP-UX lacks many standard tools or has them with different names). Busthdg the end of the story. During
development, we kept in mind all the basic portability rules and relied on the fusempiler options (like
-ansi,-pedantic-errors,-Wl), andtools such dsi nt. The aim was that the CPL should be usable
on any kind of POSIX-compatible system.

System-specific optimisations may be added later if they do not involve modifyind\Bhin the code. If
optimisations are introduced, they shall be resolved at compile-time and Hiddetibrary users.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 26 of 98

4.3 The extended memory model

The library offers a set of memory allocation/deallocation functions:

cpl _mall oc()
cpl _cal l oc()
cpl _realloc()
cpl _free()
cpl _strdup()

These functions are meant to replace the default standard library fas¢kiat control and handle all memory
allocation in applications. The behaviour of these functions is controlled witlcdinfiguration of the CPL.
By default, they use the standard system memory handling functions. tNelesss, it is possible to switch on
(—enable-memory-mode option of configure) the extended memory functésasibed here.

4.3.1 Advantages of using the extended memory functions

By using these functions, some information about the allocated and deadlgeaiders is internally kept. This
way, the system knows at any moment the list/size of the still allocated pointerggritleasier to track
memory leaks.

It is possible to check for memory leaks at any moment using the appropriatenyeeport functions:

cpl _nmenory_is_enpty()
cpl _menmory_dunp()

4.3.2 Drawbacks of using the extended memory functions

These functions keep internally various informations on every single pahmeis currently allocated. Thus,
you need to know when you install CPL which value you are never goingdeesl in terms of number of
pointers allocated at the same time in your programs. The default is currentty 200000, which should be
enough for most applications.

Note that the cpl_propertylist uses a lot of pointers when it contains ldfige freaders. In order not to exceed
this limit, you may try not to load all your input files headers in property lists atsdrae time if this is not
necessary.

If the maximum number of pointers your application may need is bigger thangaatafound 300000), you
need to specify this when you install CPL:

Instead of typing:
$./configure --enabl e-nmenory- node=2

you may type:

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 27 of 98

$./configure --enabl e-max-ptrs=500000 --enabl e-menory-node=2

To increase the supported number of pointers, you just need to reaafigcompile and reinstall CPL.

Note that the pointers information table is statically allocated, and that usingnensrvalues (i.e. table size)
would cause the memory consumption of CPL unreasonably high.

4.3.3 Using the extended memory

The memory allocated inside the CPL has to be deallocated using the providedyreandling functions.
This can be done either with the CPL objects destruaay,(cpl _i nage_del et e()) to deallocate CPL
objects or withcpl _free() for normal arrays created by CPL functions.

You are free to use the CPL memory functions to allocate/deallocate your menyayr code wittcpl _mal | oc(),
cpl _calloc(),cpl _realloc(),cpl_strdup() orcpl _free().

The only rule is that all the memory allocated with the CPL memory functions mustddendated with them.

If you do not want to use the extended memaory system in your applicatidm@anot want it to be used in CPL,
you can configure CPL with the option —enable-memory-mode=0 like this:

$./configure --enabl e-nenory-nmode=0

This way, the offered functionspl _rmal | oc(),cpl _cal l oc(),cpl __reall oc(),cpl _strdup() or
cpl _free() will simply call the associated system functions.

This is the default behaviour from CPL version 4.0 on.
4.4 Error handling

Error handling in the CPL is done through thpl _er r or component (see Section 5.2.11).

4.5 Library stability

The CPL group will strive to keep the API stable, in order to allow for afegasaintenance of the many VLT
pipelines. New releases will mostly provide new functionality and bug fixetsidalical design changes will be
avoided as much as possible.

4.6 Code conventions

The coding conventions adopted in the CPL are basically the ones delscriRecommended C Style and Cod-
ing Standards [5]. Although the coding language used is ISO-C [ISO2EID:1999(E)], the CPL developers
have adopted an object oriented approach. A series of objects aredifnage, table, etc.) in the library and
methods are associated to them.

- _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 28 of 98
4.6.1 Objects

An object is a Cstructurethat contains all the information needed to describe it. The objects included in th
CPL have been designed to be as small as possible. All the attributes txtagth an object are mandatory.

An image, for example is defined as an array of pixels, its image size in X ait&l pixel type and possibly a
bad pixel map; nothing more.

If more complicated objects are needed, it is left to the developer to defiherHigvel objects based on the
CPL objects and other opportune parameters and attributes.

Each object has oneonstructorwhich allocates the necessary memory, amtbstructorto deallocate it. The
destruction of objects should always be done through its dedicated method.

4.6.2 Methods
Apart from the constructor and destructor, each function which ¢geiEn an object is called a "method" of
this object.

Any method can create or modify an object. In the latter case, the modified shfmdd be passed as the first
parameter to the function. Of course, a method can also use an objecttitbdifying it.

In case of failure, the input object shallvaysremain unchanged.

4.6.3 Functions

All functions shall be able to inform their caller about the success of thxeicigion, either by returning an
error code (CPL_ERROR_NONE in case of success, the appropriatecede otherwise) or by returning a
conventional value (such as a NULL pointer when a valid pointer is exgpated setting appropriately the
error code (see section 5.2.11).

4.7 Naming Conventions

The following defines the construction of a CPL function name - and othestgb identifiers in the CPL
namespace. This enables uniformity of nomenclature, easing the sedrtiiedadentification of either known
or unknown functionality.

Symbolic constants shall conform to the following naming conventions:

e A CPL symbolic constant name consists of fields, which are separated llyethmderscore character

Q-
o Afield starts with an upper-case letter and is followed by upper-case latidrgigits.

e The first field shall beCPL.

A CPL function name adheres to the following rules of syntax:

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 29 of 98

e A CPL function name consists of fields, which are separated by the theseode character ().
o A field starts with a lower-case letter and is followed by lower-case lettersligitd.

e Each field has a meaning, depending on its place in the sequence of fields.

A CPL macro (that is #def i ne accepting arguments, as opposed to symbolic constants) shall conforen to th
same naming conventions as those of CPL functions.

4.7.1 Meaning of Fields

The different fields composing a CPL function name have a specific meat@pgnding on their position in the
name.

The fields are:

Library The firstfield is the library name, i.e., the library to which the function belohgthe case of the CPL
functions, is it always set topl . The library field is mandatory.

Subject The subject refers to the main CPL section where the function is defined afehemted. It may be
one of several subject types:

1. Object - This is the CPL object which is handled by the function. Objeetdarinstancei, mage
andt abl e.

2. Domain - This is the functional area in which the function has been ins@rteddomain is used to
group functions sharing similar scope, but not acting on a specific obkjgxit, as the CPL messag-
ing, geom(geometry), angphot om(photometry) functions.

3. Exceptions - There are a few CPL functions which do operate neithar@PL object nor within
a given domain. Exceptionally, the names of these functions do not inclwdeubject field:
cpl _{init,free,assure}(),cpl _{malloc,realloc,calloc, strdup}().

The subject field is mandatory, with the mentioned exceptions.
Verb The verb defines the action on the subject.
1. Existentials - These indicate the creation or destruction of an object (xittal et e, cr eat e...).

For instance, the function nameg@l _vect or _new() creates a new CPL vector.

2. Morphologicals - Change the size of an existing CPL object. The nuniteements within the
object is changed. For instanap! _mat ri x_append() is used to append a matrix to another
one whose size is therefore modified.

3. Elementwise operators - These are functions that act on each gpedtdfieent of the CPL object.
Forinstance¢pl _i mage_add() sums two images, pixel by pixel.

4. Global operators - These are functions that act on a CPL objegtlasla. Forinstancespl _vect or _corr e
is used to correlate two vectors.

5. Generic - The following do not fall into the above categorggst , set , i s, has anddunp.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 30 of 98

6. Exceptions - These are verbs which do not apply to neither a CPLtolje@ domain. Strictly
speaking, they are subject free. See the above exceptions.

The verb field is mandatory.

Qualifier A qualifier specifes the object or concept upon which the verb acts, iodhtext of the subject.
There are three types of qualifiers:

1. Read/Write Attributes - These are attributes of a CPL object that may loe seitieved, as in the
functionscpl _pol ynom al _{set, get} coeff ().

2. Read-only Attributes - These are attributes of a CPL object for whichnibisneaningful to set a
value, although the object possesses one that may be computed, asictiunftpl _i mage_get _nedi an

3. Others E.gcpl _tabl e new from nodel ().
The qualifier field is optional.
Item/Concept A further specification of the functionality, e.qg.

1. CPL object(s)
2. attributes of an existing CPL object (egj.ze).
3. primitive Ctype (St ri ng forchar * andi nt,f| oat, doubl e)

This field is optional.
Sub-item A further specification of the functionality, e.g.

1. attributes of an existing CPL objeadl urm, r owandwi ndow).
2. primitive Ctype 6t ri ng forchar * andi nt,fl oat, doubl e)

This field is optional.

4.7.2 Lexicon

Subject The following words are permitted as subjects. These represent the moddles. Objects that end
with set or list are collective objects, while the rest are singular objecténdigtates that the collection of
objects is ordered, while set indicates that the collection is unordereittli{Sspeakingt abl e is thus
acol um-set).

e array
e bi vector
col umm — Internal to CPL

error
e franme
franeset

e i mage

Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 31 of 98
e i magel i st
e mask
e matrix
e MENDIY
e ITBQ

e paraneter

e parameterli st
e plugin

e pluginlist

e pol ynom al

e property

e propertylist
e stats

e table

e t 00l s — Internal to CPL
e type

e vector

The following words are also permitted as subjects. These represetibhad areas in the higher-level
sections of the CPL. This list will likely be extended.

e apertures

e detector

e dfs

o fit

o flux

e geom

e phot om

e ppm

e WCS

Verb The following words are permitted as verbs.

Existentials

del et e (Destructor)

unwr ap (Destroys object, leaving internal components intactva.fap)

wr ap (Constructor of a new object composed around existing datajrovit ap)
dupl i cat e (Copy constructor)

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 32 of 98

extract (Create a new object which contains a part of another object, e.g. @eatetor
from part of another vector)

| oad (Constructor from file, c.fsave)

new (Constructor)

save (Create file of an existing object, clfoad)
of f set (Image combination igpl dr s)
filter (Filtering always create a new object)
cast (Casting always create a new object)

Morphologicals

append (Add an element to the tail of an object)

col | apse (Remove a dimension of a multi-dimensional object)
er ase (Remove element(s) from an object, ¢.fisert)

i nsert (Add an element to an object, cdr ase)

pr epend (Add an element to the head of an object)

Global operators

corr el at e (Compute the cross-correlation between two objects)

count (Get the number of occurrences of some object attribute)

shi ft (Rearrange elements in a CPL object)

fi nd (Locate an element within a CPL collective object)

i nt er pol at e (Compute an interpolated value)

f1i p (Reverse the order of elements in a CPL object)

fft (Compute the FFT of a CPL object)

t ur n (Rotate the elements of a CPL object through a multiple of 90 degrees)
i nvert (Compute the inverse (matrix))

Elementwise operators

abs (Absolute value of each element)

add (Add elements at equivalent positions)

and (Binary AND on elements at equivalent positions)

aver age (Determine the average of elements at equivalent positions)
cast (Convert the type of elements in an existing object)

copy (Overwrite some/all elements in an existing object)

di vi de (Divide elements at equivalent positions)

fill (Assign values to specified elements within a CPL object)
rej ect (Flag element, e.g. set bad-pixel, @atcept)

| abel i se (Assign numeric labels to associated elements)

mul ti ply (Multiply elements at equivalent positions)

nor mal i se (Rescale elements to lie within a given range)

not (Binary NOT on elements)

or (Binary OR on elements at equivalent positions)

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 33 0f 98
e subtract (Subtract elements at equivalent positions)
e t hreshol d (Assign a value to elements whose value lies outside a specified range)
e accept (Unflag element, e.g. remove bad-pixel, ¢.&j ect)
e xor (Binary XOR on elements at equivalent positions)
Generic

e get (Retrieve the value of an attribute associated with an object)
e set (Assign a value to an attribute associated with an object)

e dunp (Print the object content to stream, for debugging)

e i s (Used for checking existence or state)

e has (Used for checking existence or state)

Additionally, the following words are permitted as verbs in subject freetfanmames.

e assur e (Ensure the presence of a given condition and handle the case wisdgertbt true)
e cal | oc (Allocate memory initiliased to zero)

o f r ee (Deallocate memory associated with a pointer)

e i ni t (Initialise an object and system)

e mal | oc (Allocate memory)

e real | oc (Reallocate the memory associated with a pointer)

e strdup (Duplicate a character array)

Qualifiers The words permitted as qualifiers are listed in appendix C.
Items The words permitted as items are listed in appendix C.
Sub-items The following words are permitted as sub-items:

e col um
e doubl e
fl oat

e int
e I OW

string
e Wi ndow

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 34 of 98

5 The CPL components

5.1 Component libraries

The functionality of the CPL is provided by four component libraries, implagmgrthe low-, medium- and
high-level CPL interfaces respectively, plus a DFS specific functiomarib This allows applications to be
linked with only the parts of th€ommon Pipeline Libraryhat are necessary.

The core librarylibcplcore, provides the basic types like vectors, images and tables, as well as ihsigaal
and image processing functionalities. It also provides facilities for acmedata files, for error signalling, and
a set of functions for displaying messages and maintaining log files.

Thelibcplui library implements the medium-level data types and utilities serving as an interfieeigpeline
run-time environment.

Standard implementations for instrument-independent data-reduction fusmatid functions for monitoring the
data quality are provided by thibcpldrs library.

Finally, thelibcpldfs library is there to insure the compliance of the pipeline products by implementing sb
the important DFS requirements on the pipeline products.

For the low-level implementation of container data types (such as lists, or @idtsh, or utilities not available
on every UNIX system, the CPL libraries themselves depend on a small G/lilireextextending the standard
C library.

For access to FITS data files, the CPL internally relies onGRETSIO FITS I/O library. Since the CPL
provides high-level facilities to read and write data from/to a FITS file, dicalling of CFITSIO functions is
only permitted on exceptional cases, and within the scoel dfocloading and saving functions.

The low-level librarylibcext, delivered together with the CPL, is an internal library exclusively useti® CPL
and its functions shall not be called directly by any VLT/VLTI pipeline.

5.2 Core objects inlibcplcore
5.2.1 Images

A cpl_imageis conceptually a 2-dimensional array of pixels with two main characteristicglyi-acpl_image
can be of several different types (currently supporteddimeble float, int and comple}. Secondly, each
cpl_imagecan carry with it the knowledge of its own bad pixels, referred to as a badlpap.

All the CPL functions whose name start withl_imagedeal with images. Some of them return a newly al-
located imagedpl_image_xxx_create(}xx_new() xxx_wrap_xxx(pr xxx_load()functions) and some others
work locally on the passed image. The newly allocated images must later becdeadlavith one of the de-
structors ¢pl _i mage_del et e() orcpl _i mage_unwr ap()).

The following operations can be performed throughdpk imagemethods’ interface:

e creating, loading from FITS files, saving to FITS files or deallocating images

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 35 of 98

e copying images, converting images from one type to another or accessigg infarmation

e set or unset bad pixels in an image, count them, set the bad pixels fror8@H e or from a binary
image

e basic image operations, normalisation, thresholding, averaging, collapginagtion or flipping
e various statistical computations on images

¢ linear, median or morphological filtering operations

e resampling functionalities

e generation of images with random uniform noise, or with gaussian functions

The different image components are described in the following sectiomsoRte of themdpl _i mage and
cpl _i mage_bpn), the way the data are stored internally is described. This is just to givéter ea on
what the CPL can do and how efficient it can be. But these internakstascannotbe accessed directly; every
developer must/can only use the accessor functions provided in the liBsadping so, you ensure that you do
not need to change your code after any CPL update, as the interr@lstsimay change from one release to
the next.

1. The image structure

An image comprises a size in x and y (in pixels), and a pointer to an array @tpikhe type field, and
the fact that the pixels are defined as void, allows this structure to contgiofdhe supported image
types (float, double, integer or even complex images).

The image-processing functions provided in the CPL can handle any ngéarkind of image. A user
would call the same function to filter a double or a float image.

Moreover, it is possible to attach to any image the knowledge of its bad pixelsheitbadpixelmap field.
Again, any image processing function in the CPL takes this bad pixel map iobuaicwhenever one is
defined.

The implementation of thepl_imagestructure looks like:

typedef struct _cpl _inmage_

{ .
i nt nx, ny;
cpl _type type;
voi d * pi xel s;
cpl _mask * badpi xel map;

} cpl _i mage;

The image pixel buffer is two-dimensional but stored in a 1-dimensional/af pixels for efficiency
reasons. Pixels are numbered (like arrays in C) from@teny — 1.

Note that this pixel organisation does not pre-suppose any giventatianfor the lines in the image.
The CPL convention, like the FITS convention (and as opposed to mostinthge formats), numbers

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 36 of 98
Image Pixels array in cpl_image

5N

i=2,j=3,nx=3 (1) +(-D*nx=7

Figure 2: Pixel storage in the 1D data array

lines from bottom to top. However, this is not an issue for most image opsratde pixel in the-th
column and theg-th row (starting at the lower left corner, conventionally correspontbngplumn 1 and
row 1) would be the pixel numbéi — 1) + (j — 1) * nx in the array (see Figure 2).

These fieldgannotbe accessed directly. They are shown here for information puposessar functions
are provided to access the pixels or the image informations (see 10 routisesadion).

. The image 10 routines
There are four kind of functions that can be used to genegdtémageobjects.

Thecpl _i mage_new() function will create a new image of the specified size and type, with pixels
values set to 0 and an empty bad pixel map.

Thecpl _i mage_I| oad() function will load an image from a FITS file. If you load an image from a
FITS file, you have to specify which plane (you can store cubes in Fl&§ in which extension, which
type of image you require, and the function will give back to you the spdaifesvly allocateapl_image

Thecpl _i mage_wrap_xxx() functions will create apl_imageobject around an already existing
passed data array. This image will have to be deallocated wittpthémage_unwrap(junction.

Thecpl _i mage_new _from xxx() functions will create newly allocated images using data coming
from other CPL objects.

Examples:

cpl _image =*ini;
cpl _image =*ing;
cpl _matrix *kernel;

| *
* Create a new i mage.
* CREATES A NEWY ALLOCATED OBJECT THAT MJUST BE DESTROYED.
*/

im = cpl _i mage_new(1024, 512, CPL_TYPE_FLQAT);

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 37 of 98

[+ Define the kernel =*/

| *
* Apply a nmedian filter on imil.
* CREATES A NEWY ALLOCATED OBJECT THAT MJST BE DESTROYED.
*
/
im = cpl _inmage filter_median(iml, kernel);
cpl _matrix_del et e(kernel);

| *

* Subtract inR2 frominl, a | ocal operation

* DOES NOT CREATE ANY NEWY ALLOCATED OBJECT.
*/

cpl _i mage_subtract (i mL, inR);

/* Delete both inmages */
cpl _i mage_del et e(i nt);
cpl _i mage_del et e(i n2) ;

Please note that sonapl_imagegeneration functions are provided in thpl_image_gercomponent.
These ones are mainly used in our testing facilities.

This component also provides the possibility to convert images to anotheitdyp@ve images to a FITS
file or to duplicate images. It also provides a series of accessor funttioegieve the image size, type,
number of bad pixels or a pointer to the data buffer.

Thecpl /tests/cpl i mage_i o-test. c file contains examples @pl _i nage_i o function us-
age.
. The basic image operations

This component offers the possibility to apply basic operations between anagkiding element-wise
addition, subtraction, multiplication and division.

Since all but unary operators may have image operands of differezg typ define the type of the result
to be that of the first operand. This means that with the CPL, the addition or huatipn of two images
of different types is non-commutative.

We define the result of an arithmetic operation on two pixels of which one thr de@ bad to be a bad
pixel.

The resulting bad pixel map of an element-wise-operation on two images ifaifesttee union of the bad
pixel maps of the two operands. See Figure 3.

11316 8 5 9 11
4 7 +174 14
5|42 3| 2|6 s |6 |8

Figure 3: Bad pixel map handling in basic images operations

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 38 of 98

For performance reasons, the operations are actually computed oreddl (ircluding any bad ones).

Functions between an image and a scalar variable are also offered (adslitiiraction, multiplication,
division, logarithm and exponential). In this case, the bad pixel map anirihge type remain un-
changed.

Extraction, rotation, thresholding, collapsing and normalisation functianalao available. The handling
of the bad pixels in these functions is intuitive.

In the normalisation, the scaling factor is computed using the CPL image statistit®fis which ignores
the bad pixels.

In the collapsing function, bad pixels are ignored in the flux summation (ndrefelviour of the statistics
function), with a result that has a bad pixel only in the rare case whepaxalls along the collapsing
direction are bad (see Figure 4).

316 9
Al —
5]14]2 11
5|17|8

Figure 4: Bad pixel map handling in the collapsing function

Thecpl /test s/ cpl _i nage_basi c-t est . c file contains examples afpl _i mage_basi ¢ func-
tion usage.

. Statistics on images

Several functions providing various statisticsap_imageobjects are offered: the value and position of
the minimum and maximum pixels, the mean, standard deviation, median, absolwadldxx in the
image or just in a rectangular part of the image. Real-valued statistical foa@tre implemented as type
doubleregardless of the type of the input image. The statistics ignore bad pixdisws & Figure 5.

image cpl_image_get_xxx_window(image, 4, 2, 6, ¢
6(23(g8|9]|6 5
110]3]5]6 maximum at position : 5, 3

21719 11|73 maximum value: 14
71 o 14 4 minimum at position: 5, 2
9 9 minimum value: 6

8 |68 mean = (9+11+14+8+8+6)/6 = 9.33333
1{12 151 median = 9

etc...

Figure 5: Bad pixel map handling in statistics computations

ESO

Doc: VLT-MAN-ES0O-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B

Page: 39 of 98

5. The image filtering functions

This component offers linear filtering, morphological filtering, median filgemd standard deviation
filtering.

Without a separate handling of bad pixels, filtering involving a bad pixel wilidglly corrupt the neigh-
bouring pixels as shown in Figure 6.

Linear filtering with the following

3x3 kernel: 11
11
11

R

Figure 6: Filtering without bad pixels handling

In filtering it is therefore a significant improvement to be able to identify baélpiand handle them
properly. In the CPL, the filter functions simply ignore the bad pixels, aedondy the good ones in the
neighbourhood to compute the new value.

Figure 7 shows the result obtained when the bad pixel is correctly tagged.

Linear filtering with the following

3x3 kernel: 1
1
1

[
[
[|

Figure 7: Filtering with the pixel (16, 6) tagged as bad

This example shows that it is very important to flag the bad pixels as sucheijighours are not affected
by the filtering, and the bad pixel itself can be recomputed using the gootdbmigs. The only case
where a bad pixel stays bad in the filtered image is when it only has bad psxeésghbours.

Please note that the borders of the filtered image are set as bad pixels lretkd fimage.

Thecpl /tests/cpl _i mage_filter-test. c file contains examples afpl _i mage_filter
function usage.

5.2.2 Masks

A cpl_maskis a two dimensions map in which the elements can only have two different valbesobject is
used to represent bad pixel maps or binary images.

Binary images are widely used (and very useful) in image processindpfector edge detection.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 40 of 98

This object comes with the basic morphological operations like erosion, dilalmsing and opening, and also
the logical operations likand, or , not andxor .

A basic thresholding functiorcpl_mask_threshold_image_creajeQ “binarise” an image is provided. Fig-
ure 8 illustrates its effect on an example, where the threshold is computed withlthmage_statfunctions
on the input image to obtain@l_maslobject.

Threshold
(Mean+2*Sigma)

Figure 8: Use of thresholding to binarise an image to a mask

Some simple morphological operation can be applied to the mask to make oneteghakject out of each
detected star as shown in Figure 9. The operation applied here is a clesisg(+ dilation).

Morphological

Closing

Figure 9: Effect of a morphological closing

Once the different objects are connected, we can apply a labelisationcfitimage labelise_mask_creade()
on the mask to differentiate them automatically (see Figure 10). The mask ifotraed into an integer image
where the non-selected pixels are set to 0 and pixels of each sepgetearb set to a label value. In this
example, the labels go from 1 to 9.

Such an integer image is a convenient tool to apply some computations ondaslgone specific object at a
time like it is done in the section 5.4.1.

Thecpl _mask-t est. c file in the CPLt est s directory contains examples opl _mask function usage.
5.2.3 Listofimages
Thecpl_imagelistobject is an extension of thapl_imageobject. It is a container for several images. A list of

images can only contain images of the same type, and of the same size. T®theswalidity of an image list
(basically that these conditions are verified), one can useghémagelist_is_uniform@unction.

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 41 of 98

Labelise

Figure 10: Labelisation of a mask to an integer image

The two main ways to create an image list are either to load one from a FIT Stéleséon withcpl_imagelist_load()
or from a set of frames witbpl_imagelist_load_frameset@r to create one "by hand” with calls tpl_imagelist_new()
andcpl_imagelist_set()

Every image list must be deallocated usopl_imagelist_delete(Note that if you set images in an image list,
you have to leave those images allocated, they will be deallocated loplthienagelist_delete@all.

Once you have your image list created, you can perform series of sipptatmns between an image list and
an image, or a scalar. You also can collapse an image list, normalise it ordlarésh

5.2.4 Tables

Tablesare generally defined as rectangular arrangements of cells, wherdeleltging to the same column
contain data of the same type, while cells from the same row are related by sifgiegicharacteristics. The
cpl_tablecomponent is strictly based on this definition.

Currently, five basic numerical types are supported for a CPL table colGRin TYPE | NT,CPL_TYPE_FLQAT,
CPL_TYPE_DQOUBLE, CPL_TYPE_FLOAT_COWPLEX, and CPL_TYPE_DOUBLE_COVPLEX. A type indi-
cating columns made of character strinGBL_TYPE_STRI NG, is also supported. From the above mentioned
basic types, array types can be deriviegl, a table column element may be an array of numbers, or an array of
character strings.

A table column should only be accessed throughcibletableinterface, by specifying its name. The ordering
of the columns within a table is undefined;@_tableis not an-tuple of columns, but just a set of columns. The
N elements of a column are counted frono N — 1, with elemen® on top. The set of all the table columns’
elements with the same index constitutes a table row. It is possible to flageldablerow as ‘selected’ or
‘unselected’, and each column’s element as ‘valid’ or ‘invalid’. Selectitide rows is mainly a way to extract
just those table parts fulfilling any given condition, while invalidating column efgmis a way to exclude such
elements from any computation.

The cpl_tablecomponent ensures optimal performance and memory handling for mgeisgs: However,
a pointer to the primitive data types contained in a specific column or cell may tagmet), whenever the
developer finds that some table system performance drawback neatdswerbome.

A cpl_tablemay be created by means of its specific constructors, and used forestorddpandling of informa-
tion that was generated within a program. The code in this case may look likertas ¢hecking is omitted for

- _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 42 of 98
clarity):

#i ncl ude <cpl . h>

int main()
{
cpl _table *table;
i nt nunber of rows;

i nt dept h;

cpl _init(CPL_I NI T_DEFAULT);

nunber _of rows = 100;
dept h 5;

tabl e

cpl _tabl e_new _col um(tabl e,
cpl _tabl e_new col um(tabl e,
cpl _tabl e_new col um(tabl e,
cpl _tabl e_new col um(tabl e,

cpl _tabl e_new(nunber_of rows);

"Player", CPL_TYPE_STRI NG ;
"Ganes won", CPL_TYPE_I NT);
"Ganes lost", CPL_TYPE_INT);
"Success rate", CPL_TYPE FLOAT);

cpl _table_new colum_array(table, "Scores", CPL_TYPE |NT, depth);
cpl _table_new colum_array(table, "OQher players", CPL_TYPE STRING depth);

cpl _table_del ete(table);

cpl _end();
return O;

Alternatively, acpl_tablemay simply be loaded from a FITS file table extension, as in the following example:

#i ncl ude <cpl . h>

iﬁi mai n()

{
cpl _table *table;
i nt nunber _of rows;

cpl _init(CPL_I NI T_DEFAULT);

| *

* Loading a table fromextension 2 of a FITS file. The | ast

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 43 of 98
* argunent indicates that invalid table el enments should be
» flagged.
*/
tabl e = cpl _tabl e_| oad(" Chanpi onshi p_2005.fits", 2, 1);
nunber _of rows = cpl _table _get nrow(table);
| *
* Wite the processed table to disk in FITS format (using a default
* FI TS header), clean nenory, then exit.
*/
cpl _table_save(table, NULL, NULL, "Revised_Chanpionship_2005.fits", 0);
cpl _tabl e_del ete(table);
cpl _end();
return O;
}

It is also possible to load part of a FITS table into memory: this may turn adveouadgn case of very large ta-
bles. This can be done using the functiopl _t abl e_| oad_wi ndow() insteadotpl _tabl e_| oad().
For instance, in order to load 4 rows starting from row 2, in the above exgimpcall tocpl _t abl e | oad()
should be replaced by

table = cpl _tabl e_| oad_wi ndow(" Chanpi onshi p_2005.fits", 2, 1, NULL, 2, 4);

The fourth argument of this function may also be used, for defining asobsolumns to be loaded.

The following operations can be performed throughdpk tablemethods’ interface:

e Defining and allocating new columns.

e Creating new columns pointing to external data.

e Reading and writing table cells.

e Shifting positions of column values.

e Supporting invalid table cells, and invalid array elements.

e Computing statistical quantities, performing arithmetic with scalar columns, ettudaxg invalid cells
from the computations.

e Exporting column data, assigning a code of choice to invalid numerical cells.
e Column duplication, casting, moving from one table to another.

e Resizing tables.

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-2720
Issue: Issue 5.3.1
Date: Date 2011-03-283
Page: 44 of 98

Merging tables.

Duplicating tables.
Creating new tables modelled on existing tables.
Sorting table rows.

Selecting and extracting subtables from existing tables.

e Loading and saving tables as FITS files.

The methods to support these and other operations are all describediinrdne CPL Reference Manudl]
but, in the following, some of the functionalities are explained with the help ohabeu of simple examples.

1. Accessing table elements

A table column can be accessed by specifying its name, while one of its elenaeni® accessed by
specifying its table row number. As mentioned above, a table column may alsistcoharrays of the

basic supported types. In this case by specifying a column name and acabieamber an array will be

returned, whose elements will then be accessed by specifying their padiimgnthe array.

Note that, in the same way as all the columns of a table must have the same lengtbp@oding to the
number of rows in the table), all the arrays in a given column must have the sizae. The length of the
arrays belonging to the same column is conventionally calleddiyath of the column. In the following

example it is shown how to access table elements both from simple columns emddiumns of arrays
(error checking is omitted for clarity):

#i ncl ude <cpl. h>

i nt

{

mai n()

cpl _table *table;
cpl _array =*array;

i nt nunber _of rows = 100;
i nt depth = 5;

char *pl ayer;

i nt score;

cpl _init(CPL_I NI T_DEFAULT);

tabl e = cpl _tabl e_new(nunber_of rows);

cpl _tabl e _new colum(table, "Player",

cpl _tabl e _new colum(table, "Ganmes won",
cpl _table_new colum(table, "Games lost",

cpl _table_new colum_array(tabl e,
cpl _table new colum_array(table,

"Scores",
"t her

CPL_TYPE_STRING) ;
CPL_TYPE_I NT);
CPL_TYPE_I NT);
CPL_TYPE_I NT, depth);
pl ayers", CPL_TYPE STRI NG depth);

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 45 of 98

| *
* Witing the nane "Ren" as a Player at row 42, and the nunber of
* ganes won and | ost.
*/

cpl _table set _string(table, "Player", 42, "Ren");
cpl _table_set _int(table, "Games won", 42, 0);
cpl _table_set_int(table, "Ganmes lost", 42, 5);

| *
* Now wite the scores: an array of as many val ues as the depth
* that was declared for the columms to access. In this case the
* array is filled with 0.
* [

array = cpl _array_new(depth, CPL_TYPE I NT);

cpl _array_fill_window_int(array, O, depth, 0);
cpl _table_set_array(table, "Scores", 42, array);
cpl _array_del ete(array);

| *
* At the end the array can (and nust) be deleted, since it was
* physically copied to the table. If efficiency reasons make this
* duplication of an array inpracticable, the cpl_table_set_array()
* call may be repl aced by:
*
* cpl _table get data array(table, "Scores")[42] = array;
* where the created array is directly "plugged" into the appropriate
* colum elenent. O course in this case cpl_array_del ete(array) nust
* not be used.
*/
| *

* Now wite the players to the columm of arrays of character strings:
*/

array = cpl_array_new(5, CPL_TYPE STRI NG ;
cpl _array_set _string(array, 0, "Stinpy");
cpl _array_set_string(array, 1, "CGoofy");
cpl __array_set_string(array, 2, "Mcky");
cpl _array_set_string(array, 3, "Donald");
cpl _array_set _string(array, 4, "Pluto");
cpl _table set _array(table, "Qther players", 42, array);
cpl _array_del ete(array);

| *
* Again, the last two calls may be replaced by the nore efficient

*

* cpl _table get _data_array(table, "OQther players")[42] = array;

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 46 of 98
*
* Note that the anal ogous
* cpl _array_get _data_string(array)[0] = "Stinmy";
*
* cannot be used in this case, because "Stinpy" is a constant string
* that cannot be rel eased by the table destructor.
*/
| *
* Now access sone of the written data:
*/
pl ayer = cpl_table_get_string(table, "Player", 42);
score = cpl _table_get_int(table, "Ganmes won", 42);
array = cpl _table get _array(table, "OQher players", 42);
pl ayer = cpl __array_get _string(array, 2);
array = cpl _table_get_array(table, "Scores", 42);
score = cpl _array_get _int(array, 2);
| *
* Do not use:
* cpl _free(pl ayer);
* cpl _array_del ete(array);
*
* The accessors just return a pointer to an internal elenent, that
* Will be released at table destruction.
*/
cpl _table_del ete(table);
cpl _end();
return O;
}

2. Support of invalid table cells

Table cells may be flagged as invalid. This is, in general, a way to exclude sothe values from a
given operation, for instance the computation of a mean, or of an arithmetiatagm, as in the following
example (error checking is omitted for clarity):

#i ncl ude <cpl . h>
int main()
{

cpl _table *tabl e;
i nt i;

Doc: VLT-MAN-ES0O-19500-272
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2
Page: 47 of 98
i nt nrows = 10;
doubl e nmean;

cpl _init(CPL_I NI T_DEFAULT) ;

| *

* Create a table with a predefined Iength of 10 rows, and create
* an integer colum nanmed "Nunbers" with the nunbers from1 to 10:
*/

table = cpl _tabl e _new(nrows);

cpl _table_new colum(table, "Nunmbers", CPL_TYPE INT);
for (i =0; i < nrows; i++)
cpl _table_set_int(table, "Numbers", i, i + 1);

/+* Flag the "Nunbers" colum’s first and third elenents as invalid =/

cpl _table_set _invalid(table, "Nunbers", 0);
cpl _table_set _invalid(table, "Numbers", 2);

| *
* Conpute the mean val ue: the values flagged as invalid are
* automatically excluded fromthe conputation:
*/

nmean = cpl _table_get columm_nean(table, "Numbers");

| *

* Now wite again some valid values. A different nean value is
* now comnput ed.

*/

cpl _table_set_int(table, "Nunmbers", 0, 1);
cpl _table_set_int(table, "Nunmbers", 2, 3);

nmean = cpl _table_get colum_nean(table, "Numbers");

| *

* In the case of a colum of arrays, or also of character strings,
* invalidating an elenent nmeans to release it from nenory:

*/

cpl _table_new colum(table, "Character strings", CPL_TYPE STRI NG ;

| *

* Wite a character string to table elenent 5 of col umm
* "Character strings". The test string is duplicated:
*/

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 48 of 98

cpl _table _set _string(table, "Character strings", 5, "test string");
| *

* Invalidating this string nmeans to destroy it:

* [

cpl _table set _invalid(table, "Character strings", 5);

~

L T S T R

The sane happens with a colum of arrays: here a column of integer
arrays of size 12 is created; then one integer array is created,
all its elenents are set to 5240, and finally the array is inserted
at the cells 5 and 6 of the table columm. Note that the created array
nmust have exactly 12 el ements, according to the declaration of the
col umm.
/

cpl _table_new colum_array(table, "Arrays of integers", CPL_TYPE INT, 12);
array = cpl _array_new(12, CPL_TYPE INT);

cpl _array_fill_window_int(array, 0, 12, 5240);

cpl _table set_array(table, "Arrays of integers”, 5, array);

cpl _table set _array(table, "Arrays of integers", 6, array);

| *
* Since the array is physically copied to the table, it can (and it
* shoul d!') be rel eased:
*/

cpl _array_del ete(array);

| *
* As with the character string colum, invalidating a table cel
* means to destroy the copy of the array:
*/

cpl _table_set_invalid(table, "Arrays of integers", 5);

| *
* How to invalidate a single array elenent? Here is shown how to
* invalidate element 2 of array 6:
* |

array = cpl _table_get_array(table, "Arrays of integers”, 6);
if (array)
cpl _array_set _invalid(array, 2);

The array read fromthe table should not be rel eased, because it
belongs to the table itself: cpl _table get _array() just returns
a handle to an internal object. Al the nenory associated to
the table is released when the table is destroyed:

* % kX X

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 49 of 98
*/
cpl _table_del ete(table);
ébi_end();
return O;
}

It should be underscored that when any table column value is flaggewasl, it is lost: there is no
function to set an invalid element back to its original value. The only way toatalid table element is to
write a value to the corresponding position. It is important to be aware ofithry §me the data array of
a table column is exported to another procesg,(a fitting routine), as in the following code section:

#i ncl ude <cpl. h>

int main()

{
cpl _table *table;
fl oat *dat a;
i nt si ze;

cpl _init(CPL_I NI T_DEFAULT);

| *
* It is here assumed that the float colum "Data" contains some
* invalid values. The data buffer of the table colum is extracted
* and passed to an external fitting routine, but this is a
* mstake: in fact the buffer elements corresponding to an
* invalid el enent contain garbage.
* |
data = cpl _table _get _data float(table, "Data");
size = cpl _table_get_nrow(table);

<result of the fit> = fit(data, size);

| *
* |n case the external fitting routine would support a specia
* "code" to identify invalid values that woul d be excluded from
* the fit - for instance, 0.0 - such code may be witten to the
* internal data buffer before exporting:
*/

cpl _table fill _invalid float(table, "Data", 0.0);

| *

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 50 of 98
* In this way the invalid values would still remain flagged as
* invalid, but the exported data would not contain any garbage
* and the fitting routine would work properly:
* |
data = cpl _table get _data float(table, "Data");
size = cpl _table _get nrow(table);
<result of the fit> = fit(data, size);
| *
* |t is likely that a nore conmon sol ution would be to physically
* renpve any invalid value froma table before exporting the
* internal data buffer to the foreign routine. Here the table
* woul d be nodified, and its size would be smaller than before:
* the function cpl _table_erase_invalid() renoves froma table
* any row containing at | east one invalid val ue.
*/
cpl _table_erase_invalid(table);
data = cpl _table_get _data float(table, "Data");
size = cpl _table_get _nrow(table);
<result of the fit> = fit(data, size);
cpl _tabl e_del ete(table);
cpl _end();
return O;
}

The most obvious example of exporting a column’s internal data bufferési@nnal process is when a ta-
ble is converted to FITS format and written to disk. This is done by the funatjoin_t abl e_save(),
that converts any invalid column value into the FITS conventiomtdr values: invalid values in numer-
ical columns of typeCPL_TYPE_FLOAT and CPL_TYPE DOUBLE are replaced by their owiNaN
bit pattern, while invalid character strings i@PL_TYPE_STRI NG columns are replaced by sequences
of blanks. The only exception is represented by invalid values in columhgoef CPL_TYPE | NT,
which are the only ones that need a specific code to be explicitly assigneehto This can be realised
by calling the functioncpl _table fill _invalid_int() foreach table column of type nt
containing invalid values, and this should be done just before saving tlettabITS. The numerical
values identifying invalid integer column elements are written to the FITS keyswdNULLN (where n
is the column sequence number). Here is a simple example:

#i ncl ude <cpl. h>

|nt mai n()

{

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 51 of 98
cpl _table *table;
i nt nrows = 10;
cpl _init(CPL_I NI T_DEFAULT);
| *
* Create a table with a predefined Iength of 10 rows, create
* an integer colum naned "Nunbers", and fill it with the value 3:
*/
table = cpl _tabl e_new(nrows);
cpl _table_new colum(table, "Nunbers", CPL_TYPE INT);
cpl _table fill _colum_wi ndow int(table, "Nunbers", 0, nrows, 3);
[+ Flag the "Nunmbers" colum’s first and third cells as invalid =/
cpl _table_set _invalid(table, "Numbers", 0);
cpl _table_set _invalid(table, "Nunbers", 2);
| *
* Save to a FITS file, but give first the code 999 for the NULL
* values. The output FITS file header will contain the TNULL
* keyword (corresponding to this colum) set to 999.
*/
cpl _table fill _invalid_int(table, "Nunmbers", 999);
cpl _tabl e_save(table, NULL, NULL, "output_table.fits", 0);
cpl _table_del ete(table);
cpl _end();
return O;
}

Beware that if valid column elements have the value identical to the cmglecode, they will mistakenly
be considered invalid within the FITS convention.

3. Shifting position of column values

It may be useful in some cases to shift the positions of all the values oéa table column by a specified
amount. This is done with the table functioopl _t abl e_shi ft _col uim() . The most obvious

application of this functionality is in the computation of the finite differences aquence of numbers,
the discrete analogue of the differential operation.

In the following example the finite forward difference of the values infth@at table column” Val ues™
is written to the newf | oat table column" Forward di fferences" (error checking is omitted
for clarity):

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 52 of 98

#i ncl ude <cpl . h>

int main()
{
cpl _table *table;
char input[] = "input_table.fits"
char output[] = "output_table.fits";
cpl _init(CPL_I NI T_DEFAULT);
| *
* Load the table data froma given FITS file. W assune here
* that the table contains a float columm named "Val ues"
*
/
table = cpl _table_load(input, 1, 1);
| *
* A sinple procedure: duplicate the input colum, nove the val ues
* of the duplicated colum upward by one position, and finally
* subtract the original colum values fromthe shifted ones,
* witing the result to the duplicated colum itself.
*/
cpl _table duplicate_colum(table, "Forward differences", table, "Values");
cpl _table_shift_colum(table, "Forward differences", -1);
cpl _tabl e_subtract_colums(table, "Forward differences", "Values");
| *
* Wite the newtable to disk in FITS format (using a default FITS
* header), clean menory, then exit.
*
/
cpl _table_save(table, NULL, NULL, output, 0);
cpl _table _del ete(table);
cpl _end();
return O;
}

In this example the last element of thid-or war d di f f er ences" column turns out to be flagged as
invalid: the upward shift leaves the corresponding table cell empty, so that ifdmatically excluded by
the subtraction operation.

Elements shifting is not supported for character string columns and fomoslof arrays.

4. Selecting and extracting subtables from existing tables

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 53 of 98

A set of functions of thepl_tablecomponent is used to select a number of rows from an existing table,
before copying them to a new table. The selection functions are used liosimple selection criteria,

that can be logically combined to define more complex criteria. With the only &roeqf the function

cpl _tabl e _not _sel ected(), all the selection functions names include the wordand_ or

_or _, toindicate how a given selection criterion should be combined with the existimgelection of a
given table. The _and_ tag indicates that between the existing selection and the new selection criterion
anintersectionis made, while the_or _ tag indicates that between the existing selection and the new
selection criterion ainionis made. The initial state of any table is that all of its rows are selected, and
therefore the first selection applied to a table would always be and_ selection, as shown in the
following example:

#i ncl ude <cpl. h>
int main()
{

cpl _table *table;
cpl _tabl e *subtabl e;

char input[] = "input_table.fits"
char output[] = "output_table.fits";
i nt sel ect ed;

cpl _init(CPL_I NI T_DEFAULT) ;

/
Load the table data froma given FITS file. W assune here
that the table contains a float colum naned "Day", a string
colum naned "Mnth", and an integer colum naned "Year"
This table begins with all rows selected, but in this
exanple we ensure this explicitly:

/

EE A .

table = cpl _table_|oad(input, 1, 1);

cpl _table_select_all (table); /* Not really necessary... =*/
| *

* Here we select all rows containing the year 1958 and the year

* 2006; fromthose we select those having a nonth beginning with

* the letter "A" or "a", and a day between 5.5 (included) and 12.3

* (excluded). Finally, we add to all these any row containing

* the month "May" (no matter what year or day). Each function

* call returns the total number of selected rows, that in this

* exanple is always discarded, with the exception of the |ast

* call.

* [

cpl _table and _select _int(table, "Year", CPL_EQUAL TO, 1958);

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-28
Page: 54 of 98
cpl _table or_select _int(table, "Year", CPL_EQUAL _TO 2005);
cpl _table_and_select _string(table, "Mnth", CPL_EQUAL TO "~[Aa].=*");
cpl _table_and_select float(table, "Day", CPL_NOT_LESS THAN, 5.5);
cpl _table_and_select _float(table, "Day", CPL_LESS THAN, 12.3);
selected = cpl __table_or_select_string(table, "Mnth", CPL_EQUAL TO "May");
| *
* |f sonme rows survived, a newtable is created fromthe sel ected
* rows and it is saved to a FITS file:
* |
if (selected !'=0) {
subtable = cpl _table _extract _sel ected(table);
cpl _tabl e_save(subtable, NULL, NULL, output, 0);
cpl _tabl e_del et e(subt abl e) ;
}
cpl _table_del ete(table);
cpl _end();
return O;
}

Note that in matching strings the reference value is interpreted as a regplassion. All the se-

lection functions involving comparisons with a constant require that thetaansas the same type of
the referred column. For this reason there is a function for each avadahlmn type. The functions
cpl _table _and select() andcpl table or_sel ect (), without any type suffix, are used
in the comparison of the values from two numerical columns.

In the specific case of complex numbers, only the CPL_EQUAL_TO and OPO_EQUAL_TO are
applicable.

5. Tables of images

As seen above, it is possible to define tables containing columns of almgysnciple, each array can be
viewed as a storage for values that may be cast into more complex datarssucfor instance images,
cubes, etc.. The concept afolumn dimensionhas been introduced for this purpose. In the following
example it is shown how to create a table containing a column made of 2-dimdnisi@uges (error
checking is omitted for clarity):

#i ncl ude <cpl . h>

int main()

{

cpl _table *table;
cpl _array =array;
cpl _i mage i mage
i nt rows = 12; [+ Number of images = rows in table =/
i nt naxis = 2; /+* Number of axis of each inmmge */

Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-28
Page: 55 of 98
i nt size[] = {25, 33}; [+ Size of one image: x = 25, y = 33 */
i nt dept h;

i nt i;

cpl _init(CPL_I NI T _DEFAULT);
| *

* Create table

* [

table = cpl _tabl e new(rows);

| *

* Conput e depth of columm of arrays,

*/
depth = 1;
for (i = 0; i < naxis; i++)

depth = size[i];

cpl _table_new colum_array(table, "Inmages",
| *

and create colum of images:

CPL_TYPE_FLOAT, depth);

* Set the colum dinmensions: an array of two elenments carries the

* size in x and y of each inmge
* [

array = cpl _array_new(naxis, CPL_TYPE I NT);

for (i = 0; i < naxis; i++)

cpl __array_set _int(array, i, size[i]);

cpl _tabl e_set _col um_di mensi ons(t abl
cpl _array_del ete(array);

| *

e, "lmages", array);

* Now al |l ocate an external inmage of the appropriate sizes, and fil

* it with sone data

* |
i mge = cpl _i mage_new(si ze[0], size[l],
cpl _image fill _noise_uniforn(imge,
| *

* Copy the image to the colum el enent 4

*/

CPL_TYPE_FLOAT) :
- 11 1) ;

array = cpl _array_wap_float(cpl _i nage_get data(i mage));
4, array);

cpl _table_set_array(table, "Ilmages"

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 56 of 98

cpl _array_unw ap(array);
cpl _i mage_del et e(i mage) ;

/
At the end the array can (and nust) be unw apped, since it was
physically copied to the table. If efficiency reasons nmake this
duplication of data inpracticable, the last two calls nay be
repl aced by:

cpl _table _get _data_array(table, "Inmages")[4] = array;

where the created array is directly "plugged" into the appropriate
colum elenent. O course in this case cpl_array_unwap() should
not be called, and cpl _i nage_del ete(i mage) should not be used,
because it woul d destroy data that belong also to the table.

cpl _i mage_unw ap(i mage) shoul d be used instead, to destroy the

* | mage data wrapper.

*/

E R S T T R S T R R

| *
* Here is an exanple on how the inage could be extracted fromthe
* corresponding table elenent: we assunme here that the colum
* di nensi ons are not known.
*/

naxi s = cpl _table_get_col uim_di mensi ons(table, "lnmages");
if (naxis == 2) {

for (i =0; i < naxis; i++)
size[i] = cpl _table_get_col um_di nensi on(table, "lmages", i);
array cpl _table_get_array(table, "lInages", 4);

i mage = cpl _inage_wap_float(size[0], size[l],
cpl _array _get data float(array));

| *

* Process inmmge...
*/

| *
* Cl eanup when done. Note that the array must not be rel eased.
*/

cpl _i mage_unw ap(i nage) ;

}

cpl _table_del ete(table);

cpl _end();

Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 57 of 98
return O;
}

5.2.5 Statistics

The cpl_statsobject provided in CPL is a container of different statistics that have besmputed. They may
have been computed on animage, a matrix, a table column or several table €adufinom many other objects.
For the moment, only functions to create this statistics object from an image or ga imadow are provided.

Thecpl_statbject must be deallocated withl_stats_delete(and can be saved in a text file withl_stats_dump()

5.2.6 Vectors

In the Common Pipeline Librarythe vector component is namegl_vector It is a simple structure with
an array ofdoublevalues and a size. This basic object can be used to build more complicatad syl
as a complex array (combination of a vector for the real values and arvectthe imaginary values) or a
1-dimension function (see 5.2.7).

To create or delete@l_vectombject, you must use the dedicated functiopk vector_new(@ndcpl_vector_delete()

Here is an example that shows how_vectorcan be used to load a values list from a text file, to subtract the
mean and write the result into another text file:

int main()

{
cpl _vector = vect ;
doubl e nean ;
FI LE * out ;

cpl _i nit (CPL_I NI T_DEFAULT) ;

| *
* Load values froman ASCII file and store it in a cpl_vector
* myfile.txt contains a list of the vector values (one per line)
*/

vect = cpl _vector_load("nyfile.txt");

[+ Conmpute the nmean of the vector x/
nmean = cpl _vector_get nean(vect);

/* Subtract the nean =*/
cpl _vector_subtract_scal ar(vect, nean);

[+ Wite out the result to a file */
out = fopen("output file.txt", "w');
cpl _vector_dunp(vect, out);

fcl ose(out);

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2B
Page: 58 of 98
/* Delete x/

cpl _vector_del ete(vect);

/* Return =/
cpl _end();
return O;

Some of the functionalities provided by this component are :

Vector constructor and destructor.

Routines to read/write a vector from/to a file.

Sorting functionality.

Basic arithmetic operations between vectors or between a vector andtartons

Statistics computed on a vector (find the minimum, the maximum, calculate the mean, ...).

Derive the low frequency signal from a vector.

Vectors comparison methods.

The functionalities implemented at the moment are basic. The aim is not to try éefevery conceivable func-
tion that could be needed. If new requirements come, then the dedicattidhswill be designed accordingly.
This approach keeps til@mmon Pipeline Libraras small as possible, but not excluding the possibility of later
extension.

5.2.7 Bivectors

Thecpl_bivectorobject is simply composed with twepl_vectorobjects. Its goal is typically to contain a list of
positions in an image, a list of offsets, a list of points defining a one-dimesgjoal, etc...

The functionality provided by the bivector methods includes:

e A constructor and a destructor.

e Accessor functions to its two vectors.
o Read/write functionalities.

¢ Interpolation function.

The accessor functions give access to the vectors, so that apltheectormethods are available to the bivector
members.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 59 of 98

5.2.8 Polynomials

A n dimensions polynomial objectil_polynomia) is provided in CPL, with several methods to create it,
deallocate it, set its coefficients, and do some simple operations on it.

5.2.9 Matrices

Matricesare generally defined as a set of numbers arranged in a rectangdlaf gpws and columns. The
cpl_matrixcomponent only supports sets of numbers in double precision.

The cpl_matrixis an opaque object; access and manipulation of matrix data is done througterdace of
methods and accessors designed for that purpose. Such methodsraedrto support basic matrix handling,
ensuring optimal performance and memory usage. Besides, a pointer tatthbulfer of matrix elements
is available whenever the developer finds that a particular algorithm is migsimgthe library, or specific
performance requirements need to be fulfilled. The internal data buff@icpl_matrixis a simple array of
doubl e values, where the first value refers to the upper left position of the mainix,the last value to the
lower right position. The values are listed row by row, with each row rupitiom left to right and starting with
the top row. The elements ofcpl_matrixare indexed starting froiy, i.e., the first matrix element at the upper
left position has index, 0.

A cpl_matrixmay be created with one of its specific constructors, and used for staragbandling of in-
formation that was generated within a program. The code may look like thisr (@mecking is omitted for
clarity):

#i ncl ude <cpl . h>

int main()

{
cpl _matrix *matri x;
doubl e xdata_buffer;
i nt nunber _of rows = 20;
i nt nunber of colums = 4;
doubl e val ue;

cpl _ini t (CPL_I NI T_DEFAULT);
matrix = cpl _matrix_new(nunber _of _rows, nunber_of_col ums);
/+* Copy the value of a matrix elenents to another |ocation =/

value = cpl _matrix_get(matrix, 0, 3);
cpl _matrix_set(matrix, 4, 1, value);

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 60 of 98

| *
* Direct access to the matrix data buffer
* [
data buffer = cpl _matrix_get data(matrix);

cpl _matrix_delete(matrix);

cpl _end();

return O;

Currentlycpl_matrixsupports the following operations with matrices:

e Creating different types of matrices, duplicating matrices, etc.
e Reading and writing matrix elements.

e Transposing, shifting, removing row/column intervals, and performingodimgr elementary row/column
operations.

e Extracting submatrices, expanding existing matrices, merging of matrices.
e Performing arithmetic, computing scalar products, determinants, etc.

e Computing statistical quantities.

e Sorting of matrix rows or columns, gaussian elimination, etc.

e Solving systems of linear equations.

e Inversion.

The methods to support these and other operations are all describediinndine CPL Reference Manuél],

but in the following some of the functionalities are explained with the help of orgdesexample, namely the
solution of a redundant linear systeng., a system with too many linear equations or too many unknowns. In
this example a rather simplistic approach is applied: note that the implementationhofjtiee-level function

cpl _matrix_sol ve_normal () is by far more efficient and sofisticated.

The theory: given the matrix of the linear system coefficigntand the non-homogeneous teBnthe system
Ax=B

is defined, where is the column matrix of the unknowns. The pseudo-inverse solution of thismy@n a
least-square sense) is given by
x=(ATA)"'ATB

In the following code, a system of 100 equations in 10 unknowns is solved:

_ _ _ Doc: VLT-MAN-ESO-19500-272
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2
Page: 61 of 98
#iﬁclude <cpl . h>
int main()
{
ébi_natrix xcoeff;
cpl _matrix *=t_coeff;
cpl _matrix *nonhono;
cpl _matrix xsol ution;
cpl _matrix *mi;
cpl _matrix *=ng;
cpl _matrix =nB;
i nt equations = 100;
i nt unknowns = 10;
i nt [

cpl _init (CPL_I NI T_DEFAULT) ;

/+* Creating the coefficient and the non-honbgeneous termmatrices */

coeff = cpl_matri x_new(equati ons,

| *

unknowns) ;
nonhono = cpl _matri x_new equati ons,

* The matrices are filled in some way with the appropriate data,
* for instance using the function cpl_matrix_set():

*/
cpl _matrix_set(coeff, i, j, value);
cpl _matrix_set (nonhono, i, 1, value);

/+* Now that the matrices are available we can apply the theory =/

t_coeff = cpl_matrix_transpose_create(coeff);

mL = cpl _matrix_product _create(t_coeff,

nm2 = cpl _matrix_invert_create(nl);
if (nm2 == NULL)
return 1,

nB = cpl _matrix_product _create(t_coeff,

| *

coeff);

nonhono) ;

solution = cpl _matrix_product _create(n2, nB);

[+ O eanup */

cpl _matrix_del ete(coeff);
cpl _matri x_del et e(nonhono) ;

Singular matrix =«/

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 62 of 98
cpl _matrix_del ete(t_coeff);
cpl _matrix_del ete(ml);
cpl _matrix_del ete(nR);
cpl _matrix_del ete(nB);
[+ Here the solution is available and can be used =/
[+ Finally, also the solution matrix is deleted and the program cl osed =/
cpl _matrix_del ete(sol ution);
cpl _end();
return O;
}

5.2.10 Messaging and logging

A simple component for displaying informative text to terminal and for maintaifoggles is available in the
CPL. The following operations are supported:

e Controlling whether or not messages are written to the terminal and/or to a logfile

e Optionally adding informative tags to messages.

Setting width for message line wrapping.

Controlling the message indentation level.

Filtering messages according to their severity level.

Messages may be printed using any of the following functions:

e cpl _msg_debug()
e cpl _msg_info()
e cpl _nsg_war ni ng()
e cpl _meg_error()
Choosing from these functions means assigning a level of severity tea giessage. The messaging system

can then be set to display just messages having sufficient severitgish@overbosity level from the following
list:

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 63 of 98

e CPL_MBG DEBUG
e CPL_MBG | NFO

e CPL_MBG WARNI NG
e CPL_MSG ERROR

e CPL_MSG OFF

The highest verbosity level of the messaging syste@?s_MSG DEBUG. That would ensure thail the mes-
sages are printed. The verbosity would progressively decreasgthtioe levelsCPL_MSG | NFO, CPL_MSG _
WARNI NG, and CPL_M5G_ERROR, where only messages served by t)d _nsg_error () function would
be printed. The lowest verbosity lev€elPL_MSG_COFF, would inhibit the printing of any message to the termi-
nal.

To output the messages to a logfile, acaltipl _nsg_set | og | evel () isalso required, while output to
terminal is automatically enabled at a verbosity le@BL._ MSG_| NFO; the functioncpl _nsg_set _| evel ()
may be used just to modify this default verbosity. The name of the createddagdy be set with the func-
tion cpl _meg_set | og nane() before callingcpl _nmsg_set | og | evel (), otherwise it is left to
a default ".logfile".

Three different tags may be attached to any mesdage: domain andcomponentThetimetag is the time of
the printing of the message, and can optionally be turned on or off with tledms cpl _nmsg_set _ti ne_on()
and _of f (). Thedomaintag is an identifier of the main program (typically, a pipeline recipe), and ean b
optionally turned on or off with the functiongpl _nsg_set domai n_on() and _of f (). Finally, the
componentag is used to identify a component of the program (typically, a function,cam be optionally
turned on or off with the functioncpl nmsg _set conponent _on() and _of f (). However, thecom-
ponenttag is always shown when the verbosity level is seCRL._ MSG_DEBUG.

As a default, none of the above tags are attached to messages sent tanthaltdaut all the tags are always
shown in messages sent to the logfile. A further tagstheeritytag, can never be turned off. This tag depends
on the function used to print any given message. The tags are prepermlemessages, and are not affected by
the message indentation controlled by the functiagd _nsg_i ndent (), cpl _nmsg_i ndent _rnore(),

cpl _neg_indent | ess(),andcpl _nsg_set _i ndent _step().

The messaging component takes care of breaking long lines of text tottta #zminal width or to a specific
maximum value, and will always add a new line character at the end of arsage§ it is missing. If the width
of the output device cannot be determined, lines of text are not splitted whtten to output. If line breaking
is not wanted, the functiortpl _nmsg_set wi dt h() should be called specifying a non positive width. To
enforce breaking a line of text, new line characters can always baédsgithin the message.

In the following, an illustration of writing messages to terminal and to a logfile isrgiv

#i ncl ude <cpl . h>

int main()

{

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 64 of 98
char domain[] = "Exanple";
char conponent[] = "messagi ng";
cpl _ini t (CPL_I NI T_DEFAULT) ;
| *
* |lnitialising the messaging system Messages are sent both to
* terminal and to logfile.
* [
cpl _msg_set _tinme_on();
cpl _nmsg_conponent _on();
cpl _nmsg_set _domai n(domai n);
cpl _nmsg_set _domai n_on();
cpl _nsg_set | evel (CPL_MSG WARNI NG) ;
cpl _nsg_set | og | evel (CPL_MSG DEBUG) ;
| *
* Printing sonething...
* |
cpl _nmsg_debug(conponent, "Log is witten to %", cpl_nsg log file());
cpl _nmsg_i nfo(conponent, "This is message nunber % of %", 2, 4);
cpl _nmsg_war ni ng(conponent, "This is a % nessage", "warning");
cpl _nsg_error(conponent, "This is the final error nessage");
cpl _end();
return O;
}

A complete description of the functions available in the messaging componeivers ig the on-lineCPL
Reference Manudgl].

5.2.11 Error handling

This component provides a means to detect, display and recover frors arrCPL-functions. It also allows
the CPL API programmer to write functions that sets errors.

A CPL error consists of the following information:

e The CPL error code, aenumthat defines the type of error, similarly to taeno variable of the standard
C library. The possible values of CPL error code incl@®:_ ERROR_NONE, which equals zero.

e A human-readable text describing the type of error, optionally followechbse details about the specific
error. This text may be used by the caller for error reporting.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 65 of 98

e The name of the function in which the error occured.

e The name of the source file in which the error occured.

e The line number where the error occured in that source file.
The CPL errorstate consists of the (possibly empty) sequence of Céis énat has occurred and from which
no recovery has been done.

The most recent CPL error can be queried with these functions:

e cpl __error_get code().

e cpl _error_get nessage().

e cpl __error_get function().

e cpl _error_get _file().

e cpl _error_get_line().

e cpl __error_get where(), which combines the location information from the above three functions
into a single, colon-separated string.

CPL functions modify the CPL error code as follows:

e The CPL error code is initialized by the callepl _i ni t (). If no error happensinpl _i nit(),then
cpl __error_get code() returnsCPL_ERRCOR NONE. (If an error does happen impl _init(),
then it is unlikely that the application can do anything useful with CPL).

e If no error occurs in other CPL functions, then the CPL errorstate aedkfitre the return value of
cpl _error_get code() isunchanged.

e If an error does happen in a CPL function, a new CPL error is creaigdppended to the CPL errorstate
and the return value afpl _error_get code() is updated accordingly.

e The behaviour of all CPL functions, except those that implement the QL leandling, is not affected
by the CPL errorstate, i.e. the CPL errorstate is not an input to these fogiclibis means that if an error
has happened, CPL functions can still be called to get information aboubtithtions that have led to
the error.

In general CPL functions do not themselves display any error message=ad it is left to the caller to decide
if and how to display error messages.

If cpl _error_get code() returnsCPL_ERRCR NONE the CPL errorstate is said to be empty or clean. In
this case calls to the other accessors of the CPL error handling are stiléd|lbwt they provide no meaningful
information.

Some CPL functions are of tymgpl _err or _code. A function of this type return€PL_ ERROR_NONE if it
did not create a new CPL error. If it did create one or more new CPlritoeturns the CPL error code of the
most recent error.

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 66 of 98

Other CPL functions have return values that indicate if a new CPL ersobéan created, e.g. most of the CPL
functions that return a pointer.

A third group of CPL functions cannot indicate with their return value if aomeocurred. If the CPL errorstate
is clean prior to a call to such a function, theppl _er r or _get _code() can indicate if an error was created.
This method cannot be used if the CPL errorstate contains errors pria tafth

In this case the most general method for error detection has to be ussdonbkists of defining a variable of
typecpl _error st at e to the value of the errorstate prior to the call, and then comparing this value to the
errorstate after the call. Thus to robustly detect whether an error lppehed in a call to the function that
returns the minimum pixel value in a CPL image, one could do:

cpl __errorstate prestate = cpl _errorstate_get();
doubl e val max = cpl _i nage_get nax(i mage);

if (cpl _errorstate_is equal (prestate)) {

/* No error happened in cpl_inmge_get_max(). =*/
} else {

/= An error happened in cpl_imge_get_max(). =*/

}

In some cases a CPL application can recover from a (sequence oR1@H(s).
There are two methods for doing this.

The first and simplest consists of a single calcfwl _error _reset (), which will empty the entire CPL
errorstate and thus cause a subsequent cappto er r or _get _code() to returnCPL_ERROR_NONE. This
method can be used if the CPL errorstate is guaranteed to be clean prioctmththat created the error(s).

The second and more general method consists of defining a variableeafgyp er r or st at e to the value
of the errorstate prior to the code from which recovery is possible, ssrdghtting the errorstate back to this
value after the execution of the code from which the recovery is to be done

For example:

cpl _errorstate prestate = cpl _errorstate_get();
my_function();
if (cpl _errorstate_is_equal (prestate)) {

/+* No error happened in ny_function() =*/
[+ - thus no recovery is needed

} else {

[+ Error(s) happened in ny_function(). =/

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 67 of 98

/* - set the errorstate back to what it was before and discard the
i nformati on about the errors that happened in my_function(). =*/

cpl _errorstate_set(prestate);

}

assert(cpl _errorstate_is_equal (prestate));

The CPL errorstate can contain a limited number of CPL errors. This numlgefireed by the cpp-macro
CPL_ERROR_HI STORY_SI ZE which currently has a default size of 20. The default size of
CPL_ERROR _HI STORY_SI ZE ensures that no CPL function overflows the errorstate.

If more thanCPL_ERROR_HI STORY_SI ZE CPL errors are appended to the CPL errorstate, then the informa-
tion about the oldest CPL errors is lost. This has implications for errovezgowhich are best explained with

an example that includes the above code example. Suppose that CPlehdsiliewith the default value (20)

for CPL_ERRCOR _HI STORY_SI ZE, that the abover est at e has been defined when the errorstate contains
5 CPL errors, and that the aborg_f unct i on() appends 30 CPL errors to the CPL errorstate.

After the recovery, the CPL errorstate again consists of 5 errors, e@althve assertion,

cpl _errorstate_i s_equal (prestate), still holds. Also, when prestate was defined,

cpl _error_get code() would return a value different fror®PL_ERROR _NONE. At the point of the
aboveassert (),cpl _error_get _code() would still return a value different fror@PL_ ERROR_NONE.

The information that has been lost at the recovery are:

e cpl _error_get _code() returnsCPL_ERROR_UNSPECI FI EDregardless of what it returned when
pr est at e was defined.

e The text message of the error has been lost.

e All location information about the error has been lost.

If further recovery is done back to an even older error, the same fwidsat error.

The sequence of CPL errors in a non-empty CPL errorstate can beydidpisingcpl _error st at e_dunp() .
To display the errors that have occurred after a certain point one dould

cpl _errorstate prestate = cpl _errorstate_get();
my_function();

if (cpl _errorstate_is_equal (prestate)) {

[+ No error happened in ny_function() =*/
} else {

[+ Error(s) happened in ny_function(). =/

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 68 of 98
/= Dunp themall in chronol ogical order, ol dest first =/

cpl __errorstate_dunp(prestate, CPL FALSE, cpl _errorstate_dunp_one);
}

cpl _errorstate_dunp() takes a boolean, if this evaluates@L_TRUE, then the order of the dump
is reversed.cpl _errorstate_dunp() takes a function pointer, each CPL error is dumped with a call
to that function. To get the default dump, the caller may apé_errorstate_dunp_one or NULL.

cpl _errorstate_dunp_one dumps using the CPL messaging system at error level.

The CPL application may define its own functions for dumping a CPL erroiC#le application programmer
is referred to the documentationopl _errorstate_dunp_one() for more details about this.

If the dump consists of more th&PL_ERROR HI STORY_SI ZE errors, then all but the newest
CPL_ERROR _HI STORY_SI ZE will be displayed with the error codePL_ ERRCR _UNSPECI FI EDand empty
text and location information.

The currently available CPL error codes are:

CPL_ERROR_NONE No error

CPL_ERROR_UNSPECI FI ED An unspecified error

CPL_ERROR_DUPLI CATI NG_STREAM Cannot duplicate output stream
CPL_ERROR_ASSI GNI NG_STREAM Cannot associate a stream with a file descriptor
CPL_ERROR_FI LE_I O File access permission denied
CPL_ERROR BAD FI LE_FORMAT Bad file format

CPL_ERROR _FI LE_ALREADY_OPEN File already open
CPL_ERROR _FI LE_NOT_CREATED File cannot be created
CPL_ERROR _FI LE_NOT_FOUND File not found
CPL_ERROR _DATA NOT_FOUND Data not found
CPL_ERROR_ACCESS QOUT_OF RANGE Access beyond boundaries
CPL_ERROR_NULL_I NPUT Null input data

CPL_ERROR | NCOVPATI BLE | NPUT Input data do not match
CPL_ERROR | LLEGAL_| NPUT lllegal input

CPL_ERROR | LLEGAL_OUTPUT lllegal output
CPL_ERROR_UNSUPPORTED_MODE Unsupported mode
CPL_ERROR_SI NGULAR_MATRI X Singular matrix

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283

Page: 69 of 98

CPL_ERROR DI VI SI ON_BY_ZERO Division by zero

CPL_ERROR_TYPE_M SMATCH Type mismatch

CPL_ERROR_| NVALI D_TYPE Invalid type

CPL_ERROR_CONTI NUE The iterative process did not converge

CPL_ERROR _ECL A user-defined error

CPL_ERROR_EQL is guaranteed to not be used within CPL itself, and to be greater than angy ©6fth other
error codesCPL_ERROR_ECL can therefore be used by the CPL application to extend the error handting w
new error codes.

Here is an example of a program with CPL error handling.

#i ncl ude <cpl. h>

cpl _

i nt

{

}

cpl _

{

error_code ny_func(void);
mai n(voi d)

cpl _errorstate prestate;

cpl _init(CPL_I NI T_DEFAULT);
prestate = cpl _errorstate_get();
if (nmy_func() !'= CPL_ERROR _NONE) ({

[+ At this point error recovery is not possible
- instead dunp the error state. */

cpl _msg_error(cpl _func, "ny_func() failed:");
cpl _errorstate_dunp(prestate, CPL_FALSE, cpl_errorstate_dunp_one);
}

return cpl _error_get _code() ? EXIT_FAI LURE : EXIT_SUCCESS

error_code ny_func(void)

[+ Decl arations needed for error handling =/
cpl _errorstate prestate = cpl_errorstate_get();
cpl _error_code status;

[+ Other declarations */

cpl _matrix *matrix = cpl _matri x_new(10, 10);
cpl _matrix *ji nverse

doubl e nmean;

- _ Doc: VLT-MAN-ES0O-19500-272
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2
Page: 70 of 98

| *

* Propagate the error froma function of type cpl _error_code.

*/

status = ny_matrix_fill(matrix);
if (status != CPL_ERROR NONE) {

/+ Free menory and propagate the unrecoverable error */

cpl _matrix_delete(matrix);

return cpl __error_set_nessage(cpl _func,
"Could not fill

}
| *

cpl _error_get_code(),
matrix");

* Propagate the error in a function returning a valid pointer
* on success, or a NULL in case of failure.

*/

inverse = cpl_matrix_invert_create(matrix);

if (inverse == NULL) {

[+ Free nmenory and propagate the unrecoverable error =/

cpl _matrix_delete(matrix);

return cpl _error_set nessage(cpl _func,
"Coul d not

}
| *

cpl _error_get code(),
invert matrix");

* Propagate error in a function whose return val ue cannot

* indicate the error status.
* [

mean = cpl _matrix_get _nean(matri Xx);

if ('cpl _errorstate_is_equal (prestate)) {
/+ Free menory and propagate the unrecoverable error */

cpl _matrix_delete(matrix);
cpl _matrix_del ete(inverse);

return cpl __error_set _nessage(cpl _func,

cpl _error_get_code(),

"Coul d not conpute nean of natrix");

~

L A S I

/

status = ny_matrix_correction(matri X,

i nver se,

Handl e failure of a function of type cpl_error_code

A switch may be used to catch specific error codes, which

can be handled. In this exanple, the errors
CPL_ERRCR DI VI SI ON_BY_ZERO and CPL_ERROR CONTI NUE can be handl ed,
whil e others cannot. Note that, for those errors that can be
handl ed the errors are discarded fromthe CPL error state.

mean) ;

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 71 of 98

swi tch (status)

{
case CPL_ERRCR _NONE

break; /* No acti on needed =*/

case CPL_ERROR DI VI SI ON_BY_ZERO
cpl _nsg_warni ng(cpl _func, "Correction caused division by zero,
"matri x correction skipped.");
cpl _errorstate_set(prestate); /+ Recover fromerror(s) =/
br eak;

case CPL_ERRCR_CONTI NUE:
cpl _nsg_warni ng(cpl _func, "Correction did not converge,
"trying robust nethod.");

cpl _errorstate_set(prestate); /+ Recover fromerror(s) */

nmy_matrix_correction_robust(matrix, nean);
assert(cpl_errorstate_is_equal (prestate));

br eak;

defaul t:
/* Free nenory and propagate the unrecoverable error */
cpl _matrix_del ete(matrix);
cpl _matrix_del ete(inverse);

return cpl_error_set _nessage(cpl _func, cpl_error_get_code(),
"Correction caused an unexpected error");

}

[+ Free nenory and return successfully =/
cpl _matrix_delete(matrix);
cpl _matrix_del ete(inverse);

return CPL_ERROR _NONE

The functions to support error handling are all described in detail inntiveodCPL Reference Manufl].

5.2.12 Properties

A cpl_propertyis a name/value pair used for storing meta-data. Although this facility is made ldeaita
the programmer for implementing his or her own data structures, it is expeetethéh“property list” facility
would be used in most applications requiring this sort of functionality (se8d®e5.2.13). Note the difference
between apl_property(an atomic variable storage mechanism) anzpl propertylist(which organises and
stores complete sets of associated variables).

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 72 of 98

Thecpl_propertysupports several different primitive datatypes for the stored valupaticular, all the types
foreseen by the FITS standard for header keywords are provilleihgle complex datatype, namely that of
strings, is also available.

As the values of properties are stored in binary form, a property casdzbas lossless storage for such named
parameters within the application. This eliminates the concern of loss of informddi® to conversion to, for
example, text strings, etc..

In addition to the name and value, it is possible to associate a descriptive comittethe property. This
comment could be used to store explanatory text, information about unitsaiewven is required. Note that
there is no explicit field for the units within the property itself.

5.2.13 Property lists

The property list facility provided by the CPL offers a way to store meta-data sequence of name/value
pairs. Although the internals of thepl_propertylistmake use of thepl_propertytype (see Section 5.2.12), the
property list interface completely hides this detail, and allows the user to matgifhitaor her data through a

single interface. Thus, unlike parameter lists, it is not possible (or evegsrary) to extract/insert properties
from the property list.

The cpl_propertylistwas designed for supporting the FITS header information. Indeed, itsilge, using a
single function, to load a header file into a property list, given the filenaméhenaumber of the extension.

To obtain a value from a property list, the list is queried by looking for thee/alname as shown below. New
values can be added to a property list and entries can be efrsgxbrtieswhich belong to a property list can
be extracted using the functionpl _propertyli st _get property() and its constant related version,
cpl _propertylist _get property const ().

#i ncl ude <cpl . h>

int main()

int i, status;
float f;
char =*s;

cpl _propertylist =list;

cpl _init (CPL_I NI T_DEFAULT) ;

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 73 of 98

list = cpl_propertylist _new);

cpl _propertylist_append_int(list, "MInt", 42);
cpl _propertylist_append_float(list, "MyFloat", 1.e-6);
cpl _propertylist _append_string(list, "MyString", "text");

cpl _propertylist _get int(list, "Mylnt");
cpl _propertylist _get float(list, "MyFloat");
cpl _propertylist_get_string(list, "MyString");

—h
I mn

cpl _propertylist _delete(list)

cpl _end();

return O;

Within the CPL, property lists are used to store the headers of FITS filestrahslation from and to a FITS
header is done on the fly.

5.2.14 Plotting

For a number of CPL objects, we provide simple plotting functionalities by ugmgplotinternally. In order
for these functionalities to work properly, the only requirement is to lygggplotinstalled on your system. If it
is not, the function will not set any error, but will just remain without arfeet

As an example, the following code shows how to overplot several colufithe table (see Figure 11) produced
by the CPLDRSpl_wilcalib_xc_best_polyfunction.

i nt exanpl e_plot_spc_table(const cpl _table » spc_table)

{

cpl _vector ** vectors ;

[+ Test entries =/
if (spc_table == NULL) return -1 ;

[+ Initialise =/
nsanpl es = cpl _table _get nrow(spc_table) ;

Doc: VLT-MAN-ES0O-19500-272
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2

Page: 74 of 98

#

file wl tahle . fits

extensions 1

__

HTEMSIOH 1

Mumber of columns 4

#

Havelength |Catalog Initial |Catalog Corrected!| Obserwed
Mool .41 Q,00d53671 | 3,.0236de-05 5893.31
1001, 41 0, 148524 | 0,00453671 1 11456 ,4

1001 ,41 1 1,20092 | 0, 148084 | HA02 21
1001 ,41 | 2.601181 1,30092 | 114132.4
1001 ,42 | d,60951 | 32,6011 5270, 26
10071 .42 | 3.601121 d 60951 | 11504,1
1001 42| 1,30092 | 3,.601181 10222 .49
1001 43| 0, 1428584 | 1, 30052 | 12941 .9
1001 ,44 | 0,004523671 | 0, 148534 | 12732 .8
1001 ,44 | 2, 523de-05| 0004525711 13257

Figure 11: Table to plot

vectors = cpl _mal |l oc(4+sizeof (cpl _vector=))
vectors[0] = cpl _vector_w ap(nsanpl es,
cpl _table _get data_doubl e((cpl _tablex)spc_table,
"Wavel ength"));
vectors[1l] = cpl_vector_wap(nsanpl es,
cpl _tabl e_get _data_doubl e((cpl _tabl ex)spc_table,
"Catalog Initial"));
vectors[2] = cpl _vector_wap(nsanpl es,
cpl _tabl e _get data_doubl e((cpl _tablex)spc_table,
"Catal og Corrected"));
vectors[3] = cpl_vector_w ap(nsanpl es,
cpl _tabl e_get _data_doubl e((cpl _tabl ex)spc_table,
"Cbserved")) ;

irplib_vectors plot("set grid;set xlabel 'Wavelength (nm’;",
"XC 1-Initial cat/2-Corrected cat/3-Cbserved wlines",
", (const cpl _vector **)vectors, 4);

cpl _vector_unwrap(vectors[O0]) ;
cpl _vector_unwrap(vectors[1]) ;
cpl _vector_unwrap(vectors[2]) ;
cpl _vector _unwrap(vectors[3])
cpl _free(vectors)

return O ;

o _ Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23
Page: 75 of 98
}

The figure 12 shows how appears the plot generated by the exampliofuwben used on the example table.

X Gnuplot <4> [BEIE
2,5e-09 T T T T
KC - 1-Initial catalog/2-Corrected catalog/3-Observed
Vector 2
Vector 3
e e o - ; : e e
S N S A e e e : TS SEURETRRRROIEY ER | P 4 =
P | L e e S G O B S S i i = { i Hioeen el e el : | 4
: INIhe CHL : Nl |\' /\ : | : :
: : Y : W : | -
et S e R 1 e L e e e .
: Lok | i ; ! : i i : i Ao [l
; s s o7 | ¥ i W Tty .;. F o & \M
Y # : : [, 2 1 ¢ i sl
A A \j\/‘-_j\/ AR : : . J\J : R : A \/
o i i
2528 3520 3532 3534 2536 3528 3540 3642 3544 3546 3548
Wavelsnath Cr)

Figure 12: Effect of the plotting function with the table

5.3 The CPL interfaces inlibcplui
5.3.1 Frames

A cpl_frameis a way of associating attributes to files. It is used as a communication methoeepetmdata
reduction organiser and a data reduction task. Because multiple datadileiear required in the processing
of a single observation (dark, flat, bias, target, etc.), it is often negegsassociate these different files for any
data reduction task. The frame component of the CPL makes this possible.

Among the data set attributes are the filename to which the frame is associatepk ithe&/group to which it
belongs and, if the frame describes a processing product, possildgesging level.

The cpl_framecomponent provides the functions to set and query frame attributespas $h the example
below:

#i ncl ude <cpl . h>

cpl _frane +*add(cpl _i mage *i magel, cpl _inmage *i nage2)

{

cpl _franme =product_frame;

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 76 of 98
cpl __i mage_add(i nmagel, inmage2);
product _frame = cpl _frame_new();
cpl _frane_set filenane(product frane, "imgel2.fits");
cpl _frane_set tag(product franme, "ADDED | MAGE");
cpl _frane_set type(product frane, CPL_FRAVE TYPE | MAGE)
cpl _franme_set group(product _frame, CPL_FRAME GROUP_PRCDUCT);
cpl _franme_set | evel (product_frame, CPL_FRAME LEVEL_FI NAL);
return product frane;
}

5.3.2 Frameset

A frameset is just a container for frames. Frames can be added to a étzanedscan be looked up by a tag or by
sequentially traversing the container. The frameset is part of the CRierplugin interface (see Section 3.5).
In this context, it is used to pass input files to a data reduction task and obégimatiucts from it after it has
been completed.

#i ncl ude <cpl. h>

cpl _franeset xsubtract _bias(cpl _i mage *i mage, cpl _franeset xset)

{

cpl _franme =*bias_frane,
cpl _franme *result_frane;
cpl __i nage bi as;

bias frane = cpl _franeset find(set, "BIAS");
bias = cpl __image | oad(cpl _franme_get fil ename(bias_frane),
CPL_TYPE_DOUBLE, 0, 0):

result _frame = cpl _franme_new();

cpl _franeset _insert(set, result_frane);

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 77 of 98

return set;

5.3.3 Parameters

A parameter is a datatype with an associated name, description and vatk@agh®arameters are designed to
handle monitor/control data and they provide a standard way to pass fanéescommand line information to
different components of an application.

The implementation supports three classes of parameters: a plain valueg aithin a given range, or a value
as part of an enumeration. When a parameter is created it is createddiicalpr value type. In the latter two
cases, validation is performed whenever the value is set.

The type of a parameter’s current and default value may be: booléagemdouble or string.

In addition to the name, parameters provide an associated context. Paraameésr must be uniqgue — they
define the identity of a given parameter. The context is used to assocrategiars together. A context, for
example, may be the name of the part of the application, from where the garamkee originated.

Parameters were designed to be used by the PDRM interface, as a meglasdiofy command data between a
host application and a recipe.

Parameters vary from properties, in that they have these associatetbdstaints and additional descriptive
parameters. While properties are primitive units of data storage without\ampead, parameters offer self-
description and data integrity checking which are essential for dealing viétHfanes within the application.

Parameters may be grouped using the "parameter list" component. A parbshetpl_parameterlistis simply

a mechanism for grouping lists of parameters. It provides a conveniantfov passing large numbers of
parameters to a function. For instance, it is used in the plugin interface sdlpaparameters a recipe accepts
from the plugin to the calling application and vice versa.

It is possible to extract/insert parameters within parameter lists. For a compteimdntation of the parameter
component please refer to the onli@PL Reference Manul].

#i ncl ude <cpl . h>

cpl _parameterlist *make _paraneter list(int i, double d, const char *s)

{

cpl _parameterlist *plist = cpl_paraneterlist_new();
cpl _paraneter =*p

p = cpl _paraneter_new val ue("config.integer_val ue",
CPL_TYPE_I NT,

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 78 of 98
"An integer val ue",
"config",
0);
cpl _parameter_set _int(p, i);
cpl _parameterlist_append(plist, p);
p = cpl _paraneter_new range("config. doubl e_range",
CPL_TYPE_DQUBLE,
"A range of doubl es",
"config",
0.5, 0., 1.);
cpl _paraneter_set _doubl e(p, d);
cpl _paraneterlist_append(plist, p);
p = cpl _paraneter_new enun{"config.string enunt,
CPL_TYPE_STRI NG,
"An enuneration of strings",
"config",
"one", 3, "one", "two", "three");
cpl _paraneter_set_string(p, s);
cpl _parameterlist_append(plist, p);
return plist;
}

5.4 Standard data reduction algorithms inlibcpldrs

The CPLIibcpldrs library provides standard astronomical data reduction algorithms.

5.4.1 Apertures

Thecpl_apertobject can contain information or statistics of a list of objects or zones in areinTdge function
that creates this object &pl_apertures_new_from_imagel() takes as input the image in which the objects are,
and a labels image (an integer image) that defines the different zonegeotsghositions in the input image.
This labels image has the same size as the input image and identifies with its labéfetbetdones, negative
values identify the background.

So if the labels image contains pixels with n different positive valept,apertures_new_from_imageg)ll
create apl_apertobject containing n different apertures with various statistics computed@dnaf them (see
Figure 13).

The objects detection itself is done by the computation of the labels image, this hestestatistics computation
of the already specified detected objects.

ESO

Doc: VLT-MAN-ESO-19500-2720
Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 79 of 98

l cpl_apertures_new_from_image()

X Y XCENTROID YCENTROID pix max min mean med de\

255.9 102.1
409.1 152.9
203.8 203.9
102.3 358.0
52.3 358.6
356.5 358.5
255.8 409.3
153.3 405.1
459.9 460.2

©CO~NOUTAWNE

255.9 102.0 993 8.76 1.21 4.01 3.65 1.88 3980.7
409.1 153.0 733 6.26 1.25 3.22 3.08 1.15 2357.1
204.0 204.0 1408 16.69 1.22 6.33 5.19 3.98 8914.
102.2 3579 365 3.99 1.23 2.46 2.47 0.65 896.8(
52.3 358.6 33 2.62 127 2.03 2.01 0.44 66.88

356.5 3584 16 238 1.26 182 1.77 0.37 29.13
255.8 409.3 258 3.61 1.22 2.17 2.14 0.59 560.5¢
153.2 405.1 45 281 1.22 214 221 0.41 96.42
4599 460.1 828 6.95 1.22 3.47 3.27 1.39 2875.2

Figure 13: Usage afpl_apertures_new_from_image()

However, this module provides a very simple objects detection function napledpertures_extract() You

just need to pass a list of sigma values (icph vector(), and the function will apply a sigma threshold to find
objects in the passed image. It will internally create the labels image, calpthapertures_new_from_image()
function and return thepl_apertobject. If nothing is detected with the first sigma value, the second is used
and so on until something is detectaxhl _apertures_extract_sigmagpes it with only one passed sigma, and

cpl_apertures_extract_windowgpes it on a window of the image.

Besides, this module provides functions to sort the different apertemsding to the number of pixels, the

maximum value or the flux.

5.4.2 Detectors

This part contains high-level functions commonly used to get detectoactesistics like the non-linearity or
the read-out noise, or to correct detector defaults like the bad pixels.

1. Read-out noise computation

The noise computed by the functioogl_flux_get_noise_windowéndcpl_flux_get noise_ring{s the
median of the standard deviation values computed in a number of small windatisred optimally
using a Poisson law in the specified region of the input image (a window ogh rin

2. Bad pixels reconstruction

Thecpl_detector_interpolate_rejected§computes the bad pixels of an image by using the good pixels

in the neighborhood. An iterative procees is used until all bad pixels line@e corrected.

Doc: VLT-MAN-ESO-19500-2720

£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 80 of 98

5.4.3 Geometrical transformations

The functions currently contained in this part can combine an image list intggke sSmmage. The input image
list is typically a jitter observation (observation technique commonly used in reffato remove the strong
background) and the fuction shifts and adds the images together.

The functioncpl_geom_img_offset_combinég)very flexible, the offsets can be specified or not, they can be
refined or not with cross-correlation, the anchor point used for thesetorrelation can be specified or not,
sigma values can be specified if the function needs to find itself this anchdy @od the stacked image can be
the union or the intersection of the input images. The diagram in Figure IMsslkibat the function does.

o]

Offsets provided n
by user
yes succeed [Blind offsets| fail
estimation

Offsets refining requeste no
by user

]

yes

Anchor object fo no
cross—correlation provide!
by user
yes succeed | Anchor objectail
detection
Cross—correlation fal

succeed

Shift-and-add Shift-and-add
with refined offsets with estimate offsets

Figure 14:cpl_geom_img_offset_combiné@haviour

5.4.4 Photometry

This part currently contains a functioep]_photom_fill_blackbody)(that computes the Planck black-body
radiance.

5.4.5 Nonlinear fitting

This part contains one high-level function for general nonlinear fitting.

1. Levenberg-Marquardt

The functioncpl_fit_lvmqg(provides a LeVenberg-MarQuardt routine for fitting nonlinear one-dstanal
or multi-dimensional data.

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 81 of 98

5.4.6 World Coordinate System

The World Coordinate System facility provided by CPL offers a way toteraad manipulate the WCS de-
scriptions for a given image. At the heart gfl_wcsis Marc Calabretta’®WCSLIBpackage available from
(http://ww. at nf. csiro. au/ peopl e/ ntal abre/ WCS/). The current implementation afpl_wcs
allows the user to

e load a WCS from a propertylist containing a valid FITS WCS description,
e do basic coordinate conversions

e use standard object positions to define an image WCS.

A typical use forcpl_wcswould be to work out the RA and Dec of an object given its physical doatds on

an image. In the following fragment the Cartesian coordinates of two objegigeis in the static double array
phys. The header of the original image is parsed into a propertylist and the WQ$iation is recovered from

it. The physical coordinates are wrapped icph_matrixstructure and passed to the conversion routine. Output
is anothercpl_matrix structure with the world coordinates of the two objects. The FITS headreohput
image will determine the type of coordinates produced and the projection ¢ggamed. Thus this conversion
routine could be used to produce any type of world coordinate that iosi@ojby FITS.

#i ncl ude <cpl . h>

static double phys[] = {382.252, 36.261
18. 097, 738.428};
int main()

{

char *fil enane;

const cpl_wcs *wes;

const cpl _propertylist =plist;
cpl _matrix *xfrom=to;

cpl _array =status;

cpl _init(CPL_I NI T_DEFAULT);

plist = cpl_propertylist |oad(filenane,1);

wes = cpl _wes_new from propertylist(plist);

from= cpl _matrix_wrap(2, 2, phys);

cpl _wcs_convert (wes, from &t o, &t at us, CPL_WCS PHYS2WORLD) ;

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 82 of 98

cpl _matrix_unwap(fronj;

cpl _matrix_delete(to);

cpl _array_del ete(status);

cpl _propertylist _delete(plist);
cpl _wes_del et e(wes) ;

cpl _end();

return O;

Thecpl_wcs_conventoutine can do conversions between three types of coordinates:

physical A physical location of an object in pixel space.
world Space/time coordinates of an object in a given astronomical system.

standard An intermediate coordinate defined as an offset from the defined wooldlic@ate system reference
point. This will be in the natural coordinate units for the WCS.

and currently supports several conversion modes:

CPL_WCS_PHYS2WORLD Physical coordinates are converted to world coordinates. The owtprdinate
system depends entirely on the values defined incfilewcsstructure and ultimately from the FITS
header from which it was derived.

CPL_WCS_WORLD2PHYS World coordinates are converted to physical coordinates. It is entipety the
user to ensure that the coordinates given are consistent with the W@#taie geometry that is provided
by the input FITS header.

CPL_WCS_WORLD2STD World coordinates are converted to standard coordinates.

CPL_WCS_PHYS2STD Physical coordinates are converted to standard coordinates.

The WCS facility also offers a routine to fit a two-dimensional WCS to a list ¢géab with known world
and physical coordinatespl_wcs_platesol The desired form of the WCS is defined by an input propertylist.
In most cases this would probably be parsed from the header of ankifip8timage, but in fact could also
be built from scratch by the user. A full explanation of the elements netdddfine a WCS in FITS is way
beyond the scope of this manual and the reader is referred to the web pathe FITS support office at
NASA/GSFC pttp://fits.gsfc. nasa.gov/fits_wes. htm) and to the references therein. The
output propertylist contains the new FITS WCS description. It is worth gdtiat this routine will fit for offset,

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-2720
Issue: Issue 5.3.1
Date: Date 2011-03-283
Page: 83 of 98

scale and rotation, but will not fit any of the parameters for the projecéamgtry. These must be fixed in the

input WCS description.

Accessor functions are not included in tty|gl wcsAPI. Any modifications that the user wishes to make to a

WCS must be done to the input propertylist before it is parsed intoghevcsstructure.

5.5 ESO/DFS specific routines inibcpldfs

The functions contained in this library implement DFS specific requirementsyamdeds for pipeline products.
These functions are called by all pipelines, and insure these pipeline éophaducts that are compliant with
the last requirements.

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 84 of 98

[1] Common Pipeline Library Reference manual.

[2] P. Ballester. Data Flow for VLT/VLTI Instruments — Delivrables Spegifion. 2004.

[3] P. Grosbol P. Ballester, K. Banse. Data Flow Pipeline and Quality Gbntisers Manual. 1999.

[4] Eso DICB — Data Interface Control Document. 1996.

[5] Recommended C Style and Coding Standards.

Doc: VLT-MAN-ES0O-19500-272
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-2

Page: 85 of 98

A The PDRM source code

This appendix provides the complete source of the PDRM example disans3&d
#i ncl ude <cpl . h>
/+ For the ny_image_arithnetics prototype */

#i nclude "nmy_inage_arithmetics. h"

#define MY_PLUG N_VERSION 1

| *
* Plugin detail ed description
*/

static const char =

nmypl ugi n_hel p = "The plugin adds, subtracts, multiplies or divides "
"two i mages dependi ng on the operation choosen by the "
"paraneter ‘operation .”

| *
* Forward declarations of the initalization, execute and
* cl eanup handl ers
* [

static int nmyplugin_create(cpl _plugin *);
static int nyplugin_exec(cpl_plugin *);
static int nyplugin_destroy(cpl_plugin *);

i nt
cpl _plugin_get info(cpl _pluginlist =list)

cpl _reci pe *recipe
cpl _plugin *plugin

cpl _calloc(1l, sizeof xrecipe);
(cpl _plugin *)recipe;

cpl _pl ugi n_i ni t (plugin,
CPL_PLUGQ N_API,
MY_PLUG N_VERSI ON
CPL_PLUGQ N_TYPE_REC!I PE
"nypl ugi n",
"Do basic arithnetics on two inmages",
mypl ugi n_hel p,
"Gl Bates"
"gbat es@macr ohard. cont',

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-283
Page: 86 of 98
" GPL",
mypl ugi n_creat e,
mypl ugi n_exec,
nmypl ugi n_destroy);
cpl _pluginlist _append(list, plugin);
return O;
}
static int
nypl ugi n_create(cpl _pl ugi n *=plugin)
{
cpl _recipe *recipe = (cpl _recipe *)plugin;
cpl _paraneter =*p
reci pe->paraneters = cpl_paraneterlist_new);
p = cpl _paraneter_enum new("nypl ugi n. operation"
CPL_TYPE_STRI NG,
"Arithmetic operation to apply."
"nypl ugi n",
"add", 4,
"add", "subtract", "multiply", "divide");
cpl _paraneter_set_alias(p, CPL_PARAMETER MODE CLI, "op");
cpl _paraneterlist_append(reci pe->paraneters, p);
return O;
}
static int
nmypl ugi n_exec(cpl _plugi n *pl ugin)
{
cpl _recipe *recipe = (cpl _reci pe *)plugin;
return ny_imge_arithnetics(reci pe->paraneters, recipe->franes);
}
static int

nmypl ugi n_destroy(cpl _plugin =*plugin)

{

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 87 of 98

cpl _recipe *recipe = (cpl _recipe *)plugin;

cpl _paraneterlist_del ete(reci pe->paraneters);

return O;

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 88 of 98

B Comment conventions

Each file in the library begins with a header containing information about thesiitsh as the file version, the
file author, what is contained in the file, etc..

Here is a template of what is put at the head of eactsource file in the library:

/* $ld: conventions.tex,v 1.17 2003/12/15 16:03: 06 dntkay Exp $

*

* This file is part of the ESO Comrmmon Pipeline Library
* Copyright (C 2001-2003 European Sout hern Chservatory
*
* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any |ater version
*
* This programis distributed in the hope that it will be useful
* but W THOUT ANY WARRANTY; without even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
* GNU Ceneral Public License for nore details.
*
* You shoul d have received a copy of the GNU General Public License
* along with this program if not, wite to the Free Software
* Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
*/
| *
* $Aut hor: dntkay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
* |

#i f def HAVE_CONFI G_H
#i ncl ude <config. h>
#endi f

#i ncl ude ...
#def i ne

[**

* @lef group <grouptag> <nmodul e nanme>

*

* [Modul e descri ption]

*

*/

/**@*/

/* The function code is placed here */

/**@*/

Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-23

Page: 89 of 98

Here is a template that should be filled and put at the head of.dasburce file in the library:

/* $ld: conventions.tex,v 1.17 2003/12/15 16:03: 06 dntkay Exp $

*

* This file is part of the ESO Common Pipeline Library
* Copyright (C) 2001-2003 European Southern Qobservatory
*
* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any |ater version
*
* This programis distributed in the hope that it will be useful
* but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
* GNU Ceneral Public License for nore details.
*
* You shoul d have received a copy of the GNU General Public License
* along with this program if not, wite to the Free Software
* Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
*/
| *
*» $Aut hor: dntkay $
* $Date: 2003/12/15 16:03:06 $
* $Revision: 1.17 $
* $Name: $
*/

#i f ndef TEMPLATE_H
#def i ne TEMPLATE_H

#i ncl ude <cpl _macros. h>
#i nclude ...
#def i ne

CPL_BEG N_DECLS
/* The function declarations are placed here */
CPL_END DECLS

#endi f /+ TEMPLATE_H =/

The fieldsld, Author, DateandRevisionare automatically filled by the configuration control syst€mSs

The functions are themselves documented using the following template thatleéilted and put just before

the function:

o _ Doc: VLT-MAN-ES0-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03—-23
Page: 90 of 98
@ar am
@ar am
@eturn
Ny
[ke e m e */

Online documentation may then be generated udoxygen

The functions must be documented in thefile. Function documentation must contain information about the
function interface (how to call it, what to expect, where to use it, ...) andnmdition about how the function
has been written (algorithm used, has it been optimised, ...).

As an example, here is a very simplg file, which illustrates the conventions described above.

/+ $1d: cpl _imge io.h,v 1.48 2005/02/16 17:56:33 yjung Exp $

* This file is part of the ESO Common Pipeline Library

* Copyright (C 2001-2004 European Southern Cbservatory

*

* This programis free software; you can redistribute it and/or nodify
* it under the terns of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any |ater version.

*

* This programis distributed in the hope that it will be useful,

* but W THOUT ANY WARRANTY; without even the inplied warranty of

* NMERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

* GNU CGeneral Public License for nore details.

*

* You shoul d have received a copy of the GNU General Public License

* along with this program if not, wite to the Free Software

* Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
* |

| *

* $Aut hor: yjung $

* $Date: 2005/02/16 17:56:33 $

* $Revision: 1.48 $

* $Name: $

* [

#i fndef CPL_IMAGE IO H
#define CPL_IMACE IO H

))] Doc: VLT-MAN-ESO-19500-2720
£SO Common Pipeline Library Issue: Issue 5.3.1
User Manual Date: Date 2011-03-28
Page: 91 of 98
I ncl udes
___ * [
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#include <limts. h>
#i ncl ude "cpl _io.h"
#i ncl ude "cpl _propertylist.h"
#i ncl ude "cpl _nask. h"
CPL_BEG N _DECLS
| ko o o e e e e e e o e e e e e o e e e e e e e e e e e e e e e e e m e e e e e e e e e e e e e e e e e ea o
Defi ne
___ * [
#defi ne CPL_PI XEL_MAXVAL (doubl e) (LONG_MAX)
#defi ne CPL_PI XEL_M NVAL (doubl €) (LONG_M N)
R
Functi on prototypes
... * [

/* 1 mage constructors */
* cpl _image_new(int, int, cpl_type);

cp
cp
cp
cp
cp
cp

| i mage
| _i mage
| _i mage
| _i mage
| i mge
| i mage

* cpl _i mage_wrap_doubl e(i nt,

* cpl _i mage_wrap_fl oat (int,

* cpl _image wrap_int(int, int,

* cpl _i mage_| oad(const char =,

* cpl _i mage_new from mask(const cpl _mask =*)

CPL_END_DECLS

#e

ndi f

/* end of cpl_imge_io.h =/

const

const double *) ;

const float =)

int *)

const cpl _type, const int, const int) ;

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 92 of 98

C Naming conventions

The naming conventions are described in section 4.7.

Quialifiers

The following words are permitted as qualifiersjiat /set operations:

absf | ux
al i as

api

aut hor
bool
bot t om
centroid
char

cl ass
code
coef f

col um
coment
conponent
cont ext
copyri ght
cputinme
dat a

def aul t
degr ee
deinit
description
det er m nant
di mensi on
domai n
doubl e
emai |
enum
exec
file
filename

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 93 of 98

first

fl oat

f 1 ux

f or mat
frame
function
f whm
group
hel p

id

i ndent ati on
i nfo
init

i nt

i nterpol at ed
invalid
keywor d
| ast

| eft

| evel
line

| og

| ong
macr o
max
Maxpos
nmean
medi an
nessage
mn

m npos
name
ncol

next

next ensi ons
noi se

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-2720
Issue: Issue 5.3.1
Date: Date 2011-03-283
Page: 94 of 98

npi x

nr ow
range
right

si ze

si zeof
sqf | ux
st dev
string
synopsi s
tag
time
top
type
uni t
versi on
wher e
wi dt h

X

y

The following words are permitted as qualifiers for other operations:

1d

2d
after
al |
array
bl ackbody
bool

but

by

char
coar se
col um
col ums
combi ne

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 95 of 98

cont ext
Create
data

di agonal
doubl e
echel on
enpty
enabl ed
enum
fine
fits

fl oat
forward
franme
frameset
from
gaussi an
identity
i mage

i nt
invalid
ker nel

| ess

l'i near

| og

| ong

| owpass
mask
medi an
nor e

nor pho
noi se
nor mal
overwritable
pol ynomi al
power

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-2720
Issue: Issue 5.3.1
Date: Date 2011-03-283
Page: 96 of 98

pr oduct
property
range
regexp
rejected
r ow
rowcol umm
rows

saa

scal ar
segnent
sel ect ed
si gma
smal |

st dev
string
structure
subsanpl e
tag

t ags

t est

to

type
valid

val ue
vectors
wi ndow
zero

Iltems The following words are permitted as items:

accept ed
bool

char
create
dat a

dev

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 97 of 98

doubl e
flag

fl oat
flux

f or mat
header

i mage

i nt
invalid
| evel

| ong
macr o
mask
max
maxpos
nmean
medi an
mn

m npos
nane
npi x

of

of f

on
profile
regexp
rejected
ring

r ows

si ze

st dev
string
strings
type
uni form
unit

w ndow
X

y

ESO

Common Pipeline Library
User Manual

Doc: VLT-MAN-ESO-19500-272
Issue: Issue 5.3.1
Date: Date 2011-03-2
Page: 98 of 98

— End of document —

