EUROPEAN SOUTHERN OBSERVATORY

Г

Organisation Européenne pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

VERY LARGE TELESCOPE

AMBER Pipeline User Manual

VLT-MAN-ESO-19500-4221

Issue 3.3.0

Date 2011-04-01

Prepared:	A. Gabasch	2011-04-01	
	Name	Date	Signature
Approved:	P. Ballester		
- FF	Name	Date	Signature
Released:	M. Peron Name	Date	Signature

This page was intentionally left blank

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	3 of 86

Change record

Issue/Rev.	Date	Section/Parag. affected	Reason/Initiation/Documents/Remarks
1.0	03/05/2007	All	First version
1.1	01/04/2008	All (restructured)	Update to 2.4.3
1.2	01/06/2008	3, 7.6	Update to 2.4.4
1.3	01/08/2009	3, 7.5, 7.6	Update to 2.5.2
2.9.1	01/05/2010	6.1, 7.6, 7.5, 7.7 , 7.8	Update to 2.9.1
3.0.0	01/08/2010	3, 6.2, 7, 6.9, 7.9, A	Update to 3.0.0
3.0.1	01/08/2010	3, 7.5, 7.6, 7.7, 7.8, D	Update to 3.0.1
3.1.0	09/08/2010	3, 7.5	Update to 3.1.0
3.3.0	01/04/2011	3, 7.5	Update to 3.3.0

This page was intentionally left blank

ESO	Icouct	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date 2011-04-01	
		Page:	5 of 86

Contents

1	Intro	oduction	11
	1.1	Purpose	11
	1.2	Acknowledgments	11
	1.3	Scope	11
	1.4	Reference and applicable documents	11
	1.5	Abbreviations and acronyms	13
2	Ove	rview	14
3	Wha	it's new	15
	3.1	What's new in pipeline release 3.3.0	15
	3.2	What's new in pipeline release 3.1.0	15
	3.3	What's new in pipeline release 3.0.1	15
	3.4	What's new in pipeline release 3.0.0	15
	3.5	What's new in pipeline release 2.8.0	16
	3.6	What's new in pipeline release 2.5.2	16
	3.7	What's new in pipeline release 2.4.4	17
	3.8	What's new in pipeline release 2.4.3	17
4	AM	/IBER Instrument Description 1	
	4.1	Overview	19
	4.2	Observation Modes	19
	4.3	Angular Resolution	20
	4.4	Flux Sensitivity	20
	4.5	Field Of View	21
5	Insti	rument Data Description	22
	5.1	Calibration Frames	22
	5.2	Scientific Frames	24

6 Data Reduction

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	6 of 86

	6.1	Reduction Cascade	26
	6.2	AMBER pipeline recipes	26
	6.3	The set of frames (SOF)	27
	6.4	Recipe configuration	28
	6.5	Running a recipe using EsoRex	29
	6.6	Running a complete data reduction using GASGANO	30
	6.7	Creating a primary FITS-Image of the Channels	31
	6.8	Calculating the Pixel-To-Visibility-Matrix	32
	6.9	Calculating the scientific results	34
	6.10	Plotting the scientific results	36
7	Pine	line Recipes Interfaces	38
,	7.1	amber-raw-to-fitsimage	38
	7.2		38
	7.3	amber-beampos	41
	7.4	amber-p2vm	43
	7.5	amber-SciCal	45
	7.6	amber-selector	49
	7.7	amber_trf	52
	7.8	amber_calibrate	53
	7.9	amber_oimerge	54
	7.10		54
		man of the second	
A	Insta	llation	56
B	Algo	rithms	57
	B .1	General Algorithms	57
		B.1.1 Dark subtraction	57
		B.1.2 Bad Pixel Map and Flat Field Generation	57
		B.1.3 Particle Events	60
		B.1.4 Electronic Bias	63
		B.1.5 Pixel Statistics, Pixel Bias, and Photon Noise	64

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	7 of 86

E	Trou	bleshooting Guide	86
	D.4	QC parameter of the amber_calibrate recipe	84
	D.3	QC parameter of the amber_trf recipe	82
	D.2	QC parameter of the amber_selector recipe	80
	D.1	QC parameter of the amber_SciCal recipe	78
D	QC1	Dictionary	78
	C.2	Amdlib changes in the amber_SciCal recipe	75
	C.1	Amdlib changes in the amber_p2vm recipe	74
С	Cha	nges in the Amdlib	73
		B.2.1 P2VM calculation	71
	B.2	AMBER-specific Algorithms	71
		B.1.9 Flat field correction	71
		B.1.8 Flatfield Map	69
		B.1.7 Bad Pixel Map	67
		B.1.6 Dark Current	67

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	8 of 86

List of Tables

6.7.1 Input files for the amber_raw_to_fitsimage recipe	31
6.8.1 Input files for the amber_p2vm recipe.	32
6.9.1 Input files for the amber_SciCal recipe.	34
7.1.1 Input files for the amber_raw_to_fitsimage recipe	38
7.1.2 Output of the amber_raw_to_fitsimage recipe	38
7.2.1 Input files for the amber_detector recipe	39
7.2.2 Product of the amber_detector recipe	39
7.2.3 QC values written by amber_detector recipe.	40
7.3.1 Input files for the amber_beampos recipe	41
7.3.2 Product of the amber_beampos recipe	41
7.3.3 QC values written by the amber_beampos recipe	41
7.3.4 QC value prefixes written by the amber_beampos recipe	42
7.4.1 Input files for the amber_p2vm recipe	43
7.4.2 Product of the amber_p2vm recipe	43
7.4.3 QC values written by the amber_p2vm recipe	44
7.5.1 Frame selection criteria of the amber_SciCal recipe: selection is done on the piston value	46
7.5.2 Input files for the amber_SciCal recipe.	47
7.5.3 Products of the amber_SciCal recipe	47
7.5.4 amber_SciCal parameters.	48
7.6.1 Input files for the amber_selector recipe	49
7.6.2 Example of the file /tmp/amber_exclude.txt.	51
7.7.1 Input files for the amber_trf recipe	52
7.7.2 Product of the amber_trf recipe.	52
7.8.1 Input files for the amber_calibrate recipe.	53
7.8.2 Product of the amber_calibrate recipe	53
7.9.1 Input files for the amber_oimerge recipe	54
7.9.2 Product of the amber_oimerge recipe. Please note, that the filename chances to merged_unknown.fit if the waveband can not be identified properly, i.e. if the QC BAND header parameter is missing.	
7.9.3 QC values inherited by the amber_oimerge recipe.	55

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	9 of 86

B.1.0 Parameters for the bad pixel map generation	69
D.1.0QC values written by the amber_SciCal recipe.	79
D.2.0QC values written by the amber_selector recipe.	81
D.3.0 <i>QC</i> values written by the amber_trf recipe	83
D.4.0 <i>QC</i> values written by the amber_calibrate recipe.	85

		Doc:	VLT-MAN-ESO-19500-4221 Issue 3.3.0
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LSU	A WIDER T Ipenne Ober Wandar	Date:	Date 2011-04-01
		Page:	10 of 86

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	11 of 86

1 Introduction

1.1 Purpose

The AMBER pipeline is a subsystem of the *VLTI Data Flow System* (DFS). Its target user is ESO *Data Flow Operations* (DFO) in the generation of master calibration data, in the reduction of scientific exposures and in the data quality control. It should also serve as a quick look tool for *Paranal Science Operations* (PSO). Additionally, the AMBER pipeline recipes are made public to the user community, to allow a more personalized processing of the data from the instrument.

This manual is a complete description of the data reduction recipes used by the AMBER pipeline, reflecting the status of the AMBER pipeline as of version 3.3.0.

1.2 Acknowledgments

The software package on which the AMBER pipeline is based on was in large parts developed by the AMBER Consortium, and it is still the foundation of the current AMBER interferometry data reduction.

1.3 Scope

This document describes the AMBER pipeline used at ESO-Garching and ESO-Paranal for the generation of master calibration data and data quality control.

1.4 Reference and applicable documents

ESO		Doc:	Doc:VLT-MAN-ESO-19500-4221Issue:Issue 3.3.0Date:Date 2011-04-01
	AMBER Pipeline User Manual	Issue:	
	ANDER Appende Ober Mandal	Date:	
		Page:	12 of 86

- [1] ESO. AMBER Data Reduction Plan. VLT-PLA-AMB-15830-6004.
- [2] ESO. VLT Data Flow System Specifications for Pipeline and Quality Control. VLT-SPE-ESO-19600-1233.
 14
- [3] ESO. Deliverables Specification. VLT-SPE-ESO-19000-1618 (2.0).
- [4] ESO. DFS Pipeline & Quality Control User Manual. VLT-MAN-ESO-19500-1619.
- [5] ESO. ESO DICB Data Interface Control Document. GEN-SPE-ESO-19400-0794 (3.0).
- [6] ESO. Common Pipeline Library User Manual. VLT-MAN-ESO-19500-2720. 28
- [7] ESO. Gasgano User's Manual. VLT-PRO-ESO-19000-1932. 14, 22, 27, 28, 29
- [8] ESO. AMBER Calibration Plan. VLT-PLA-AMB-15830-0004.
- [9] ESO. AMBER product data specification. VLT-SPE-AMB-15830-3984. 17
- [10] ESO. AMBER data reduction software design description document. VLT-TRE-AMB-15830-4107.

1.5 Abbreviations and acronyms

ADF	Aperture Definition File
ADM	Aperture Definition in mm
AMBER	Astronomical Multi BEam combineR
AT	Auxilliary Telescope
CPL	Common Pipeline Library
CRV	Spectral curvature model
DFS	Data Flow System
DMD	Data Management Division
DO	Data Organiser
DRS	Data Reduction System
ESO-MIDAS	ESO's Munich Image Data Analysis System
FITS	Flexible Image Transport System
HR	High Resolution
ICS	Instrument Control Software
IDS	Inverse Dispersion Solution
IRAF	Image Reduction and Analysis Facility
IWS	Instrument WorkStation
LR	Low Resolution
MMU	Mask Manufacturing Unit
MOS	Multi Object Spectroscopy
MR	Medium Resolution
P2VM	Pixel To Visibility Matrix
PAF	VLT PArameter File
PWS	Pipeline WorkStation
QC	Quality Control
RB	Reduction Block
RBS	Reduction Block Scheduler
SAO	Smithsonian Astrophysical Observatory
SNR	Signal to Noise Ratio
SOF	Set Of Frames
TCS	Telescope Control Software
UT	Unit Telescope
VLT	Very Large Telescope
VLI	Very Large Telescope Interferometer
WCS	World Coordinate System

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	14 of 86

2 Overview

The AMBER pipeline is a collection of data reduction recipes administrated by the higher level programs of the *VLT Data Flow System* (DFS [2]).

The *VLT Data Flow System* provides an environment where the definition and the execution of the data reduction steps can be made entirely automatic. The fundamental DFS software components making up the required functionality are the *Data Organizer* (DO) and the *Reduction Block Scheduler* (RBS). The DO applies some defined instrument-dependent rules for the classification of the incoming frames, for their association to suitable calibration data, and for launching the appropriate recipe for their standard reduction. The product of the DO is the *Reduction Block* (RB), an ASCII file containing all the necessary information for the specific data reduction. The RB is executed by the RBS, which calls the assigned pipeline recipe with the appropriate parameters and makes the data reduction products available to the *Data Handling Server* (DHS).

The AMBER pipeline recipes can also be used outside the pipeline context, as stand-alone programs. In this way they may be easily used by astronomers at their home institutes, or taken as building blocks for different data reduction strategies. However, the pipeline recipes, being designed to operate within the DFS environment, do not repeat the checks already performed by the DO. In other words, data classification and appropriate association are not re-verified within a recipe. The *Gasgano* [7] data browser, capable of classifying the data frames in the same way as the DO, greatly assists in the administration of the different data frames.

An overview of the improvements achieved with this new pipeline version is given in Section 3. The AMBER instrument and the different types of AMBER raw frames are briefly described in Sections 4 and 5, while the usage of the available reduction recipes is presented in Section 6. In Section 7 we present the pipeline recipe interface. In Appendix A the installation of the AMBER pipeline recipes is described, whereas a more detailed descriptions of the data reduction algorithms used by the individual pipeline recipes can be found in Appendix B. Appendix C gives a detailed comparison between the products derived by the previous and the recent pipeline version.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	15 of 86

3 What's new

3.1 What's new in pipeline release 3.3.0

- two classification tags are added to the amber_SciCal recipe to identify the dark frames: AMBER_DARK_CALIB and AMBER_DARK_SCIENCE
- two classification tags are added to the amber_SciCal recipe to identify the sky frames: AMBER_SKY_CALIB and AMBER_SKY_SCIENCE
- An error in the check for the overlapping wavelength interval of the transfer function and science observation has been fixed.

3.2 What's new in pipeline release 3.1.0

• The calibrator database and the tagging of the calibrator database has changed. The DO category has been changed from

AMBER_CALIB_DATABASE_J to CALIB_DATABASE_J, AMBER_CALIB_DATABASE_H to CALIB_DATABASE_H, and AMBER_CALIB_DATABASE_K to CALIB_DATABASE_K

3.3 What's new in pipeline release 3.0.1

• New Quality Control (QC) parameters for the amber_SciCal, amber_selector, amber_trf, and amber_calibrate recipe. The standard deviation of the squared visibilities with respect to the frames (and averaged over the various wavelength bins) for all wavelength bins is calculated and added as QC parameter. See Appendix D for the new QC parameters.

3.4 What's new in pipeline release 3.0.0

- A new recipe amber_oimerge has been written. It can be used to merge OI-fits files of the following PRO CATG:
 SCIENCE_REDUCED SCIENCE_REDUCED_FILTERED CALIB_REDUCED
 CALIB_REDUCED_FILTERED AMBER_TRF_J AMBER_TRF_H AMBER_TRF_K
 SCIENCE_CALIBRATED (see section 7.9).
- The recipe amber_calibrate has been expanded in order to calibrate science observations even if the wavelength coverage is not identical with the one of the transfer function. In this case the recipe tries to find a common overlapping wavelength range and derives calibrated visibilities for the overlap.
- In the amber_selector recipe the possible values for the selection-method method have been renamed (see section 7.6).
- A function counting the number of zeroframes in the p2vm raw files has been implemented. The number of frames with zero values is written as QC parameter to the p2vm file: HIERARCH ESO QC ZE-ROFRAMES

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	16 of 86

3.5 What's new in pipeline release 2.8.0

- A new recipe amber_trf has been written in order to calculate the transfer function of a calibrator (see section 7.7).
- A new recipe amber_calibrate has been written in order to calculate calibrated squared visibilities and closure phases by applying a transfer function (see section 7.8).
- The recipe amber_SciCal (see section 7.5) has been rewritten. The recipe can automatically perform a frame selection and derive transfer functions (for calibrators) as well as calibrate squared visibilities and closure phases (for science targets). New Quality Control parameters are derived and added to each product.
- The recipe amber_ascii_export has been updated.
- Flatfield and Bad Pixel Mask have been updated (2009-11-05)
- The pipeline has been upgraded to CPL 5.1

3.6 What's new in pipeline release 2.5.2

- The Pipeline has been upgraded from amdlib version 2.0 to amdlib version 2.2:
 - Correction of bugs happening when appending OI-FITS files and memory leaks in the C code part.
 - This version corrects the problem of wrong estimate of spectral resolution elements invalidated by the spectral displacement between the photometric and interferometric beams. This caused a of loss of valid spectral channels during the P2VM computation, only noticeable in Low resolution JHK mode, when the spectral displacement was large, which, to our knowledge, occurred only between September 2007 and January 2008. However, this bug correction may be beneficial for all observations, providing a few (1 to 2) more wavelengths available in the reduced datasets, in the long-wavelength end of LR and HR modes, and short-wavelength end in MR modes.
- The Flatfield and Bad Pixel Mask has been updated with data taken on 2008-09-14
- About 30 new quality control parameter were added to the amber_SciCal (see section 7.5) and amber_selector (see section 7.6) recipe.
- The recipe amber_ascii_export has been updated.
- The pipeline recipe amber_SciCal can now handle up to 5000 science files in the SOF. If more are given, a warning will be issued and only the firsts 5000 files will be reduced.
- The recipe amber_raw_to_fitsimage has been updated in order to have an ESO compliant product header.
- Improved recipe stability.

3.7 What's new in pipeline release 2.4.4

- The amber_selector recipe has been updated and new selection methods have been implemented. At the moment 10 different methods can be used to select the frames:
 - "First x Frames"
 - "Fringe SNR > x"
 - "Fringe SNR percentage x"
 - "Flux > x"
 - "Flux percentage x"
 - "Exclude Frames by ASCII File"
 - "Include Frames by ASCII File"
 - "IO-Test: no filtering"
 - "Absolute piston value < x"</p>
 - "Absolute piston value percentage x"

Moreover, after selecting a method one can impose a selection threshold for every baseline by defining the variables X1, X2, and X3 as well as the way how the single thresholds should be applied to a frame by setting the Boolean variable ANDselection. See section 7.6 for details.

3.8 What's new in pipeline release 2.4.3

- The major change in the AMBER pipeline is the integration of the new amdlib version 2.0 (cmm version 2.29). The new amdlib version has improved error handling, corrects software bugs and extracts the p2vm matrix for each individual waveband (J,H,K).
- The following new quality control (QC) parameters are calculated and added for every baseline XX to the product of the amber_p2vm recipe: QC.P2VM.J.VISXX – QC.P2VM.J.ERRVISXX – QC.P2VM.H.VISXX – QC.P2VM.H.ERRVISXX – QC.P2VM.K.VISXX – QC.P2VM.K.ERRVISXX.
- The AMBER_SPECTRUM extension has been added in the amber_SciCal recipe product file.
- The AMBER product data specifications [9] have changed (see also Appendix C)
- Update of the amber_detector recipe to support the new detector 247. A new flatfield and bad pixel mask has been derived and included in the distribution. Due to the detector upgrade for data taken before 2007-09-13 the old bad pixel map (BadPixelMap_oldDetector.fits) and the old flatfield (Flat-FieldMap_oldDetector.fits) must be used. From 2007-09-13 until 2008-02-07 the following flatfield and bad pixel map should be used: BadPixelMap_oldDetector1.fits and FlatFieldMap_oldDetector1.fits. Data taken after 2008-02-07 should use the newest calibration files (BadPixelMap.fits, FlatFieldMap.fits). All fits-files are automatically installed by the pipeline installation procedure (see Appendix A).
- The pipeline has been upgraded to CPL 4.1.
- The Midas plotting program amber_OI_FITS_plot.prg has been adapted to the output of the new amdlib 2.0

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	18 of 86

- Integration of the new amber_ascii_export provided by Klara Shabun and adapted to the new amdlib 2.0
- amber_raw_to_fitsimage has been expanded in order to be also able to handle detector calibration files.

Details about the changes in the product files due to the amdlib upgrade can be found in Appendix C.1 for the amber_p2vm and in Appendix C.2 for the amber_SciCal recipe.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	19 of 86

4 AMBER Instrument Description

AMBER has been developed under ESO contract by the AMBER Consortium, headed by the Laboratoire d'Astrophysique de Grenoble with contributions from Observatoire de la Côte d'Azur, Laboratoire Universitaire d'Astrophysique de Nice, MPI für Radioastronomie - Bonn and Osservatorio Astrofisico di Arcetri.

The instrument has been made available to the community and started Service Mode Operations in Paranal on October 1^{st} , 2005.

In this chapter a brief description of the AMBER instrument is given. A more complete documentation can be found in the AMBER User Manual, which can be retrieved from:

http://www.eso.org/instruments/amber/

4.1 Overview

AMBER is the first-generation near-infrared three-way beam combiner. This instrument (see Figure 4.1.1) provides simultaneously spectrally dispersed visibility for three baselines and a closure phase at three different spectral resolutions. AMBER has been designed to investigate the milli-arcsec surrounding of astrophysical sources like young and evolved stars, active galactic nuclei and to detect exoplanets.

The main new feature of AMBER if compared to other interferometric instruments is the simultaneous use of modal filters (optical fibers) and a dispersed fringe combiner using a spatial coding (see Figure 4.1.2). The AMBER team has therefore carefully investigated a data processing strategy for this instrument and is providing a new type of data reduction method.

4.2 Observation Modes

AMBER offers three different modes of resolutions and three different bands in the following combinations:

Resolution Mode	Abbreviation	Description
Low Resolution	JHK-LR	The J, H and K bands are covered simultaneously
Medium Resolution	JH-MR	The J and H bands are covered simultaneously
Medium Resolution	HK-MR	The H and K bands are covered simultaneously
High Resolution	J-HR	The J band is covered
High Resolution	H-HR	The H band is covered
High Resolution	K-HR	The K band is covered

Please note that the spectral coverage of the high spectral resolution does not cover the entire bands.

Depending on the type of science required, one can choose to observe with AMBER in a classical way or in differential mode. The differential mode involves slight differences in the observing procedures but allows to obtain higher precision on the differential phase. The expected accuracy are typically 1% for the high sensitivity mode, 0.1% for the high precision mode, and 0.01% for the phase in the high precision mode in the differential configuration. This can be used either to obtain angular information on very unresolved objects or to aim at very high accuracy like in the extrasolar planets programs.

ESO AM

VLT-MAN-ESO-19500-4221
Issue 3.3.0
Date 2011-04-01
20 of 86

Figure 4.1.1: The complex instrument AMBER consists of various optical and mechanical components to allow interferometric and spectroscopic observations at the same time.

4.3 Angular Resolution

The angular resolution is set by the available baseline, which can reach about 200 meters for the ATs and about 130 meters for the UTs. Accordingly, the limit will be about 2 milliarcsecond (mas) for the ATs, and about 3 mas for the UTs, in the K band. These values are roughly halved for the J-band. Of course, the actual resolution will depend also on the signal-to-noise ratio (SNR) available, which is in turn a function of the source brightness, as well as of many factors mentioned below. Under conditions of very high SNR, it is in principle feasible to obtain higher resolutions than the broad limit given above. This applies in particular to cases in which a source model is available and determinations of the visibility before the first zero are sufficient to constraint the size of the object (for instance, angular diameters and binary stars). Reversely, conditions of low SNR (for instance, for very faint sources), will limit the actual maximum resolution to values which can be substantially worse than the figures mentioned above.

4.4 Flux Sensitivity

The limits in sensitivity depend on a large number of factors: observing modes that correspond to the elementary exposure time (high sensitivity: 50ms; high precision: 10ms; long exposures: any but with fringe tracking), the type of telescopes, the spectral resolution, the seeing, etc. Some of these are relatively well known and identified

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU	A WIDER T Ipenne Ober Wandar	Date:	Date 2011-04-01
		Page:	21 of 86

Figure 4.1.2: Left panel: Sketch of the AMBER instrument. The light enters the instrument from left. Right panel: Reconstituted image from AMBER raw data in three-telescopes mode. DK corresponds to a dark region of the detector. Pk are vertically dispersed spectra from each telescope and IF is the spectrally dispersed interferogram.

by the design of AMBER (e.g. transmission efficiency, fiber coupling, detector characteristics), while many others are more difficult to characterize at this time (e.g. the quality of fringe tracking and the adaptive optics correction).

4.5 Field Of View

AMBER is a single-mode instrument, therefore the field of view is theoretically limited to the Airy disk of each individual aperture, i.e. 250 mas for the ATs and 60 mas for the UTs in the K band.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	22 of 86

5 Instrument Data Description

AMBER data can be separated into *raw* frames and *product* frames. Raw frames are the unprocessed output of the AMBER instrument observations, while product frames are the result of the AMBER pipeline processing (e.g. reduced frames, master calibration frames, p2vm, etc.).

Any raw or product frame can be classified on the basis of a set of header keywords. Data classification is typically carried out by the DO or by *Gasgano* [7], that applies the same set of classification rules. The association of a raw frame with calibration data (e.g., of a science frame with a master flat field frame) can be obtained by matching the values of a different set of header keywords.

Each kind of raw frame is typically associated to a single AMBER pipeline recipe, *i.e.*, the recipe assigned to the reduction of that specific frame type. In the pipeline environment this recipe would be launched automatically.

A product frame may be input to more than one AMBER pipeline recipe, but it may be created by just one pipeline recipe (with the same exceptions mentioned before). In the automatic pipeline environment a product data frame alone wouldn't trigger the launch of any recipe.

In the following Section all raw and product AMBER data frames are listed, together with the keywords used for their classification and association. The indicated *DO category* is a label assigned to any data type after it has been classified, which is then used to identify the frames listed in the *Set of Frames* (see Section 6.3, page 27).

Please note that the actual rules used to classify the AMBER raw frames do contain more types of raw frames than listed below. This is for backwards compatibility with old AMBER data. Please refer to the AMBER.rul file (GASGANO) or the file amber.oca (online pipeline) for more details.

Raw frames can be distinguished in *calibration* frames and *science* frames. Their intended use is implicitly defined by the assigned recipe.

5.1 Calibration Frames

These frames are used for instrument calibration.

• **Pixel To Visibility Matrix and Spectral Calibration:** These frames are for calculation of a Pixel-To-Visibility-Matrix. Optionally the 2WAVE and 3WAVE files can be send to the recipe. In that case the the recipe will also perform a new spectral calibration.

- DO category: AMBER_2P2V Processed by: amber_p2vm

Classification keywords:	Association keywords:	Note:
DPR CATG = CALIB		
DPR TYPE = 2P2V	DET NTEL	Number of Telescopes used
DPR TECH = INTERFEROMETRY		

- DO category: AMBER_2WAVE Processed by: amber_p2vm

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	23 of 86

Classification keywords: DPR_CATG = CALIB	Association keywords:	Note:
DPR TYPE = WAVE, 2TEL DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_3P2V Processed by: amber_p2vm		
Classification keywords: DPR CATG = CALIB	Association keywords:	Note:
DPR TYPE = 3P2V DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_3WAVE Processed by: amber_p2vm		
Classification keywords: DPR_CATG = CALIB	Association keywords:	Note:
DPR TYPE = WAVE, 3TEL DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used

• **Badpixel Map and Flat Field Map raw files:** These frames are for calculation of a Bad Pixel Map and the Flat Field Map with the AMBER recipe.

- DO category: AMBER_DETECTOR_DARK Processed by: amber_detector Association keywords: Classification keywords: Note: DPR CATG = CALIB DPR TYPE = DETDARK DPR TECH = IMAGE- DO category: AMBER_DETECTOR_FFM Processed by: amber_detector Classification keywords: Association keywords: Note: DPR CATG = CALIB DPR TYPE = DETFLAT DPR TECH = IMAGE

• Beam Position Monitoring: These frames are for calculation of the Quality Control parameters to monitor the beam position of AMBER in the various optical configurations.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	24 of 86

- DO category: AMBER_BEAMPOS Processed by: amber_BeamPos

Classification keywords:	Association keywords:	Note:
DPR CATG = CALIB		
DPR TYPE = STD	DET NTEL	Number of Telescopes used
DPR TECH = IMAGE		

5.2 Scientific Frames

• Scientific Observation: These frames are for scientific observations. For the calculation of visibilities there is at least one science object frame needed. In addition there must be a valid P2VM as well as a Flat-Field and a Bad-Pixel-Map. For improved SNR it is useful to input the optional frames for sky and dark detector illumination.

- DO category: AMBER_SCIENCE Processed by: amber_SciCal		
Classification keywords: DPR CATG = SCIENCE	Association keywords:	Note:
DPR TYPE = OBJECT DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_DARK_SCIENCE Processed by: amber_SciCal		
Classification keywords: DPR CATG = SCIENCE	Association keywords:	Note:
DPR TYPE = DARK DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_SKY_SCIENCE Processed by: amber_SciCal		
Classification keywords: DPR CATG = SCIENCE	Association keywords:	Note:
DPR TYPE = SKY DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
	DEI NIEL	Number of Telescopes used

- DO category: AMBER_CALIB Processed by: amber_SciCal

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	25 of 86

Classification keywords: DPR CATG = CALIB	Association keywords:	Note:
DPR TYPE = OBJECT DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_DARK_CALIB Processed by: amber_SciCal		
Classification keywords: DPR CATG = CALIB	Association keywords:	Note:
DPR TYPE = DARK DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_SKY_CALIB Processed by: amber_SciCal		
Classification keywords: DPR CATG = CALIB	Association keywords:	Note:
DPR TYPE = SKY DPR TECH = INTERFEROMETRY	DET NTEL	Number of Telescopes used
- DO category: AMBER_P2VM Processed by: amber_SciCal		
Classification keywords: PRO CATG = P2VM_REDUCED	Association keywords:	Note:

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	26 of 86

6 Data Reduction

In this section the usage of the AMBER pipeline recipes is described. In particular, typical data reduction sessions for each instrument operating mode are presented in Sections 6.2 and 6.6.

6.1 Reduction Cascade

Figure 6.1.1: AMBER Association Map

6.2 AMBER pipeline recipes

The current AMBER pipeline is based on a set of stand-alone recipes, assigned to different fundamental operations. For the creation of general calibration data or informational output the following recipes can be used:

- **amber_raw_to_fitsimage:** As the AMBER raw frames are only containing number-tables, one can use this recipe to re-create a fits image out of this tables.
- **amber_detector:** This recipe creates the master flat field and the bad pixel map for the optical train and detector of the instrument.
- **amber_p2vm:** Calculation of the Pixel-To-Visibility-Matrix to be able to disentangle the interferometric channels for 2 and 3 telescopes. Optionally, if the specific raw frames are provided, it will also perform a spectral calibration. Moreover the recipe is also used to monitor the internal visibility of the instrument.
- **amber_SciCal:** This recipe calculates the visibilities along with additional information like the SNR, error bars and the closure phase for the given band.
- **amber_selector:** This recipe can select or filter the visibilities by various algorithm such as Fringe Contrast SNR
- **amber_BeamPos:** This recipe is calculating the QC parameters for alignment monitoring of the optical train
- amber_ascii_export: This recipe exports data stored in an AMBER OI product into ASCII files
- **amber_trf:** This recipe calculates the transfer function.
- amber_calibrate: This recipe calculates calibrated squared visibilities and closure phases.
- amber_oimerge: This recipe merges OI-Fits files

In the following sections a general description on the usage as well as a more detailed information on the individual recipes is given. Moreover, there will also be a description of how to use the recipes with EsoRex and GASGANO.

6.3 The set of frames (SOF)

Each pipeline recipe processes a set of input FITS data files. The filenames are listed together with their DO category in an ASCII file, the *Set of Frames* (SOF; required when launching a recipe). SOF files containing the frames selected by the user are automatically created by *Gasgano* [7].

Here is an example of a SOF, valid for the *amber_SciCal* recipe:

FlatFieldMap.fits	AMBER_FLATFIELD
BadPixelMap.fits	AMBER_BADPIX
AMBER.2006-02-11T05:13:36.596.fits	AMBER_P2VM
AMBER.2006-02-11T05:53:03.559.fits	AMBER_SCIENCE
AMBER.2006-02-11T05:55:15.715.fits	AMBER_SKY

The pipeline recipe will access the listed files when required by the reduction algorithm.

	Doc:	VLT-MAN-ESO-19500-4221	
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	28 of 86

Please note that the AMBER pipeline recipes do not check the classification tags specified in the SOF. However, the recipe will check for every frame if the optical train is the same as it has been during recording the P2VM files. It will also check if all the regions in the files are consistent, since otherwise the usage of a particular P2VM file will result in incorrect data.

The reason for this lack of control is that the AMBER recipes are just the DRS component of the complete pipeline running on Paranal, where the task of data classification and association is carried out by the Data Organizer. On the other hand, using *Gasgano* [7] as an interface to the pipeline recipes will permit to classify the data frames exactly as the DO does.

Please note that a recipe processing an incorrect SOF may stop with an error messages at best. In the worst cases, the recipe would run without any problem, producing results that may look reasonable while they are instead flawed.

6.4 Recipe configuration

At each pipeline recipe a configuration file, containing the default values of the parameters related to that recipe can be assigned. The possibility to create recipe configuration files, and the way information is conventionally stored in such files, depends on the front-end application used for launching the pipeline recipes¹. In this section the recipe configuration files created and handled by *EsoRex* are described. Please refer to the Gasgano User's Manual [7] for information about saving recipe configuration parameters.

An *EsoRex* recipe configuration file can be generated in the directory <code>\$HOME/.esorex</code> by *EsoRex* (see Section 6.5 on page 29) at installation time, and has the same name as the related recipe, with the filename extension .rc. For instance, the recipe *amber_SciCal* has its *EsoRex* generated configuration file named <code>amber_SciCal.rc</code>. Please note that without a recipe configuration file the recipe will use the default values.

The definition of one parameter of a recipe may look like this:

```
# --Binning
# Binning of frames, default 1
amber.Parameters.binning=10
```

In this example, the parameter amber.Parameters.binning is set to the value 10. In the configuration file generated by *EsoRex*, one or more comment lines are added containing information about the possible values of the parameter, and an alias that could be used as a command line option (see again Section 6.5 on page 29).

The hierarchy introduced in the parameter names has currently no implication. Although it is not used at the moment, it is envisaged that this feature will be used in future releases to avoid potential name clashes. The shorter parameter aliases are made available for use on the command line.

The parameter names belonging to the recipe specific configuration files are described in the corresponding recipe sections.

¹The plugin concept allows the implementation of different front-end applications with specific functionality. For a complete description on how to create a pipeline recipe launcher, please refer to the CPL User Manual [6].

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	29 of 86

More than one configuration file may be maintained for the same recipe but, in order to be used, a configuration file not located under \$HOME/.esorex, or having a name different from the recipe name, must be explicitly specified when launching a recipe (see next section).

6.5 Running a recipe using EsoRex

The AMBER pipeline recipes are implemented as plugins executed by a front-end applications like *EsoRex* or *Gasgano* [7]. The file organizer *Gasgano* [7] provides an intuitive GUI for launching the recipes (and applying the same rules used by the DO for the available data frames classification), whereas *EsoRex* allows to execute the pipeline recipes from a shell prompt.

The basic format for using *EsoRex* is as follows:

esorex [EsoRex_options] recipe_name [recipe_options] set_of_frames

A list of all the available recipes, each with a one-line description, can be obtained using the command:

esorex --recipes

To get help for an individual recipe (in the subsequent examples, *amber_SciCal* is used), the following is used:

esorex --help amber_SciCal

In order to see the current parameters setting of a recipe, either the recipe configuration file (if available) located under \$HOME/.esorex may be viewed, or the following command may be used:

```
esorex --params amber_SciCal
```

If the default recipe configuration file is not found or a particular value is not configured within this file, then the system defaults will be shown and used.

A recipe can be run by specifying its name to *EsoRex*, together with the name of a SOF (see Section 6.3, page 27). For instance, the following command line would be used to run the recipe *amber_SciCal* for processing the files specified in the SOF amber_SciCal.sof:

esorex amber_SciCal amber_SciCal.sof

A recipe configuration file different from the default one (see Section 6.4, page 28) can also be specified on the command line:

esorex --recipe-config=my_config.rc amber_SciCal amber_SciCal.sof

The recipe parameters can be modified either by editing directly the used configuration file, or by specifying new parameter values on the command line using the command line options. Such command line options should be inserted after the recipe name, and before the SOF name. For instance, to set the *amber_SciCal* recipe binning parameter to 10, the following should be typed:

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	30 of 86

```
esorex amber_SciCal --binning=10 amber_SciCal.sof
```

There are also parameters used to configure the *EsoRex* launcher, that may be listed in an esorex.rc configuration file located under HOME/.esorex. On the command line, the *EsoRex* options must be inserted before, and not after, the specified recipe name. The *EsoRex* options are those that are recipe independent, as for instance the verbosity level, the directory where the recipe products should be written, or the permission to overwrite old products with new ones.

For more information on *EsoRex*, see http://www.eso.org/cpl/esorex.html.

6.6 Running a complete data reduction using GASGANO

For AMBER we need a two step data reduction: First a P2VM must be derived and with that P2VM we can then reduce the scientific data taken with the same optical train.

6.7 Creating a primary FITS-Image of the Channels

The recipe $amber_raw_to_fitsimage$ is able to display one AMBER raw frame at a time. Any rawframe listed in Table 6.7.1 can be used by the recipe. One can run the recipe in Gasgano by right clicking on a frame and choosing $amber_raw_to_fitsimage$

The recipe will store the FITS-image at the location $/tmp/amber_display.fits$. It can then be displayed by any suitable FITS viewer, i.e. the FV.

DO category	Туре	Explanation	Required
AMBER_2P2V	Raw frame	2 telescopes P2VM	
AMBER_2WAVE	Raw frame	2 telescopes P2VM, spectral calibration	
AMBER_3P2V	Raw frame	3 telescopes P2VM	
AMBER_3WAVE	Raw frame	3 telescopes P2VM, spectral calibration	
AMBER_DARK_SCIENCE	Raw frame	dark frame from scientific observation	
AMBER_SKY_SCIENCE	Raw frame	sky frame from scientific observation	
AMBER_DARK_CALIB	Raw frame	dark frame from calib observation	
AMBER_SKY_CALIB	Raw frame	sky frame from calib observation	
AMBER_SCIENCE	Raw frame	science object frame from scientific observation	
AMBER_CALIB	Raw frame	calibrator object frame from scientific observation	
AMBER_BEAMPOS	Raw frame	beam position in various optical configurations	
AMBER_DETECTOR_DARK	Raw frame	dark frame for the bad pixel mask	
AMBER_DETECTOR_FFM	Raw frame	flatfields	

Table 6.7.1: *Input files for the amber_raw_to_fitsimage recipe.*

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	32 of 86

6.8 Calculating the Pixel-To-Visibility-Matrix

This recipe will calculate the Pixel-To-Visibility-Matrix for a given optical setup of AMBER, as the latter is needed as an input for all subsequent visibility calculations. Please note that a P2VM is only valid as long as the optical train remains the same. For this reason the P2VM raw files (see Table 6.8.1 for a list) have to be taken shortly before the scientific observation.

DO category	Туре	Explanation	Required
AMBER_BADPIX	Calibration frame	Bad Pixel Map of the detector	\checkmark
AMRER ELATELELD Calibration trame		Flat Field of the detector	/
		and the instrument's optical train	\checkmark
AMBER_2P2V	Raw frame	2 telescopes P2VM, 5 frames are needed	\checkmark
AMBER_2WAVE	Raw frame	2 telescopes P2VM, spectral calibration	
AMBER_3P2V	Raw frame	3 telescopes P2VM, 10 frames are needed	\checkmark
AMBER_3WAVE	Raw frame	3 telescopes P2VM, spectral calibration	

Table 6.8.1: *Input files for the amber_p2vm recipe*.

Please note that the input of spectral calibration files is optional. If there are no spectral calibration files, the product will contain the spectral calibration values as they were during data acquisition.

A screen-shoot of Gasgano launching the amber_p2vm recipe is displayed in Figure 6.8.1.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU	ESO AWIDER I Ipenne Oser Wandar	Date:	Date 2011-04-01
		Page:	33 of 86

	- amber_p2vm v20001 -										
File Help											
	Current Queued Executing										
Ľ	_Parameters										
	-Falaillete	Name Value Default Range									
	amber.an	nber_p2vm.dummy	value	Derault							
						Add to pool					
	Request Pool										
	∟ _Input Fra										
	Include										
		Filename AMBER.2006-02-11T00:25:39.34	Classification 41.fits AMBER_2WAVE	Locate	Display 🔺						
	2	AMBER.2006-02-11T00:25:51.0	00.fits AMBER_2WAVE	Locate	Display						
		AMBER.2006-02-11T00:26:08.4		Locate	Display						
	V	AMBER.2006-02-11T00:26:39.3 AMBER.2006-02-11T00:26:54.0		Locate Locate	Display 🔛						
		AMBER.2006-02-11T00:27:18.4		Locate	Display -						
	- Broduct b	laming			·						
	Product N	-									
	Product R	oot Directory: /home/tlicha/amdli	b_test/products	Browse Naming	Scheme: Numeric 🔻						
-						Execute Selected					
				Ļ		Ŷ					
				/		•					
∩	utput Frar	nes									
		Clear									
						The second se					
	og Messag										
	ig messay										
						Save Clear					

Figure 6.8.1: *The recipe amber_p2vm when launched with GASGANO*.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	34 of 86

6.9 Calculating the scientific results

The AMBER pipeline recipe *amber_SciCal* is used to calculate visibilities from interferometric observations.

This recipe is able to handle 2- and 3-telescope observations. The DET NTEL keyword from the first rawfile's header will determine the mode. It can also handle all the different bands (JHK) in any resolution. If there is more than one band in the raw frame the recipe will split the bands and create a separate product file for the J, H, and K band, respectively.

All the files that must/can be included in the input SOF are listed in Table 6.9.1. In addition to the frames marked as required there must be at least one frame of the DO categories AMBER_SCIENCE, AMBER_CALIB or AMBER_SCIENCE_CALIB. For each of them the corresponding product will be created.

DO category	Туре	Explanation	Required
AMBER_BADPIX	Calibration frame	Bad Pixel Map of the detector	
AMDED EL ATELEL D	Calibration frame	Flat Field of the detector	,
AMBER_FLATFIELD	Calibration frame	and the instrument's optical train	V
AMBER P2VM	Calibration frame	Pixel-To-Visibility-Matrix	1
AMDER_P2VM	Calibration frame	of the instrument's optical train	\checkmark
AMBER_DARK_SCIENCE	Raw frame	dark frame from scientific observation	
AMBER_SKY_SCIENCE	Raw frame	sky frame from scientific observation	
AMBER_DARK_CALIB	Raw frame	dark frame from calib observation	
AMBER_SKY_CALIB	Raw frame	sky frame from calib observation	
AMBER_SCIENCE	Raw frame	science object frame from scientific observation	\checkmark
AMBER_CALIB	Raw frame	calibrator object frame from scientific observation	
AMBER_SCIENCE_CALIB	Raw frame	standard calibrator object frame	

Table 6.9.1: Input files for the amber_SciCal recipe.

A screen-shoot of Gasgano launching the *amber_SciCal* recipe is displayed in Figure 6.9.1.

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	35 of 86

amber_SciCal v20001 -										
File Help										
Current Queued Executing										
Parameters										
Name	 }									
amber.amber_SciCal.str_option	Value	Default	Range							
amber.amber_SciCal.int_binning	5) 1		Add to pool						
				🖓						
				Request Pool						
_Input Frames										
Include Filename	Classifi	ration								
AMBER.2006-02-11T05:13:36.5		Lation	Display							
AMBER.2006-02-11T06:11:30.0										
AMBER.2006-02-11T06:13:29.5										
AMBER.2006-02-11T06:14:57.1										
AMBER_BPM_fuzzy_img.fits	AMBER_BADPI									
AMBER_FFM_img.fits	AMBER_FLATF									
Product Naming										
Product Root Directory: /home/tlicha/amdlib_test/products Browse Naming Scheme: Numeric 🔻 🕂										
				Execute Selected						
)		<u>. </u>						
	· · · · · · · · · · · · · · · · · · ·	>		*						
Coutput Frames										
				Clear						
Log Messages										
				Save Clear						
				Save Clear						
<u>l</u> -										

Figure 6.9.1: The recipe amber_SciCal when launched with GASGANO.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	36 of 86

6.10 Plotting the scientific results

It is possible to plot the scientific results from previously stored products (GASGANO will group the product at the end of the raw files of the observation so that they can easily be identified): First a particular product must be selected and right clicked. After that, "'Run..." must be chosen in the menu. Selecting 'amber_OI_FITS_plot.sh' will finally start the plotting routine (see also Figure 6.10.1). Please make sure that MIDAS is installed and that the amber_OI_FITS_plot.prg resides in the same path as the script.

ted files Tools He		GASGANO Versio	n: 2.1.2 tlich	a / Linux			
	ιμ 						
õ 🎗 🖉	Det	fault grouping 🔻	collapse Find	l entry:	▼ fir	ıd	
FI ORBER ZUDE-UZ				TPL.ID		TPL.EXPNO	TPL.NE
	11102:36:36.939.fits 11T02:36:47.364.fits	UNCLASSIFIED			AMBER_BASE1	20	6
		UNCLASSIFIED	,		. AMBER_BASE1		7
	11T02:36:57.501.fits		,		. AMBER_BASE1		7
	11T02:37:09.067.fits	UNCLASSIFIED					<i>.</i>
	11T02:37:19.178.fits				AMBER_BASE1		0
	11T02:37:37.774.fits	UNCLASSIFIED	,		AMBER_BASE1		8
	11T02:42:01.884.fits	AMBER_SCIENC.			. AMBER_2TSTD		2
	11T02:44:37.415.fits	UNCLASSIFIED			AMBER_CAL_C		8
	11T02:44:52.879.fits	UNCLASSIFIED			. AMBER_CAL_C		9
AMBER.2006-02-	11T02:45:08.403.fits	AMBER_SCIENCE			. AMBER_2TSTD		9
AMBER.2006-02-	11T02:47:20.109.fits	UNCLASSIFIED	COHERENC, 2TEL		. AMBER_CAL_C		10
AMBER.2006-02-	11T02:47:48.132.fits	AMBER_SCIENCE	OBJECT	AMBER_2Tstd	. AMBER_2TSTD	6	10
AMBER.2006-02-	11T02:49:59.909.fits	UNCLASSIFIED	COHERENC, 2TEL	AMBER_2Tstd	. AMBER_CAL_C	7	11
AMBER.2006-02-	11T02:50:16.725.fits	AMBER_SCIENCE	OBJECT	AMBER_2Tstd	. AMBER_2TSTD	8	11
AMBER.2006-02-	11T02:52:28.984.fits	UNCLASSIFIED	COHERENC, 2TEL	AMBER_2Tstd	. AMBER_CAL_C	9	12
AMBER.2006-02-	11T03:05:02.417.fits	AMBER_SCIENCE	OBJECT	AMBER_2Tstd	AMBER_2TSTD	1	4
	11T03:07:08.042.fits	AMBER_SCIENCE	OBJECT	AMBER_2Tstd	. AMBER_2TSTD	2	4
	11T03:09:15.497.fits	AMBER_SCIENCE	OBIECT	AMBER_2Tstd	AMBER_2TSTD	3	4
	11T03:11:28.918.fits	AMBER_SCIENC.	SKY	AMBER 2Tstd	. AMBER_2TSTD	4	4
amber_0000_00(SCIENCE REDU.		AMBER_2Tstd	-	3	4
amber_0001_000		SCIENCE_REDU.		AMBER_2Tstd		3	4
0155385 MR_K_		Deletter_nebo.	. objeci	And Englishing		~	
AMBER.2006-02-		Dup the	following com	aman d2	2TSTD	1	7
AMBER.2006-02-		Kun uie	tonowing con	Innanus	CAL_C		8
AMBER.2006-02-		/home/tlicha/gasgan	o/scripts/AMBER/	amber_gasgano_			9
		/home/tlicha/amdlib			CAL_C		9 10
AMBER.2006-02-					2TSTD		10
AMBER.2006-02-			Yes <u>N</u> o				
AMBER.2006-02-	11103:35:11.0				2TSTD	1	7
	amber.	_0001_0000.fits <un< td=""><td>known orig name</td><td>> SCIENCE_RED</td><td>JCED</td><td></td><td></td></un<>	known orig name	> SCIENCE_RED	JCED		
Extension: HEAD	ER 🔻	Find in header: DPI	•	find	oad Filter 🛛 🔿 Fi	Iter 🛛 🔿 Auto E	Display
] [
	Keyword				Value		
			T 16				
			16				
			т				
			ESO				
			2006-02-24T	17:15:23.060			
			FSO-VITI-A13				

Figure 6.10.1: Starting the plotting script from GASGANO

To finish the plot and return to GASGANO one has to type bye in the window named *inmidas*. After the plot has completed on the screen there is the corresponding post script file available: $/tmp/amber_0000.ps$. As the post script file will be overwritten each time by the next plot, one has to rename it or copy it to another directory for further usage.

Please note that the plots are different for the 2 and 3 telescopes case as in the 3 telescopes case there are 3
		Doc:	VLT-MAN-ESO-19500-4221
ESO	ESO AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	37 of 86

baselines available while in the 2 telescope case there is only one. An example of the 3 telescopes case is shown in Figure 6.10.2: In the upper left of the plots there is the statistics of how many frames the observation contains and how many of them have been reduced for a given SNR threshold.

Figure 6.10.2: Example plot for the 3-telescopes mode. The three different baselines are color coded.

ESO

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	38 of 86

7 Pipeline Recipes Interfaces

7.1 amber-raw-to-fitsimage

The AMBER pipeline recipe *amber_raw_to_fitsimage* creates a primary image cube from AMBER rawfiles which only contain tables of numbers. The image can be considered as a regeneration of the active CCD area. Any of the AMBER raw frames can be displayed with the recipe (it can handle raw files taken in 2 and 3 telescope mode). The recipe is very useful to check if the interferometric channel is actually showing fringes and if flux is present in all photometric channels. At least one of the files listed in Table 7.1.1 must be included in the SOF. If there are more files only the first one will be processed. As an example we show in Figure 7.1.1 the vertically dispersed channels of the AMBER instrument.

DO category	Туре	Description	Required
AMBER_2P2V	Raw frame	2 telescopes P2VM	
AMBER_2WAVE	Raw frame	2 telescopes P2VM, spectral calibration	
AMBER_3P2V	Raw frame	3 telescopes P2VM	
AMBER_3WAVE	Raw frame	3 telescopes P2VM, spectral calibration	
AMBER_DARK_SCIENCE	Raw frame	dark frame from scientific observation	
AMBER_SKY_SCIENCE	Raw frame	sky frame from scientific observation	
AMBER_DARK_CALIB	Raw frame	dark frame from calib observation	
AMBER_SKY_CALIB	Raw frame	sky frame from calib observation	
AMBER_SCIENCE	Raw frame	science object frame from scientific observation	
AMBER_CALIB	Raw frame	calibrator object frame from scientific observation	
AMBER_BEAMPOS	Raw frame	beam position in various optical configurations	
AMBER_DETECTOR_DARK	Raw frame	dark frame for the bad pixel mask	
AMBER_DETECTOR_FFM	Raw frame	flatfields	

Table 7.1.1: Input files for the amber_raw_to_fitsimage recipe.

File name	DO category	Туре	Description
/tmp/amber_display.fits		FITS	reconstructed image of the active detector regions

Table 7.1.2: *Output of the amber_raw_to_fitsimage recipe*.

The recipe creates a FITS file containing the primary image of the reconstructed image of the active detector regions. The header is a copy of the raw frame's header. Moreover, a copy of the product will always be stored with a fixed name under /tmp/amber_display.fits (see Table 7.1.2).

There are no *amber_raw_to_fitsimage* parameters.

7.2 amber-detector

The AMBER pipeline recipe *amber_detector* is used to create the bad pixel map and the master flat field for the AMBER instrument. A detailed description of the used algorithms is given in Appendix B on page 57.

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	39 of 86
		0	

Figure 7.1.1: *Example image for the 3-telescopes mode.*

The files listed in Table 7.2.1 must be included in the SOF when running the recipe.

DO category	Туре	Description	Required
AMBER_DETECTOR_DARK	Raw frame	dark exposure	\checkmark
AMBER_DETECTOR_FFM	Raw frame	flat exposure	\checkmark

 Table 7.2.1: Input files for the amber_detector recipe.

The product written by the amber_detector recipe is listed in Table 7.2.2, whereas the QC parameters are listed in Table 7.2.3

File name	DO category	Туре	Description
amber_eso_bpm.fits	AMBER_BADPIX	FITS	Bad pixel map
amber_eso_ffm.fits	AMBER_FLATFIELD	FITS	Master flat field

Table 7.2.2: *Product of the amber_detector recipe*.

	Doc:	Doc:	VLT-MAN-ESO-19500-4221
ESO AMBER Pipeline User Manual	Issue:	Issue 3.3.0	
LOU	ESO AMBER Pipeline User Manual	Date:	Date 2011-04-01
		Page:	40 of 86

QC Parameter	Description
BADPIX	the number of bad pixels on the chip
GOODPIX	the number of good pixels on the chip

 Table 7.2.3: QC values written by amber_detector recipe.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU	Thible Tipenne eser Mandar	Date:	Date 2011-04-01
		Page:	41 of 86

7.3 amber-beampos

The AMBER pipeline recipe *amber_beampos* is used to monitor the beam alignment for the AMBER instrument. A technical template of the AMBER instrument will create the 22 mandatory files to run the recipe (see also Table 7.3.1). These files contain an image of the AMBER instrument beam under various illumination conditions. From these files the recipe will derive an image of the detector as well as QC parameters and write them to a product as well as to the QC log. The product written by the amber_beampos recipe is listed in Table 7.3.2

For each of the frames the QC values listed in Table 7.3.3 are written. Depending on the type of the frame there will be a prefix (see Table 7.3.4) written to identify the specific optical configuration, i.e. a complete QC parameter including the prefix would read: *HIERARCH.ESO.QC.CLDSTP.SIZX*=23.45

DO category	Туре	Description	Required
AMBER_BEAMPOS	Raw frame	exposures with different optic-settings	

 Table 7.3.1: Input files for the amber_beampos recipe.

File name	DO category	Туре	Description
amber_beampos_XXX.fits	AMBER_BEAMPOS_REDUCED	FITS	FITS file with primary image
			of the beam and the QC parameters in the header
			(XXXX corresponds to
			the raw file's number)

Table 7.3.2: Product of the amber_beampos recipe.

QC Parameter	Description	
Х	the x position of the beam centroid	
Y	the y position of the beam centroid	
SIZX	the size in x direction of the beam	
SIZY	the size in y direction of the beam	
FLUX	the total flux of the beam	
PEAKFLUX	the peak flux of the beam	

Table 7.3.3: QC values written by the amber_beampos recipe.

Please note that this recipe currently relies on the correct order of the frames given in the Set of Frames. This will not be a problem for the online pipeline unless the acquisition template might be changed. In GASGANO the user should send the files in the order given by the entry of the header named TPL.EXPNO.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	42 of 86

QC Prefix	Description	
CLDSTP	cold stop	
A.K	A in K band	
B.K	B in K band	
C.K	C in K band	
A.H	A in H band	
B.H	B in H band	
C.H	C in H band	
A.J	A in J band	
B.J	B in J band	
C.J	C in J band	
BCD.A.K	BCD and A in K band	
BCD.B.K	BCD and B in K band	
BCD.C.K	BCD and C in K band	
BCD.A.H	BCD and A in H band	
BCD.B.H	BCD and B in H band	
BCD.C.H	BCD and C in H band	
BCD.A.J	BCD and A in J band	
BCD.B.J	BCD and B in J band	
BCD.C.J	BCD and C in J band	
OUTF.A	OUTF and A	
OUTF.B	OUTF and B	
OUTF.C	OUTF and C	

 Table 7.3.4: QC value prefixes written by the amber_beampos recipe.

ESO

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	43 of 86
U	

7.4 amber-p2vm

The AMBER pipeline recipe $amber_p2vm$ is used to create a pixel to visibility matrix (P2VM). This P2VM is containing the translation matrix for the interferometric channel used to calculate visibilities from scientific observations. The recipe is able to handle 2- and 3-telescope P2VMs, where the DET NTEL keyword from the first rawfile's header will determine the mode. A more detailed description of the algorithms is given in Appendix B on page 57.

At the moment there are no *amber_p2vm* recipe parameters.

The raw files are containing all possible variations of the shutter positions of the photometric channels and the response of the interferometric channel for the standard lamps used during that process. Because in 3-telescope mode there is one more photometric channel compared to the 2 telescope mode, more input files are needed (10 instead of 5). The files listed in Table 7.4.1 can/must be used in the SOF when running the recipe.

DO category Type		Description	Required
AMBER_BADPIX	Calibration frame	Bad Pixel Map of the detector	\checkmark
AMBER FLATFIELD Calibration frame		Flat Field of the detector	/
ANIDER_FLAIFIELD	Calibration frame	and the instrument's optical train	\vee
AMBER_2P2V	Raw frame	2 telescopes P2VM, 5 frames are needed	\checkmark
AMBER_2WAVE	Raw frame	2 telescopes P2VM, spectral calibration	
AMBER_3P2V	Raw frame	3 telescopes P2VM, 10 frames are needed	\checkmark
AMBER_3WAVE	Raw frame	3 telescopes P2VM, spectral calibration	

Table 7.4.1: *Input files for the amber_p2vm recipe*.

The only product of the *amber_p2vm* recipe is the P2VM file (see Table 7.4.2).

File nameDO category		Туре	Description
amber_p2vm.fits	P2VM_REDUCED	FITS	Pixel to Visibility Matrix

Table 7.4.2: *Product of the amber_p2vm recipe*.

This recipe is writing the QC parameters listed in Table 7.4.3.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	44 of 86

QC Parameter	Description	
P1 OFFSETY	y offset after spectral calibration in pixels	
	for photometric channel 1	
P2 OFFSETY	y offset after spectral calibration in pixels	
	for photometric channel 2	
P3 OFFSETY	y offset after spectral calibration in pixels	
	for photometric channel 3	
P2VM VISXX	Imternal Visibility for baseline XX	
P2VM ERRVISXX	Imternal Visibility Error for baseline XX	
P2VM J VISXX	Imternal J-Band Visibility for baseline XX	
P2VM J ERRVISXX	Imternal J-Band Visibility Error for baseline XX	
P2VM H VISXX	Imternal H-Band Visibility for baseline XX	
P2VM H ERRVISXX	Imternal H-Band Visibility Error for baseline XX	
P2VM K VISXX	Imternal K-Band Visibility for baseline XX	
P2VM K ERRVISXX	Imternal K-Band Visibility Error for baseline XX	
ZEROFRAMES	Number of Zeroframes in the raw files	

Table 7.4.3: *QC* values written by the amber_p2vm recipe.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU	A WIDER T Ipenne Coel Mandal	Date:	Date 2011-04-01
		Page:	45 of 86

7.5 amber-SciCal

The AMBER pipeline recipe *amber_SciCal* is used to calculate raw (uncalibrated) visibilities, transfer functions as well as calibrated visibilities from interferometric observations. This recipe is able to handle 2- as well as 3-telescope observations. The DET NTEL keyword from the first rawfile's header will determine the mode. It can handle all the different bands in any resolution. If there is more than one band in the raw frame the recipe will split the bands and create a separate product for the J, H and K band.

If the recipe parameter selectPlusTrf is set to FALSE, the recipe only calculates uncalibrated visibilities. On the other hand, if set to TRUE, the recipe performs the following additional tasks:

• CALIB: If a calibrator is observed, first it derives the uncalibrated visibilities. Then it performs a frame selection based on the Signal-to-noise ratio and another on the piston value. The SNR based selection criteria (see the recipe amber_selector in section 7.6 for the parameter definitions) select the 50 per cent best frames, i.e.:

```
selection-method="Fringe_SNR_percentage_x"
X1=50
X2=50
X3=50
ANDselection=TRUE
```

The selection values based on the piston are:

```
selection-method="Absolute_piston_value_lt_x"
X1=
X2=
X3=
ANDselection=TRUE
```

The values of X1 X2 and X3 differ according to the observation mode and are listed in table 7.5.1

The products of these selection are OI-Fits files with the prefix <code>snr_filtered</code> and <code>pst_filtered</code> and the DO category <code>CALIB_REDUCED_FILTERED</code>

For convenience, the different filtering criteria are stored in the product header as quality control parameters as follows:

```
USEDVALUE METHOD
USEDVALUE ANDselection
USEDVALUE X1
USEDVALUE X2
USEDVALUE X3
```

Finally, if the calibrator database (DO category CALIB_DATABASE_J or CALIB_DATABASE_H or CALIB_DATABASE_K) is in the SOF and the observed calibrator can be found in the calibrator database, the recipe calculates the expected visibilities for each wavelength and derives and saves for each selected product a transfer function file (prefix trf_) with the following DO category: AMBER_TRF_J or

AMBER_TRF_H or AMBER_TRF_K, respectively. The transfer function can then be included in the SOF of a science observation in order to calculate calibrated visibilities.

Please note that the transfer function is derived for each frame in the OI-FITS file. Only when the transfer function is applied to the science observation a mean transfer function is derived for the squared visibilities and the closure phase. This averaged transfer function is then applied to calculate calibrated squared visibilities and a calibrated closure phase.

FINITO	low resolution X1, X2, X3	medium resolution X1, X2, X3	high resolution X1, X2, X3
on	$20 \ \mu m$	$200 \ \mu m$	$200 \ \mu m$
off	$40 \ \mu m$	$400 \ \mu m$	$400 \ \mu m$

Table 7.5.1: Frame selection criteria of the amber_SciCal recipe: selection is done on the piston value

• SCIENCE: If a science target is observed, first it derives the uncalibrated visibilities. Then it performs a frame selection based on the Signal-to-noise ratio and another on the piston value. The SNR based selection criteria (see the recipe amber_selector in section 7.6 for the parameter definitions) select the 50 per cent best frames, i.e.:

```
selection-method="Fringe_SNR_percentage_x"
X1=50
X2=50
X3=50
ANDselection=TRUE
```

The selection values based on the piston are:

```
selection-method="Absolute_piston_value_lt_x"
X1=
X2=
X3=
ANDselection=TRUE
```

The values of X1 X2 and X3 differ according to the observation mode and are listed in table 7.5.1

The products of these selection are OI-Fits files with the prefix snr_filtered and pst_filtered and the DO category SCIENCE_REDUCED_FILTERED

For convenience, the different filtering criteria are stored in the product header as quality control parameters as follows:

USEDVALUE METHOD USEDVALUE ANDselection USEDVALUE X1 USEDVALUE X2 USEDVALUE X3

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	47 of 86

Finally, if the transfer function (DO category AMBER_TRF_J or AMBER_TRF_H or AMBER_TRF_K) is in the SOF the recipe derives and saves for each filtered product the calibrated visibilities (prefix cal_) with the following DO category: SCIENCE_CALIBRATED.

Please note that the transfer function has been previously derived for each frame in the OI-FITS file. Only when the transfer function is applied to the science observation a mean transfer function is derived for the squared visibilities and the closure phase. This averaged transfer function is then applied to calculate calibrated squared visibilities and a calibrated closure phase. Moreover, the errors of the transfer function is propagated and also taken into account when calibrating the visibilities.

All the files that the recipe can handle in the input SOF are listed in Table 7.5.2. In addition to the frames marked as required there must be at least one frame of the DO categories AMBER_SCIENCE or AMBER_CALIB (and AMBER_SCIENCE_CALIB for backwards compatibility). For each of them a corresponding product will be created.

DO category	Туре	Description	Required
AMBER_BADPIX	Calibration frame	Bad Pixel Map of the detector	\checkmark
AMBER_FLATFIELD	Calibration frame	Flat Field of the detector and the instrument's optical train	\checkmark
AMBER_P2VM	Calibration frame	Pixel-To-Visibility-Matrix of the instrument's optical train	\checkmark
AMBER_TRF_(J H K)	Calibration frame	transfer function	
CALIB_DATABASE_(J H K)	Calibration frame	calibrator database	
AMBER_DARK_SCIENCE	Raw frame	dark frame from scientific observation	
AMBER_SKY_SCIENCE	Raw frame	sky frame from scientific observation	
AMBER_DARK_CALIB	Raw frame	dark frame from calib observation	
AMBER_SKY_CALIB	Raw frame	sky frame from calib observation	
AMBER_SCIENCE	Raw frame	science object frame	\checkmark
AMBER_CALIB	Raw frame	calibrator object frame	

Table 7.5.2: Input files for the amber_SciCal recipe.

The products of the *amber_SciCal* recipe is an OI-Fits file (see Table 7.5.3).

File name	DO category	Туре	Description
amber_XXX.fits	SCIENCE_REDUCED	OI-FITS	uncalibrated visibilities
amber_XXX.fits	CALIB_REDUCED	OI-FITS	uncalibrated visibilities
pst_filtered_XXX.fits	SCIENCE_REDUCED_FILTERED	OI-FITS	piston filtered OI FITS file
pst_filtered_XXX.fits	CALIB_REDUCED_FILTERED	OI-FITS	piston filtered OI FITS file
snr_filtered_XXX.fits	SCIENCE_REDUCED_FILTERED	OI-FITS	SNR filtered OI FITS file
snr_filtered_XXX.fits	CALIB_REDUCED_FILTERED	OI-FITS	SNR filtered OI FITS file
trf_XXX.fits	AMBER_TRF_(J H K)	OI-FITS	Transfer function
cal_XXX.fits	SCIENCE_CALIBRATED	OI-FITS	Calibrated visibilities

Table 7.5.3: Products of the amber_SciCal recipe.

The *amber_SciCal* parameters are listed in Table 7.5.4.

This recipe is writing the QC parameters listed in Table D.1.0. Note that the average of the squared visibility

			Doc:	VLT-MAN-ESO-19500-4221
E	SO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
	50	A ANDER I Ipenne Oser Mandar	Date:	Date 2011-04-01
			Page:	48 of 86

Parameter	Possible values	Description
binning	0 to 9999	the number of frames to be averaged for each of
	(maximum number of frames per observation)	the visibility calculations
selectPlusTrf	FALSE or TRUE	selects visibilities and derives
		the transfer function or calibrated visibilities.

(V2) and closure phase (CP) is derived including the values at the wavelength boundaries. Moreover, the three bins (BIN1/2/3) are centered at $\frac{1}{6}$, $\frac{3}{6}$ and $\frac{5}{6}$ times the analyzed number of channels, e.g. if 90 channels are present, BIN1/2/3 is centered at channel 15, 45, 75. The quality parameters for CEN are centered in the middle of the analyzed channels (i.e., at channel 45 for 90 channels). The width is 25 per cent of the analyzed number of channels for BIN1/2/3 and 80 percent for the CEN quality control parameter, i.e. for CEN and 90 channels the averaging is done by using 72 channels (i.e., channel 45 ± 36).

Please note that all channels and frames are supposed to be valid during the averaging process of the QC calculation and that the QC parameters of baseline 2 and 3 are only derived if amber is operated in three telescope mode.

	CSO AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
ESO		Issue:	Issue 3.3.0
LSU		Date:	Date 2011-04-01
		Page:	49 of 86

7.6 amber-selector

The AMBER pipeline recipe *amber_selector* is used to select matching frames from AMBER products created by *amber_SciCal* (see Table 7.5.3 and Table 7.6.1). The output is again an AMBER product (same OI FITS format like the input) but will only contain the matching frames which passed the filter. This means the resulting product can be plotted by the same tools like all other AMBER OI FITS files.

Please note that in three telescopes mode we will of course have three baselines. In the OI fits standard they have to be written in a sequence of triples like {base1, base2, base3}, {base1, base2, base3}, ... To maintain consistency the whole triple has to be written even if only *ONE* visibility matches a certain selection. Therefore the written product can still contain visibilities which actually did not match the selection!!

DO category	Туре	Description	Required
SCIENCE_REDUCED	product frame	OI FITS file	
CALIB_REDUCED	product frame	OI FITS file	\checkmark

There are various algorithms to select and filter the data. The algorithms can be selected and controlled by the parameters *selection_method*, *selection_x1*, *selection_x2*, *selection_x3* and *selection_ANDselection*. The corresponding aliases for esorex execution are:

```
--selection-method=
--X1=
--X2=
--X3=
--ANDselection=
```

e.g.:

```
esorex --selection-method="Fringe_SNR_gt_x" --X1=2.3
--X2=4 --X3=5.4 --ANDselection=FALSE SetOfFrame.txt
```

After selecting a method (see below) one can impose a selection threshold for every baseline by defining the variables X1, X2, and X3. Moreover one can also choose the way how the single thresholds should be applied to a frame by setting the Boolean variable ANDselection:

- **ANDselection=FALSE**: If ANDselection is set to FALSE, a frame passes the filter if at least one of the selection criteria are fulfilled (X1 or X2 or X3) for that particular frame.
- **ANDselection=TRUE**: If ANDselection is set to TRUE, a frame passes the filter only if ALL selection criteria (X1 and X2 and X3) are fulfilled for that particular frame.

If only one baseline is available, X2, X3 as well as ANDselection can be neglected.

The different selection methods are:

• **First_x_Frames:** This method will filter the first x frames (given by setting the variable X1) of the observation. The purpose of this method is a more technical one. It can be used to check if the instrument is properly suppressing the very first few frames after switching the detector to ON. These frames are often of low quality due to the design of the readout electronics of the detector. The variables X2, X3 as well as ANDselection can be omitted.

Units: [X1, X2, X3] == [NONE, NONE, NONE]

- Boundaries for X1, X2, and X3: [1, NumberOfFrames]
- Fringe_SNR_gt_x: This method is based on the fringe Signal to Noise Ratio. For ANDselection=FALSE: If for a frame the fringe SNR of one baseline is greater than the given threshold, the corresponding frame will be selected. For ANDselection=TRUE: If for a frame the fringe SNRs of all baselines are greater than the given threshold, the corresponding frame will be selected. Units: [X1, X2, X3] == [NONE, NONE, NONE] Boundaries for X1, X2, and X3: [0, FLT_MAX²]
- Fringe_SNR_percentage_x: This method is based on the fringe Signal to Noise Ratio.
 For ANDselection=FALSE: If for a frame the fringe SNR of one baseline is within the given percentile threshold (of that specific baseline), the corresponding frame will be selected.
 For ANDselection=TRUE: If for a frame the fringe SNRs of all baselines are within the given percentile threshold (of that specific baseline), the corresponding frame will be selected.
 If for example X1=15, X2=20, X3=25 and ANDselection=TRUE, the method selects only frames with SNR among the best 15 percent for baseline 1, *and* among the best 20 percent for baseline 2, *and* among the best 25 percent for baseline 3. If for example X1=15, X2=20, X3=25 and ANDselection=FALSE, the method selects frames with SNR among the best 25 percent for baseline 3. If percent for baseline 1, *or* among the best 20 percent for baseline 4.
 Units: [X1, X2, X3] == [Percentage, Percentage, Percentage]
 Boundaries for X1, X2, and X3: [0, 100]
- Flux_gt_x: This method is based on a flux criteria: At the moment the flux criteria is defined by: $sqrt(Pi * Pj)/sqrt(fluxPi + fluxPj + npix * RON^2)$ and summed over full spectrum Please note that this method is not yet validated!
- Flux_percentage_x: This method is based on a flux criteria: At the moment the flux criteria is defined by: $sqrt(Pi * Pj)/sqrt(fluxPi + fluxPj + npix * RON^2)$ and summed over full spectrum Please note that this method is not yet validated!
- Exclude_Frames_by_ASCII_File: This method is an interface to external tools able to identify frames to be excluded. The files to exclude must be written by frame-index to the ASCII file */tmp/amber_exclude.txt*. Only one frame-index per line is allowed. For example, if frame number 13, 20, 25 and 255 should be excluded, the file should look as shown in Table 7.6.2. The output of the recipe is a OI FITS file which contains all frames but not the four listed before.
- Include_Frames_by_ASCII_File: This method is an interface to external tools able to identify frames to be included. The files to include must be written by frame-index to the ASCII file */tmp/amber_include.txt*. Only one frame-index per line is allowed. See also selection method -Exclude Frames by ASCII File-.

²FLT_MAX is system specific; e.g. 3e+38

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	51 of 86

Table 7.6.2: Example of the file /tmp/amber_exclude.txt.

- **IO-Test_no_filtering:** This method is mainly for testing the integrity of the code. It will read the whole input to internal structures and write it back unchanged. Only some header keywords may be added/erased/updated. The values for X1, X2, X3, and ANDselected can be omitted.
- Absolute_piston_value_lt_x: This method is based on the piston value.
 For ANDselection=FALSE: If for a frame the absolute piston value of one baseline is smaller than the given threshold, the corresponding frame will be selected.
 For ANDselection=TRUE: If for a frame the absolute piston value of all baselines are smaller than the given threshold, the corresponding frame will be selected.
 Units: [X1, X2, X3] == [Meter, Meter, Meter]
 Boundaries for X1, X2, and X3: [0, FLT MAX²]

Absolute_piston_value_percentage_x: This method is based on the piston value. For ANDselection=FALSE: If for a frame the absolute piston value of one baseline is within the given percentile threshold (of that specific baseline), the corresponding frame will be selected. For ANDselection=TRUE: If for a frame the absolute piston value of all baselines are within the given percentile threshold (of that specific baseline), the corresponding frame will be selected. If for example X1=15, X2=20, X3=25 and ANDselection=TRUE, the method selects only frames with an absolute piston value among the best 15 percent for baseline 1, *and* among the best 20 percent for baseline 2, *and* among the best 25 percent for baseline 3. If for example X1=15, X2=20, X3=25 and ANDselection=FALSE, the method selects frames with an absolute piston value among the best 20 percent for baseline 3. If for example X1=15, X2=20, X3=25 and ANDselection=FALSE, the method selects frames with an absolute piston value among the best 20 percent for baseline 3. If for example X1=15, X2=20, X3=25 and ANDselection=FALSE, the method selects frames with an absolute piston value among the best 15 percent for baseline 3. If for example X1=15, X2=20, X3=25 and ANDselection=FALSE, the method selects frames with an absolute piston value among the best 15 percent for baseline 1, *or* among the best 20 percent for baseline 2, *or* among the best 25 percent for baseline 3. Units: [X1, X2, X3] == [Percentage, Percentage, Percentage] Boundaries for X1, X2, and X3: [0, 100]

This recipe is writing the QC parameters listed in Table D.2.0. The QC parameter describing the applied threshold are especially useful for a selection by percentage, as they contain the absolute threshold values. Moreover, the average of the squared visibility (V2) and closure phase (CP) is derived including the values at the wavelength boundaries. The three bins (BIN1/2/3) are centered at $\frac{1}{6}$, $\frac{3}{6}$ and $\frac{5}{6}$ times the analyzed number of channels, e.g. if 90 channels are present, BIN1/2/3 is centered at channel 15, 45, 75. The quality parameters for CEN are centered in the middle of the analyzed channels (i.e., at channel 45 for 90 channels). The width is 25 per cent of the analyzed number of channels for BIN1/2/3 and 80 percent for the CEN quality control parameter, i.e. for CEN and 90 channels the averaging is done by using 72 channels (i.e., channel 45 ± 36).

Please note that only the selected frames are used to derive the QC parameters and all selected channels and frames are supposed to be valid during the averaging process. Obviously, the QC parameters of baseline 2 and 3 are only derived if amber is operated in three telescope mode.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU	A WIDER T Ipenne e ser Munuar	Date:	Date 2011-04-01
		Page:	52 of 86

7.7 amber_trf

The AMBER pipeline recipe *amber_trf* is used to derive the transfer function from AMBER products created by *amber_SciCal* or *amber_selector*. In order to calculate the transfer function, the product must be from a calibrator object and must be found in the calibrator database given in the SOF.

All the files that must be included in the input SOF are listed in Table 7.7.1.

DO category	Туре	Description	Required
CALIB_REDUCED	product frame	OI FITS file	/
CALIB_REDUCED_FILTERED	product frame	OI FITS file	\checkmark
CALIB_DATABASE_J	calib frame	J-Band Calibrator database	
CALIB_DATABASE_H	calib frame	H-Band Calibrator database	
CALIB_DATABASE_K	calib frame	K-Band Calibrator database	

	Table 7.7.1:	Input files for th	e amber_trf recipe.
--	--------------	--------------------	---------------------

The product of the *amber_trf* recipe is one or several OI-FITS file(s) depending on the number of files in the SOF (see also Table 7.7.2). The name of the product consists of the name of the input filename where the prefix trf_i is appended.

File name	DO category	Туре	Description
trf_XXX.fits	AMBER_TRF_(J H K)	FITS	OI FITS file, with xxxx
			corresponding to the input filename

Table 7.7.2: *Product of the amber_trf recipe*.

This recipe is writing the QC parameters listed in Table D.3.0.

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LSU	Third DER Tipeline Oser Manadi	Date:	Date 2011-04-01
		Page:	53 of 86

7.8 amber_calibrate

The AMBER pipeline recipe *amber_calibrate* is used to calibrate the squared visibilities as well as the closure phase (if present). In order to derive calibrated squared visibilities and closure phase, the SOF must contain a science object as well as a suitable transfer function. All the files that must be included in the input SOF are listed in Table 7.8.1.

DO category	Туре	Description	Required
SCIENCE_REDUCED	product frame	OI FITS file	/
SCIENCE_REDUCED_FILTERED	product frame	OI FITS file	V
AMBER_TRF_J	calib frame	J-Band transfer function	
AMBER_TRF_H	calib frame	H-Band transfer function	\checkmark
AMBER_TRF_K	calib frame	K-Band transfer function	

The product of the *amber_calibrate* recipe is one or several OI-FITS file(s) depending on the number of files in the SOF (see also Table 7.8.2). The name of the product consists of the name of the input filename where the prefix $cal_$ is appended.

File name	DO category	Туре	Description
cal_XXX.fits	SCIENCE_CALIBRATED	FITS	OI FITS file, with xxxx
			corresponding to the input filename

Table 7.8.2: Product of the amber_calibrate recipe.

This recipe is writing the QC parameters listed in Table D.4.0.

7.9 amber_oimerge

The AMBER pipeline recipe *amber_oimerge* is used to merge OI-fits files.

First it tries to group the files in the SOF according to the waveband coverage (J, H, or K) by using the QC BAND header parameter. If not present, the recipe assumes that all the files cover the same wavelength.

In a second step the recipe checks, if all the OI-fits files in a group are compatible:

- Extension OI_WAVELENGTH: the EFF_BAND as well as the EFF_WAVE columns must be identical.
- Extension OI_ARRAY: the TEL_NAME the STA_NAME as well as the STA_INDEX columns must be identical.

If these checks are successful for a group, the recipe merges the OI-fits files of that group.

All the files that can be included in the input SOF are listed in Table 7.9.1.

DO category	Туре	Description	Required
SCIENCE_REDUCED	product frame	OI FITS file	
SCIENCE_REDUCED_FILTERED	product frame	OI FITS file	
CALIB_REDUCED	product frame	OI FITS file	
CALIB_REDUCED_FILTERED	product frame	OI FITS file	
AMBER_TRF_J	product frame	OI FITS file	
AMBER_TRF_H	product frame	OI FITS file	
AMBER_TRF_K	product frame	OI FITS file	
SCIENCE_CALIBRATED	product frame	OI FITS file	

Table 7.9.1: Input files for the amber_oimerge recipe.

The product of the *amber_oimerge* recipe is one or several OI-FITS file(s) depending on the number of groups in the SOF. The **DO category** of the merged frame(s) is the same as the first valid **DO category** of the group (see table 7.9.2):

If present in the first valid frame the recipe inherits the QC parameters listed in Table 7.9.3.

7.10 amber-ascii-export

The AMBER pipeline recipe *amber_ascii_export* is part of the distribution but not supported by ESO. It was kindly provided by Klara Shabun. Please contact her directly for any questions on the recipe.

	O AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
ESO		Issue:	Issue 3.3.0
LOU	A WIDER T Ipenne Ober Wandar	Date:	Date 2011-04-01
		Page:	55 of 86

File name	DO category	Туре	Description
merged_(J H K)-band.fits	SCIENCE_REDUCED	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	SCIENCE_REDUCED_FILTERED	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	CALIB_REDUCED	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	CALIB_REDUCED_FILTERED	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	AMBER_TRF_J	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	AMBER_TRF_H	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	AMBER_TRF_K	OI-fits	merged OI-fits file
merged_(J H K)-band.fits	SCIENCE_CALIBRATED	OI-fits	merged OI-fits file

Table 7.9.2: Product of the amber_oimerge recipe. Please note, that the filename chances to merged_unknown.fits if the waveband can not be identified properly, i.e. if the QC BAND header parameter is missing.

QC Parameter	Description
LAMBDA CHAN	total number of channels in the file
LAMBDA MIN	lowest wavelength in the file [micron]
LAMBDA MAX	highest wavelength in the file [micron]
BAND	waveband
STA1	index of station 1
STA2	index of station 2
STA3	index of station 3

Table 7.9.3: *QC* values inherited by the amber_oimerge recipe.

			Doc:	VLT-MAN-ESO-19500-4221
E	SO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
		Date:	Date 2011-04-01	
			Page:	56 of 86

A Installation

See: Installation instructions

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	57 of 86

B Algorithms

In this section the data reduction procedures applied by the pipeline recipes currently in use (see Section 6.2) are described in more detail. Common algorithms, as cosmic rays removal or bad pixel cleaning, are described separately.

B.1 General Algorithms

B.1.1 Dark subtraction

Dark frames are taken during the actual observation run. If no dark is available, the dark channel (left most side on the CCD chip) will be used, instead. This will of course reduce the accuracy.

B.1.2 Bad Pixel Map and Flat Field Generation

The following paragraph was adopted from an article (private communication) by M. Heininger, MPI Bonn.

In order to generate all important detector characterization maps, several series of dark and flatfield images are necessary. Experiments have shown that at least 7 series with about 100 images are needed. The illumination level should reach 40 percent of the full well capacity. For example, if saturation is reached after 10 seconds, the recommended exposure times are 600, 1200, 1800, 2400, 3000, 3600, and 4200 ms. For each exposure time, 100 dark images and 100 flatfield images are necessary, adding up to 14 image series, each including 100 images (about 1.5 GBytes). These data requirements are fulfilled by the accompanying recipe.

In Figure B.1.1, a typical cold dark image is shown in the left panel and a typical flatfield image in the right panel. These images are influenced by detector, electronic, and environmental effects, which are highlighted in this figure. On the left side of the cold dark image, a damped oscillation can be seen. The electronic bias shows up as a vertical ramp. One particle event is marked in the dark image (this event is also shown in figures B.1.2 and B.1.3) and in the flatfield image. The nearby cluster of white pixels in the dark image is a cluster of bad pixels, which is found later on by the algorithms described further in this document. Several hot (white) and dark pixels are clearly visible in both images too. The flatfield image on the right shows the same effects as a cold dark image. In addition, the shielded area on the left side of the detector used for calibration purposes and the inhomogeneous illumination caused by the spectrograph are obvious.

All effects visible in Figure B.1.1 must be taken into account when generating a bad pixel map and a flatfield map:

- The damped oscillation and the electronic bias are stable enough to compensate them by using an electronic bias map which contains both effects in one map (see Appendix B.1.4).
- Particle events influence the temporal noise of pixels, and the images which contain such events must be ignored for the affected pixels.
- The shielded area is used to compensate the global detector offset and the 1/f noise (not visible in Figure B.1.1).

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	58 of 86

Figure B.1.1: Typical cold dark image on the left and a typical flatfield image on the right.

• The inhomogeneous illumination must be taken into account when calculating the flatfield map because the flatfield map must only contain the different pixel gain.

In order to generate a bad pixel map and a flatfield map the pipeline performs the following tasks:

- 1. For each series of dark images, a particle event map, an electronic bias map, a pixel bias map, and a pixel statistics map is generated (see Appendix B.1.3, B.1.4, and B.1.5).
- 2. For each series of flatfield images, a particle event map, a photon noise map, and a pixel statistics map is generated (see Appendix B.1.3 and B.1.5). For this step, the pixel bias maps and the electronic bias maps from the corresponding series of dark images are used.
- 3. A dark current map from the pixel statistics maps of all series of dark images is generated (see Appendix B.1.6).
- 4. A bad pixel map is generated using the pixel statistics maps, photon noise maps, and dark current map (see Appendix B.1.7).
- 5. New pixel statistics maps for the series of flatfield images with compensation for pixel bias, electronic bias, and particle events are generated.
- 6. A flatfield map from the new pixel statistics maps for the series of flatfield images is generated (see Appendix B.1.8).

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	59 of 86

Figure B.1.2: A particle event and afterglow on the detector

Figure B.1.3: Intensity values of a pixel during a particle event with afterglow

ESO

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	60 of 86

B.1.3 Particle Events

Images taken with the HAWAII-1 detector of the AMBER instrument show random particle events at a rate of about 2 events per quadrant per minute exposure time. This rate seems to be independent of the observing site because images taken in Bonn show the same number of events per minute. These particle events show up as a sudden raise in the intensity of a few pixels. Normally, these pixels build a small cluster of 2-20 pixels. After a few images, the intensity of these pixels drops to the previous value.

In Figure B.1.2 a particle event is shown, where the left panel shows the image when the particle hits the detector. The other panels show the afterglow of the event. The permanently visible cluster is a small cluster of defect pixels on the AMBER detector (chip #159). Figure B.1.3 shows the intensity variations of a pixel during that particle event.

The amdms library implements an algorithm which detects particle events under the following conditions:

- More than one pixel is influenced.
- These pixels are connected, which means they are direct neighbors.
- The raise in intensity is larger than a given limit.

If a pixel is influenced by a particle event, the average intensity and the variance has to be recalculated by ignoring the affected images. The algorithm used for the particle event detection is implemented as a filter. This means a pixel has to pass certain tests before a particle event influencing this pixel is accepted and a new mean and variance is calculated:

```
Try to detect particle events, mark the affected images, and recalculate the statistics.
PROC amdmsDetectParticleEvents()
  try to find candidates for particle events (see amdmsFindPEs())
   allocate memory for all candidate pixels and their data values;
   reload the data values for all candidate pixels;
   FOR EACH candidate pixel DO
      analyze the candidate pixel (see amdmsAnalyzePE());
      IF the pixel is still a candidate THEN
         find the affected image interval (see amdmsFindPEInterval());
     ENDIF
   ENDFOR
   FOR EACH candidate pixel DO
      try to verify the particle event (see amdmsVerifyPE());
   ENDFOR
   FOR EACH candidate pixel DO
     recalculate the mean and variance (see amdmsRecalculateMeanVar());
   ENDFOR
ENDPROC
```

Candidate pixels are found by comparing the measured variance with a given limit. For cold dark images, this limit is equal to a noise of $40e^-$; for flatfield images this limit is equal to a noise of $100e^-$. It is also necessary that at least one nearby pixel has a variance which is higher than this limit. This means that isolated pixels with an unusually high variance are treated as bad pixels. It is still possible that a particle event affected only one pixel; in this case that event is not detected, but the pixel is marked as a bad pixel.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	61 of 86

```
Try to find candidates for particle events.
PROC amdmsFindPEs()
FOR EACH pixel DO
IF the variance of this pixel is less than the limit THEN CONTINUE ENDIF
IF no nearby pixel shows a variance higher than the limit THEN CONTINUE ENDIF
mark this pixel as a possible candidate for a particle event;
ENDFOR
ENDPROC
```

To distinguish between really bad pixels with a high variability and pixels affected by particle events, the following function calculates the mean and variance for the first half and the second half of the pixel values. If there is no significant difference in the variance of both half, the pixel is marked as a bad pixel.

```
Analyze the data of one candidate pixel, which means try to
locate the particle event in the first or second half of the
data values of a pixel.
PROC amdmsAnalyzePE(candidate pixel)
  calculate mean (m) and variance (v) for all data values;
  set a split point at the middle of the data set;
  calculate mean (m_f) and variance (v_f) from 0 up to the split point;
  calculate mean \left(m_{s}
ight) and variance \left(v_{s}
ight) from the split point up to the end;
  IF v_f < 0.5 v and v_s > 1.5 v then
      // the particle event is in the second half of the data, mean and variance are
      // recalculated by moving the split point by -20 images (enlarge the second part)
     recalculate mean (m_f) and variance (v_f) from 0 up to the split point;
      recalculate mean (m_s) and variance (v_s) from the split point up to the end;
      IF v_f < 0.5 v and v_s > 1.5 v then
         \ddot{//} the particle event could be verified in the second part of the data
         store the split point and the end of the data as interval of a particle event;
      ELSE
        remove this candidate pixel from the list;
     ENDIF
  ELSEIF v_s < 0.5v AND v_f > 1.5v THEN
      // the particle event is in the first half of the data, mean and variance are
      \prime\prime recalculated by moving the split point by +20 images (enlarge the first part)
      recalculate mean (m_f) and variance (v_f) from 0 up to the split point;
      recalculate mean (m_s) and variance (v_s) from the split point up to the end;
      IF v_s < 0.5 v and v_f > 1.5 v then
         // the particle event could be verified in the first part of the data
         store the split point and the end of the data as interval of a particle event;
      ELSE
         remove this candidate pixel from the list;
      ENDIF
  ELSE
      remove this candidate pixel from the list;
  ENDIF
ENDPROC
```

As shown in Figure B.1.3, the following procedure tries to find the interval of images where the particle hit the pixel and the afterglow of the event affected the measured intensity.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	62 of 86

```
Find the images which are affected by the particle event (see Figure B.1.3).
PROC amdmsFindPEInterval(candidate pixel)
  find the peak value inside the interval;
  find the image before the peak where the value is below the mean m;
  find the image after the peak where the value is below the mean m;
  store the first and last image of this interval;
ENDPROC
```

The final test for a candidate pixel is that the interval of the affected images of this pixel and a nearby candidate pixel must overlap. If this is not the case, the pixel is treated as a bad pixel. If there is an overlap, both pixels are treated as pixels affected by the same particle event.

```
Verify the particle event by comparing it with the events found at nearby pixels.
PROC amdmsVerifyPE(candidate pixel)
    IF no nearby pixel is marked as a candidate pixel THEN
        remove this candidate pixel;
        RETURN;
    ENDIF
    IF the interval of a nearby candidate pixel and this pixel has no common subset THEN
        remove this candidate pixel;
        RETURN;
    ENDIF
    IF the current candidate pixel and the nearby pixel as a common particle event;
    ENDPROC
```

If particle events are found, the mean and variance of the affected pixels are recalculated by ignoring the data showing the particle event and afterglow. A particle event map contains, for each pixel, the first and last image number which defines an interval of images where a pixel is influenced by a particle event. If a pixel shows no such effect, both values are -1. Figure B.1.4 shows an image where all found particle events of one series of dark images are shown.

Figure B.1.4: Particle event map for a series of 470 cold dark images with 69 particle events.

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	63 of 86

B.1.4 Electronic Bias

In the left panel of Figure B.1.1, the effects labeled as *Damped Oscillation* and *Electronic Bias* are effects which can be extracted from a series of cold dark images. The result is an electronic bias map (see Figure B.1.5), which can be used to compensate flatfield images or science images for both effects if the setup (subwindow geometry and exposure time) is equal.

The calculation of the electronic bias uses the pixel statistics (see Appendix B.1.5) calculated from a series of cold dark images. The first step extracts the vertical ramp by calculating the mean intensity of a pixel row, ignoring outliers. This ramp is then subtracted from the pixel statistics. In the second step, the damped oscillation is calculated as the mean intensity of a pixel column, ignoring outliers. These offsets are subtracted from the pixel statistics too. The results are mean intensities where the electronic bias has been removed.

```
Calculate a map containing the damped oscillation and the
electronic bias (vertical ramp) from a series of dark images.
PROC amdmsCalculateElectronicBiasQ1()
  allocate memory for the electronic bias map and initialize it with 0.0:
   // extract the vertical ramp from the pixel statistics
   FOR EACH pixel row DO
      calculate the average intensity for this row using all pixels;
      set the lower and upper limit using the average intensity;
     FOR EACH requested number of iterations DO
        calculate a new average intensity for the current row ignoring pixels
         which have a value below the lower limit or above the upper limit;
        recalculate both limits using the new average intensity;
     ENDFOR
     use the last average intensity as the electronic bias for this pixel row;
     subtract this bias from the pixel statistics of this row;
   ENDFOR
   // extract the damped oscillation from the pixel statistics
   FOR EACH pixel column DO
     calculate the average intensity for this column using all pixels;
      set the lower and upper limit using the average intensity:
     FOR EACH requested number of iterations DO
        calculate a new average intensity for the current column ignoring pixels
        which have a value below the lower limit or above the upper limit;
         recalculate both limits using the new average intensity;
     ENDFOR
     use the last average intensity as the electronic bias for this pixel column;
      subtract this bias from the pixel statistics of this column;
   ENDFOR
ENDPROC
```

The implementation of this algorithm in the *amdms* library ensures that at least half of the pixels in a row or column are used to calculate an average intensity. Figure B.1.5 shows an electronic bias map calculated from a series of cold dark images. In this Figure the damped oscillation on the left side and the electronic bias as a vertical ramp are clearly visible.

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	64 of 86

Figure B.1.5: Electronic bias map from a series of dark images with an exposure time of 4.5s.

B.1.5 Pixel Statistics, Pixel Bias, and Photon Noise

The basis for the calculation of the dark current map (see Appendix B.1.6), the bad pixel map (see Appendix B.1.7), and the flatfield map (see Appendix B.1.8) are the pixel statistics and two derived maps: the pixel bias map and the photon noise map. From each series of cold dark images and flatfield images, the average intensity and temporal variance of each pixel is calculated. These values are calculated by ignoring particle events and subtracting the electronic bias. In Figure B.1.6 the pixel statistics for a series of cold dark images are shown. On the left side, the average intensity shows no electronic bias map, which is obvious if it is compared with a typical cold dark image (see left part of Figure B.1.1) and the corresponding electronic bias map (see Figure B.1.5). The temporal variance on the right side of Figure B.1.6 shows no sign of particle events. This indicates that almost all particle events were found and ignored during the calculation.

The pixel bias map used to compensate for a different "pixel offset" for each pixel is equal to the average mean intensity from the pixel statistics map. The photon noise map contains the relation between the measured

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	65 of 86

Figure B.1.6: Pixel statistics for a series of cold dark images: left: the average intensity for each pixel calculated from a series of 100 cold dark images. The linear scaled image shows values between -10DU and +10DU; right: the temporal variance for each pixel is shown in a linear scaled image with 0 and $+30DU^2$ as limits.

temporal variance and the expected photon noise for each pixel and each series of flatfield images:

$$PN_i = \sqrt{cf\frac{v_i}{m_i}}$$

where PN_i is the photon noise value of a pixel in the photon noise map, cf is the conversion factor of $4.18 \frac{e^-}{DU}$, v_i is the temporal variance, and m_i is the average intensity from the i^{th} pixel. In Figure B.1.8 a photon noise map is shown.

AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
	Issue:	Issue 3.3.0
	Date:	Date 2011-04-01
	Page:	66 of 86

ESO

Figure B.1.7: Pixel statistics for a series of flatfield images: left: the average intensity for each pixel calculated from a series of 100 flatfield images. The linear scaled image shows values between 0DU and +9000DU; right: the temporal variance for each pixel is shown in a linear scaled image with 0 and $+3000DU^2$ as limits.

Figure B.1.8: Photon noise map. The image has a linear scale with the limits 0.0 and 2.0.

	Doc:	VLT-MAN-ESO-19500-4221	
ESO	ESO AMBER Pipeline User Manual	Issue:	Issue 3.3.0
LOU		Date:	Date 2011-04-01
		Page:	67 of 86

B.1.6 Dark Current

In the typical cold dark image on the left side of Figure B.1.1, some white (hot) and dark pixels can be seen. These pixels do not have a different offset than the other pixels, but the reason for this effect is the following:

When a pixel is reset, a certain number of electrons (about 100 000 - 120 000) are injected into the capacitor of a pixel. If photons are collected by a pixel, electrons are removed from the pixel capacitor. The measured intensity is equal to the difference between those two states. That means if a pixel shows a large value even without light, the capacitor is not perfect; some electrons are lost during the exposure time. The dark pixels have negative values, which means they collect electrons lost by nearby pixel capacitors. This so-called dark current shows up as white and dark pixels in cold dark images. The dark current map trys to quantify this effect.

The dark current map consists of an offset, slope, and fit quality (χ^2) for each pixel. The offset and slope define a straight line where the units are [DU] and [DU/s]. During the generation of the bad pixel map (see Appendix B.1.7), upper and lower limits for the slope and upper limits for χ^2 are used to detect pixels with an unusually high dark current or with a nonlinear dark current.

The input data for the dark current map is a set of pixel statistics maps from the series of cold dark images. Then, a straight line is fitted through the mean intensities for each pixel. The offset, slope, and fit quality are stored in the dark current map. The left panel of Figure B.1.9 shows the offset, the panel in the middle the slope, and the right panel the fit quality.

Figure B.1.9: Dark current map for the AMBER detector: left: the dark current map contains the offset of the fitted straight line. The image has a linear scale where the lower and upper limits are $-75e^-$ and $75e^-$; middle: the slope of the straight line is shown in this linear scaled image. The lower and upper limits are $-75e^-/s$ and $75e^-/s$, which are the limits used for the bad pixel map generation; right: the fit quality (χ^2) is shown in this linear scaled image. The limits are 0.0 and 5.0, which are used for the bad pixel map generation.

B.1.7 Bad Pixel Map

The pipeline step which generates a bad pixel map uses all intermediate data described in the previous sections. The parameters used for the AMBER detector are shown in table B.1.0.

1. The first step uses the variance values from all pixel statistics maps of all series of cold dark images.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	68 of 86

Figure B.1.10: Badpixel map

Pixels which have a variance lower than the minimum value (so-called "dead pixels") are marked as bad pixels. Pixels which have a variance higher than the maximum value are noisier than a normal pixel and also marked as bad pixels.

- 2. The second step uses the same criteria for the variance, but this time uses values from all pixel statistics of all series of flatfield images. These images have a shielded area where the conditions are similar to cold dark images and, therefore, the same limits are used for pixels in this area. The illuminated part of the flatfield images is ignored in this step.
- 3. The third step uses the photon noise values in the photon noise maps generated from all series of flatfield images. If the photon noise of a pixel is less than the minimum value or greater than a maximum value, this pixel is marked as a bad pixel.
- 4. The fourth step uses the slope value in the dark current map. If a pixel has a slope which is less than the minimum or greater than a maximum value, this pixel is marked as a bad pixel.
- 5. The fifth step uses the χ^2 value in the dark current map. If the fit quality is worse than a certain maximum value, this pixel is marked as a bad pixel.

6. The last step uses the average intensity of a pixel compared to the local average. This local value is computed by using all pixels in a local array of pixels which covers 11 times 11 pixels, but the inner part of 3 times 3 pixels is ignored.

Step	Criteria	Min value	Reference value	Maximum value
1	Noise in the cold dark images	$0.23 \equiv 2.0e^-$	$6.93 \equiv 11.0e^-$	$321.94 \equiv 75.0e^{-1}$
2	Noise in the shielded area in the flat-	$0.23 \equiv 2.0e^-$	$6.93 \equiv 11.0e^-$	$321.94 \equiv 75.0e^-$
	field images			
3	Photon noise inside vertical stripes	0.5	1.0	2.25
4	Slope in the dark current map dark	$-17.94 \equiv$	$0.0 \equiv 0.0 e^-/s$	17.94 ≡
		$-75.0e^{-}/s$		$75.0e^{-}/s$
5	χ^2 in the dark current map		0.0	5.0
6	Local average intensity in the flat-	-5.0σ	0.0σ	5.0σ
	field images			

T 1 1 D 4 0	D	a 1		
Table B 1 0°	Parameters	for the	had nixe	l map generation
10010 D.1.0.	1 urumeters	ioi une	oud pine	mup generation

In Figure B.1.10 a bad pixel map is shown which was calculated using the images taken during commissioning 2, 22.10.2004 at Paranal. Except for a few clusters, all bad pixels are isolated and do not interfere with the science data taken in the four vertical stripes (see right part of Figure B.1.1).

B.1.8 Flatfield Map

A flatfield map for the AMBER detector is calculated by using a set of pixel statistic maps from several series of flatfield images (see left side of Figure B.1.7). For each pixel, a straight line is fitted through the data values, and the normalized slope is used for the flatfield map. A closer look at a typical flatfield image (see right side of figure B.1.1) or a pixel statistics map (see left side of Figure B.1.7) shows that the illumination of the AMBER detector is affected by at least the following effects:

- Only four vertical stripes are illuminated on the detector and the illumination level is different between the four stripes.
- The illumination shows a ramp in vertical direction.
- The illumination shows a horizontal profile, with ramps on both sides of a vertical stripe.

Because of these effects, a normal calculation of the flatfield map is not possible since only a detector flatfield and not an instrument flatfield is required. The effects mentioned above are taken into account by:

- 1. Treating each vertical stripe separately.
- 2. Compensating for the vertical ramp and horizontal profile by using a simple model of the light distribution.

The algorithm used to neutralize the ramp and profile can be described as follows:

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	70 of 86

Figure B.1.11: Flatfield map for the AMBER detector: Left: the image shows a flatfield map without compensation; **Right**: the image shows a flatfield map with compensation and, therefore, represents only the gain variations of the AMBER detector pixels. Both images have a linear scale with 0.7 and 1.3 as limits.

```
Compensate for the vertical ramp and horizontal profile.
PROC amdmsCleanUpFlatfieldSmooth()
   // calculate a horizontal profile in the lower and upper side of the detector
   FOR EACH pixel column i DO
      calculate the average intensity for 40 pixels at rows 80 - 120
      and use this value as part of the lower profile LP_i;
      calculate the average intensity for 40 pixels at rows 392 - 432 \,
      and use this value as part of the upper profile UP_i;
   ENDFOR
   // calculate smoothened profiles (see amdmsSmoothDataByFiniteDiff1)
   smooth the lower profile by using finite differences;
   smooth the upper profile by using finite differences;
   calculate a center profile as average of the lower and upper profile CP_i;
   // compensate for the vertical ramp
   FOR EACH pixel column i DO
      calculate the slope of a straight line as a = (UP_i - LP_i)/312;
      FOR EACH pixel row j DO
         calculate a compensation factor f = CP_i/(LP_i + a(j - 100));
         calculate a new pixel mean as m = m \times f and a new pixel variance as v = v \times f \times f;
      ENDFOR
   ENDFOR
   // compensate for the profile
   FOR EACH vertical stripe \boldsymbol{k} DO
      calculate the average m of {\it CP}_i for all pixel columns inside stripe k;
      FOR EACH pixel column i in the current stripe DO
         calculate a compensation factor f=m/CP_i;
         calculate new mean and variance values for the pixel column i;
      ENDFOR
   ENDFOR
ENDPROC
```

ESO

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	71 of 86

Figure B.1.11 shows two flatfield maps; one where the vertical ramp and horizontal profile are compensated for, and one without compensation. The gray areas in both images are those areas on the detector without enough light to calculate a useful flatfield value.

B.1.9 Flat field correction

The flat field correction merely consists of dividing the frame to be corrected by a given master lamp flat field frame produced by the recipe *amber_detector*

It is currently under discussion if the flat field is implicit with the p2vm correction.

B.2 AMBER-specific Algorithms

For a detailed description of AMBER-specific algorithms please refer to the AMBER data reduction plan, VLT-PLA-AMB-15830-6004.

The following description is a very minute introduction taken from the document before mentioned.

B.2.1 P2VM calculation

The fringe pattern produced on the camera by any two pair of entrance beams, in any of the (up to 3) spectral bands imaged, must be calibrated beforehand, since it depends strongly on the current instrument configuration, especially the position of beams wrt. the pupil masks, and the position of the dispersing elements. Calibrating this fringe pattern is called calibrating the Pixel-to-Visibility Matrix (the P2VM). The AMBER OS will prevent the acquisition of science data when the corresponding P2VM has not been calibrated.

A P2VM calibration is performed by obtaining one frame with all shutters closed to get a sky-type frame, then by opening in turn only one shutter to get the shape of the illumination in the interferometric channel due to one fiber (the so-called vik), then by opening in turn pairs of shutters to retrieve the interference fringe pattern for each pair of telescope, with and without a phase shift of a known value.

- 0. The visibility of the artificial source (lamp) in the CAU is supposed to be fixed, calibrated and noted V0.
- 1. CAU Lamp: ON
- 2. CAU mirror on CAU position.
- 3. Shutter 1 Close, 2 Close, 3 Close
- 4. take image File: AMBER 3TSTD CAL 0001.fits
- 5. Shutter 1 Open, 2 Close, 3 Close
- 6. take image File: AMBER 3TSTD CAL 0002.fits
- 7. Shutter 1 Close, 2 Open, 3 Close
- 8. take image File: AMBER 3TSTD CAL 0003.fits
- 9. Phase Plate position Off (INS OPTI4 NAME = DEL NO)
- 10. Shutter 1 Open, 2 Open, 3 Close
- 11. take image File: AMBER 3TSTD CAL 0004.fits
- 12. Phase Plate position On (INS OPTI4 NAME = DEL1 2)
- 13. Shutter 1 Open, 2 Open, 3 Close
- 14. take image File: AMBER 3TSTD CAL 0005.fits
- 15. Shutter 1 Close, 2 Close, 3 Open
- 16. take image File: AMBER 3TSTD CAL 0006.fits
- 17. Phase Plate position Off (INS OPTI4 NAME = DEL NO)
- 18. Shutter 1 Close, 2 Open, 3 Open
- 19. take image File: AMBER 3TSTD CAL 0007.fits
- 20. Phase Plate position On (INS OPTI4 NAME = DEL12 3)
- 21. Shutter 1 Close, 2 Open, 3 Open
- 22. take image File: AMBER 3TSTD CAL 0008.fits
- 23. Phase Plate position Off (INS OPTI4 NAME = DEL NO)
- 24. Shutter 1 Open, 2 Close, 3 Open
- 25. take image File: AMBER 3TSTD CAL 0009.fits
- 26. Phase Plate position On (INS OPTI4 NAME = DEL12 3)
- 27. Shutter 1 Open, 2 Close, 3 Open
- 28. take image File: AMBER 3TSTD CAL 0010.fits

Note that the 5 first steps are needed for a 2 Telescope P2VM. Those calibration frames are processed with amdlib routines to produce a P2V Matrix used for all following visibility extraction, until the Instrument Setup changes and a new P2VM is needed.

Of the previously described calibration frames, the first is a sky-like measurement, without input light. This is done in order to subtract the uncorrelated light sky due to the thermal emission of the fibers, if any. The next three frames are exposures with only one input beam. This allows one to compute the vk coefficients in the equations described before, by dividing the interferometric channel by the measured photometric flux, pixel by pixel and for every input beam. The other 6 frames completely determine the calibration of the instrument. In these frames, two input beams at a time are combined. Per baseline two exposures are made. In one of this couple of frames, an additional phase shift is inserted into one of the beams.
ESO

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	73 of 86

C Changes in the Amdlib

In the following sections we show the differences in the product file of the amber_p2vm and the amber_SciCal recipes due to the change in the Amdlib. For every extension of the product file the old output (left hand side) is compared to the new output (right hand side).

recipe
_p2vm
amber
the
changes in
Amdlib c

ESO

<pre>> file p2vm.fits.1 (main) <==== MD5 = 'e7878b74ed632c31d91ac435e7 = '2008-03-12T16:23:03' / Dat ARCH ESO OCS DRS VERSION = '2.0</pre>	HIERARCH ESO PRO FRCI CALI DATAMD5 = '80141505FC706073336726904 HIERARCH ESO PRO FRCI CAL2 DATAMD5 = '862d7020773335406660941 HIERARCH ESO PRO FRCI PIPE ID = 'amber/2.4.3' / Pipeline (uni HIERARCH ESO PRO FRCI PIPE ID = 'amber/2.4.3' / Pipeline (uni HIERARCH ESO PRO FRCI PIPE ID = 'amber/2.4.3' / Pipeline (uni HIERARCH ESO PRO FRCH = 'INTERFERONETRY' / Observation techni HIERARCH ESO CP2VW ERRVIS23 = 6.6370385-06 / Inst. vis. err HIERARCH ESO CC PZVW HERVIS23 = 6.6370385-06 / Inst. vis. err HIERARCH ESO CC PZVW H ERRVIS12 = 0. / Inst. vis. error for 1 HIERARCH ESO CC PZVW H ERRVIS23 = 0. / Inst. vis. error for 2 HIERARCH ESO CC PZVW H VIS12 = 0. / Inst. vis. error for 3 HIERARCH ESO CC PZVW H VIS12 = 0. / Inst. vis. error for 3 HIERARCH ESO CC PZVW H VIS12 = 0. / Inst. vis. error for 3 HIERARCH ESO CC PZVW H VIS12 = 0. / Inst. vis. for 12 in H HIERARCH ESO CC PZVW H VIS12 = 0. / Inst. vis. for 12 in H HIERARCH ESO CC PZVW J FERVIS23 = 0. / Inst. vis. for 12 in H HIERARCH ESO CC PZVW J VIS12 = 0. / Inst. vis. for 13 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW J VIS13 = 0. / Inst. vis. for 23 in J HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0. / Inst. vis. for 23 HIERARCH ESO CC PZVW K VIS13 = 0.863566 / Inst. vis.	====> file p2vm.fits.1 (main) <=== EXINAME = 'P2VM ' / name of this binary table ex TTYPE1 = 'EFF_WAVE' / label for field 1
<pre>Extension 0: ====> file p2vm.fits.0 (main) <==== DATAMD5 = '6e0783b655188e644dc79a58ab8a8b14' / MD5 checksum DATAMD5 = '6e0783b655188e644dc79a58ab8a8b14' / MD5 checksum DATAMD5 = '6e0783b655188e644dc79a58ab8a8b14' / MD5 checksum DATAMD5 = '20771222114:43:12' / Date this file was written DATEMD5 = '50072005 p2vM ERRVIS12 = 4.508087F=06 / Inst. vis. er < HIERARCH ESO OCS P2vM ERRVIS12 = 4.50808F=06 / Inst. vis. er < HIERARCH ESO OCS P2vM ERRVIS12 = 4.578008F=06 / Inst. vis. er < HIERARCH ESO OCS P2vM ERRVIS12 = 4.578008F=06 / Inst. vis. er < HIERARCH ESO OCS P2vM ERRVIS31 = 1.671419F=06 / Inst. vis. er < HIERARCH ESO OCS P2vM VIS12 = 0.7978971 / Inst. visibility fo < HIERARCH ESO OCS P2vM VIS12 = 0.8500246 / Inst. visibility fo < HIERARCH ESO OCS P2vM VIS31 = 0.6827367 / Inst. visibility fo <</pre>	<pre>> HIEFARCH ESO PRO REC1 DRS ID = 'cpl-4.1.0al' / Data Reduction HIEFARCH ESO PRO REC1 PIPE ID = 'amber/2.4.2' / Pipeline (uni HIEF > HIEF + HIEF > HIEF > HIEF > HIEF > HIEF > HIEF ></pre>	Extension 1: ====> file p2vm.fits.0 (main) <==== EXTNAME = 'P2VM_MATRIX' / name of this binary table ex EXTNAM TTYPE1 = 'Wavelength' / label for field 1 TTYPE1

AMBER Pipeline User Manual

 Doc:
 VLT-MAN-ESO-19500-4221

 Issue:
 Issue 3.3.0

 Date:
 Date 2011-04-01

 Page:
 74 of 86

ESO AMBER Pipeline User Manual			Issue: Date:				sue 3.3.0 11-04-01	
				Page:				75 of 86
<pre>/ label for field 2 / label for field 3 / label for field 4 / label for field 5 / label for field 6</pre>	for field for field for field cal unit of f cal unit of f		<pre>amber_0000.fits.1 (main) <==== '3e7dc8252le5932776a482428bbdc157' / MD5 checksum '2008-03-12T15:53:29' / file creation date (YYYY-MM SO OCS DRS VERSION = '2.0 ' / Data Reduction SW SO PRO REC1 DRS ID = 'cpl-4.1.0cvs' / Data Reductio SO PRO REC1 PIPE ID = 'amber/2.4.3' / Pipeline (uni SO PRO SCIENCE = F / Scientific product if T SO PRO TECH = 'INTERFEROMETRY' / Observation techni SO QC FRAMES SELECTED PERCENT = 11.4 / Frames selecte SO QC FRAMES SELECTED SNRGT2 = 114 / Frames selecte</pre>	.fits.l (main) <==== 1951952. / [m] Array centre x coordinat -5483173. / [m] Array centre y coordinat	s.1 (main) <=====	s.1 (main) <==== / Instrument name	0000.fits.1 (main) <==== / Instrument name 879 / width of table in bytes / data format of field: 1-byte	s.1 (main) <==== / Instrument name 335 / width of table in bytes
<pre>TTYPE2 = 'MATRIX ' TTYPE3 = 'VK ' TTYPE4 = 'SUM_VK ' TTYPE5 = 'BAD_PIXELS' TTYPE6 = 'PHOTOMETRY'</pre>			<pre> ====> file amber_0000.fits.1 (m DATAMD5 = '3e7dc82521e5932776a4 DATE = '2008-03-12T15:53:29' HIERARCH ESO OCS DRS VERSION = HIERARCH ESO PRO REC1 DRS ID = HIERARCH ESO PRO REC1 PIPE ID = HIERARCH ESO PRO SCIENCE = F + HIERARCH ESO PRO TECH = 'INTERF HIERARCH ESO QC FRAMES SELECTED HIERARCH ESO QC FRAMES SELECTED</pre>	====> file amber_0000.fits.1 ARRAYX = 195195 ARRAYY = -548317	====> file amber_0000.fits.1	====> file amber_0000.fits.1 INSNAME = 'AMBER''	====> file amber_0000.fit INSNAME = 'AMBER' NAXIS1 = TFORM14 = '17L''	====> file amber_0000.fits.l (main) INSNAME = 'AMBER ' 335 / wic
<pre>/ label for field 2 / label for field 3 / label for field 4 / label for field 6</pre>	for field for field for field cal unit of f cal unit of f	Amdlib changes in the amber_SciCal recipe	<pre>Extension 0: ====> file amber_0000.fits.0 (main) <==== DATAMD5 = '44e6e50d318223b1c676a138439a0e1a' / MD5 checksum DATE = '2007-12-21T14:36:43' / file creation date (YYYY-MM HIERARCH ESO OCS DRS VERSION = '1.1.1.1.' / Data Reduction SW HIERARCH ESO PRO REC1 DRS ID = 'cpl-4.1.0a1' / Data Reduction HIERARCH ESO PRO REC1 PIPE ID = 'cpl-4.1.0a1' / Data Reduction HIERARCH ESO PRO REC1 PIPE ID = 'amber/2.4.2' / Pipeline (uni HIERARCH ESO QC FRAMES SELECTED PERCENT = 0. / Frames selecte HIERARCH ESO QC FRAMES SELECTED SNRGT2 = 0 / Frames selecte</pre>	.fits.0 (main) <==== -5483173. / [m] Array centre x coordinat 1951952. / [m] Array centre y coordinat	0 (main) <====	0 (main) <==== / Spectral Setup unique Id	0 (main) <==== / Detector Name 862 / width of table in bytes / data format of field: 1-byte	0 (main) <=== / Detector Name 318 / width of table in bytes
TTYPE2 = 'Matrix ' TTYPE3 = 'Vk ' TTYPE4 = 'Sum_of_Vk' TTYPE5 = 'Bad_pixels' TTYPE6 = 'Photometry'		C.2 Amdlib changes in t	<pre>Extension 0: Extension 0: ===> file amber_0000.fits.0 (main) <==== DATAMD5 = '44e6e50d318223b1c676a138439a0e1a' / MD5 ch DATE = '2007-12-21T14:36:43' / file creation date HIERARCH ESO OCS DRS VERSION = '1.1.1.1 ' / Data Redu HIERARCH ESO PRO REC1 DRS ID = 'cpl-4.1.0a1' / Data R HIERARCH ESO PRO REC1 PIPE ID = 'cpl-4.1.0a1' / Data R HIERARCH ESO PRO REC1 PIPE ID = 'amber/2.4.2' / Pipe1 HIERARCH ESO QC FRAMES SELECTED PERCENT = 0. / Frames HIERARCH ESO QC FRAMES SELECTED SNRGT2 = 0 / Frames s</pre>	<pre>Extension 1: ===> file amber_0000.fits.0 (main) <==== ARRAYX = -5483173. / [m] Array ARRAYY = 1951952. / [m] Array</pre>	Extension 2: ====> file amber_0000.fits.0 (main) <====	Extension 3: ===> file amber_0000.fits.0 (main) <==== INSNAME = 'AMBER ' / Spectral	<pre>Extension 4: ====> file amber_0000.fits.0 (main) <==== INSNAME = 'AMBER ' / Detector NAXIS1 = 862 / width of TFORM14 = 'OL ' data forr</pre>	<pre>Extension 5: ===> file amber_0000.fits.0 (main) <==== INSNAME = 'AMBER ' / Detector NAXIS1 = 318 / width of</pre>

VLT-MAN-ESO-19500-4221

Doc:

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	76 of 86

1-byte TFORM10 = '17L ' / data format of field: 1-byte	<pre> ====> file amber_0000.fits.1 (main) <==== INSNAME = 'AMBER ' / Instrument name s NAXIS1 = 'AAMBER ' 625 / width of table in bytes 1-byte TFORM14 = '17L ' / data format of field: 1-byte</pre>	<pre>of spectral of spectral HIERARCH ESO QC BAND1 LOWBOUND = 1. / Lower bound of spectral spectral b HIERARCH ESO QC BAND1 NAME = 'J</pre>	====> file amber_0000.fits.1 (main) <==== > ===> xtension 8	REVN= T X =		NAME = 'AMBER_SPECTRUM' / name of this bi INT = 'A one data group	NAME = 'AMBER_SPECTRUM' / name of this binary table UNT = 'AMBER_SPECTRUM' / name of this binary table NAT = 'AMBER' ' / Instrument name	NAME = 'AMBER_SPECTRUM' / name of this binary table NT = 'AMBER_SPECTRUM' / name of this binary table NT = 'AMBER' / Instrument name TS = 'AMBER' / Of instrument name	NAME = 'AMBER_SPECTRUM' / name of this binary table NAT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 2 / 2-dimensional binary table IS1 = 56 / width of table in bytes	NAME = 'AMBER_SPECTRUM' / name of this binary table UNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 'AMBER ' 2 / 2-dimensional binary table IS1 = 56 / width of table in bytes IS2 = 17 / number of rows in table	NAME = 'AMBER_SPECTRUM' / name of this binary table UNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 'AMBER ' 2 / 2-dimensional binary table IS1 = 17 / number of rows in table UNT = 0 / size of special data area	NAME = 'AMBER_SPECTRUM' / name of this binary table UNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 'AMBER ' / Instrument name	NAME = 'AMBER_SPECTRUM' / name of this binary table JNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 'AMBER ' / Instrument of table in bytes IT / number of rows in table O / size of special data area ELDS = ' / data format of field: 4-by	NAME = 'AMBER_SPECTRUM' / name of this binary table UNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' 1 / one data group (required k NAME = 'AMBER ' 2 / 2-dimensional binary table IS1 = 2 / 2-dimensional binary table IS2 = 17 / number of rows in table UNT = 0 / size of special data area ELDS = 4 / number of field: 4-by RM1 = 'E ' / data format of field: 4-by RM2 = 'B' / data format of field: 8-by	NAME = 'AMBER_SPECTRUM' / name of this binary table JUT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' nustrument name IS = 'AMBER ' nustrument name IS = 'AMBER ' number of table in bytes IS1 = 17 / number of table in bytes IT7 / number of fields in each r RM1 = 'E ' data format of field: 4-by Ata format of field: 4-by Ata format of field: 4-by	NAME = 'AMBER_SPECTRUM' / name of this binary table JNT = 'AMBER_SPECTRUM' / name of this binary table NAME = 'AMBER ' / Instrument name IS = 'AMBER ' / Instrument name IS1 = 2 / 2-dimensional binary table 56 / width of table in bytes IT7 / number of rows in table JNT = 0 / size of special data area & / number of fields in each r RM1 = 'E ' / data format of field: 4-by
TFORM10 = '0L ' / data format of field: 1-byte	<pre>Extension 6: ===> file amber_0000.fits.0 (main) <==== INSNAME = 'AMBER ' / Detector Name NAXIS1 = 608 / width of table in bytes TFORM14 = '0L ' / data format of field: 1-byte</pre>	<pre>Extension 7: ====> file amber_0000.fits.0 (main) <==== HIERARCH ESO OCS BAND1 LOWBOUND = 1. / Lower bound of spectral HIERARCH ESO OCS BAND1 UPBOUND = 1. / Lower bound of spectral HIERARCH ESO OCS BAND1 UPBOUND = 1.469 / Upper bound of spectral NINNAME = 'AMBER ' 590 / width of table in bytes INNNAME = 'AMBER ' 590 / width of table in bytes TFORM10 = '17E ' 0 data format of field: 4-by TFORM11 = '17E ' 0 data format of field: 4-by TFORM12 = '17D ' 0 data format of field: 4-by TFORM12 = '17D ' 0 data format of field: 4-by TFORM12 = '17D ' 0 data format of field: 4-by TFORM12 = '17D ' 0 data format of field: 4-by TFORM12 = '17D ' 10bel for field 10 TTYPE10 = 'FISTON_DPISPERSED' / label for field 10 TTYPE11 = 'FISTON_DPISPERSED' / label for field 5 TTYPE12 = 'FINGE_CONTRAST_SNR_DISPERSED' / label for field 6 TTYPE12 = 'FINGE_CONTRAST_SNR_DISPERSED' / label for field 6 TTYPE12 = 'FINGE_CONTRAST_SNR_DISPERSED' / label for field 6 TTYPE12 = 'FINGE_CONTRAST_SNR_DISPERSED' / label for field 6 TTYPE3 = 'FINGE_CONTRAST_SNR_DISPERSED' / label for field 6 TTYPE3 = 'FINGE_CONTRAST_SNR' / label for field 9 TTYPE3 = 'FINGE_CONTRAST_SNR' / label for field 9</pre>	Extension 8: ===> file amber_0000.fits.0 (main) <====													

		Doc:	VLT-MAN-ESO-19500-4221
ESO	AMBER Pipeline User Manual	Issue:	Issue 3.3.0
ESU		Date:	Date 2011-04-01
		Page:	77 of 86

label for field 1	' label for field 2	' label for field 3	' label for field 4	physical unit of field	physical unit of field	' binary table extension
'EFF_WAVE'	'EFF_BAND'	'SPECTRUM'	'SPECTRUM_ERROR'	, m ,	, m ,	'BINTABLE'
II	Ш	Ш	Ш	Ш	Ш	=NO
> TTYPE1	> TTYPE2	> TTYPE3	> TTYPE4	<pre>> TUNIT1</pre>	<pre>> TUNIT2</pre>	> XTENSION

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	78 of 86

D QC1 Dictionary

The following tables give a list of the Quality Control parameters of the various recipes.

D.1 QC parameter of the amber_SciCal recipe

QC Parameter	Description
FRAMES SELECTED SNRGT2	the number of frames with signal to noise greater than 2
FRAMES SELECTED PERCENT	the percentage of frames with signal to noise greater than 2
FRAMES BAND	the band (J, H, K)
STA1	telescope station 1
STA2	telescope station 2
STA3	telescope station 3 (in 3 telescopes mode only)
LAMBDA CHAN	total number of channels in the file
LAMBDA MIN	lowest waveband in the file [micron]
LAMBDA MAX	highest waveband in the file [micron]
LAMBDA CEN MIN	lowest analyzed waveband in the central bin
LAMBDA CEN MAX	highest analyzed waveband in the central bin
LAMBDA CEN CHAN	total number of analyzed channels in the central bin
LAMBDA BIN1 MIN	lowest analyzed waveband in bin 1 [micron]
LAMBDA BIN1 MAX	highest analyzed waveband in bin 1 [micron]
LAMBDA BIN1 CHAN	total number of analyzed channels in bin 1
LAMBDA BIN2 MIN	lowest analyzed waveband in bin 2 [micron]
LAMBDA BIN2 MAX	highest analyzed waveband in bin 2 [micron]
LAMBDA BIN2 CHAN	total number of analyzed channels in bin 2
LAMBDA BIN3 MIN	lowest analyzed waveband in bin 3 [micron]
LAMBDA BIN3 MAX	highest analyzed waveband in bin 3 [micron]
LAMBDA BIN3 CHAN	total number of analyzed channels in bin 3
V2 CEN BAS1	averaged uncalibrated squared visibility in the central bin for baseline 1
—V2 CEN BAS2	averaged uncalibrated squared visibility in the central bin for baseline 2
—V2 CEN BAS3	averaged uncalibrated squared visibility in the central bin for baseline 3
—CP CEN	averaged uncalibrated closure phase in the central bin
—V2 BIN1 BAS1	averaged uncalibrated squared visibility in bin 1 for baseline 1
—V2 BIN1 BAS2	averaged uncalibrated squared visibility in bin 1 for baseline 2
—V2 BIN1 BAS3	averaged uncalibrated squared visibility in bin 1 for baseline 3
—CP BIN1	averaged uncalibrated closure phase in bin 1
—V2 BIN2 BAS1	averaged uncalibrated squared visibility in bin 2 for baseline 1
—V2 BIN2 BAS2	averaged uncalibrated squared visibility in bin 2 for baseline 2
—V2 BIN2 BAS3	averaged uncalibrated squared visibility in bin 2 for baseline 3
—CP BIN2	averaged uncalibrated closure phase in bin 2
—V2 BIN3 BAS1	averaged uncalibrated squared visibility in bin 3 for baseline 1
—V2 BIN3 BAS2	averaged uncalibrated squared visibility in bin 3 for baseline 2
—V2 BIN3 BAS3	averaged uncalibrated squared visibility in bin 3 for baseline 3
—CP BIN3	averaged uncalibrated closure phase in bin 3

AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
	Issue:	Issue 3.3.0
	Date:	Date 2011-04-01
	Page:	79 of 86

-V2 CEN BAS1 STDEV	corresponding standard deviation with respect to the frames
-V2 CEN BAS2 STDEV	corresponding standard deviation with respect to the frames
-V2 CEN BAS3 STDEV	corresponding standard deviation with respect to the frames
CP CEN STDEV	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
CP BIN1 STDEV	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
CP BIN2 STDEV	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
	corresponding standard deviation with respect to the frames
CP BIN3 STDEV	corresponding standard deviation with respect to the frames
—SNR BAS1	averaged signal to noise ratio for baseline 1
—SNR BAS2	averaged signal to noise ratio for baseline 2
—SNR BAS3	averaged signal to noise ratio for baseline 3

Table D.1.0: *QC* values written by the amber_SciCal recipe. In this table the — has to be replaced by UNCAL, TRF, or CAL if uncalibrated visibilities, transfer functions, or calibrated visibilities are derived.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	80 of 86

D.2 QC parameter of the amber_selector recipe

QC Parameter	Description
FRAMES SELECTED	The number of frames passing the filter
FRAMES PERCENTAGE SELECTED	The percentage of frames passing the filter
X1 THRESHOLD	The threshold applied to baseline 1
X2 THRESHOLD	The threshold applied to baseline 2
X3 THRESHOLD	The threshold applied to baseline 3
LAMBDA CHAN	total number of channels in the file
LAMBDA MIN	lowest waveband in the file [micron]
LAMBDA MAX	highest waveband in the file [micron]
LAMBDA CEN MIN	lowest analyzed waveband in the central bin
LAMBDA CEN MAX	highest analyzed waveband in the central bin
LAMBDA CEN CHAN	total number of analyzed channels in the central bin
LAMBDA BIN1 MIN	lowest analyzed waveband in bin 1 [micron]
LAMBDA BIN1 MAX	highest analyzed waveband in bin 1 [micron]
LAMBDA BIN1 CHAN	total number of analyzed channels in bin 1
LAMBDA BIN2 MIN	lowest analyzed waveband in bin 2 [micron]
LAMBDA BIN2 MAX	highest analyzed waveband in bin 2 [micron]
LAMBDA BIN2 CHAN	total number of analyzed channels in bin 2
LAMBDA BIN3 MIN	lowest analyzed waveband in bin 3 [micron]
LAMBDA BIN3 MAX	highest analyzed waveband in bin 3 [micron]
LAMBDA BIN3 CHAN	total number of analyzed channels in bin 3
UNCALV2 CEN BAS1	averaged uncalibrated squared visibility in the central bin for baseline 1
UNCALV2 CEN BAS2	averaged uncalibrated squared visibility in the central bin for baseline 2
UNCALV2 CEN BAS3	averaged uncalibrated squared visibility in the central bin for baseline 3
UNCALCP CEN	averaged uncalibrated closure phase in the central bin
UNCALV2 BIN1 BAS1	averaged uncalibrated squared visibility in bin 1 for baseline 1
UNCALV2 BIN1 BAS2	averaged uncalibrated squared visibility in bin 1 for baseline 2
UNCALV2 BIN1 BAS3	averaged uncalibrated squared visibility in bin 1 for baseline 3
UNCALCP BIN1	averaged uncalibrated closure phase in bin 1
UNCALV2 BIN2 BAS1	averaged uncalibrated squared visibility in bin 2 for baseline 1
UNCALV2 BIN2 BAS2	averaged uncalibrated squared visibility in bin 2 for baseline 2
UNCALV2 BIN2 BAS3	averaged uncalibrated squared visibility in bin 2 for baseline 3
UNCALCP BIN2	averaged uncalibrated closure phase in bin 2
UNCALV2 BIN3 BAS1	averaged uncalibrated squared visibility in bin 3 for baseline 1
UNCALV2 BIN3 BAS2	averaged uncalibrated squared visibility in bin 3 for baseline 2
UNCALV2 BIN3 BAS3	averaged uncalibrated squared visibility in bin 3 for baseline 3
UNCALCP BIN3	averaged uncalibrated closure phase in bin 3
UNCALV2 CEN BAS1 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 CEN BAS2 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 CEN BAS3 STDEV	corresponding standard deviation with respect to the frames
UNCALCP CEN STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN1 BAS1 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN1 BAS2 STDEV	corresponding standard deviation with respect to the frames

)-4221
ESO AMBER Pipeline User Manual Issue: Issue	e 3.3.0
Date: Date 2011	-04-01
Page: 8	l of 86

UNCALV2 BIN1 BAS3 STDEV	corresponding standard deviation with respect to the frames
UNCALCP BIN1 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN2 BAS1 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN2 BAS2 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN2 BAS3 STDEV	corresponding standard deviation with respect to the frames
UNCALCP BIN2 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN3 BAS1 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN3 BAS2 STDEV	corresponding standard deviation with respect to the frames
UNCALV2 BIN3 BAS3 STDEV	corresponding standard deviation with respect to the frames
UNCALCP BIN3 STDEV	corresponding standard deviation with respect to the frames
UNCALSNR BAS1	averaged signal to noise ratio for baseline 1
UNCALSNR BAS2	averaged signal to noise ratio for baseline 2
UNCALSNR BAS3	averaged signal to noise ratio for baseline 3

Table D.2.0: *QC* values written by the amber_selector recipe.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	82 of 86

D.3 QC parameter of the amber_trf recipe

QC Parameter	Description
LAMBDA CHAN	total number of channels in the file
LAMBDA MIN	lowest wavelength in the file [micron]
LAMBDA MAX	highest wavelength in the file [micron]
LAMBDA CEN MIN	lowest analyzed wavelength in the central bin
LAMBDA CEN MAX	highest analyzed wavelength in the central bin
LAMBDA CEN CHAN	total number of analyzed channels in the central bin
LAMBDA BIN1 MIN	lowest analyzed wavelength in bin 1 [micron]
LAMBDA BIN1 MAX	highest analyzed wavelength in bin 1 [micron]
LAMBDA BIN1 CHAN	total number of analyzed channels in bin 1
LAMBDA BIN2 MIN	lowest analyzed wavelength in bin 2 [micron]
LAMBDA BIN2 MAX	highest analyzed wavelength in bin 2 [micron]
LAMBDA BIN2 CHAN	total number of analyzed channels in bin 2
LAMBDA BIN3 MIN	lowest analyzed wavelength in bin 3 [micron]
LAMBDA BIN3 MAX	highest analyzed wavelength in bin 3 [micron]
LAMBDA BIN3 CHAN	total number of analyzed channels in bin 3
TRFV2 CEN BAS1	averaged transfer function in the central bin for baseline 1
TRFV2 CEN BAS2	averaged transfer function in the central bin for baseline 2
TRFV2 CEN BAS3	averaged transfer function in the central bin for baseline 3
TRFCP CEN	averaged transfer function closure phase in the central bin
TRFV2 BIN1 BAS1	averaged transfer function in bin 1 for baseline 1
TRFV2 BIN1 BAS2	averaged transfer function in bin 1 for baseline 2
TRFV2 BIN1 BAS3	averaged transfer function in bin 1 for baseline 3
TRFCP BIN1	averaged transfer function closure phase in bin 1
TRFV2 BIN2 BAS1	averaged transfer function in bin 2 for baseline 1
TRFV2 BIN2 BAS2	averaged transfer function in bin 2 for baseline 2
TRFV2 BIN2 BAS3	averaged transfer function in bin 2 for baseline 3
TRFCP BIN2	averaged transfer function closure phase in bin 2
TRFV2 BIN3 BAS1	averaged transfer function in bin 3 for baseline 1
TRFV2 BIN3 BAS2	averaged transfer function in bin 3 for baseline 2
TRFV2 BIN3 BAS3	averaged transfer function in bin 3 for baseline 3
TRFCP BIN3	averaged transfer function closure phase in bin 3
TRFV2 CEN BAS1 STDEV	corresponding standard deviation with respect to the frames
TRFV2 CEN BAS2 STDEV	corresponding standard deviation with respect to the frames
TRFV2 CEN BAS3 STDEV	corresponding standard deviation with respect to the frames
TRFCP CEN STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN1 BAS1 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN1 BAS2 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN1 BAS3 STDEV	corresponding standard deviation with respect to the frames
TRFCP BIN1 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN2 BAS1 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN2 BAS2 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN2 BAS3 STDEV	corresponding standard deviation with respect to the frames
1	

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	83 of 86

TRFCP BIN2 STDEVcorresponding standard deviation with respect to the framesTRFV2 BIN3 BAS1 STDEVcorresponding standard deviation with respect to the framesTRFV2 BIN3 BAS2 STDEVcorresponding standard deviation with respect to the framesTRFV2 BIN3 BAS3 STDEVcorresponding standard deviation with respect to the framesTRFCP BIN3 STDEVcorresponding standard deviation with respect to the framesTRFSNR BAS1averaged signal to noise ratio for baseline 1TRFSNR BAS2averaged signal to noise ratio for baseline 2TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL23 in mOBS AVR PBL23Observed Calibrator in the databaseDB NAMEClosest Calibrator Diameter error in marcsecDB DIAMCalibrator Diameter error in marcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-BandDB FLAGCalibrator Quality Flag		
TRFV2 BIN3 BAS2 STDEVcorresponding standard deviation with respect to the framesTRFV2 BIN3 BAS3 STDEVcorresponding standard deviation with respect to the framesTRFCP BIN3 STDEVcorresponding standard deviation with respect to the framesTRFSNR BAS1averaged signal to noise ratio for baseline 1TRFSNR BAS2averaged signal to noise ratio for baseline 2TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFCP BIN2 STDEV	corresponding standard deviation with respect to the frames
TRFV2 BIN3 BAS3 STDEVcorresponding standard deviation with respect to the frames corresponding standard deviation with respect to the framesTRFCP BIN3 STDEVaveraged signal to noise ratio for baseline 1TRFSNR BAS1averaged signal to noise ratio for baseline 2TRFSNR BAS2averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFV2 BIN3 BAS1 STDEV	corresponding standard deviation with respect to the frames
TRFCP BIN3 STDEVcorresponding standard deviation with respect to the framesTRFSNR BAS1averaged signal to noise ratio for baseline 1TRFSNR BAS2averaged signal to noise ratio for baseline 2TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFV2 BIN3 BAS2 STDEV	corresponding standard deviation with respect to the frames
TRFSNR BAS1averaged signal to noise ratio for baseline 1TRFSNR BAS2averaged signal to noise ratio for baseline 2TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFV2 BIN3 BAS3 STDEV	corresponding standard deviation with respect to the frames
TRFSNR BAS2averaged signal to noise ratio for baseline 2TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PBL12Observed Calibrator Trusted statusOBS AVR PBL13Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFCP BIN3 STDEV	corresponding standard deviation with respect to the frames
TRFSNR BAS3averaged signal to noise ratio for baseline 3OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS AVR PARANGObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFSNR BAS1	averaged signal to noise ratio for baseline 1
OBS CAL RAObserved Calibrator RA in radiansOBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS ESOTRUSTEDObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFSNR BAS2	averaged signal to noise ratio for baseline 2
OBS CAL DECObserved Calibrator DEC in raOBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS ESOTRUSTEDObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	TRFSNR BAS3	averaged signal to noise ratio for baseline 3
OBS NAMEObserved Calibrator nameOBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS ESOTRUSTEDObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS CAL RA	Observed Calibrator RA in radians
OBS AVR PARANGObserved Calibrator Average PARANG in degreesOBS ESOTRUSTEDObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS CAL DEC	Observed Calibrator DEC in ra
OBS ESOTRUSTEDObserved Calibrator Trusted statusOBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS NAME	Observed Calibrator name
OBS AVR PBL12Observed Calibrator Average PBL12 in mOBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS AVR PARANG	Observed Calibrator Average PARANG in degrees
OBS AVR PBL13Observed Calibrator Average PBL13 in mOBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS ESOTRUSTED	Observed Calibrator Trusted status
OBS AVR PBL23Observed Calibrator Average PBL23 in mDB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS AVR PBL12	Observed Calibrator Average PBL12 in m
DB NAMEClosest Calibrator in the databaseDB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG KBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS AVR PBL13	Observed Calibrator Average PBL13 in m
DB DIAMCalibrator Diameter in marcsecDB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG HBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	OBS AVR PBL23	Observed Calibrator Average PBL23 in m
DB DIAM ERRCalibrator Diameter error in marcsecDB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG HBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	DB NAME	Closest Calibrator in the database
DB DISTComputed Distance in arcsecDB MAG JBANDCalibrator Magnitude in the J-BandDB MAG HBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	DB DIAM	Calibrator Diameter in marcsec
DB MAG JBANDCalibrator Magnitude in the J-BandDB MAG HBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	DB DIAM ERR	Calibrator Diameter error in marcsec
DB MAG HBANDCalibrator Magnitude in the H-BandDB MAG KBANDCalibrator Magnitude in the K-Band	DB DIST	Computed Distance in arcsec
DB MAG KBAND Calibrator Magnitude in the K-Band	DB MAG JBAND	Calibrator Magnitude in the J-Band
e	DB MAG HBAND	Calibrator Magnitude in the H-Band
DB FLAG Calibrator Quality Flag	DB MAG KBAND	Calibrator Magnitude in the K-Band
	DB FLAG	Calibrator Quality Flag

Table D.3.0: *QC* values written by the amber_trf recipe.

Doc:	VLT-MAN-ESO-19500-4221
Issue:	Issue 3.3.0
Date:	Date 2011-04-01
Page:	84 of 86

D.4 QC parameter of the amber_calibrate recipe

QC Parameter	Description
LAMBDA CHAN	total number of channels in the file
LAMBDA MIN	lowest wavelength in the file [micron]
LAMBDA MAX	highest wavelength in the file [micron]
LAMBDA CEN MIN	lowest analyzed wavelength in the central bin
LAMBDA CEN MAX	highest analyzed wavelength in the central bin
LAMBDA CEN CHAN	total number of analyzed channels in the central bin
LAMBDA BIN1 MIN	lowest analyzed wavelength in bin 1 [micron]
LAMBDA BIN1 MAX	highest analyzed wavelength in bin 1 [micron]
LAMBDA BIN1 CHAN	total number of analyzed channels in bin 1
LAMBDA BIN2 MIN	lowest analyzed wavelength in bin 2 [micron]
LAMBDA BIN2 MAX	highest analyzed wavelength in bin 2 [micron]
LAMBDA BIN2 CHAN	total number of analyzed channels in bin 2
LAMBDA BIN3 MIN	lowest analyzed wavelength in bin 3 [micron]
LAMBDA BIN3 MAX	highest analyzed wavelength in bin 3 [micron]
LAMBDA BIN3 CHAN	total number of analyzed channels in bin 3
CALV2 CEN BAS1	averaged calibrated visibility squared in the central bin for baseline 1
CALV2 CEN BAS2	averaged calibrated visibility squared in the central bin for baseline 2
CALV2 CEN BAS3	averaged calibrated visibility squared in the central bin for baseline 3
CALCP CEN	averaged calibrated closure phase in the central bin
CALV2 BIN1 BAS1	averaged calibrated visibility squared in bin 1 for baseline 1
CALV2 BIN1 BAS2	averaged calibrated visibility squared in bin 1 for baseline 2
CALV2 BIN1 BAS3	averaged calibrated visibility squared in bin 1 for baseline 3
CALCP BIN1	averaged calibrated closure phase in bin 1
CALV2 BIN2 BAS1	averaged calibrated visibility squared in bin 2 for baseline 1
CALV2 BIN2 BAS2	averaged calibrated visibility squared in bin 2 for baseline 2
CALV2 BIN2 BAS3	averaged calibrated visibility squared in bin 2 for baseline 3
CALCP BIN2	averaged calibrated closure phase in bin 2
CALV2 BIN3 BAS1	averaged calibrated visibility squared in bin 3 for baseline 1
CALV2 BIN3 BAS2	averaged calibrated visibility squared in bin 3 for baseline 2
CALV2 BIN3 BAS3	averaged calibrated visibility squared in bin 3 for baseline 3
CALCP BIN3	averaged calibrated visibility squared closure phase in bin 3
CALV2 CEN BAS1 STDEV	corresponding standard deviation with respect to the frames
CALV2 CEN BAS2 STDEV	corresponding standard deviation with respect to the frames
CALV2 CEN BAS3 STDEV	corresponding standard deviation with respect to the frames
CALCP CEN STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN1 BAS1 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN1 BAS2 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN1 BAS3 STDEV	corresponding standard deviation with respect to the frames
CALCP BIN1 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN2 BAS1 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN2 BAS2 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN2 BAS3 STDEV	corresponding standard deviation with respect to the frames

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	85 of 86

CALCP BIN2 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN3 BAS1 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN3 BAS2 STDEV	corresponding standard deviation with respect to the frames
CALV2 BIN3 BAS3 STDEV	corresponding standard deviation with respect to the frames
CALCP BIN3 STDEV	corresponding standard deviation with respect to the frames
CALSNR BAS1	averaged signal to noise ratio for baseline 1
CALSNR BAS2	averaged signal to noise ratio for baseline 2
CALSNR BAS3	averaged signal to noise ratio for baseline 3

Table D.4.0: *QC* values written by the amber_calibrate recipe.

ESO	AMBER Pipeline User Manual	Doc:	VLT-MAN-ESO-19500-4221
		Issue:	Issue 3.3.0
		Date:	Date 2011-04-01
		Page:	86 of 86

E Troubleshooting Guide