
Document Title: KMOS
Data Reduction Library Design &
User Manual

Document Number: VLT-MAN-KMO-146611-007

Issue: 3.1

Date: 24.11.2016

Document
Prepared
By:

A. Agudo Berbel

E. Wiezorrek

R. Davies

N. Förster
Schreiber

Y. Jung

Signature and
Date:

Document
Approved
By:

P. Rees
Signature and
Date:

Document
Released
By:

A. Fairley
Signature and
Date:

Data Reduction Library Design & Manual

Change Record

Issu
e

Date Section(s) Affected Description of
Change/Change Request
Reference/Remarks

1.1 07.09.
07

All Merging KMOS Data
Reduction Library and User
Manual

1.2 04.02.
08

updated 3.2.1, 5.3, 7.3.4,
9.3.1, 9.3.4, 9.3.5, 9.3.11
inserted & updated 5.1

updated after implementing
basic tools 1

1.3 28.10.
08

updated 7.3.7, 7.3.9, 7.3.15,
7.3.17, 9.3.7, 9.3.9, 9.3.15,
9.3.17

updated after implementing
basic tools 2

1.4. 08.05.
09

updated 6.1.1, 6.1.2, 6.1.3,
6.1.4, 7.1.1, 7.1.1, 7.1.2,
7.1.3, 8.2, 9.1.1, 9.1.2, 9.1.3
deleted 8.4
(kmo_split_frame)

updated after implementing
calibration recipes 2

1.5. 16.07.
09

updated 7.3.8, 9.3.8 updated after implementing
basic tools 3

1.6 10.08.
10

added sections 4.1, 4.2, 5.5 updated after implementing
basic tools 4

1.7 13.04.
10

updated 4.3
updated 5.3.3
updated 6.1

templates to change
F2L can contain multiple
extensions
Spec_align recipe obsolete

1.8 10.11.
11

All Issue prepared for TRR

2.2 30.03.
12

All Issue prepared for PAE

2.3 updated 7.2.1
2.4 updated 3.3
2.5 10.06.

13
whole document Issue prepared for software

verification
2.6 02.08.

13
updated 7.2.4 and 7.2.1 kmo_sky_tweak now

implemented
2.7. 07.08.

13
updated 9.4

2.8 20.09.
13

updated Error: Reference
source not found

enhanced
kmo_multi_reconstruct
functionality

2.9 29.10.
13

added section 7.1.5 kmo_illumination_flat
implemented

2.10 25.11. updated sections 7.1.5, - added new product frame

2 of 148

Data Reduction Library Design & Manual

13 7.2.1 and 7.2.3
released with pipeline
v1.2.7

NOISE_SPEC in
kmo_std_star
- added new product frame
EXP_MASK in
kmo_combine and
kmo_sci_red

2.11 11.12.
13

updated section 7 and 7.2.1 - updated Figure 22
- kmos_sci_red: velocity
offset and arbitrary IFU
association

2.12 05.03.
14

removed section on
kmo_dev_setup
updated 7.2.2, 7.3.8.5 and
11.3

removed obsolete
parameters, recipe and
environment variable,
added comment in 7.2.2

2.13 25.07.
14

Added Release Notes
section at the beginning

Renamed recipes
kmo_dark/flat/wave_cal/illu
mination in kmos_dark/...

2.15 13.02.
15

Renamed recipes
kmo_sci_red in
kmos_sci_red. The recipe
has 2 additional parameters
and produces optionally
extra products

2.16 24.03.
15

Renamed kmo_reconstruct
and kmo_std_star
New parameters for
kmos_std_star.
kmos_sci_red products in
physical units

2.17 08.02.
16

All Update for version 1.3.17

2.18 15.04.
16

All Update for version 1.3.17

3.0 01.10.
16

All kmos_combine, sky
stretching, sky tweaking –
For version 1.4.0

3.1 24.11.
16

kmos_illumination recipe
supports FLAT_ON data.
kmos_illumination_flat
deprecated

3 of 148

Table of Contents
Change Record..2
Table of Contents...4
Acronyms and Abbreviations...4
Applicable and Referenced Documents...6
Scope of this Document...6
Release Notes..6
Release Notes History..7
PART I: DRS DESIGN..11
1Instrument Description...11
2Mathematical Description..14
3Instrument Data Description..19
4Data Reduction Library Data Structures..27
5Data Reduction Library QC1 Parameters..38
PART II: DRS RECIPE REFERENCE..42
6Preliminaries..42
7Recipes..45
8Data Reduction Library Functions..129
PART III: DRS Maintainance & Development..135
9Updating the Calibration Data...135
10Environment variables..142
Appendix A Data Processing Tables...144
Appendix B The KMOS data interface dictionary...146

Acronyms and Abbreviations
ADU Analog to Digital Unit – unit used to quantify CCD signal intensity
CLIP C Library for Image Processing
CPL Common Pipeline Library
DFO Data Flow Operations Group (ESO Garching)
DFS Data Flow System
DIT Detector Integration Time
DO Data Organiser
DR Data Reduction
DRL Data Reduction Library
DRS Data Reduction Software
ESO European Southern Observatory
FITS Flexible Image Transport System
IFU Integral Field Unit
IPSRV Image Processing Server
KMOS K-band Multi Object Spectrometer
LUT Look-up Table
MPE Max-Planck-Institut für extraterrestrische Physik
OB Observation Block
OS Observing Software
PSF Point Spread Function
RTD Real Time Display
QC Quality Control
UK ATC United Kingdom Astronomy Technology Centre
USM Universitäts-Sternwarte der Ludwig-Maximilians-Universität München
WCS World Coordinate System

4 of 148

Applicable and Referenced Documents
[AD01] KMOS technical specification, VLT-SPE-ESO-14660-3190, issue 1.0
[AD02] KMOS Data Reduction Library Specification, VLT-SPE-KMO-146611-001, issue

1.1

[RD01] KMOS Instrument Software Design Description, VLT-SPE-KMO-146606-003,
issue 1.0

[RD02] Bentley J., Friedman J., 1979, “Data Structures for range searching”, ACM
Computing Surveys, 11, 397-409

[RD03] Clark I., Harper W., 2000, “Practical Geostatistics 2000”, pub. Geostokos
[RD04] Yang C.-S. et al., 2004, “12 Different Interpolation Methods”, in Geo-Imagery

Bridging Continents, XXth ISPRS Congress
[RD05] Lekien F., Marsden J., 2005, “Tricubic interpolation in 3 dimensions”, Int. J.

Numer. Meth. Engang, 63, 455-471
[RD06] Renka R., 1988, “Multivariate interpolation of large sets of scattered data”, ACM

Trans. Math. Software, 14, 139-148
[RD07] Shepard D., 1968, “A 2-dimensional interpolation function for irregularly spaced

data”, Proc. 23rd Nat. Conf. ACM, 517-523
[RD08] Farage C., Pimbblet K., 2005, PASA, 22, 249
[RD09] van Dokkum P., 2001, PASP, 113, 1420
[RD10] Davies R., 2007, MNRAS, 375, 1099
[RD11] Cappellari M., Copin Y., 2003, MNRAS, 342, 345

Scope of this Document
This document defines the design of the data reduction library for the KMOS pipeline, including
all modules of the DRL to process KMOS data as well as the additional DFS tools. It provides a
technical description of the instrument modes, data formats and data processing required for
scientific observations, calibrations, and instrument monitoring tasks for KMOS. It is based on
the DRL Specification [AD02] and supersedes that document.

Release Notes
This version 1.4.1 of the KMOS pipeline implements:

* Recipes
 - category FLAT_SKY_FLAT is category FLAT_ON
 (PIPE-5529)
 - Reflex - Integrate kmo_illumination_flat in the workflow
 (PIPE-5185)
 - kmo_illumination_flat is not rotation independent
 (PIPE-5182)
 - kmos_sci_red: ESO QC CUBE_UNIT header keyword is not writte in the
 error extensions of products.
 (PIPE-6859)
* Reflex
 - typo in python script correct_std.py
 (PIPE-6858)

5 of 148

Release Notes History

Version 1.4.0 of the KMOS pipeline released 07.10.2016 implements:

* Recipes
 - kmos_combine interactive window. discarded frames are shown in
 black even in the plots where they have no impact.
 (PIPE-6655)
 - Sky subtraction Improvement
 (PIPE-5915)

* Classification
 - time constrain for selecting STD stars too tight in reflex OCA rules
 (PIPE-6773)

* Reflex
 - wrong default parameters in KMOS wkf (kmos_sci_red actor)
 (PIPE-6587)
 - list of files in the kmos_sci_red interactive window is random
 (PIPE-6654)

* Documentation
 - Reflex tutorial. mean rms values of Ar and Ne differ in kmos_wave_cal
 (PIPE-6657)
 - Deal with cases where OBJECTS and SKY are observed in 2 OBs
 (PIPE-5850)
 - Various feedback obtained from the data reduction workshop
 (PIPE-6656)

Version 1.3.18 of the KMOS pipeline released 20.04.2016 implements:

* Recipes
 - Sky Subtraction Improvement
 (PIPE-5915)

* Reflex
 - Improve description of directories in workflow header
 (PIPE-6510)

* Scripts
 - kmos_calib.py had wrong hardcoded paths
 (PIPE-6552)

* Documentation
- Updated the common reflex documentation in the reflex tutorial

Full review of the manual

Version 1.3.17 of the KMOS pipeline released 22.01.2016 implements:

* Recipes
 - Default of the discard_subband set to FALSE
 (PIPE-6335)
 - kmos_combine still failed to produce the collapsed image (used_IFU
 keyword was too long)
 (PIPE-6379)
 - Final products of the kmos workflow are not properly organized
 Add HIERARCH ESO PRO REFLEX SUFFIX to the kmos_combine and
 kmos_sci_red products

6 of 148

 (PIPE-6278)

* Reflex
 - 3 Minor reflex workflow changes
 (PIPE-6402)
 - FailureRecipeMode parameter must be $FailureRecipeMode also for
 kmos_sci_red
 (PIPE-6322)
 - Support cases where USEDIFU is missing. It still does not work
 (python error)
 (PIPE-6286)
 - kmos_combine parameter edge_nan not set to PORT
 (PIPE-6407)
 - plot of spectra in kmos_combine python window needs to have a
 dynamic range
 (PIPE-6383)

Version 1.3.16 of the KMOS pipeline released 15.12.2015 implements:

* Recipes
 - kmos_combine PRO CATG without object name
(EXP_MASK_SCI_RECONSTRUCTED_XXX)
 (PIPE-6276)
 - kmos_combine support OH_SPEC as input for data collapsing
 (PIPE-6272)
 - kmos_sci_red support OH_SPEC as input for data collapsing
 (PIPE-6274)
 - kmo_dfs_set_groups() needed complete re-write. The frames groups
 (RAW and CALIB) were not properly set, causing many side effects in
 the products headers
 (PIPE-6278)
 - Deprecate kmo_fits_stack
 (PIPE-6334)
 - Science recipe produces frames in ADU/sec
 (PIPE-6360)
 - Sky tweak - add option to remove 'final bit' last sub band
 (PIPE-6335)

* Reflex
 - New mapping data set added in the demo data set (v. 1.2)
 (PIPE-6272)
 - kmos_combine receives OH_SPEC as input for data collapsing
 (PIPE-6276)
 -- workflow must be able to process datasets without a standard star
 (PIPE-6288)
 -- Add the parameter obj_sky_table in the kmos_sci_red interactive
window
 (PIPE-6182)
 -- FailureRecipeMode parameter must be $FailureRecipeMode
 (PIPE-6322)
 -- Support cases where USEDIFU is missing (mapping24) in the Combine
 interactive window
 (PIPE-6286)
 -- Revise the Main Canvas Text
 (PIPE-6273)
 -- Do not offer the --method option in the Science Interactive window
 Add the object name in each IFU in the Science Interactive window
 Improve OH_SPEC lines plotting in the Science Interactive window
 (PIPE-6275)
 -- Various improvements in the Combine Interactive window display

7 of 148

https://email.hq.eso.org/OWA/redir.aspx?SURL=OjOVs6OwSYfGot_4ipnErwxLCmnQA4UYRRwruyZie0LqLypxizDTCGgAdAB0AHAAcwA6AC8ALwBqAGkAcgBhAC4AZQBzAG8ALgBvAHIAZwAvAGIAcgBvAHcAcwBlAC8AUABJAFAARQAtADYAMgA3ADIA&URL=https%3A%2F%2Fjira.eso.org%2Fbrowse%2FPIPE-6272

and plots
 (PIPE-6277)
 -- Various improvements made to the Overall Workflow layout
 (PIPE-6279)
 -- Std star interactive actor : FWHM of the star added in the title
 (PIPE-6280)

* Documentation
 - Makefile fails for kmosm in trunk and recent tags on some machines
 (PIPE-6294)
 - Update of the Reflex tutorial (1.5)
 (PIPE-6281)
 - Update of the User Manual (2.17)

Version 1.3.15 of the KMOS pipeline released 23.10.2015 implements:
* Recipes
 - change the PRO.CATG of kmos_combine products
 (PIPE-6227)

* Reflex
 - Add possibility in the reflex workflow to exclude frames before
 combination
 (PIPE-5917)
 - WAVE_CAL composite interactive actor accepts parameter values
 outside of pipeline validity range
 (PIPE-6255)

Version 1.3.14 of the KMOS pipeline released 05.10.2015 implements:
* Recipes
 - Overscan correction
 Added oscan parameter to kmos_reconstruct, kmos_dark,
 kmos_sci_red. The kmos_sci_red workflow offers the user to
 change the parameter (default is TRUE).
 (PIPE-5914)
 - kmo_combine memory leak is fixed
 (PIPE-5732)

* Reflex
 - pix_scale used in kmo_illumination must match the pix_scale used
 in kmos_sci_red
 (PIPE-5924)
 - Add possibility in the reflex workflow to exclude frames before
 combination (NOT YET FINISHED - INTERMEDIATE STATE)
 (PIPE-5917)
 - wrong directory name for kmos demo data
 (PIPE-6179)
 - Comparison with None must be done with is or is not
 (PIPE-6137)
 - CreateDirTree inside CloseDatasets takes too long to execute
 (PIPE-6191)
 - The kmos workflow saves the products into the wrong final directoty
 (PIPE-6196)
 - change default parameter for --imethod of kmos_std_star in worflow
 (set to CS)
 (PIPE-6228)

Version 1.3.13 of the KMOS pipeline released 23.06.2015 implements:
* Recipes
 - Telluric Noise is missing in the kmos_std_star product
 (PIPE-5869)

8 of 148

 - kmos_extract_spec returns many error messages
 (PIPE-5919)
 - kmos_sci_red fails in creating SCI_COMBINED if the pixelscale is
special
 (PIPE-5920)
 - kmos_wave_cal segm. fault. Improve error checking in
 kmclipm_priv_reconstruct.c: kmclipm_priv_reconstruct_cubicspline()
 (PIPE-5923)
 - Extra parameters in kmo_std_star to control the spectrum extraction
 (PIPE-5777)

* Reflex
 - Migrate the Workflows to Reflex 2.8
 - Update Reflex DEMO data (1.1) and Reflex tutorial (1.3)
 (PIPE-5866)
 - Reflex wkf: Add access to the combined cubes
 (PIPE-5742)
 - Update kmo_std_star actor for new parameters
 (PIPE-5777)
 - interactive parameters in kmos_std are not set to PORT
 (PIPE-5942)
 - Workflow improvements (Units and documentation)
 (PIPE-6005)

Version 1.3.12 of the KMOS pipeline released 09.04.2015 implements:
 Recipes

 - Telluric correction only applied to some of the IFUs in Mosaic
 mode.
 (PIPE-5847)
 - Units conversion does not support case where 1 telluric/detector
 (PIPE-5862)

Version 1.3.11 of the KMOS pipeline released 24.03.2015 implements:

 Recipes
1. kmo_std_star replaced by kmos_std_star: Recipe logic has been re-written
2. kmo_reconstruct replaced by kmos_recontruct: Recipe logic has been re-written
3. kmo_extract_spec fails when noise is missing.

 The recipes was fixed and re-written/renamed to kmos_extract_spec
 (PIPE-5812)

4. Results of kmos_sci_red must be in physical units
 (PIPE-5740)

5. kmos_std_star THROUGHPUT looks strange
 (PIPE-5841)

 Reflex:
Provide an easy way to call the defined viewer on a displayed file - will be available with
reflex 2.8

 (PIPE-5743)

9 of 148

PART I: DRS DESIGN

1 Instrument Description

1.1 Brief Description
KMOS is a multi-object near infrared spectrograph with a spectral resolution of R~3000,
depending on bandpass observed. It comprises 24 arms which can be positioned so as to cover
almost any combination of objects within a 7.2arcmin patrol field. Each arm is an integral field
spectrometer with a field of view of 2.8arcsec × 2.8arcsec and a sampling of 0.2arcsec per pixel.
So that the light can be dispersed in the conventional way, each field is sliced by a suite of mirrors
into 14 slitlets, each 14 pixels long. These are then rearranged by a second suite of mirrors into a
single pseudo-longslit. The primary aim of the data processing software is to reconstruct the 3D
data cubes from the 2D data on the detectors.

KMOS is designed so that 8 IFU arms are fed into a single spectrograph and have their light
dispersed onto a single detector. Thus, in total there are 3 spectrographs and 3 detectors. Each
section is identical with all the others. Hence, the format of the data on each detector is, modulo
optical alignment and manufacturing tolerances, identical.

KMOS generates its own internal flatfields. For this it uses 2 lamps mounted in an integrating
sphere outside the instrument. The light is directed through a sealed tube to another integration
sphere in the centre of the cryostat, and thence to each arm. In order to detect light from the
flatfield lamps, the arms must be positioned correctly outside the patrol field. It is possible that for
some configurations, parts of some arms may be vignetted. In addition, there may be unexpected
spatial non-uniformities in the flatfield. As a result it will be possible to make an illumination
correction by observing a blank sky field during twilight. This will provide a correction to the
spatial (rather than spectral) component of the flatfield.

KMOS has also internal lamps (Argon and Neon) which will be used for wavelength calibration.
As an example, these are estimated to produce 35 lines in the K-band with more than 100 counts
in a 150-second integration.

1.2 Modes and Configurations
Although KMOS itself is a complex instrument, the only observing mode available is multiple
integral field spectroscopy.

The only instrument configuration that the observer can make (and which has an impact on the
subsequent data reduction, with respect to the appropriate calibration data) involves the
wavebands – for each of which there is a single fixed spectral format and range, and a fixed filter.
The wavebands offered cover near-infrared wavelengths from 0.8μm to 2.5μm, and hence the
observing strategy is the same for all bandpasses.

1.2.1 Instrument Flexure

KMOS is mounted at a Nasmyth focus of the VLT and hence rotates. It is therefore inevitable that
there will be at least some flexure. For individual exposures, the most noticeable impact (i.e.
elongated PSF) will be when the telescope is pointing close to zenith and the parallactic angle is
changing rather quickly. However, calculations suggest that spatial flexure will be very small (less
than 1 pixel). On a scheme how to handle this can be found in Sec. 4.5.1.

10 of 148

On the other hand, spectral flexure is expected to be significant: exceeding the Technical
Specification on wavelength accuracy. Although mechanical solutions have been investigated, it
has been decided that it is more reliable, more accurate, and simpler to correct this in software
rather than hardware. Since science exposures will typically have integration times of at least a
few minutes, the OH sky lines will be bright and clear in individual frames. The processing will
reconstruct an initial cube from each science frame using the wavelength solution derived from
the arc lamp. It will then measure the wavelength offset of the frame by comparing the observed
wavelengths of the OH lines with respect to their theoretical wavelengths. This offset will be
folded back into the wavelength solution and the cube reconstructed anew from the raw data (and
the initial reconstruction will be deleted). Thus correcting the spectral flexure will not
compromise the quality of the data by requiring additional interpolation steps.

1.2.2 Inputs

The DRS pipeline receives as input:
 Raw images from KMOS as a single file with 3 extensions
 Calibration data, of which there are two types:

o master calibrations, generated by the pipeline, typically from daytime calibrations
o ancillary data such as reference line catalogues

1.2.3Outputs

The KMOS DRS pipeline creates the following data:
 3D cubes, which are calibrated in wavelength, spatial position, and flux.
 associated error cubes (as FITS extension)
 QC1 parameters and performance monitoring values.

It should be noted that spectra will be extracted for standard star observations, in order to generate
the necessary telluric corrections. But in general spectra will not be extracted from science
observations, although it would in principle be possible to do this using exactly the same
technique and recipe as for standard stars. The reason is that often it is not obvious from which
spatial pixels the spectrum should be taken. This is particularly true for observations of high
redshift galaxies (one of the primary science drivers of KMOS), where continuum emission is
either very weak or even undetected. Attempting to extract spectra automatically from fields
where either the object of interest is very faint or there are multiple objects, can lead to misleading
and confusing results. On the other hand, extracting a spectrum manually is very quick and easy
to do within QFitsView. As one moves the cursor across the displayed image of the spatial field of
view, it enables one to see in real time integrated spectra from different groups of spaxels. This
tool is already available at Paranal, and users are recommended to use it to do exactly this.
QFitsView also enables the user to create a collapsed image from the cube (or even a linemap)
across any wavelength range in an equally straightforward and speedy manner.

While bad pixel masks are generated during the processing, these are not part of the output. The
main reason is that due to the necessary interpolation step, there does not exist a one-to-one
correspondence between pixels in the final cube and pixels on the detector. However, the impact
of bad pixels is reflected in the noise cube which is created along with the data cube (see Section
2.2). Bad pixels are simply ignored during the interpolation. This will result in a local increase in
the noise, which will be apparent in the noise cube.

11 of 148

1.2.4Data Formats

Only standard FITS data formats with extensions are used for tables, 2D and 3D images.
ASCII files are used for parameter files (e.g. EsoRex or Gasgano configuration files).

1.2.5Pipeline Modes

The DRS pipeline will be able to run in 3 specific default modes which are built from the same set
of recipes but with different input parameters, and 1 more general mode. These are:

Acquisition pipeline mode: this will run on Paranal in real time to aid in acquiring targets.
In order to achieve the maximum speed, a number of stages will be omitted and the reconstructed
data will be approximate (although sufficient for the task in hand); the final output will be a set of
images.

On-line pipeline mode: this will run on Paranal in quasi real time in an automated manner
with a primary goal of monitoring the scientific results from execution of an OB, and generating
initial QC parameters.

Off-line pipeline mode: this will be run by the DFO in Garching in order to generate all
necessary calibration products, which will be certified by the DFO and archived. It will also be
used to generate reduced frames from service mode observations, which are then sent to the
proposer.

Desktop Processing: the pipeline can be run by an observer at their home institution using
the EsoRex and Gasgano tools. External software such as QFitsView can be used to view
intermediate and final data products; the observer can freely select all parameters; and if required
add in their own processing steps.

12 of 148

2 Mathematical Description

2.1 Interpolation
In KMOS, reconstruction of a (rectilinear) 3D datacube from raw 2D data will be performed in a
single step. This is no more risky or difficult than interpolating in 2-dimensions. However, being
able to conceptualise it requires that the calibrations are viewed in a particular way. Traditionally,
calibrations are considered to be the mathematical functions (polynomials) which allow one to
correct the curvature in the recorded data. Instead, calibrations should be considered as a look-up
table associating each data value in the raw frame with its (x,y,λ) position in the reconstructed
cube. This is shown graphically in Figure 1, where the calibration look-up tables would allow one
to go from (a) to (b).

Figure 1: Illustrative example of the perspective required in order to interpolate in 3D. (a)
Observed data are sampled regularly in the reference frame of the detector. (b) This sampling is
irregular in the reference frame of the reconstructed cube; bad pixels can simply be omitted from
the set of sampled points. (c) One can freely specify the required gridding (i.e. spatial/spectral
pixel scale) for the reconstructed data; it is independent of the actual sampling. (d) Each required
grid point is interpolated from the sampled points which lie in its neighbourhood. Any suitable
algorithm (see below) can be used for the interpolation.

The recorded data on the detector can then be considered as a set of values at irregularly spaced
sampling positions in the final cube. Once this is done, one can dissociate the data completely
from the detector frame and simply generate a list of values and positions:

value0, x0, y0, λ0

value1, x1, y1, λ1

…
valuen, xn, yn, λn

Each grid position in the reconstructed cube is interpolated from its nearby neighbours, which are
selected from this list of data values. Bad pixels are simply excluded from the list. Doing this
brings a number of advantages:

13 of 148

 The 3D datacube can be reconstructed in a single step, improving the noise properties of
the final dataset

 One can combine frames during the interpolation by concatenating as many lists as
required from various raw frames; this simply increases the number of sample points close
to each interpolated grid point.

 One can choose the sampling of the reconstructed cube arbitrarily. This is useful if one
wishes to compare the data to that from another instrument: the KMOS data can be directly
reconstructed at a matching pixel scale.

 The data can be smoothed during the reconstruction (for some algorithms), simply by
increasing the size of the local neighbourhood from which sampling points are taken.

It is fortunate that there are many different schemes available for interpolating points in 3-
dimensional space, since no single one is optimal for every situation. Each has its advantages and
disadvantages. It is for this reason that we will make several schemes available. In this section the
methods we propose to include within the KMOS data reduction software are described. While
these are all standard methods, few have actually been applied extensively to astronomical data. It
is not practical to provide a full description of each here, and so only the salient points are
described. The reader is referred to various references for further details.

2.1.1Nearest Neighbour

This is the simplest, and also one of the fastest, methods imaginable for interpolation: one simply
adopts the value of the nearest data point. This method is included since no additional noise is
added during the interpolation process, and as a result there may be instances when an observer
wishes to use this method: e.g. when signal-to-noise is more critical than optimal spatial/spectral
accuracy. The efficiency of this method can be enhanced using the cell method developed by
Bentley & Friedman (1979) [RD02]. A script called ngp.pro which performs this interpolation
is available from the IDL Astronomy User’s Library.

This method is available in the KMOS pipeline as value “NN” in the corresponding parameter
settings.

2.1.2Cubic Spline Interpolation

Cubic spline interpolation is a standard technique which is discussed in detail in, amongst others,
Numerical Recipes. As far as we are aware, it is applied commonly throughout astrophysical data.
The goal of a cubic spline is to get a formula that is smooth in the first derivative and continuous
in the second derivative, not only within an interval but also at its boundaries. We will use the
natural cubic spline, which has zero second derivative at its boundaries.

The issue here is how to apply it in 3 dimensions. A method has been developed by Lekien &
Marsden (2005) [RD05] which does this; but it requires that the data are gridded regularly. While
the KMOS data are gridded regularly on the detector, their position (x,y,λ) is not uniform and
therefore it would be quite difficult to apply this method – indeed to do so one would need to
calculate accurately where on the detector any particular point in (x,y,λ) would fall.

The alternative most commonly employed is to perform multiple 1-dimensional interpolations.
This makes the cubic spline method relatively straight forward mathematically. One useful
characteristic of the data in this respect is the fact that the pixel spacing perpendicular to the
slitlets in each IFU is regular – which, due to optical distortions, is not the case either along each
slitlet or along the spectral axis. One can then perform the first set of interpolations along this axis
and then propagate the regular spacing to the other dimensions.

14 of 148

This method is available in the KMOS pipeline as value “BCS” in the corresponding parameter
settings.

2.1.3Modified Shepard’s Method

This fits a smooth function to a set of data points scattered in 3 dimensions using a modification
by Renka (1988) [RD06] of a method developed by Shepard (1968) [RD07]. The necessary
algorithms are part of the NAG library (their nag_3d_shep_interp and
nag_3d_shep_eval routines). It is also available in IDL as the grid3.pro routine.

The original basic method constructs a function Q(x,y,z) which interpolates a set of m scattered
data points at positions (xi,yi,zi) and having values fi with a weighted mean:








m

i
i

m

i
ii

zyxw

fzyxw
zyxQ

1

1

),,(

),,(
),,(

where the weights are simply

222)()()(

1
),,(

iii
i zzyyxx

zyxw




The modification is that the method is made local by truncating the weights wi beyond a specified
distance Rw.

This method is available in the KMOS pipeline as value “swNN” in the corresponding parameter
settings, where the truncation radius can be specified (recommended box size is 1.1 pixels). An
analogous linear distance weighted scheme is also available under the name “lwNN”.

We note that in the full Modified Shepard’s method, the performance is improve by replacing
each fr by qr(x,y,z) which is a quadratic fitted by weighted least-squares to local data (i.e. within a
radius Rq). The resulting surface is continuous and has continuous first partial derivatives. It is the
calculation of each qr(x,y,z) that takes most of the processing time, but nevertheless the method is
remarkably fast, as shown by Yan et al. (2004). The radii Rw and Rq are chosen to be large enough
to include Nw and Nq data points respectively, and it is these latter numbers that define how
localised the interpolant is. For smaller numbers, the interpolation only uses local data and so is
faster but possibly less accurate; for larger numbers the computational cost is higher. The method
is not thought to be particularly sensitive to the choice of these parameters and typical values of
Nw = 32 and Nq = 17 seem to work well, based on experimental results reported by Renka (1988).

2.2 Error Propagation
One of the goals of the pipeline is to produce (at least a reasonable approximation to) an error
cube to complement the final reduced and combined data cube. This is an important consideration
since the noise is strongly wavelength dependent – being affected most by the presence of OH
lines and the thermal background. In addition, in a combined cube, the noise will be spatially
dependent.

15 of 148

In principle creating a noise cube ought to be straight forward since the basic mathematics of error
propagation are straight forward and well known. In practice, this is not so, most notably due to
systematic effects when combining different datasets. Any useful estimate of the error should
include these, and as a result our methods assess the noise from the data themselves rather than
simply propagating a formal estimate.

2.2.1 Initial Noise Estimate

It is assumed that the gain (e-/ADU) and the readnoise (e-) are either known or can be measured.
In this case the noise in any raw 2D frame can be found (or strictly, only estimated, because the
counts measured are themselves subject to noise) simply as

gain

readnoisegaincounts
ADU

2

)(




This relation can be tested as follows: for a large number (e.g. 20) identical exposures, the
standard deviation between the values at each position on the detector should be equal to σ as
estimated above. Alternatively, since the readnoise is approximated by the noise in a frame with
exposure time of MINDIT, this same method can be used to derive the gain.

2.2.2Mathematical Manipulations

The recipe kmo_arithmetic allows one to perform mathematical manipulations on the data. For
these cases, the errors can be propagated in a strictly mathematical way. This applies similarly to
the recipes kmo_rotate and kmo_shift. We have ignored covariance terms since they are
expected to be small for uncorrelated data.

For example, if one adds (or subtracts) two frames then (ignoring cross terms) the noise adds in
quadrature.

if x = au+bv then
2222

vux ba  

And if one multiples (or divides) two frames, then (again ignoring cross terms) the noise
combines as:

if x = auv then
2

2

2

2

vux
vux 



Similarly, raising a number to some power

if x=aub then u
b

x
ux 



And lastly, for exponentials and logarithms one has

if x=aebu then
u

x b
x






and

if x=a ln(bu) then u
a u

x


 

16 of 148

2.2.3Combining Datasets

We described two methods for estimating the noise in the result when multiple cubes are
combined. Both of these options will be available; the latter will be the default.

If one is combining cubes which have either small spatial dithers between them (i.e. multiple
exposures of the same field) or large dithers (i.e. in order to mosaic a larger field) one can in
principle use the formal relations above to combine the individual error estimates. Thus

)...(
1 22

2
2

1 ncombine n
 

where there are pixels overlapping. For all image regions where there is no overlap one simply
propagates the noise estimate directly.

While this can always be applied, it has a disadvantage in that it does not take into account
systematic effects between the different data sets being combined (e.g. offsets in the background
level). Thus an alternative method which will be offered is to estimate the noise directly from the
standard deviation of the pixel values at each spatial/spectral position. This has the advantage that
one can iteratively reject values which lie outside a threshold defined in terms of the standard
deviation of the (remaining) pixels – thus yielding a better mean value in the combined cube.
The only restriction is that such a noise estimate can only be made if there are at least 3 values
available at any given spatial/spectral position; in practice positions where this criterion is not met
will simply be assigned a noise of NaN.

2.2.4Extracting Spectra

The process of extracting a spectrum from a datacube is simply adding up spectra within a given
aperture (possibly weighted appropriately). The noise can therefore be propagated from the cube
to the spectrum very simply, by using the relation for a weighted sum given in Section 2.2.2.

2.2.5Creating Images

Images are created simply by collapsing the cube along its spectral axis within specified
wavelength ranges (and perhaps also excluding some intermediate wavelength ranges). As for
spectra, the noise can therefore easily be propagated using the relation for a weighted sum in
Section 2.2.2.

17 of 148

3 Instrument Data Description

The aim of this section is to describe the structure of the raw data produced by KMOS, which
corresponds to the RAW format.

KMOS comprises 24 IFUs, each of which has 14×14 spatial pixels and approximately 2000
spectral pixels. The data from these are recorded by three 2k×2k HAWAII 2RG detectors, with 8
IFUs assigned to each detector. The field of each IFU is sliced into 14 slitlets which are
rearranged along a pseudo-longslit and then dispersed. The raw data for each IFU therefore
consists of 14 sets of standard 2-dimensional (1 spatial, 1 spectral) slit spectra, which is arranged
next to each other on the detector, separated by a few blank pixels. The same pattern is repeated 8
times for each of the 3 detectors. A single exposure therefore produces approximately 50Mb data.
Figure 3 illustrates how the data appears on each detector. See also Figure 19 for an illustration of
how the raw data appears in the RTD.

A single integration with KMOS will produce three 2-dimensional frames, each 2048×2048
pixels, stacked in 3 extensions of a single fits file with an empty primary header.

Figure 2 Format of a RAW file as the instrumentation software delivers it. The value for the
EXTNAME keyword can be seen in the blue rectangles.

Calibration observations are performed in a standard way and typically yield data with a similar
format: darks, flats, wavelength calibration and spectral curvature. The exceptions are the
illumination correction and standard stars.

18 of 148

Figure 3 - illustrative layout of the data format on each detector (curvature has been enhanced for
visual purposes). Upper panel: full detector showing OH emission lines on the H-band; Lower
panel: left side, stretched to show individual slitlets within each IFU are arranged.

3.1 Orientation of the IFUs on the detectors
Due to the optical path realised in the KMOS instrument the spatial orientation of the IFUs on the
detector frames isn’t the same for all of them, as one would expect intuitively. The orientation of a
reconstructed slitlet of an IFU can be flipped or rotated. The orientation of the wavelength axis

19 of 148

never changes. The wavelength is always lowest at the bottom and highest at the top of the
detector frame as depicted in Figure 3.

Figure 4 Numbering of pixels and slitlets as they are referenced to in Figure 5

For IFUs 17, 18, 19, and 20 the pixels in a slitlet are orientated from left to right and the slitlets
are stacked from top to bottom.
For IFUs 21, 22, 23 and 24 the pixels in the slitlet are oriented just the other way round, from
right to left. As well the stack orientation is flipped, it goes from bottom to top.
Whereas in IFUs 1, 2, 3, 4, 13, 14, 15 and 16 the slitlets are oriented vertically from bottom to
top. The stacks are stacked from left to right.
Finally in IFUs 5, 6, 7, 8, 9, 10, 11 and 12 the slitlets are also vertical but go from top to bottom
and they are stacked from right to left.

20 of 148

Figure 5 Orientation of the slitlets for the different IFUs

3.2 FITS header keywords
The tables below define the FITS header keywords which are required by the data reduction
pipeline. The Instrumentation Software will provide these keywords in the headers of raw frames
– see KMOS Instrument Software Design Description [RD01].

3.2.1Primary header

Keyword value comment
DATE string Date the file was written
DATE-OBS string Observing date
EXTEND bool There may be FITS extensions
NAXIS int number of array dimensions
NAXIS1 int # of pixels in axis1

21 of 148

NAXIS2 int # of pixels in axis2
HIERARCH ESO DET NDIT int Number of detector integrations
HIERARCH ESO DET SEQ1 MINDIT double Minimum DIT
HIERARCH ESO OBS ID int Observation block ID
HIERARCH ESO INS FILTi ID
(i=1-3)

string Filter unique id

HIERARCH ESO INS GRATi ID
(i=1-3)

string Grating unique ID

HIERARCH ESO INS LAMPi ST
(i=1-4)

bool arc lamp status (on/off), i=1,2
flatfield lamp status (on/off) , i=3,4

HIERARCH ESO OCS ARMi ALPHA
(i=1-24)

double RA centre of arm i (J2000)

HIERARCH ESO OCS ARMi DELTA
(i=1-24)

double Dec centre of arm i (J2000)

HIERARCH ESO OCS ARMi NAME
(i=1-24)

string Target name hosted by arm i

HIERARCH ESO OCS ARMi NOTUSED
(i=1-24)

string String containing error message. If
keyword isn’t present, then the arm is
functional

HIERARCH ESO OCS ARMi TYPE
(i=1-24)
HIERARCH ESO OCS ROT OFFANGLE double Rotator offset angle
HIERARCH ESO OCS TARG DITHA double Telescope dither in ALPHA [arcsec]
HIERARCH ESO OCS TARG DITHD double Telescope dither in DELTA [arcsec]

3.2.2Extension header

Keyword value comment
EXPTIME double Integration time
EXTNAME string string describing the extension
NAXIS int number of data axes
NAXIS1 int length of data axis 1
NAXIS2 int length of data axis 2
XTENSION string IMAGE extension
HIERARCH ESO DET CHIP GAIN double Gain in e-/ADU
HIERARCH ESO DET CHIP
INDEX

int Chip index

HIERARCH ESO DET CHIP RON double Read-out noise in e-

The reduction pipeline updates the headers in a way that information applying to all frames is
stored in the empty primary header. Detector or IFU specific information is stored in the
subsequent headers (see also section 4).

3.3 Raw file types
The raw files are generated using different templates that represent the available modes to use
KMOS with. When a template is executed the following keywords are written into all generated
files:

- HIERARCH ESO DPR TYPE (unique identifiers to perform DO categorisation)
- HIERARCH ESO DPR CATG (qualitative category of the file)
- HIERARCH ESO DPR TECH (technical category of the file)

22 of 148

- HIERARCH ESO OCS TEMPL ID (the applied template)
With these keywords it is possible for the Data Organiser (DO) to classify the files and provide
the corresponding DO category that is needed to run the KMOS pipeline properly.

The raw files with DPR.TECH equal IMAGE or SPECTRUM require no reconstruction of the
data cubes. In these cases the data will be treated as the simple 2D frame that it is.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
DARK DARK CALIB IMAGE KMOS_spec_cal_dark
FLAT_ON
FLAT_OFF

FLAT,LAMP
FLAT,OFF

CALIB
CALIB

SPECTRUM
IMAGE

KMOS_spec_cal_calunitflat

ARC_ON
ARC_OFF

WAVE,LAMP
WAVE,OFF

CALIB
CALIB

SPECTRUM
IMAGE

KMOS_spec_cal_wave

FLAT_SKY FLAT,SKY CALIB IFU KMOS_spec_cal_skyflat
STD OBJECT,SKY,STD,FLUX CALIB IFU KMOS_spec_cal_stdstar

KMOS_spec_cal_stdstarscipatt
SCIENCE OBJECT,SKY SCIENCE IFU KMOS_spec_obs_nodtosky

KMOS_spec_obs_stare
KMOS_spec_obs_mapping8
KMOS_spec_obs_mapping24
KMOS_spec_obs_freedither

The following DO categories are not used in the pipeline itself.

Although acquisition frames will need to be processed in order to reconstruct the acquisition
images needed for the real time display, the recipe will be triggered by CLIP rather than any
header keywords (because the frames do not have headers at this stage).
For acquisition frames one exposure will have objects in (some) arms and the subsequent
exposure will be of blank sky fields. However, for most science observations, this will not be the
case: in any single exposure some arms will be on sky and some arms will be on objects.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
ACQ_OBJ OBJECT ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_SKY SKY ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_STD OBJECT,SKY ACQUISITION IFU KMOS_spec_acq_stdstar

KMOS_spec_acq_stdstarscipatt

The technical templates do not require specific data processing other than reconstructing the
cubes. All measurements of the source size and position will be done afterwards manually.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
FOCUS LAMP,FOCUS TECHNICAL SPECTRUM KMOS_spec_tec_focus
LOOKUP OBJECT, LOOKUP TECHNICAL IMAGE KMOS_spec_tec_lutatcfstars

3.3.1Dark

File types: DARK
These frames are observed with the filter wheel in a ‘blocked’ position. Dark frames are used as
the OFF frames for the illumination correction.

3.3.2Flatfields

File types: FLAT_ON, FLAT_OFF, FLAT_SKY

23 of 148

The standard flatfield is illuminated by a pair of lamps via an integrating sphere. Each set of
flatfields FLAT_ON has an associated set of FLAT_OFF frames, taken immediately before
(although in principle a standard dark frame could suffice). In case there are spatial non-
uniformities in the flatfield, and also to take into account vignetting further upstream in the light
path, an illumination correction can be performed. Since this is taken on sky, a dark frame is used
as the corresponding OFF frame. The edges of the illuminated regions of the flatfields can also be
used to trace the spectral curvature.
In order to measure the spectral curvature and calibrate KMOS while it is mounted, the edges of
the illuminated regions in the flatfields will be traced. This provides 2 traces per slitlet. As a result
one has to assume that the magnification as a function of wavelength is uniform across the slitlet.

3.3.3Wavelength

File types: ARC_ON, ARC_OFF
These frames are illuminated simultaneously by Ar and Ne arc lamps. Each ARC_ON frame has an
associated ARC_OFF frame, taken immediately before (although in principle a standard dark
frame could suffice).

3.3.4Standard Star

File types: STD (object and sky)
This type identifies observations of a telluric standard star. In addition, for the many such stars
where the magnitude is well known, these also provide the photometric calibration. Because the
standard stars are observed in an IFU, there are no issues associated with limited slit width, seeing
corrections, etc.

3.3.5Science Object

File types: SCIENCE (object and sky)
These frames are illuminated by a science target. It should be noted that in most cases, for any
particular exposure only some of the 24 IFUs will be on objects and the rest will be on sky. The
necessary keywords OCS.ARMi.TYPE indicating whether each individual IFU is on sky or on
object in any particular frame are written into the header by the OS.

3.4 Processing Table
The different recipes for generating calibration and science products are listed in the Data
Processing Tables in Appendix A. These relate the various calibration recipes to their respective
raw data types. The tables connect the classification keywords, the DO category, and the
observing template. Required input from the calibration database is indicated, as are the final
products. A summary of the main processing steps is given, as are the FITS header keywords
needed by the recipe.

3.5 IFU Layout in the Mapping Templates
The mapping modes of KMOS have specific templates to perform the observations. But the data
are treated by the pipeline in exactly the same way as for any other science observation.

It is often useful to know which IFUs in which exposures makes up the various parts of the
patchwork mosaic. Figure 6 and Figure 7 show this information for the 8-arm and 24-arm
mapping modes respectively.

24 of 148

Figure 8 Left – Arrangement of the IFUs used in the template KMOS_spec_obs_mapping8
used for the Mapping8 mosaic mode. Right – order (from A to I) of the 9 dithers performed during
the Mapping8 mode. The IFUs are separated by 8.1” and each dither is 2.7” so that, at the end,
there is a 0.1” (half-pixel) overlap between adjacent pieces.

Figure 9 Left – Arrangement of the IFUs used in the template KMOS_spec_obs_mapping24.
Right – order (from A to P) of the 16 dithers performed during the Mapping24 mode. The IFUs
are separated by 10.8” and each dither is 2.7” so that, at the end, there is a 0.1” (half-pixel)
overlap between adjacent pieces.

25 of 148

4 Data Reduction Library Data Structures
During the different processing steps, the raw data is modified and associated with additional
information, which is either produced during the reduction or originates externally. The resulting
data types are described in this section.

Note that in both of these tables, the file type is given as a 3-character identification:
 the first character refers to whether the data in the file is stored as a floating point number

(‘F’, number of bits unspecified) or a binary digit (‘B’);
 the second character indicates the dimension of the data (1, 2, or 3);
 the third character indicates whether the data refers to a complete detector array (‘D’), an

individual IFU (‘I’), a look-up table or list (‘L’), or a spectrum of arbitrary size (‘S’).

4.1 Classification Tags
The classification of intermediate and final data products that will be generated by the calibration
recipes and pipeline is given below, together with the recipe which generates them and a brief
description of the product:
PCATG type recipe description
MASTER_DARK F2D kmos_dark - dark frame (including noise map)
MASTER_FLAT
XCAL
YCAL

F2D
F2D
F2D

kmos_flat - flatfield frame (including noise
map)
- spatial solution lookup frame
- spatial solution lookup frame

LCAL F2D kmos_wave_cal - wavelength solution lookup frame
ILLUM_CORR F2I kmos_illumination - illumination correction to flatfield
TELLURIC

STAR_SPEC
STD_IMAGE

STD_MASK

F1I

F1I
F2I

F2I

kmos_std_star - normalised telluric spectrum
(including noise map)
-extracted star spectrum
-images from a standard star cube
collapsed along the spectral axis
- mask used for extracting the spectra

SCI_COMBINED
SCI_RECONSTRUCTE
D

F3I
F3I

kmos_sci_red - reconstructed and combined science
cubes (including noise map)
- intermediate reconstructed science
cubes (including noise map)

The classification of ancillary external data files is given below:
PCATG file type description
ARC_LIST F1L list of arc line wavelengths & strengths
OH_LIST F1S spectrum of OH line wavelengths & strengths
ATMOS_MODEL F1S high resolution model spectrum of atmospheric

transmission
SOLAR_SPEC F1S high resolution solar spectrum
SPEC_TYPE_LOOKUP F2L lookup table to find stellar effective temperature

from spectral type and luminosity class

The various formats are detailed in the following subsections.

26 of 148

4.2 Intermediate Data Formats
All files have an empty primary header, data and noise maps are stored in extensions as described
below.

4.2.1Detector based floating point products

File Type: F2D
PCTAG: MASTER_DARK, MASTER_FLAT
For these files, the detector pixel space (i.e. 2048×2048 pixels) is still the reference frame in
which the data are stored. The data of each detector is stored in an extension of the FITS file. for
the dark and flat frames), these will be stored in extensions of the same FITS file. In this case the
first extensions will contain the data of the first detector, the second extension will contain the
associated noise map and so on.

Figure 10 The two valid configurations of a F2D-frame either with or without noise maps. The
value for the EXTNAME keyword can be seen in the blue and red rectangles.

4.2.21-dimensional detector based products

File Type: F1D
PCTAG: -
These files can be created by some intermediate recipes, e.g. kmo_stats. When statistics are to be
calculated from a detector based frame, then the output frame follows the same naming
convention. F1D frames can either have one or three extensions. With noise it will be two or six
extensions.

27 of 148

Figure 11 The valid configurations of F1D-frames either with or without noise maps.

4.2.3Detector based binary digit products

File Type: B2D
PCTAG: BADPIXEL_DARK, BADPIXEL_FLAT
These files also have the detector as the reference frame in which the data are stored, in fact they
are almost identical to F2D frames. But the data stored has another meaning: i.e. ‘0’ stands for a
bad pixel, ‘1’ for a good pixel. The FITS files will have extensions corresponding to the 3 detec-
tors (like in Figure 10 on the left side). A B2D frame can’t contain any noise frames.
Note that although a list of bad pixels would require less file space, it requires additional proces-
sing and does not allow for an easy way to visually check the bad pixel map.
To distinguish F2D from B2D frames the EXTNAME keyword contains DET.1.BADPIX,
DET.2.BADPIX and DET.3.BADPIX.

Figure 12 The valid configuration of a B2D-frame either with or without noise maps.

4.2.41-dimensional IFU based products

File Type: F1I
PCTAG: TELLURIC, STAR_SPEC
The IFU spectral domain is the reference for the storage of these data – i.e. the data is a simple
spectrum, the length and sampling of which correspond exactly to those of the spectral axis of a
reconstructed cube. The same telluric correction will be used for all IFUs, and so the only
extension in the FITS file will correspond to the noise spectrum. A F1I-frame can either contain
the spectrum of just one IFU or of up to 24 IFUs. For inactive IFUs (for which hence no data
exists) an empty extension is inserted for data as well for the noise map.

28 of 148

Figure 13 All valid configurations of a F1I-frame either with or without noise maps. The value
for the EXTNAME keyword can be seen in the blue and red rectangles.

4.2.52-dimensional IFU based products

File Type: F2I
PCTAG: ILLUM_CORR, STD_IMAGE
The IFU spatial field is the reference for the storage of these data (i.e. 14×14 pixels) – i.e. the data
correspond to a cube which is collapsed along the spectral axis. Since KMOS has 24 IFUs, the
data will be stored in up to 24 extensions or in 48 extensions with noise maps in a single FITS
file. All extensions will be presenting every file produced; those for which no data exist will be
left empty. A F2I-frame can either contain images of just one IFU or of up to 24 IFUs.

Figure 14 All valid configurations of a F2I-frame either with or without noise maps.

4.2.6Naming convention

For all intermediate data formats described in section 4.2 (and also for F3I in section 4.4.1) the
convention is followed that in all extensions the EXTNAME keyword is describing its origin and
content. The format is “TYPE.NR.CONTENT”,
where TYPE can be DET or IFU,
where NR can be a number between 1 to 24 and
where CONTENT can be DATA, NOISE or BADPIX.

This convention is modified when cubes are combined using the recipe kmos_combine. Since
the cubes to be combined needn’t to stem from the same IFU (for example an object is observed
in the first OB on IFU #2 and in the second OB on IFU #13), the format will be changed to
“TYPE.CONTENT”.The user will have to keep track himself of the history of the IFUs if he
desires so. kmos_combine will take the header of the first fits file in the sof-file and modify it
accordingly.

29 of 148

4.3 External Data Formats
All files have an empty primary header, data and noise is stored in extensions as described below.

4.3.1Lists

File Type: F1L
PCTAG: ARC_LIST
These file types will be stored as a binary fits table. The EXTNAME keyword contains the string
“LIST”.

The line list will have three columns: the first column will contain a list of wavelengths
corresponding to the positions of the lines; the second column will contain a corresponding list of
approximate line strengths. The third column contains a string, either “Ar” or “Ne” depending to
which gas the line belongs to. With this information, it will be possible both to generate a
spectrum at the appropriate resolution to match that of the bandpass and also to unambiguously
identify particular lines in an observed spectrum. Note that because two different arc lamps are
used, there is uncertainty in the relative strengths of the lines between these two lamps. Therefore
the arc line strengths will not be used by the automatic pipeline. However, the information will be
retained in the data file for the astronomer and possible future upgrades or other unforeseen uses.

4.3.21-dimensional spectra

File Type: F1S
PCATG: ATMOS_MODEL, SOLAR_SPEC, OH_LIST
These data formats will be stored as linearly sampled spectra, with the standard parameters
defining the wavelength sampling given in the header. These spectra are at very high resolution
and cover the entire wavelength range of all the bandpasses used within KMOS. When needed,
the appropriate section of the spectrum can be convolved to the required resolution. The structure
of a F1S file follows the definition of a F1I file, except that there can only be one data extension
without noise and the EXTNAME keyword contains the string “SPEC”.

4.3.3Lookup tables

File Type: F2L
PCATG: SPEC_TYPE_LOOKUP, FLAT_EDGE, REF_LINES
A lookup table is by definition 2-dimensional. Therefore this data format will consist of a binary
fits table with an appropriate number of rows and columns. The EXTNAME keyword contains
the string “LIST”.
In the case of SPEC_TYPE_LOOKUP, the aim is to cover the most common MK spectral types so
that the effective temperature of any telluric star (typically a B or G2V star) can be estimated:
luminosity classes: I, II, III, IV, V
spectral type: O5, O9, B0, B2, B5, B8, A0, A2, A5, F0, F2, F5, F8, G0, G2, G5, G8
This file type can either have one or 24 extensions.

4.4 Final Output Data Formats
4.4.13-dimensional IFU based products

File Type: F3I
PCATG: CUBE_DARK, CUBE_FLAT, CUBE_ARC, CUBE_OBJECT, CUBE_STD,
REDUCED_CUBE

30 of 148

The processed datacubes (i.e. 14×14×2048 pixels), one corresponding to each of the 24 IFUs is
stored in a F3I fits file. As the other formats described above, F3I has as well an empty primary
header and data and noise maps are stored alternately. Extensions for inactive IFUs are left empty.

Figure 15 All valid configurations of a F3I-frame either with or without noise maps.

4.5 Calibration Data Formats
Since the orientation of all IFUs isn’t the same due to the optical path of the KMOS instrument
the spatial solution lookup frames XCAL and YCAL (see section 4.1) are intermixed. The
assembly of the RAW frames in respect to the IFUs is explained in section 3.1 in detail.

Following figures show the setup of the three calibration frames XCAL, YCAL and LCAL:

31 of 148

Figure 16 XCAL: In the first two detector frames there is the same data value inside each slitlet.
So the visible gradient extends over the whole IFU. In the third detector frame the extends over
each slitlet individually (see magnification)

Figure 17 YCAL: The same pattern as above is observed but just switched between the detectors.

Figure 18 LCAL: The gradiant extends over the wavelength axis in the same way for all
detectors, IFUs and slitlets.

32 of 148

4.5.1Calibration at multiple rotator angles

Calibrations should as well compensate as much as possible for the flexure. There are two main
sources of flexure. On one hand the flexure of the whole instrument as such and on the other hand
the flexure introduced inside the instrument (spectrographs, arms etc.).

Compensating the outer flexure hasn’t been solved satisfactory until now since the characteristics
are quite inpredictable. The flexure results in offset of about 1 pix, which lie in the specifications
of the instrument.

To compensate for the inner flexure the KMOS DRS pipline allows to take calibration exposures
at several rotator angles and to process them in a single run of the associated recipes. The recipes
applying reconstruction will then choose the closest calibration frames regarding the rotator angle
of the input science frame to reconstruct. If the angle lies inbetween two calibrations, the
calibration frames will be temporarily interpolated.

The calibration frames XCAL, YCAL and LCAL generated with the recipes kmos_flat and
kmos_wave_cal therefore don’t just contain 3 extensions each, but rather 3 times the number of
rotator angles.

A default value of 6 rotator angles at an increment step of 60° has proved to be sufficient.

4.6 RTD Data Formats
Data which will be displayed in the RTD does not have a designated type since it is not archived,
nor does it play a role in the pipeline processing of the science OBs. The formats are included
here for completeness and to clarify how the data will appear in the RTD.
There will be 2 RTDs for KMOS.
The first will display the raw data, which will appear as a single frame, from which the
contributions from the 3 detectors (each 2048×2048 pixels) are spliced together in a row, making
a frame of 6144×2048 pixels as shown in Figure 19.

33 of 148

Figure 19: illustrative example of how the raw data appears in the first RTD (top), with the 3
detector frames spliced together. Below is shown a zoom of one part of this, in which it is possible
to distinguish individual slitlets from the IFUs, the OH lines, and the spectral traces of 1 or 2
objects. Note that no curvature has been included in this example; the actual curvature will be
small.

The second RTD shows the reconstructed images. There is a button so that the user can choose
between seeing these images in a grid (Figure 20) or in their actual location within the patrol field
(Figure 21).

34 of 148

Figure 20: reconstructed images from the 24 IFUs displayed in a 5×5 grid format. This allows
one to see immediately and easily what each IFU is looking at.

Each sub-image of the grid-format will be 14×14 pixels. Since a spacing of 1 pixel is included
between each sub-image, the whole montage will be 76×76 pixels. Any sub-images which are not
reconstructed (e.g. during acquisition, typically only a few IFUs will be used) will be left blank.
Thus the position of a sub-image for a particular IFU will always be the same, regardless of how
many are reconstructed.

The patrol field format will cover 7.2arcmin (plus some extra blank space) at a sampling of 0.2”
which matches that of the individual reconstructed images. Thus it will be 2200×2200 pixels. The
sub-images will be inserted at the nearest integer position to their actual locations. This is done to
avoid the necessity of resampling the reconstructed images, and because this accuracy (i.e. to half
a pixel, or 0.1”) is sufficient for the purpose of this format.

35 of 148

Figure 21: reconstructed images from the 24 IFUs placed in their actual locations within the
patrol field. This mode will mostly be used for testing and commissioning KMOS, but may also
be useful during certain astronomical acquisitions and observations.

36 of 148

5 Data Reduction Library QC1 Parameters
KMOS has 24 IFUs, each of which has 14 slitlets, giving a total of 336 distinct 2-dimensional
spectra. Due to alignment and manufacturing tolerances, the spectral traces and dispersion
solutions of these spectra need to be determined independently (e.g. there could be discrete shifts
between neighbouring spectra). Furthermore, these parameters will depend on the bandpass used.
As a result monitoring all the coefficients of all the fits would yield many thousands of QC1
parameters – which is clearly impractical.

This section concerns the way in which the number of QC1 parameters will be kept to a
manageable total. However, it should be realised that in many cases, it is nevertheless necessary
to track QC1 parameters separately for

(a) each of the 3 detectors since these correspond, in effect, to optically separate systems.
(b) each of the 5 bandpasses, since many of the optical properties depend on the
grating/filter used.

Information about the detector or grating to which each QC1 parameter is associated will be given
in the associated PAF.

A concise summary of all the QC1 parameters is given in Appendix B.

5.1 QC1 Parameter descriptions
5.1.1Dark Frames

QC DARK
Direct calculation of the mean value in the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC DARK MEDIAN
Direct calculation of the median value in the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC RON
Direct calculation of the mean value of the noise of the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC RON MEDIAN
Direct calculation of the median value of the noise of the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC DARKCUR
Mean value (with iterative rejection) for each detector of a long exposure Master Dark frame,
after the Master Dark has been subtracted, divided by the exposure time.
(Stored in each detector header of all created output frames)

QC BADPIX NCOUNTS
Total number of pixels in each detector flagged as ‘bad’ in a Master Dark or Master Dark frame.
The mimimum number is 32’704, since the four-pixel border around the detector frame (used to
monitor detector health) is marked always as bad.
(Stored in each detector headers of all created output frames)

37 of 148

5.1.2Flat Frames

QC FLAT EFF
The main concern here is whether the brightness of the flatfield lamps has changed, and so a
single value suffices for all detectors together. It is defined as the mean normalisation for the
Master Flat divided by the exposure time, for each bandpass.
(Stored in the primary headers of all created output frames)

QC FLAT SAT NCOUNTS
This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in
the Master Flat, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel
is flagged as saturated if its value is above some defined limit in at least two of the individual ON
frames used to generate the Master Flat.
(Stored in the primary header s of all created output frames)

QC FLAT SN
This parameter tracks the signal-to-noise in the illuminated regions of the Master Flat, for each
bandpass. It is defined as the total signal in these regions divided by the total noise (i.e. every
illuminated pixel is given equal weighting). This will allow one to monitor whether the signal-to-
noise in the flatfield meets the required specification, and adjust the number of co-adds (NDIT)
appropriately.
(Stored in the primary headers of all created output frames)

QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV
QC SLIT MEAN, QC SLIT SDV, QC SLIT MAXDEV
For all detected edges the width of gaps and slitlets are determined using the fitted polynomial
functions. Deviant values are rejected. Then the mean, standard deviation and maximum deviation
(in units of standard deviation) are calculated and Y will be compared to nominal values stored in
external files (see Section 4 lower table and Section 4.3 for the data format), which will be
determined during testing and updated during commissioning. This will yield two sets of numbers
which ideally would have a small scatter about zero.
These 6 parameters are sufficient to monitor changes in spectral curvature solution for each of the
detectors and bandpasses.
(Stored in each detector header of all created output frames)

5.1.3Wavelength Calibration

QC ARC AR EFF,
QC ARC NE EFF
The main concern here is whether the brightness of the argon and neon arc lamps has changed,
and so a single value for each lamp suffices for all detectors together. They are defined as the total
counts of several specified lines, divided by the exposure time, for each bandpass.
(Stored in the primary header)

QC ARC SAT NCOUNTS
This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in
the arc frame, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel is
flagged as saturated if its value is above some defined limit in at least two of the individual ON
frames used to generate the arc frame.
(Stored in the primary header)

QC ARC AR SPECRES, QC ARC AR ERR SPECRES,

38 of 148

QC ARC NE SPECRES, QC ARC NE ERR SPECRES
This monitors the spectral resolution and its errors of each grating for both the argon and neon
lamp. The FWHM of a specified arc line is measured for each bandpass and each detector.
(Stored in each detector header)

QC ARC DISP0 MEAN, QC ARC DISP0 SDV, QC ARC DISP0 MAXDEV,
QC ARC DISP1 MEAN, QC ARC DISP1 SDV, QC ARC DISP1 MAXDEV,
QC ARC DISP2 MEAN, QC ARC DISP2 SDV, QC ARC DISP2 MAXDEV
For each slitlet, a set of coefficients relating the pixel position on the detector to its wavelength is
determined. The constant (zeroth order), first order, and second order coefficients in Y will be
compared to nominal values stored in external files (see Section 4 lower table and Section 4.3 for
the data format), which will be determined during testing and updated during commissioning.
This will yield three sets of numbers which ideally would have a small scatter about zero.
These 9 parameters are sufficient to monitor changes in dispersion solution for each of the
detectors and bandpasses.
(Stored in each detector header)

QC ARC MAX DIFF, QC ARC MAX DIFF ID,
QC ARC MAX SDV, QC ARC MAX SDV ID,
QC ARC MEAN DIFF,
QC ARC MEAN SDV
Once the wavelength calibration look-up table has been generated, the arc frame is reconstructed
into a cube. Several prominent arc lines will be used to check the quality of the wavelength
calibration. For each IFU the difference between the wavelength of the emission line (across all
spaxels) and its true wavelength will be measured. The maximum difference, and the
corresponding IFU identity will be written as QC parameters. Similarly, the standard deviation of
the wavelengths in each spaxel will be calculated. The maximum value and the identity of the
corresponding IFU will be written to a second pair of QC parameters.
These 4 parameters are sufficient to monitor the quality of the dispersion solution for each of the
detectors and bandpasses. Similarly, the mean difference and the mean standard deviation are
calculated.
(Stored in each detector header)

5.1.4 Illumination Correction

QC SPAT UNIF
This parameter is defined as the RMS of all 14×14 spatial pixels in all the illumination correction
images corresponding to the 24 IFUs. It is a simple measure of how uniform the Master Flat is,
for each bandpass. It is also sensitive to differences in throughput (e.g. due to vignetting) both
between IFUs, and within any individual IFU.
(Stored in the primary header of the created output frame)

QC SPAT MAX DEV,
QC SPAT MAX DEV ID
For these parameters, the mean of the illumination correction is calculated for each of the IFUs in
each bandpass. The IFU that deviates most from unity is flagged, as is the amount by which it
deviates.
(Stored in the primary header of the created output frame)

QC SPAT MAX NONUNIF,
QC SPAT MAX NONUNIF ID

39 of 148

For these parameters, the standard deviation of the illumination correction is calculated for each
of the IFUs in each bandpass. The IFU with the largest standard deviation is flagged, and the
standard deviation itself is also recorded.
(Stored in the primary header of the created output frame)

5.1.5Standard Star Observations

QC ZPOINT
This is defined as the mean zeropoint of all standard stars observed in various IFUs for a single
pointing, and for which a magnitude is given (although the number of stars may typically be 1). It
is different for each bandpass.
(Stored in each detector header of telluric output frame)

QC THRUPUT, QC THRUPUT MEAN, QC THRUPUT SDV
This is equivalent to the zeropoint, but in a slightly different form. The throughput will be
calculated whenever the zeropoint is calculated. It will be given as the mean (and standard
deviation) of the throughput based on all standard stars observed in various IFUs for a single
pointing – as long as a magnitude and spectral type is given. The number of photons detected (i.e.
counts × gain) will be compared to the number of photons expected from the star, taking into
account standard atmospheric extinction. The ratio of these numbers is the throughput from the
top of the telescope to the detector, including the detector quantum efficiency.
(QC THROUGHPUT is stored in each detector header of telluric output frame,
QC THROUGHPUT MEAN and QC THROUGHPUT SDV are stored in the primary header of
telluric output frame)

QC SPAT RES
This is defined as the mean FWHM resolution of all standard stars observed in a single pointing.
Although the PSF may be slightly elliptical, the FWHM along the two axes are averaged to yield
a single measurement.
(Stored in each detector header of PSF output frame)

QC STD TRACE
This QC1 parameter has been introduced to verify the spectral curvature solution by checking
whether the trace of a standard star is straight in the reconstructed cube. Note that in the near
infrared, differential atmospheric refraction is small and will have little impact on the trace. This
parameter measures the standard deviation of the measurements of the positions of the standard
star in each spectral slice. This will depend on the bandpass used.
(Stored in each detector header of PSF output frame)

40 of 148

PART II: DRS RECIPE REFERENCE

6 Preliminaries
All calibration and science recipes receive raw or processed frames as input containing data
referring to a complete detector array. While processing, this format can change in the way that a
frame will refer to a single IFU (see Sec. 4.2.4 onwards). In this case the recipe iterates over all
frames of all IFUs in order to process all data supplied by the detectors. Detector frames will be
split up into IFU frames, when a cube has to be reconstructed or created. Cubes refer always to
IFUs. Reciprocally IFU frames can be combined to a detector frame again.

Data Types

All generated and saved image and cube frames are of type float. Vector frames and scalar values
are of type double.

Adressing of IFUs and detectors

When a specific IFU or detector has to be defined in a recipe, an integer has to be supplied to the
recipe. Numbering starts always at 1 and ends at 24 for IFUs and at 3 for detectors.

Invalid IFUs

Since not all IFUs need to be active when doing an exposure, some sections of a RAW frame can
contain invalid data. The inactive IFUs are marked in the primary header with ESO OCS ARMi
NOTUSED (i=1 to 24).
During reconstruction the detector frame is split up and rearranged into a cube. Invalid IFUs will
just contain the extension header and no data (NAXIS=0). The keywords specific to arms are
propagated into the respective extension header.

QC Parameters

The QC parameters generated by the recipes are listed in Appendix B.

6.1 Standard workflow
A standard workflow to setup a calibration pipeline would look like:

$ esorex kmos_dark dark.sof
$ esorex kmos_flat flat.sof
$ esorex kmos_wave_cal arc.sof
$ esorex kmos_illumination illumination.sof
$ esorex kmos_std_star std_star.sof
$ esorex kmos_sci_red sci_red.sof

Reconstructing a data cube from a detector image can already be performed after having executed
kmos_wave_cal:

$ esorex kmos_reconstruct reconstruct_science.sof

6.2 Generating Test Data
Executing the built-in tests of the pipeline generates automatically valid and invalid test data for
the various recipes. Valid data has a prefix “v_” and invalid data has a prefix “i_” (stored in the
subfolders in kmosp/recipes/tests/test_data).

41 of 148

Test data is also generated for the calibration pipeline (kmosp/recipes/tests/test_data/pipeline). It
consists of simulated K-band data. The pipeline will also be executed during the tests and the
products are saved to disk (kmosp/recipes/tests).

To run the tests open a terminal and execute make check in kmosp/recipes.

6.3 Predefined wavelength ranges
By default the following wavelength ranges are used to reconstruct detector images into cubes:

H-band: 1.425 - 1.867 um
HK-band: 1.460 - 2.410 um
IZ-band: 0.780 - 1.090 um
K-band: 1.925 - 2.500 um
YJ-band: 1.000 - 1.359 um

These values can be changed using the parameters b_end and b_start in the recipes
kmos_reconstruct, kmos_illumination, kmos_std_star , kmos_sci_red.

6.4 Lookup table (LUT) for reconstruction
Once the calibration frames XCAL, YCAL and LCAL have been created with kmos_flat and
kmos_wave_cal, any detector image can be reconstructed. As long as the calibration frames
don’t change, every detector image will be reconstructed exactly the same way. To speed up the
interpolation during reconstruction, the generated LUT will be saved to disk by default. In each
subsequent reconstruction step this LUT can be reused and hasn’t to be recalculated therefore.
The LUT is saved as binary file and is not editable. It will neither be declared as ESO DFS
product since this is an intermediate output.
When a detector image to reconstruct contains only a few valid IFUs, the LUT is only calculated
and stored for these IFUs. In a later run the LUT can be updated when other IFUs are active.

A saved LUT can only be reused when following parameters match
 filters, gratings and rotation offset

Every LUT is specific to filters, gratings and rotation offset. Therefore the LUT gets the
same filename extension like other calibration products, e.g. LUT_HHH_HHH_0.fits

 reconstruction method, spatial and spectral ranges
These parameters are stored in the LUT and are checked before eventually applying it.

 timestamp
A timestamp is also added to the LUT to assert that the LUT is newer than the above-
mentioned calibration frames. If any of the provided calibration frames is newer than the
LUT, then the LUT will be recalculated.

The LUT will be erased, recalculated and saved again when any of these parameters don’t match.

There are different modes to influence the behaviour of the usage of the LUT.
 NONE

The initial LUT is neither stored to disk nor in memory.
This method uses CPU resources only and is therefore the slowest method.
Any possibly existing LUT on disk will be ignored.

 MEMORY
The initial LUT isn’t stored to disk but is kept in memory as long a recipe is executed.
This method uses system memory resources.
Any possibly existing LUT on disk will be ignored.

42 of 148

 FILE
The initial LUT will be calculated and directly be saved to disk.
This method uses file system resources.
Any possibly existing LUT on disk will be examined for usability.

 BOTH
The initial LUT will be kept in memory as long a recipe is executed and saved to disk.
This method uses system memory and file system resources.
Any possibly existing LUT on disk will be examined for usability.

The default is LUT_MODE_FILE. The behavior can be changed in defining an environment
variable called KMCLIPM_PRIV_RECONSTRUCT_LUT_MODE with any of the the values
declared above.

43 of 148

7 Recipes
The KMOS data processing recipes can be divided into following three categories:

 Calibration Recipes
Recipes, which directly produce either calibration frames needed for science reductions or
for QC1 parameters.

 Science Reduction Recipes
Recipes which perform science or acquisition reductions (which are largely built from the
tools described below)

 Common Recipes
Functionally simple recipes, which can be applied in a straightforward fashion. These
recipes are used internally as well for the calibration and science reduction recipes.

The interactions between the calibration and science reduction recipes are displayed as an
association map in Figure 22.
It is worth noting that only the high level functions are described here, and the low level such as
basic arithmetic and file manipulation functions, are implied.
In Section 7.1 and 7.2 the calibration and science processing recipes are ordered following the
workflow of the pipeline. In the following section the recipes are ordered alphabetically.

Reference Structure

For each recipe following information is provided:
 Functional Description

A short and more detailed description of the recipe is given.
 Flow Chart

A graphical flow chart and a corresponding description are provided. The stylistic
conventions used in the subsequent flowcharts are as follows:

o Inputs of single values like float, int etc. external to the recipe data flow are
indicated in the flowchart by right filled triangles ().

o Inputs of cubes, frames or vectors are indicated by arrows ().
o Output of quality control parameters is coloured blue.
o Data-cubes, -frames or –vectors are displayed with bold typeface.
o The data flow goes from top to bottom. The down arrows can be split by condition-

nal statements (diamond) or when one single output triggers several DRL func-
tions.

 Input Frames
The DO categories of the frames needed to run the recipe and the required KMOS Fits
Type.

 Fits Header Keywords
Keywords needed in the primary and subsequent headers of the input files.

 Configuration Parameters
Description of all possible parameters with applicable data formats and allowed values.
Where appropriate they are divided into basic and Advanced parameters.

 Output Frames
Created output files with their DO category and KMOS Fits Type.

 Examples
How one would call the recipe with Esorex. If input is a single fits-file with no category-
keyword, it can simply be appended to the recipe-name. If input consists of a file with
category-keyword or of multiple files, they have to be written in a so-called sof-file (set of
frames). These are pseudo code examples.

44 of 148

Figure 22: Association map for KMOS. The calibration and science recipes are listed, and the
interactions between them indicated by the filled circles.

45 of 148

7.1 Calibration Recipes

7.1.1kmos_dark: Master Dark Frames

Create master dark frame & bad pixel mask (for monitoring detector health) and derive mean dark
current.

7.1.1.1 Description

This recipe calculates the master dark frame.
It is recommended to provide three or more dark exposures to produce a reasonable master with
associated noise. See section 8.2 for information on combine less than three frames.

Basic parameters:
--pos_bad_pix_rej
--neg_bad_pix_rej
Bad pixels above and below defined positive/negative threshold levels will be flagged and output
to the BADPIX_DARK frame (which will go into the kmos_flat recipe). The number of bad
pixels is returned as a QC1 parameter. The two parameters can be used to change these thresholds.

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2)

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--file_extension

Set this parameter to TRUE if the EXPTIME keyword should be appended to the output
filenames.

Advanced parameters:
--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

46 of 148

--cmax
--cmin
see --cmethod = “min_max”

7.1.1.2 Flow Chart

Figure 23: Flow chart of the recipe kmos_dark

The processing steps are:
1. From a series of dark exposures a dark frame (mean) and a noise map (std err) are

calculated using pixel rejection.
2. Then bad pixels above and below defined positive/negative threshold levels will be

flagged and output to the temporary bad pixel mask (which will go into the kmos_flat
recipe). The number of bad pixels is returned as QC1 parameter.

3. Bias, readnoise and the dark current quality parameters will be calculated (see section
5.1.1 for comprehensive explanations on QC1 parameters).

7.1.1.3 Input Frames

KMOS type DO category Amount Comments
RAW DARK ≥ 1 (≥ 3

recommended)
dark exposures

47 of 148

7.1.1.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
NDIT int any
EXPTIME double any

Sub Headers

Keyword Type Value Comments
EXPTIME double any

7.1.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
pos_bad_pix_rej
,
neg_bad_pix_rej

double pos_bad_pix_rej ≥ 0,
neg_bad_pix_rej ≥ 0

50.0
50.0

The positive and negative rejec-
tion threshold for bad pixels.
(optional)

cmethod string “ksigma”, “average”,
“min_max”, “sum”,
“median”

“ksigma” The averaging method to apply
(optional)

file_extension bool TRUE, FALSE FALSE (optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative rejec-
tion thresholds for bad pixels
(optional, applies only when
--cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for kap-
pa-sigma-clipping.
(optional, applies only iwhen
--cmethod = “ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum and
minimum pixel values to clip
with min/max-clipping
(optional, applies only when
--cmethod = “min_max”)

7.1.1.6 Output Frames

KMOS type DO Category Comments
F2D MASTER_DARK Calculated master dark frames

(with included noise frames)
B2D BADPIXEL_DARK Associated badpixel frames

7.1.1.7 Examples

$ esorex kmos_dark –pos_bad_pix_rej=2.1 dark.sof
with dark.sof containing:
dark_1.fits DARK
dark_2.fits DARK
dark_3.fits DARK

48 of 148

7.1.2kmos_flat: Master Flat Field

Create master flatfield frame and badpixel map to be used during science reduction.

7.1.2.1 Description

This recipe creates the master flat field and calibration frames needed for spatial calibration for all
three detectors. It must be called after the kmos_dark-recipe, which generates a bad pixel mask
(badpixel_dark.fits). The bad pixel mask will be updated in this recipe (goes into
badpixel_flat.fits). As input at least 3 dark frames, 3 frames with the flat lamp on are
recommended. Additionally a badpixel mask from kmos_dark is required.

In order to correct instrument flexure, the flat lamp on frames can be taken at different rotator
angles and can be feed to the recipe in one go. For each rotator angle there will be 3 extensions,
one for each detector, for every rotator angle. It is recommended to take calibration exposures in
60 degree increments, resulting in a set of 6 rotator angles. It is important, that the same angles
are chosen for kmos_flat and kmos_wave_cal.

The badpixel mask contains 0 for bad pixels and 1 for good ones.

The structure of the resulting xcal and ycal frames is quite complex since the arrangement of the
IFUs isn't just linear on the detector. Basically the integer part of the calibration data shows the
offset of each pixels centre in mas (milli arcsec) from the field centre. The viewing of an IFU is
2800mas (14pix*0.2arcsec/pix). So the values in these two frames will vary between +/-1500
(One would expect 1400, but since the slitlets aren't expected to be exactly vertical, the values can
even go up to around 1500). Additionally in the calibration data in y-direction the decimal part of
the data designates the IFU to which the slitlet corresponds to (for each detector from 1 to 8).
Because of the irregular arrangement of the IFUs not all x-direction calibration data is found in
xcal and similarly not all y-direction calibration data is located in ycal. For certain IFUs they are
switched and/or flipped in x- or y-direction:
For IFUs 1,2,3,4,13,14,15,16: x- and y- data is switched
For IFUs 17,18,19,20: y-data is flipped
For IFUs 21,22,23,24: x-data is flipped
For IFUs 5,6,7,8,9,10,11,12: x- and y- data is switched and x- and y- data is flipped

Furthermore frames can be provided for several rotator angles. In this case the resulting
calibration frames for each detector are repeatedly saved as extension for every angle.

Advanced features:
To create the badpixel mask the edges of all slitlets are fitted to a polynomial. Since it can happen
that some of these fits (3 detectors * 8 IFUs * 14slitlets * 2 edges (left and right edge of slitlet)=
672 edges) fail, the fit parameters are themselves fitted again to detect any outliers. By default the
parameters of all left and all right edges are grouped individually and then fitted using chebyshev
polynomials. The advantage of a chebyshev polynomial is, that it consists in fact of a series of
orthogonal polynomials. This implies that the parameters of the polynomials are independent.
This fact predestines the use of chebyshev polynomials for our case. So each individual parameter
can be examined independently. The reason why the left and right edges are fitted individually is
that there is a systematic pattern specific to these groups. The reason for this pattern is probably to
be found in the optical path the light is traversing.
The behaviour of this fitting step can be influenced via environment parameters:

49 of 148

 KF_ALLPARS (default: 1)
When set to 1 all coefficients of the polynomial of an edge are to be corrected, also when
just one of these coefficients is an outlier. When set to 0 only the outlier is to b e corrected.

 KF_CH (default: 1)
When set to 1 chebyshev polynomials are used to fit the fitted parameters. When set to 0
normal polynomials are used.

 KF_SIDES (default: 2)
This variable can either be set to 1 or 2. When set to 2 the left and right edges are
examined individually. When set to 1 all edges are examined as one group.

 KF_FACTOR (default: 4)
This factor defines the threshold factor. All parameters deviating KF_FACTOR*stddev are
to be corrected.

Basic parameters:
--badpix_thresh
The threshold level to mark pixels as bad on the dark subtracted frames [%].

--surrounding_pixels
The amount of bad pixels to surround a specific pixel, to let it be marked bad as well.

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

50 of 148

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0

7.1.2.2 Flow Chart

51 of 148

Figure 24: Flow chart of the recipe kmos_flat

The processing steps are:
1. The number of saturated pixels (>50’000) in the raw lamp-on frames is counted.
2. The mean frame and associated noise map (std err) from the lamp-on frames are calculated

using pixel rejection.
3. Similarly, the mean frame and associated noise map from lamp-off frames will be

computed.
4. The two mean frames are subtracted. The noise frames are combined.
5. To flag bad pixels preliminarily, the subtracted data is sorted. The lower 5% and upper

10% are cut off and then the position with the steepest slope is searched. 10% of the value
at this position is taken as threshold level. Pixels below will be flagged as bad pixels.
Additionally all pixels surrounded by at least 6 bad pixels are also flagged as bad. This
bad pixel mask will be combined with the temporary bad pixel mask from kmos_dark
recipe resulting into a preliminary bad pixel mask. (Preliminary because the slitlets are to
wide at present, but the exact edges are calculated with the fitted edge information
afterwards)

6. In the middle of the lower half und upper half of the frame a line profile is taken and
analysed for eventually existing rotation, cut or missing slitlets. When the number of
slitlets present and their approximate position has been determined, along the y-axis every
9 pixels a gaussfit is done to get a better approximation of the edge. At a last step, a 3 rd

order polynomial is fitted to the edge. Out of the parameters of the polynomial the QC
parameters QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV, QC SLIT MEAN, QC
SLIT SDV, QC SLIT MAXDEV are calculated.

7. Now knowing the exact position and shape of the edge, the bad pixel mask is updated and
the spectral curvature calibration frames (LUTs), one in x- and one in y-direction, are
calculated. Furthermore an eventually existing spectral gradient will be normalised for
each slitlet separately. For this all values in the same row of a slitlet are averaged, then a
3rd order polynomial is fitted to the resulting data points. The polynomial is normalised
and the slitlet-data will be divided by it.

Now the data and noise frames are normalised as a whole to unity using the mean calculated
without bad pixels. Out of these operations we get the master flatfield frame, the noise map and
QC1 parameters indicating lamp efficiency and signal to noise.

7.1.2.3 Input Frames

KMOS
type

DO category Amount Comments

RAW FLAT_ON ≥ 1 (≥ 3
recommended)

Flatlamp-on frames, optimally at
least 3 for every rotator angle

RAW FLAT_OFF ≥ 1 (≥ 3
recommended)

Flatlamp-off frames
(dark exposures)

B2D BADPIXEL_DARK 1 badpixel frame (from
kmos_dark)

7.1.2.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
DIT double any integration time (equals EXPTIME)
NDIT int 1

52 of 148

ESO DET READ CURNAME string Double,
Fowler,
Nondest

detector readout mode

ESO INS LAMP1 ST bool FALSE Arc lamp must be off
ESO INS LAMP2 ST bool FALSE Arc lamp must be off
ESO INS LAMP3 ST bool TRUE FLAT_ON: Flat lamp must be on

FLAT_OFF: must be off (can be on if
ESO INS FILTx ID is ‘Block’)

ESO INS LAMP4 ST bool TRUE Either LAMP3 or LAMP4 must be on
(LAMP4 is a spare)

Sub Headers

None

7.1.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
badpix_thresh int 100 ≥ badpix_thresh ≥ 0 35 in percent
surrounding_pixel
s

int 8 ≥ surrounding_pixels ≥
0

5 The amount of bad pixels
to surround a specific
pixel, to let it be marked
bad as well
(optional)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ≥ 1 3 The number of iterations
for kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

suppress_extension bool TRUE, FALSE FALSE

53 of 148

7.1.2.6 Output Frames

KMOS type DO Category Comments
F2D MASTER_FLAT Normalised flat field

(with included noise frames)
B2D BADPIXEL_FLAT Updated bad pixel mask
F2D XCAL Calibration frame 1 (spatial dimension)
F2D YCAL Calibration frame 2 (spatial dimension)
F2L FLAT_EDGE Intermediate product needed for

kmos_wave_cal and optionally for
kmos_illumination. It contains the parame-
ters of the fitted edges of all IFUs of all
detectors.

7.1.2.7 Examples

$ esorex kmos_flat flat.sof
with flat.sof containing:
flat_off_1.fits FLAT_OFF
flat_off_2.fits FLAT_OFF
flat_off_3.fits FLAT_OFF
flat_on_1_0deg.fits FLAT_ON
flat_on_2_0deg.fits FLAT_ON
flat_on_3_0deg.fits FLAT_ON
flat_on_1_60deg.fits FLAT_ON
flat_on_2_60deg.fits FLAT_ON
flat_on_3_60deg.fits FLAT_ON
flat_on_1_120deg.fits FLAT_ON
flat_on_2_120deg.fits FLAT_ON
flat_on_3_120deg.fits FLAT_ON
flat_on_1_180deg.fits FLAT_ON
flat_on_2_180deg.fits FLAT_ON
flat_on_3_180deg.fits FLAT_ON
flat_on_1_240deg.fits FLAT_ON
flat_on_2_240deg.fits FLAT_ON
flat_on_3_240deg.fits FLAT_ON
flat_on_1_300deg.fits FLAT_ON
flat_on_2_300deg.fits FLAT_ON
flat_on_3_300deg.fits FLAT_ON
badpixel_dark.fits BADPIXEL_DARK

54 of 148

7.1.3kmos_wave_cal: Wavelength Calibration

Create a calibration frame encoding the spectral position (i.e. wavelength) of each pixel on the
detector.

7.1.3.1 Description

This recipe creates the wavelength calibration frame needed for all three detectors. It must be
called after the kmos_flat recipe, which generates the two spatial calibration frames needed in
this recipe. As input a lamp-on frame, a lamp-off frame, the flat badpixel frame, the spatial
calibration frames and the list with the reference arclines are required.

In order to correct instrument flexure, the flat lamp on frames can be taken at different rotator
angles and can be feed to the recipe in one go. For each rotator angle there will be 3 extensions,
one for each detector, for every rotator angle. It is recommended to take calibration exposures in
60 degree increments, resulting in a set of 6 rotator angles. It is important, that the same angles
are chosen for kmos_flat and kmos_wave_cal.

An additional output frame is the resampled image of the reconstructed arc frame. All slitlets of
all IFUs are aligned one next to the other. This frame serves for quality control. One can
immediately see if the calibration was successful.
The lists of reference arclines are supposed to contain the lines for both available calibration arc-
lamps, i.e. Argon and Neon. The list is supposed to be a F2L KMOS FITS file with three columns:

1. Reference wavelength
2. Relative strength
3. String either containing “Ar” or “Ne”

The recipe extracts, based on the header keywords, either the applying argon and/or neon
emission lines. Below are the plots of the emission lines for both argon and neon. The marked
lines are the ones used for wavelength calibration.

Furthermore frames can be provided for several rotator angles. In this case the resulting
calibration frames for each detector are repeatedly saved as extension for every angle.

Basic parameters:
--order
The polynomial order to use for the fit of the wavelength solution. If the special value 0 is used,
the appropriate order is chosen automatically depending on the waveband. Otherwise an order of
6 is recommended, except for IZ-band, there order 4 should be used.

Advanced parameters:
--b_samples
The number of samples in spectral direction for the resampled image. Ideally this number should
be about the same size as the detector.

--b_start
--b_end
Used to define manually the start and end wavelength for the resampled image. By default the
internally defined values are used (see Section 6.3).

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0

55 of 148

The lines used to determine the quality of wavelength calibration are as follows:

Band Argon Neon
H 1.67446 um 1.71666 um
HK 1.79196 um 1.80882 um
IZ 0.922703 um 0.85676 um
K 2.15401 um 2.25365 um
YJ 1.21430 um 1.17700 um

Figure 25: H-band argon and neon emission lines

56 of 148

Figure 26 HK-band argon and neon emission lines

Figure 27 IZ-band argon and neon emission lines

57 of 148

Figure 28 K-band argon and neon emission lines

Figure 29 YJ-band argon and neon emission lines

58 of 148

7.1.3.2 Flow Chart

Figure 30: Flow chart of the recipe kmos_wave_cal

The processing steps are:
1. A raw lamp-on and a raw lamp-off frame taken with the internal arc lamp are subtracted.
2. The frame is split up into its slitlets (14 per IFU) using the flatfield badpixel mask. The

following processing steps are applied to every slitlet. Bad pixels are ignored.
3. The  positions of the arc lines will be measured and matched to a list of nominal arclines

defined in a external file. This results in a first estimate where the line lie in the slitlet.
4. Then the exact positions of all lines across the slitlet width are fitted using a gauss fit.

59 of 148

5. A polynomial is fit to each line across the slitlet in order to extrapolate inexistent values
resulting from rotation of the slitlets.

6. A polynomial is fitted along the wavelength direction to get the wavelength calibration
data. The product of these operations so far is the 2D wavelength calibration frame (LUT).

7. As last step the provided arc frame will be reconstructed as cube and be decomposed into
its slitlets which are saved into a frame with one slitlet beside the other. This way the
quality of the wavelength calibration file can be determined quickly svisually.

All fits will be iterated twice, rejecting pixels which deviate by more than a few standard
deviations.
The quality of the wavelength calibration is assessed and recorded in several QC1 parameters.

7.1.3.3 Input Frames

KMOS type DO category Amount Comments
RAW ARC_ON ≥1 Arclamp-on exposure, exactly one

for every rotator angle
RAW ARC_OFF 1 Arclamp-off exposure
F2D XCAL 1 Calibration frame 1
F2D YCAL 1 Calibration frame 2
F1L ARC_LIST 1 List of reference arc lines, either

for Argon or Neon or both
combined. The first column has to
contain the wavelengths and the
second one the intensities

F2L FLAT_EDGE 1 Frame containing the fitted edges
of all IFUs.

F2L REF_LINES 1 Reference line table
F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

7.1.3.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT int 1
EXPTIME double any

Sub Headers

Keyword Type Value
EXPTIME double any all frames

7.1.3.5 Configuration Parameters

Basic parameters:

Name Type valid values Default Comments
order int order ≥ 0 0 The polynomial order to use for the fit

of the wavelength solution. 0: (default)
The appropriate order is choosen
automatically depending on the
waveband. Otherwise an order of 6 is
recommended, except for IZ-band, there

60 of 148

order 4 should be used.

Options for pipeline developers only:

Name Type valid values Default Comments
disp double disp > 0.0 -1.0 The expected spectral dispersion. By

default the correct value is gained via
the header keywords regarding filter
configuration. This parameter is for
testing the recipe with simulated data
only.

flip bool TRUE,
FALSE

TRUE For some test data sets the wavelength is
ascending from bottom to top, so this
parameter has to be set to FALSE

Advanced parameters

Name Type valid values Default Comments
b_samples int b_samples > 2 2048 Nr. of samples of

reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0
instruct to use the
internally defined range
(see Section 6.3)

suppress_extension bool TRUE, FALSE FALSE

7.1.3.6 Output Frames

KMOS type DO Category Comments
F2D LCAL Calibration frame 3 (spectral dimension)
F2D DET_IMG_WAVE Resampled image of the reconstructed

arc frame. All slitlets of all IFUs are
aligned one next to the other.

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.1.3.7 Examples

$ esorex kmos_wave_cal arc.sof
with arc.sof containing:
arc_on.fits ARC_ON
arc_off.fits ARC_OFF
xcal_HHH.fits XCAL
ycal_HHH.fits YCAL
flat_edge_HHH.fits FLAT_EDGE
kmos_ar_ne_list_h.fits ARC_LIST
kmos_wave_ref_table.fits REF_LINES
kmos_wave_band.fits WAVE_BAND

61 of 148

7.1.4kmos_illumination: Illumination Correction

Creates a calibration file to correct spatial non-uniformity of flatfield.

7.1.4.1 Description

This recipe creates the spatial non-uniformity calibration frame needed for all 24 IFUs. It can
reduce sky flats (FLAT_SKY) or lamp flatfields (FLAT_ON) data. As calibration, it needs a
master dark (only for FLAT_SKY), a master flat (only for FLAT_SKY) and the spatial and
spectral calibration frames are required. The created product, the illumination correction, can be
used as input for kmos_std_star and kmos_sci_red.

Basic parameters:

--imethod
The interpolation method used for reconstruction.

--used_flat_type
Type of input RAW files the recipe needs to use in case both are available in the input sof
(sky/lamp)

--range
The spectral range [um] to combine when collapsing the reconstructed cubes.

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--add_all
By default the first FLAT_SKY frame is omitted, since in the KMOS_spec_cal_skyflat template
this is an acquisition frame to estimate the needed exposure time for the subsequent FLAT_SKY
frames. If anyway all frames should be considered, set this parameter to TRUE.

--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej

62 of 148

and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

--pix_scale
Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1
results into cubes of 28x28pix, etc.

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0.

63 of 148

7.1.4.2 Flow Chart

Figure 31: Flow chart of the recipe kmos_illumination

The processing steps are:

1. The RAW frames are separated by rotation angle. The reduction occurs separately for all
angles. The product will contain as many extensions as there are angles.

2. The RAW frames are averaged using pixel rejection with a large sigma for clipping
3. An appropriate dark frame will be subtracted. The result is divided by the master flat field

(only for FLAT_SKY inputs)
4. The frame is split up into frames referring to single IFUs.
5. Now the cubes are reconstructed (one for each IFU) using a bad pixel mask (from

kmos_flat), a spectral curvature calibration frame (from kmos_flat) and a wavelength
calibration frame (from kmos_wave_cal) and subsequently collapsed to spatial images.

6. The images will be normalized as a group. (i.e. so that the mean of all IFUs on the same
detector is unity).

Furthermore several QC1 parameters are calculated, see section 5.1.4 for details.

64 of 148

7.1.4.3 Input Frames

KMOS type DO category Amount Comments
F2D FLAT_SKY ≥ 1 Flat sky exposure
F2D FLAT_ON ≥ 1 Flat lamp exposure

F2D MASTER_DARK 1 or 0 Master dark frame
F2D MASTER_FLAT 1 or 0 Master flat frame
F2D XCAL 1 Spatial calibration file
F2D YCAL 1 Spatial calibration file
F2D LCAL 1 Spectralcalibration file
F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange
F2L FLAT_EDGE 0 or 1 Table with the fitted slitlet edges

from kmos_flat.
MASTER_FLAT will be shifted
to match FLAT_SKY frames.

7.1.4.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.1.4.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”,
“CS”

“CS” Interpolation method for
reconstruction:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

used_flat_type string “sky”
“lamp”

“sky” Only in case both RAW
files types FLAT_SKY and
FLAT_ON are passed to the
recipe, this parameter is
used to choose which type
of RAW file has to be
reduced.

range string “x1_start,x1_end;
x2_start,x2_end”

“” The spectral ranges in
microns to combine when
collapsing the reconstructed
cubes spectrally

Advanced parameters

Name Type valid values Default Comments

65 of 148

flux bool TRUE, FALSE FALSE Apply flux conservation
add_all bool TRUE, FALSE FALSE Considering 1st FLAT_SKY

or not
neighborhoodRang
e

double ≥ 1 1.001 Defines the range to search
for neighbors during
reconstruction

b_samples int b_samples > 2 2048 Nr. of samples of
reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ≥ 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec
results in cubes of 14x14
pixels. 0.1 arcsec result in
cubes of 28x28 pixels

suppress_extension bool TRUE, FALSE FALSE

7.1.4.6 Output Frames

KMOS type DO Category Comments
F2I ILLUM_CORR The spatial non-uniformity calibration

frame
F2L SKYFLAT_EDGE The parameters of the fitted edges of all

IFUs of all detectors. From the
FLAT_SKY frames

66 of 148

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.1.4.7 Examples

$ esorex kmos_illumination illum_sky.sof
with illum.sof containing:
sky1.fits FLAT_SKY
sky2.fits FLAT_SKY
sky3.fits FLAT_SKY
master_dark.fits MASTER_DARK
master_flat_HHH.fits MASTER_FLAT
xcal_HHH.fits XCAL
ycal_HHH.fits YCAL
lcal_HHH.fits LCAL
kmos_wave_band.fits WAVE_BAND
flat_edge_HHH.fits FLAT_EDGE

or

$ esorex kmos_illumination illum_lamp.sof
with illum.sof containing:
lamp1.fits FLAT_ON
lamp2.fits FLAT_ON
lamp3.fits FLAT_ON
xcal_HHH.fits XCAL
ycal_HHH.fits YCAL
lcal_HHH.fits LCAL
kmos_wave_band.fits WAVE_BAND
flat_edge_HHH.fits FLAT_EDGE

67 of 148

7.1.5kmos_std_star: Telluric Standard Star

Creates a spectrum for telluric correction and derives zeropoint for flux calibration. In addition,
this will estimate the spatial resolution (PSF).

7.1.5.1 Description

This recipe creates a telluric calibration frame and a PSF frame. It accepts an optional
illumination correction frame as input created with the kmos_illumination-recipe.
Since there won’t be enough standard stars to observe for all IFUs in one exposure, one has to do
several exposures in a way that there is at least one standard star and one sky exposure in each
IFU. A internal data organiser will analyse the provided exposures and select the appropriate
frames as follows:

1. For each IFU the first standard star in the list of provided exposures is taken. All
subsequent standard star exposures for this IFU will be ignored

2. A corresponding sky exposure will be chosen which will be as close in time to the
standard star exposure as possible.

3. For any IFUs not containing a standard star and a sky exposure an empty frame will be
returned.

NOISE_SPEC contains in any case the shot noise [sqrt(counts*gain)/gain]. If the exposures have
been taken with template KMOS_spec_cal_stdstarscipatt, then an additional noise component is
added in: All existing sky exposures for an IFU are subtracted pairwise, spectra are extracted and
the std deviation is calculated.

Basic parameters:
--startype
If this parameter is specified, the stored star types of the observed obejcts in the FITS headers are
overridden. This value applies to all objects examined in the input frames. Examples would be
“A3I”, “G3IV” or “K0I”. The first letter defines the star type, the second letter the spectral class
and the last letters the luminosity class.

--magnitude
If this parameter is specified, the stored magnitudes in the FITS headers are overridden. For HK
two magnitudes for each H and K have to be specified. All other gratings just use a single
magnitude. If two values are provided, they have to be separated with a comma.

--fmethod
The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--imethod
The interpolation method used for reconstruction. As default ‘CS’ is selected. Note that no error
spectra will be generated for this interpolation method. Select a nearest neighbour method
otherwise.

--range
The spectral range [um] to combine when collapsing the reconstructed cubes.

--save_cubes
Set this parameter to TRUE in order to save the reconstructed cubes.

68 of 148

--no_noise
Applies only for data taken with template KMOS_spec_cal_stdstarscipatt:
Skip lengthy calculation of noise-spectra on all sky exposures (no NOISE_SPEC will be produ-
ced).

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

--xcal_interpolation

69 of 148

If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in
the calibration file. Otherwise take the values of the closest rotator angle.

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0

7.1.5.2 Flow Chart

The flowchart for this recipe is split up in two diagrams. To simplify the flowchart the internal
data organising workflow isn’t depicted. All steps apply to each active IFU individually. The
resulting PSF frames, telluric & error spectra of all processed IFUs are merged into the defined
output frames.

Figure 32: Flow chart of the recipe kmos_std_star (Part 1)

70 of 148

Figure 33: Flow chart of the recipe kmos_std_star (Part 2)

The processing steps are:
1. From one or more raw object and sky frames the IFUs containing observed standard stars

are extracted.
2. The signal frame and the noise frame are reconstructed as cubes using a bad pixel mask

(from kmos_flat), two spectral curvature calibration frames (from kmos_flat) and a
wavelength calibration frame (from kmos_wave_cal). The corresponding IFU frames are
also extracted from these auxiliary inputs.

3. The reconstructed cube is divided spatially by the spatial illumination correction frame.

71 of 148

4. To the data cube for each spatial slice a 2D-profile is fitted to obtain the position of the
object. The RMS of these values is saved as header keyword QC STD TRACE.

5. The signal cube is collapsed to a spatial image. This results into an image of the PSF of
the IFU.

6. From the signal and the noise cubes the signal and error spectra are extracted. As a mask,
the profile fit of the PSF image is used. This intermediate spectrum is saved as
STAR_SPEC.

7. Two cases are distinguished in the further processing in function of the spectral type of the
standard star observed:

a. OBAF stars
I. The temporary signal spectrum is divided by a model atmospheric

transmission.
II. Fit a Lorentzian function to stellar absorption line(s) and subtract.

III. Multiply the model atmospheric transmission back in.
This applies only in K-band. For other bands a warning is emitted.

b. G stars
I. Convolve the solar spectrum to the correct spectral resolution and divide it

out of the temporary signal spectrum.
8. Divide the result by a curve corresponding to the effective temperature of the star.
9. Normalising the spectrum (and also the error spectrum) yield the telluric correction and

the final error spectrum.
10. By dividing the temporary spectrum by the telluric correction and by providing the

magnitude of the star and the gain of the detector (in fits header) two QC1 parameters can
be calculated: the zeropoint and the throughput (mean and standard deviation).

Above steps are repeated for all IFUs containing a standard star and a sky frame in the input
data.

7.1.5.3 Input Frames

KMOS type DO category Amount Comments
RAW STD ≥ 1 Flat sky exposure
F2D XCAL 1 Spatial calibration file
F2D YCAL 1 Spatial calibration file
F2D LCAL 1 Spectralcalibration file
F2D MASTER_FLAT 1 Master flat frame
F2L WAVE_BAND 1 Table with start-/end-values

of wavelengthrange
F2D ILLUM_CORR 0,1 Illumination correction
F1S SOLAR_SPEC 0,1 Solar spectrum (only for G

stars)
F1S ATMOS_MODEL 0,1 Atmospheric transmission

model (only for OBAF stars
in K-band)

F2L SPEC_TYPE_LOOKUP 0,1 Look up table of effective
stellar temperatures

7.1.5.4 Fits Header Keywords

Primary Header

None

72 of 148

Sub Headers

None

7.1.5.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
startype string Star type:

O, B, A, F, G, K
Spectral class:
1 to 9 (K: only 0)
Luminosity class:
I to V (e.G. “G4VI”)

“” The spectral type of the star
(optional)

magnitude string A single or two
comma separated float
values

“” The magnitude of the star
(optional)

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to the
collapsed cube (optional)

imethod string “NN”
“lwNN”
“swNN”
“MS”
“CS”

“CS” Interpolation method for
reconstruction:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

range string “x1_start,x1_end;
x2_start,x2_end”

“” The spectral ranges in
microns to combine when
collapsing the reconstructed
cubes spectrally (optional)

save_cubes bool TRUE, FALSE FALSE Save intermediate
reconstructed cubes
(optional)

no_noise bool TRUE, FALSE FALSE Skip noise-calculation on
sky-frames (optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE FALSE Apply flux conservation

(optional)
neighborhoodRang
e

double ≥ 1 1.001 Defines the range to search
for neighbors during
reconstruction (optional)

b_samples int b_samples > 2 2048 Nr. of samples of
reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined

73 of 148

range (see Section 6.3)
cmethod string “ksigma”

“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ≥ 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

xcal_interpolation bool TRUE, FALSE TRUE (optional)
suppress_extension bool TRUE, FALSE FALSE (optional)

7.1.5.6 Output Frames

KMOS type DO Category Comments
F1I TELLURIC The normalised telluric spectrum

[ADU/DIT]
F1I STAR_SPEC The extracted star spectrum [ADU/DIT]
F2I STD_IMAGE The standard star PSF
F2I STD_MASK The generated mask used to extract the

star spectrum
F1I NOISE_SPEC The shot noise: sqrt(counts*gain)/gain

Only for data taken with template
KMOS_spec_cal_stdstarscipatt:
Add in noise estimate based on the sky
exposures present in all exposures: Skies
are subtracted pairwise and reconstructed
for every IFU over all exposures. Then the
spectra are extracted and for every
wavelength point the stddev is calculated
and saved)

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

74 of 148

7.1.5.7 Examples

$ esorex kmos_std_star std.sof
with std.sof containing:
obj1.fits STD
obj2.fits STD
obj13fits STD
sky1.fits STD
sky2.fits STD
xcal_HHH.fits XCAL
ycal_HHH.fits YCAL
lcal_HHH.fits LCAL
master_flat_HHH.fits MASTER_FLAT
illum_corr_HHH.fits ILLUM_CORR
kmos_wave_band.fits WAVE_BAND
kmos_solar_h_2400.fits SOLAR_SPEC
kmos_atmos_k.fits ATMOS_MODEL
kmos_spec_type.fits SPEC_TYPE_LOOKUP

75 of 148

7.2 Science Reduction Recipes
In this section two recipes are described which do in fact the same thing: reconstructing the data
and combining the corresponding cubes. The way they do it differs significantly.

kmos_sci_red implements the straight approach, which is as well the standard one. First all the
data frames are reconstructed and saved to disk. Then all data cubes are shifted and combined in a
second step. In this recipe the data will be interpolated twice, during reconstruction and shifting.

Automatic object-sky association
In a series of science exposures the IFUs can be allocated to objects and skies arbitrarily. The
recipes therefore analize for every IFU its contents and which sky will be subtracted from which
object. If several skies are available, the one closest in time to the object will be picked. If there is
no sky available, there won’t be any sky subtraction applied. The association table is displayed in
the recipe output (see as well the SPARK instructional guide) and stored to disk by default.
The generated obj_sky_table.txt can be edited to choose for example the sky from another
exposure. In this case the ID for the sky frame can be altered.
If e.g. an object should be subtracted from another object, the second object could be marked as
‘S’ and the ID be set accordingly.
If for any reason no sky at all is available for a specific IFU one can as well indicate to use the sky
from another IFU. Therefore the IFU ID is appended to the frame ID, separated by a slash. In this
case residues are expected due to the different signatures of the IFUs.
For a more detailed examples see the SPARK instructional guide.

7.2.1kmos_sci_red: Processing for Science Data

Reconstruct obj/sky-pairs individually and combine them afterwards.

7.2.1.1 Description

Ideally at least two data frames have to be provided since we need for each IFU pointing to an
object as well a sky frame for the same IFU.
If an OH spectrum is given in the SOF file the lambda axis will be corrected using the OH lines as
reference.
Every IFU containing an object will be reconstructed and divided by telluric and illumination
correction, if provided. By default these intermediate cubes are saved to disk. Frames just
containing skies won’t produce an output here, so the number of output frames can be smaller
than the number of input frames.
Then the reconstructed objects with the same object name are combined. These outputs are also
saved to disk, the number of created files depends on the number of reconstructed objects of
different name. If the user just wants to combine a certain object, the parameters --name or
--ifus can be used. When the ZPOINT is available in the provided TELLURIC frame header,
the reconstructed and combined cubes will be converted in physical units.
The reconstructed cubes and the combined cubes can be collapsed and the collapsed image stored
as an additional product if requested with –collapse_combined and –collapse_reconstructed.
For exposures taken with the templates KMOS_spec_obs_mapping8 and
KMOS_spec_obs_mapping24 the recipe behaves a bit different: All active IFUs will be
combined, regardless of the object names.

Basic parameters:
--imethod
The interpolation method used for reconstruction.

76 of 148

--smethod
The interpolation method used for shifting.

--name
--ifus
Since an object can be present only once per exposure and since it can be located in different IFUs
for the existing exposures, there are two modes to identify the objects:

 Combine by object names (default)
In this case the object name must be provided via the --name parameter. The object
name will be searched for in all primary headers of all provided frames in the keyword
ESO OCS ARMx NAME.

 Combine by index (advanced)
In this case the --ifus parameter must be provided. The parameter must have the same
number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index
doesn't reference the extension in the frame but the real index of the IFU as defined in the
EXTNAME keyword (e.g. 'IFU.3.DATA').

--collapse_reconstructed
--collapse_combined
The cubes are collapsed in a single image.

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--background
Specify if background subtraction should be applied during the cube reconstruction.

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0

--sky_tweak
If set to TRUE sky subtraction is not done by subtracting the corresponding detector images but
subtracting a modified sky cube from the object cube. It is not allowed that --sky_tweak and
--no_subtract both are TRUE.

--discard_subband
If set to TRUE, the last sub-band in the sky tweaking will be ignored.

--stretch
If set to TRUE, the SKY cube is stretched (polynomial of degree stretch_degree,
resampling method specified by stretch_resampling) before the sky tweaking
computation. The stretching polynomial is computed by fitting the sky lines found in the OBJ
cube with those found in the SKY cube.
--stretch_degree

77 of 148

The degree of the stretching polynomial.

--stretch_resampling
The stretching resampling method.

--skip_sky_oh_align
If TRUE, the OH lines correction using the OH_SPEC input calibration file is not applied on the
sky cube. This task is then left to the stretching algorithm. Skipping the OH lines correction is
only possible if the stretching is applied.

--save_interims
Save interim object and sky cubes. Can only be used together with --sky_tweak

--tbsub
If set to TRUE subtract the thermal background from the cube resulting from sky tweaking.
Default value is TRUE.

--obj_sky_table
The automatic obj-sky-associations can be modified by indicating a file with the desired associat-
ions. Therefore the file written to disk by default (without setting this option) can be edited ma-
nually. The formatting must absolutely be retained, just the type codes ('O' and 'S') and the asso-
ciated frame indices should be altered.

--velocity_offset
Specify velocity offset correction in km/s for lambda scale.

Advanced reconstruction parameters:
--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--fast_mode
If set to TRUE, the reconstructed cubes will be collapsed (using median) and only then be shifted
and combined.

--pix_scale
Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1
results into cubes of 28x28pix, etc.

--no_subtract
If set to TRUE, the found objects and references won’t be sky subtracted. Additionally all IFUs
will be reconstructed, even the ones containing skies. This option sets the parameter
no_combine to TRUE automatically.

78 of 148

--xcal_interpolation
If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in
the calibration file. Otherwise take the values of the closest rotator angle.

--extrapolate
By default no extrapolation is applied. This means that the intermediate
reconstructed cubes will shrink at most one pixel, which is ok for templates
like KMOS_spec_obs_nodtosky or KMOS_spec_obs_freedither. When the cubes will be
arranged as a map, a grid is likely to occur between the IFUs. Therefore extra-
polation during the shifting process can be switched on in order to get IFUs of
original size. For frames taken with mapping templates, extrapolation is
switched on automatically.

Advanced combining parameters:
--edge_nan
Set borders of two sides of the cubes to NaN before combining them. This minimises unwanted
border effects when dithering.

--no_combine
If set to TRUE, the reconstructed cubes will not be combined.

--method
There are following sources to get the shift parameters from:

 header (default)
The shifts are calculated according to the WCS information stored in the header of every
IFU. The output frame will get larger, except the object is at the exact same position for all
exposures. The size of the exposures can differ, but the orientation must be the same for all
exposures.

 none
The cubes are directly recombined, not shifting at all. The ouput frame will have the same
dimensions as the input cubes.
If the size differs a warning will be emitted and the cubes will be aligned to the lower left
corner. If the orientation differs a warning will be emitted, but the cubes are combined
anyway.

 center
The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D
profile will be fitted to it to identify the centre. With the parameter --fmethod the
function to fit can be provided. The size of the exposures can differ, but the orientation
must be the same for all exposures.

 user
Read the shifts from a user specified file. The path of the file must be provided using the
--filename parameter. For every exposure (except the first one) two shift values are
expected per line, they have to be separated with simple spaces. The values indicate pixel
shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the
left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the
orientation must be the same for all exposures.

--fmethod
see --method = “center”

79 of 148

The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--filename
see --method = “user”

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

7.2.1.2 Flow Chart

To simplify the flowchart the internal data organising workflow isn’t depicted. All steps apply
individually to each active IFU containing an object and a sky exposure.
The reduced data and noise cube is stored in a similar manner as the input frames.

80 of 148

Figure 34: Flow chart of the recipe kmos_sci_red

The processing steps are:
1. The raw object is sky subtracted and reconstructed into a cube
2. The resulting data and noise cubes are divided by the telluric spectrum each.
3. Both data and noise cubes are divided spatially by the illumination correction.
4. The cubes are converted in physical units when possible.
5. Above steps are repeated for each IFU containing an object.

The zeropoint is written as the QC parameter QC.ZPOINT and is defined so that

mag = qc.zpoint – 2.5log10(ADU/sec)

where mag is the magnitude of a source that has a mean count rate of ADU/sec per spectral pixel.
You can then convert the magnitude to a flux density in ERG/sec/cm2/A. Putting these steps
together you have

flux density = cts/sec × F0 × 10^[-0.4 × qc.zpoint] / 10.

where F0 is the zero magnitude flux density taken from the table below in whichever units are
preferred.
The QC CUBE_UNIT contains the unit of the output cube, indicating whether the conversion has
been made or not.

81 of 148

KMOS
band

2MASS
band

Band pass for
calibration

Zero magnitude flux density

K K 2.028 –2.290 μm 4.283×10-10 W/m2/µm 4.65×109 ph/s/m2/µm

HK H & K
1.5365 – 1.7875 μm +
2.028 - 2.290 μm

1.133×10-9 W/m2/µm &
4.283×10-10 W/m2/µm

9.47×109 ph/s/m2/µm &
4.65×109 ph/s/m2/µm

H H 1.5365 – 1.7875 μm 1.133×10-9 W/m2/µm 9.47×109 ph/s/m2/µm
YJ J 1.154 – 1.316 μm 3.129×10-9 W/m2/µm 1.944×109 ph/s/m2/µm
IZ — 0.985 – 1.000 μm 7.63×10-9 W/m2/µm 3.81×1010 ph/s/m2/µm

When applying advanced OH handling techniques, the reconstruction step in Figure 34 gets a bit
more complicated (see Figure 35). There are three corrections available:

The first takes a reference OH lines catalog (OH_SPEC) as input and matches the reconstructed
OH lines with the catalog. A 2nd degree polynomial fit is then applied to the Object cube and Sky
cubes.

The second stretches the SKY cube in order to align the sky lines visible in it to those that appear
in the OBJ cube. The stretching is a relatively high degree polynomial, and allows to remove the
residuals that remain from the first correction.

The third removes thermal background and compensates vibrational variations (the same
functionality can be used stand-alone with recipe kmos_sky_tweak, see section 7.2.4).

82 of 148

 Figure 35 Flowchart of the two advanced OH handling techniques

7.2.1.3 Input Frames

KMOS type DO category Amount Comments
RAW SCIENCE ≥1 The science frames

83 of 148

F2D XCAL 1 Calibration frame 1
(from kmos_flat)

F2D YCAL 1 Calibration frame 2
(from kmos_flat)

F2D LCAL 1 Calibration frame
(from kmos_wave_cal)

F2L WAVE_BAND 1 Table with start-/end-values
of wavelengthrange

F2D MASTER_FLAT 0,1 (from kmos_flat)
F2I ILLUM_CORR 0,1 (from kmos_illumination)
F1I TELLURIC 0,1 (from kmos_std_star)
F1S OH_SPEC 0,1 OH reference spectrum

7.2.1.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.2.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”
“CS”

“CS” Interpolation method:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted
NN
CM: Modified Shephard
CS: cubic spline
(optional)

smethod string “NN”
“CS”

“CS” Interpolation method:
NN: Nearest Neighbor
CS: cubic spline
(optional)

name string any “” Name of the object to
combine as defined in the
keyword
ESO OCS ARMi NAME
(if this parameter is set, the
--ifus parameter can’t be
set)

ifus string "ifu1;ifu2;..." “” The indices of the IFUs to
combine. The number of
entries has to match the
number of input frames
(if this parameter is set, the
--name parameter can’t be
set

84 of 148

collapse_reconstructe
d

bool TRUE, FALSE FALSE Create the collapsed
reconstructed cubes

collapse_combined bool TRUE, FALSE FALSE Create the collapsed
combined cubes

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE FALSE Apply flux conservation
background bool TRUE, FALSE FALSE
suppress_extension bool TRUE, FALSE FALSE
sky_tweak bool TRUE, FALSE FALSE Use modified sky cube for

sky subtraction
diiscard_subband bool TRUE, FALSE FALSE Ignore the last sub-band in

the sky tweaking
stretch bool TRUE, FALSE FALSE
stretch_degree int >=0 8
stretch_resampling string linear / spline spline
skip_sky_oh_align bool TRUE, FALSE FALSE Only if stretch is on
save_interims bool TRUE, FALSE FALSE Save intermediate

reconstructed data
tbsub bool TRUE, FALSE TRUE Subtract thermal background

from input cube
obj_sky_table string any “” (optional) If the obj-sky-

association should be altered
velocity_offset double any 0.0 Add a velocity offset to the

lambda scale. A value of 0.0
does nothing. Values are
expected to be small.

neighborhoodRang
e

double ≥ 1 1.001 Defines the range to search
for neighbors

b_samples int b_samples > 2 2048 Nr. of samples of
reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

fast_mode bool TRUE, FALSE FALSE TRUE if cubes should be
collapsed before combining

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec
results in cubes of 14x14
pixels. 0.1 arcsec result in
cubes of 28x28 pixels

no_subtract bool TRUE, FALSE FALSE Don’t subtract cubes
xcal_interpolation bool TRUE, FALSE TRUE (optional)
extrapolate bool TRUE, FALSE FALSE FALSE: shifted IFU will be

filled with NaNs at the
borders
TRUE: shifted IFU will be
extrapolated at the borders
 (optional, applies only when

85 of 148

smethod=CS and doing sub
pixel shifts)

edge_nan bool TRUE, FALSE FALSE Set two sides of the cubes to
NaN

no_combine bool TRUE, FALSE FALSE Don’t combine cubes
method string “none”

“header”
“center”
“user”

“header” The shifting method

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to the
collapsed cube

filename string any “” The path to the file with the
shift vectors.
(applies only to
--method = "user")

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only when
--cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only when
--cmethod = “ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum and
minimum pixel values to clip
with min/max-clipping
(optional, applies only when
--cmethod = “min_max”)

7.2.1.6 Output Frames

KMOS type DO Category Comments
F3I SCI_COMBINED Combined cubes with noise
F3I SCI_RECONSTRUCTED Reconstructed cubes
F2I EXP_MASK Exposure time frame, every spaxel

indicates how many input frames are
taken into account when combining

F3I SCI_INTERIM_OBJECT (optional) Intermediate reconstructed
object cubes used for sky tweaking, no
noise (set --sky_tweak and –
save_interims)

F3I SCI_INTERIM_SKY (optional) Intermediate reconstructed
sky cubes used for sky tweaking, no
noise (set --sky_tweak and –
save_interims)

86 of 148

SCI_COMBINED_COLL (optional) Collapsed combined cubes
(set –collapse_combined)

SCI_RECONSTRUCTED_C
OLL

(optional) Collapsed reconstructed cubes
(set –collapse_reconstructed)

7.2.1.7 Examples

$ esorex kmos_sci_red reduce.sof
with reduce.sof containing:
science 1.fits SCIENCE
science 2.fits SCIENCE
science 3.fits SCIENCE
xcal_HHH.fits XCAL
ycal_HHH.fits YCAL
lcal_HHH.fits LCAL
kmos_wave_band.fits WAVE_BAND
master_flat_HHH.fits MASTER_FLAT
illum_corr_HHH.fits ILLUM_CORR
telluric_HHH.fits TELLURIC
kmos_oh_spec_h.fits OH_SPEC

7.2.2kmos_reconstruct: Reconstructing a Cube

Performs the cube reconstruction using different interpolation methods.

7.2.2.1 Description

Data with or without noise is reconstructed into a cube using the calibration frames XCAL, YCAL
and LCAL. XCAL and YCAL are generated using recipe kmos_flat, LCAL is generated using
recipe kmos_wave_cal.
The input data can contain noise extensions and will be reconstructed into additional extensions.

Basic parameters:
--imethod
The interpolation method used for reconstruction.

--detectorimage
Specify if a resampled image of the input frame should be generated. Therefore all slitlets of all
IFUs are aligned one next to the other. This frame serves for quality control. One can immediately
see if the reconstruction was successful.

--file_extension

Set to TRUE if OBS_ID (from input frame header) should be appended to the output frame.

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--neighborhoodRange
Defines the range to search for neighbors during reconstruction

87 of 148

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--pix_scale
Change the pixel scale [arcsec]. Default of 0.2\" results into cubes of 14x14pix, a scale of 0.1\"
results into cubes of 28x28pix, etc.

--xcal_interpolation
If TRUE interpolate the pixel position in the slitlet (xcal) using the two closest rotator angles in
the calibration file. Otherwise take the values of the closest rotator angle.

7.2.2.2 Flow Chart

Figure 36: Flow chart of the recipe kmos_reconstruct

The processing steps are:
1. First the LUT for correcting spectral curvature and wavelength position is calculated and

saved to disk or just loaded from disk (see Sec. 6.4)
2. Then the data cube and the optional noise map are interpolated according the LUT.

Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

3. If desired the reconstructed cube can also be saved as resampled image, meaning that the
reconstructed cube is decomposed into its slitlets which are saved into a frame with one
slitlet beside the other. This way the quality of reconstruction can be determined quicklys
visually.

88 of 148

7.2.2.3 Input Frames

KMOS type DO category Amount Comments
RAW or
F2D

DARK or
FLAT_ON or
ARC_ON or
OBJECT or
STD or
SCIENCE

1 data frame,
with or without noise

F2D XCAL 1 Calibration frame 1
(from kmos_flat)

F2D YCAL 1 Calibration frame 2
(from kmos_flat)

F2D LCAL 1 Calibration frame 3
(from kmos_wave_cal)

F2L WAVE_BAND 1 Table with start-/end-values
of wavelengthrange

F1S OH_SPEC 0,1 OH reference spectrum

7.2.2.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.2.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”
“CS”

“CS” Interpolation method:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

detectorimage bool TRUE, FALSE FALSE TRUE if resampled detector
image should be created,
FALSE otherise

file_extension bool TRUE, FALSE FALSE TRUE if OBS_ID keyword
should be appended to output
frames, FALSE otherwise

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE FALSE Apply flux conservation
neighborhoodRang
e

double ≥ 1 1.001 Defines the range to search
for neighbors

b_samples int b_samples > 2 2048 Nr. of samples of

89 of 148

reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

pix_scale double TRUE, FALSE 0.2 The pixel scale: 0.2 arcsec
results in cubes of 14x14
pixels. 0.1 arcsec result in
cubes of 28x28 pixels

xcal_interpolation bool TRUE, FALSE TRUE

7.2.2.6 Output Frames

KMOS type DO Category Comments
F3I CUBE_DARK or

CUBE_FLAT or
CUBE_ARC or
CUBE_OBJECT_SCIENCE or
CUBE_SKY_SCIENCE

Reconstructed cube with or without
noise

F2D DET_IMG_REC if parameter –detimg has been set to
TRUE

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.2.2.7 Examples

$ esorex kmos_reconstruct reconstruct.sof

with reconstruct.sof containing :
object_science.fits OBJECT_SCIENCE
xcal_YJYJYJ.fits XCAL
ycal_YJYJYJ.fits YCAL
lcal_YJYJYJ.fits LCAL
kmos_wave_band.fits WAVE_BAND

7.2.3 kmos_combine: Combining Cubes

Combine cubes spatially.

7.2.3.1 Description

This recipe shifts several exposures of an object and combines them. The different methods to
match the exposures are described below (--method parameter). The output cube is larger than
the input cubes, according to the shifts to be applied. Additionally a border of NaN values is
added. The WCS is the same as for the first exposure.
For each spatial/spectral pixel a new value will be calculated (according the --cmethod
parameter) and written into the output cube.

90 of 148

Only exposures with equal orientation regarding the WCS can be combined (except –-
method=”none”), north must point to the same direction. It is recommended to apply any
rotation possibly after combining.

The behavior of the selection of IFUs to combine differs for some templates and can be controlled
with the parameters --name and --ifus.
If the input data cubes stem from templates KMOS_spec_obs_mapping8 or
KMOS_spec_obs_mapping24 all extensions from all input frames are combined into a single
map by default (like in recipe kmos_sci_red). If just the area of a specific IFU should be
combined, the parameter --ifus can be specified, or more easily --name.
If the input data cubes stem from other templates like e.g. KMOS_spec_obs_freedither all
extensions of all input frames are combined into several output frames by default. The input IFUs
are grouped according their targeted object name stored in the keywords ESO OCS ARMx
NAME. If just a specific object should be combined, its name can be specified with parameter
--name. If arbitrary IFUs should be combined, one can specify these with the parameter
--ifus.

The default mapping mode is done via the --name parameter, where the name of the object has
to be provided. The recipe searches in all input data cubes IFUs pointing to that object.

Basic parameters:
--name
--ifus
Since an object can be present only once per exposure and since it can be located in different IFUs
for the existing exposures, there are two modes to identify the objects:

 Combine by object names (default)
In this case the object name must be provided via the --name parameter. The object
name will be searched for in all primary headers of all provided frames in the keyword
ESO OCS ARMx NAME.

 Combine by index (advanced)
In this case the --ifus parameter must be provided. The parameter must have the same
number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index
doesn't reference the extension in the frame but the real index of the IFU as defined in the
EXTNAME keyword (e.g. 'IFU.3.DATA').

--method
There are following sources to get the shift parameters from:

 none (default)
The cubes are directly recombined, not shifting at all. The ouput frame will have the same
dimensions as the input cubes.
If the size differs a warning will be emitted and the cubes will be aligned to the lower left
corner. If the orientation differs a warning will be emitted, but the cubes are combined
anyway.

 header
The shifts are calculated according to the WCS information stored in the header of every
IFU. The output frame will get larger, except the object is at the exact same position for all
exposures. The size of the exposures can differ, but the orientation must be the same for all
exposures.

 center
The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D

91 of 148

profile will be fitted to it to identify the centre. With the parameter --fmethod the
function to fit can be provided. The size of the exposures can differ, but the orientation
must be the same for all exposures.

 user
Read the shifts from a user specified file. The path of the file must be provided using the
--filename parameter. For every exposure (except the first one) two shift values are
expected per line, they have to be separated with simple spaces. The values indicate pixel
shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the
left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the
orientation must be the same for all exposures.

--cmethod
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--edge_nan
Set borders of two sides of the cubes to NaN before combining them. This minimises unwanted
border effects when dithering

--fmethod
see --method = “center”
The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--filename
see --method = “user”

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin

92 of 148

see --cmethod = “min_max”

--flux
Specify if flux conservation should be applied

--suppress_extension
If set to TRUE, the arbitrary filename extensions are suppressed. If multiple products with the
same category are produced, they will be numered consecutively starting from 0

93 of 148

7.2.3.2 Flow Chart

Figure 37: Flow chart of the recipe kmos_combine

The processing steps are:
1. The actions taken depend on the shifting method:

a. “none”: Since no shifting is wanted the data and noise is directly propagated.
b. “header”: The shift information is extracted from the fits file headers of the data

cubes. All shifts are relative to the first cube in the list.

94 of 148

c. “center”: The shifts are calculated using a centering algorithm. First the cubes are
collapsed spatially, then a profile will be fit to find the centre of the object.

d. “user”: The user provides a file with stored shift information, relative to the first
cube in the list.

2. The actual shift is executed now.
The data cubes and corresponding noise maps are combined using rejection.

7.2.3.3 Input Frames

KMOS type DO category Amount Comments
F31 Any ≥ 1 any F3I data frames, the DO

category is propagated to the
output

7.2.3.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2,
CRPIX3

double any all frames

CRVAL1, CRVAL2,
CRVAL3

double any all frames

CDELT1, CDELT2,
CDELT3

double any all frames

CD1_1, CD1_2,
CD2_1 CD2_2

double any all frames

7.2.3.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
name string Any “” Name of the object to

combine as defined in the
keyword
ESO OCS ARMi NAME
(if this parameter is set,
the --ifus parameter can’t
be set)

ifus string "ifu1;ifu2;..." “” The indices of the IFUs to
combine. The number of
entries has to match the
number of input frames
(if this parameter is set,
the --name parameter
can’t be set

method string “none” “none” The shifting method

95 of 148

“header”
“center”
“user”

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

Advanced parameters

Name Type valid values Default Comments
edge_nan bool TRUE, FALSE FALSE
fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to

the collapsed cube
filename string any “” The path to the file with

the shift vectors.
(applies only to
--method = "user")

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ≥ 1 3 The number of iterations
for kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

flux bool TRUE, FALSE FALSE
suppress_extension bool TRUE, FALSE FALSE

7.2.3.6 Output Frames

KMOS
type

DO Category Comments

F3I COMBINE_<ESO PRO CATG>_<name> or
COMBINE_<ESO PRO CATG>_<ifu> or
COMBINE_<ESO PRO CATG>_mapping

The keyword “ESO PRO CATG”
is appended

F2I EXP_MASK Exposure time frame, every
spaxel indicates how many input
frames are taken into account
when combining

96 of 148

7.2.3.7 Examples

$ esorex kmos_combine –name=”NGC_150” combine.sof
with combine.sof containing:

fits1_NGC_150_in_ifu_2.fits CUBE_OBJECT
fits2_NGC_150_in_ifu_17.fits CUBE_OBJECT
fits3_NGC_150_in_ifu_9.fits CUBE_OBJECT

7.2.4kmos_sky_tweak: Second Order Sky Subtraction

Removal of OH sky lines.

7.2.4.1 Description

The recipe, as implemented, is divided into 2 main processing steps: removal of thermal
background (Figure 38) and compensation of vibrational variations (Figure 39).

7.2.4.2 Flow Chart

Figure 38: Flow chart of the recipe kmos_sky_tweak (Part 1)

The processing steps of Figure 38 are:
1. Identify spaxels with least flux in object cube (kmo_sky_mask).
2. Sum spectra from these spaxels in both object and sky cubes separately.
3. Fit a blackbody function to the underlying continuum in the sky spectrum (the thermal

background).
4. The fitted function is subtracted from both the original object and sky cubes and from the

extracted object and sky spectra.

97 of 148

5. The spectra with removed thermal background are compared with regard to offsets in
bright OH lines. The sky cube (with removed thermal background) is shifted accordingly.
Note that for KMOS, the default is for spectral flexure to already be corrected. However
there may be some situations where this is not so, in which case this step is carried out
here.

6. Again the spectrum of the processed object and sky cubes are extracted using the same
mask as in step 1.

Figure 39: Flow chart of the recipe kmos_sky_tweak (Part 2)

The processing steps of Figure 39 are:
1. To correct vibrational variations, the spectra are divided into segments along the

wavelength axis. For each segment the spectral vectors of bright OH lines are extracted.
2. The sky spectrum is scaled to match the object spectrum in each spectral segment.
3. The scalings of each spectral segment are combined to a single scaling function which is

applied to the sky spectrum.
4. To correct rotational variations, steps 7 to 9 are repeated.
5. The two scaling functions are multiplied.
6. The resulting scaling function is multiplied with the compensated sky cube which in turn

is subtracted from the compensated object cube.

98 of 148

7.2.4.3 Input Frames

KMOS type DO category Amount Comments
F3I CUBE_OBJECT ≥1 object cubes
F3I CUBE_SKY 1 sky cubes

7.2.4.4 Fits Header Keywords

Primary Header

None

Sub Headers

None

7.2.4.5 Configuration Parameters

--discard_subband
If set to TRUE, the last sub-band in the sky tweaking will be ignored.

--stretch
If set to TRUE, the SKY cube is stretched (polynomial of degree stretch_degree,
resampling method specified by stretch_resampling) before the sky tweaking
computation. The stretching polynomial is computed by fitting the sky lines found in the OBJ
cube with those found in the SKY cube.

--stretch_degree
The degree of the stretching polynomial.

--stretch_resampling
The stretching resampling method.

7.2.4.6 Output Frames

KMOS type DO Category Comments
F3I OBJECT_S Sky-corrected object cubes

7.2.4.7 Examples

$ esorex kmos_sky_tweak tweak.sof
with reduce.sof containing:
objects1.fits CUBE_OBJECT
objects2.fits CUBE_OBJECT
sky.fits CUBE_SKY

7.3 Common Utilities

7.3.1kmo_arithmetic: Basic Arithmetic

Perform basic arithmetic on cubes.

99 of 148

7.3.1.1 Description

With this recipe simple arithmetic operations, like addition, subtraction, multiplication, divison
and raising to a power can be performed.
Since FITS files formatted as F1I, F2I and F3I can contain data (and eventually noise) of either
just one IFU or of all 24 IFUs, kmo_arithmetic behaves differently in these cases.
When the number of IFUs is the same for both operands, the first IFU of the first operand is
processed with the first IFU of the second operand.
When the second operand has only one IFU while the first operand has more IFUs, then the all the
IFUs of the first operand are processed individually which the IFU of the second operand.
If an operand contains noise and the other doesn't, the noise will not be processed.

Noise is only propagated if both operand contain noise extensions. If the second operator is a
scalar noise is also propagated, of course.

If two cubes are given as operands, they will be combined according to the given operator.If a
cube is given as first operand and an image as second, then it operates on each slice of the cube;
similarly if a spectrum is given as the second operand, it operates on each spectrum of the cube;
and a number as the second operand operates on each pixel of the cube.

Basic parameters:
--operator
Any of the following operations to perform: “+”, “-“, “*” or “/” (also “^” when the 2nd operator is
a scalar)

--scalar
To be provided if a frame should be processed together with a scalar

--file_extension

Define a string to append to the product filename ARITHMETIC in order to get an unique
filename

7.3.1.2 Flow Chart

Figure 40: Flow chart of the recipe kmo_arithmetic

The processing steps are:
1. Two operands are combined according to the arithmetic function given (+, -, /, *).
2. The first operand is always a 3D fits frame, the second operand can have different

dimensions:

100 of 148

a. 3D: The cubes are combined normally as described above.
b. 2D: The image operates on each spatial slice of the first cube.
c. 1D: The spectrum operates on each spectrum of the first cube.
d. scalar: The number operates on each pixel in the first cube.

3. Optionally noise maps can be provided for each operand. If done so, they will be
combined according to the operation applied to the data (see also section 2.2.2).

7.3.1.3 Input Frames

KMOS type Amount Comments
F3I, F2I, F1I, F2D or RAW 1 data frame, with or without noise

F3I, F2I, F1I, F2D or RAW 0, 1 data frame, with or without noise

7.3.1.4 Fits Header Keywords

None specific

7.3.1.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
operator string “+”, “-“, “*”, “/”, “^” “” (mandatory)
scalar double any -DBL_MAX (mandatory, if only one file

is supplied)
file_extension string any “” (optional)

7.3.1.6 Output Frames

KMOS type Comments
F3I

F2I

F1I

F2D

1st operator is F3I and 2nd one is either F3I, F2I, F1I or scalar

1st operator is F2I and 2nd one is either F2I, F1I or scalar

1st operator is F1I and 2nd one is either F1I or scalar

1st operator is F2D and 2nd one is either F2D or scalar
or
1st operator is RAW and 2nd one is either RAW or scalar

7.3.1.7 Examples

$ esorex kmo_arithmetic --operator="*" --scalar=9.7 F3I.fits
$ esorex kmo_arithmetic --operator="^" --scalar=9.7 F2D.fits
$ esorex kmo_arithmetic --operator="+" F3I_1.fits F3I_2.fits

7.3.2kmo_copy: Copy Cube Sections

Copy a section of a cube to another cube, image or spectrum.

101 of 148

7.3.2.1 Description

With this recipe a specified region of an IFU-based cube (F3I), image (F2I) or vector (F1I) can be
copied to a new FITS file. One can copy just a plane out of a cube (any orientation) or a vector
out of an image etc. By default the operation applies to all IFUs. The input data can contain noise
frames which is then copied in the same manner as the input data.
It is also possible to extract a specific IFU out of a KMOS FITS structure with 24 IFU extensions
or 48 extensions if noise is present (see example in 7.3.2.7).

Basic parameters:
--ifu
Use this parameter to apply the operation to a specific IFU.

--x
--y
--z
These are the start values in each dimension. The first pixel is adressed with 1.

--xsize
--ysize
--zsize
These are the extents in each dimension to copy.

--autocrop
If set to TRUE all borders containing NaN values are cropped. Vectors will be shortened, images
and cubes can get smaller. In this special case following parameters can be omitted: --x,--y,
--z, --xsize, --ysize and --zsize.

7.3.2.2 Flow Chart

Figure 41: Flow chart of the recipe kmo_copy

The specified range (in all dimensions) of the input data is copied and returned. If the specified
ranges in one or two dimensions are reduced to a single value, then an image or a vector will be
returned, respectively.

7.3.2.3 Input Frames

KMOS type Amount Comments
F3I orF2I or F1I 1 data frame, with or without noise

102 of 148

7.3.2.4 Fits Header Keywords

None specific

7.3.2.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
ifu int 1  ifu  NEXTEND -1 optional

If ifu is specified, the recipe
operates only on the
specified IFU.

x, y, z int 1  x  NAXIS1
1  y  NAXIS2
1  z  NAXIS3

1 (mandatory if autocrop isn’t
set)

xsize,
ysize,
zsize

int 1 < xsize  NAXIS1-x
1 < ysize  NAXIS2-y
1 < zsize  NAXIS3-z

1 (optional)
If one or more of these are
omitted, a plane, a vector or
a scalar is extracted. A scalar
is returned in a vector of
size 1.

autocrop bool TRUE, FALSE FALSE optional
If set to TRUE, x, y, z, xsize,
ysize and zsize are ignored.

7.3.2.6 Output Frames

KMOS type Comments
F3I for F3I as input and x, y, z, xsize, ysize, zsize defined

KMOS type Comments
F2I for F3I as input and x, y, z, xsize, ysize defined or x, y, z,

xsize, zsize defined or x, y, z, ysize, zsize defined

for F2I as input and x, y, xsize, ysize defined

KMOS type Comments
F1I for F3I as input and

x, y, z, xsize defined or
x, y, z, ysize defined or
x, y, z, zsize defined or
x, y, z defined (vector of size 1)

for F2I as input and
x, y, xsize defined or
x, y, ysize defined

for F1I as input and
x, xsize defined or

103 of 148

x defined (vector of size 1)

7.3.2.7 Examples

extract cube:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3
 --zsize=6 F3I.fits

extract plane:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3 F3I.fits

extract vector just of IFU 4:
$ esorex kmo_copy --x=3 --y=2 --z=1 --ysize=3 –ifu=4 F3I.fits

extract whole IFU 4:
$ esorex kmo_copy --x=1 --y=1 --z=1 --xsize=<NAXIS1>

--ysize=<NAXIS2> --zsize=<NAXIS3> -–ifu=4 F3I.fits

extract scalar:
$ esorex kmo_copy --x=3 --y=2 --z=1 F3I.fits

autocrop:
$ esorex kmo_copy --autocrop=TRUE --ifu=8 F3I.fits

7.3.3kmos_extract_spec: Extracting Spectra

Extract a spectrum from a cube.

7.3.3.1 Description

This recipe extracts a spectrum from a datacube. The datacube must be in F3I KMOS FITS
format (either with or without noise). The output will be a similarly formatted F1I KMOS FITS
file.

Basic parameters:
--mask_method
There are several ways to define the region to consider for spectrum calculation:

 integrated (default)
A circular mask with defined centre and radius is created (--centre and --radius
have to be defined). This mask is applied to all extensions.

 mask
An arbitrary mask can be provided (for example the mask created by kmo_sky_mask can
be used). The mask must be in F2I KMOS FITS format, mustn't contain noise and must
have as many extensions as the input cube. The mask can be binary as well as it can
contain float values, so a weighted mask is also possible. (0: pixels is ignored, 1: pixel is
included) The mask must be of the same size that the input datacube.

 optimal
The mask is created automatically by fitting a normalised profile (using kmo_fit_profile)

104 of 148

to the image of the datacube (using kmo_make_image the datacube is summed up in
spectral direction according to the specified --cmethod). This profile is then used as
mask input. When --save_mask is set to true the mask is saved on disk. The remaining
parameters not described here apply to the fitting of the profile.

If the spectra of several objects in a IFU should be extracted, --mask_method="mask" is
recommended. With several calls to kmos_extract_spec using different masks all spectra can be
extracted.

Advanced parameters:
--centre
--radius
see --mask_method = “integrated”

--save_mask
see --mask_method = “optimal”

--cmethod
Applies only if –mask_method = “integral”
Following methods of frame combination are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

105 of 148

7.3.3.2 Flow Chart

Figure 42: Flow chart of the recipe kmos_extract_spec

The processing steps are:
1. A mask is generated (or taken as input) where sky is 0.0 and object is 1.0:

a. “optimal” method
I. The data cube is collapsed using kmo_make_image.

II. From the resulting image the signal to noise, based on a Gaussian fit using
kmo_fit_profile, is estimated.

III. The fit will be scaled in a way that the maximum value equals one. The
result is a mask with float values.

b. “integrated” method
I. A binary mask with specified centre and radius is defined.

c. “mask” method
I. The binary input mask is taken.

2. All unmasked pixels in each spatial slice are summed and weighted all along the spectral
axis.

3. An optional noise map is masked the same way as the input data and combined as
described in Sect. 2.2.2.

106 of 148

4. If there are several objects in a single cube, their spectra can be extracted separately using
different masks.

7.3.3.3 Input Frames

KMOS type Amount Comments
F3I 1 cube with or without noise
F2I 0 or 1 (optional, applies only when

--mask_method =”mask”)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.3.4 Fits Header Keywords

None specific

7.3.3.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
mask_method string “optimal”

“integrated”
“mask”

“integrated” (optional)

Advanced parameters

Name Type valid values Default Comments
centre double[2] [0  x  NAXIS1,

0  y  NAXIS2]
[7.5,7.5] The centre of the circular mask

[pixel]
(mandatory, if --mask_method =
 ”integrated”)

radius double radius ≥ 0 3.0 The radius of the circular mask
[pixel]
(mandatory, if --mask_method =
”integrated”)

save_mask bool true
false

false True if the calculated mask
should be saved.
(optional, applies only when
--mask_method = “optimal”)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative rejec-
tion thresholds for bad pixels
(optional, applies only when
--cmethod = “ksigma”)

citer int citer ≥ 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only when
--cmethod = “ksigma”)

cmax
cmin

int cmax ≥ 0 1
1

The number of maximum and
minimum pixel values to clip

107 of 148

cmin ≥ 0 with min/max-clipping
(optional, applies only when
--cmethod = “min_max”)

7.3.3.6 Output Frames

KMOS type PRO Category Comments
F1I EXTRACT_SPEC Extracted spectrum
F2I EXTRACT_SPEC_MASK The calculated mask

(optional, if --mask_method="optimal"
and --save_mask=true)

7.3.3.7 Examples

$ esorex kmos_extract_spec –-mask_method=”integrated”
 --centre=”3.0,4.5” –-radius=4 cube.fits
$ esorex kmos_extract_spec –-mask_method=optimal -–save_mask cube.fits
$ cp extract_spec_mask.fits extract_spec_mask_tmp.fits
$ esorex kmos_extract_spec –-mask_method=”mask” cube.fits

extract_spec_mask_tmp.fits

IMPORTANT : Note that the passed mask name must be different than
extract_spec_mask.fits because this is precisely the name of the
produced mask. If used, it would be overwritten during the recipe
execution and cause an error.

Note also that the method “mask” currently only works on 24 extensions
reconstructed cubes, and not on a combined cube. This will be addressed
in a coming release.

7.3.4kmo_fit_profile: Fitting Spectral and Spatial Profiles

Fit spectral line profiles as well as spatial profiles with a simple function - for example to measure
resolution or find the centre of a source.

7.3.4.1 Description

This recipe creates either spectral or spatial profiles of sources using different functions to fit.
Spectral profiles can be created for F1I frames (if WCS is defined in the input frame, the output
parameters are in respect to the defined WCS).
Spatial profiles can be created for F2I frames (any WCS information is ignored here).
If the frames contain no noise information, constant noise is assumed for the fitting procedure.

Basic parameters:
--method
F1I frames can be fitted using either "gauss", "moffat" or "lorentz" function.
F2I frames can be fitted using either "gauss" or "moffat" function.

Advanced parameters:
--range
For F1I frames the spectral range can be defined. With available WCS information the range can
be provided in units (e.g. “1.2;1.5”), otherwise in pixels (e.g. “112;224).
For F2I frames the spatial range can be defined as follow: “x1,x2;y1,y2”

108 of 148

7.3.4.2 Flow Chart

Figure 43: Flow chart of the recipe kmo_fit_profile

The processing steps are:
1. The region to fit is defined by the spectral (1D) or spatial (2D) interval provided. In this

interval, the peak is identified.
2. Then a function is fitted to the interval according to a defined profile (Gaussian, Moffat,

Lorentzian). Output parameters are the position (either lambda-position or pixel number
depending if WCS data is provided in the headers of the input data frames) of the
maximum pixel, the position of the centroid and the parameters of the function fit.

7.3.4.3 Input Frames

KMOS type Amount Comments
F1I or F2I 1 data frame, with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.4.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1 double any (optional for F1I frames)
CRVAL1 double any (optional for F1I frames)
CDELT1 double any (optional for F1I frames)

7.3.4.5 Configuration Parameters

Name Type valid values Default Comments
method string “gauss”,

“moffat”,
“lorentz”

“gauss” (optional,
“lorentz” applies only to
F1I frames)

109 of 148

range string “x1,x2” (for F1I)

or

“x1,x2; y1,y2” (for F2I)

“” F1I frames with WCS:
values are in microns
F1I frames without WCS:
values denote pixel positions
(zero based).
F2I frames:
values denote pixel positions
(base 1 for images, FITS
convention)
(optional,
default is the whole range)

7.3.4.6 Output Frames

KMOS type PRO Category Comments
F1I or F2I FIT_PROFILE Fitted 1D-profile or Fitted 2D-profile

(in both cases without noise)

7.3.4.7 Examples

$ esorex kmo_fit_profile f1i_with_noise.fits

7.3.5kmo_make_image: Making Images

Collapse a cube to create a spatial image.

7.3.5.1 Description

This recipe collapses a cube along the spectral axis using rejection. By default all spectral slices
are averaged.
Errors are propagated for the same spectral ranges as for the input data if a noise map is provided.

Basic parameters:
--range
The spectral range can be delimited to one or several sub-ranges like “1.8,1.9” or “1.8,1.9;
2.0,2.11”

--cmethod
Following methods of collapsing a cube are available:

 ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

 median
At each pixel position the median is calculated.

 average
At each pixel position the average is calculated.

 sum
At each pixel position the sum is calculated.

110 of 148

 min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--threshold
Optionally an OH spectrum can be provided. In this case a threshold can be defined. The
wavelengths of values above the threshold level in the OH spectrum are omitted in the input
frame. This parameter can be combined with the --range parameter. Negative threshold values
are ignored.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

7.3.5.2 Flow Chart

Figure 44: Flow chart of the recipe kmo_make_image

The processing steps are:
1. If a OH line spectrum is provided, the spectral slices which are to be combined are

identified according to the threshold level and the wavelength ranges applied to the
spectrum (i.e. if the wavelength of the spectral slice lies in between a predefined range or
above the threshold level in the OH line spectrum, it is omitted).

2. The identified spectral slices are averaged to create a spatial image (Either applying a
median or averaging using rejection or min_max rejecting a predefined number of max-
and min-values).

3. Optionally a noise map matching the data cube can be provided, it will be combined along
the same spectral ranges as defined above (see also section 2.2.2) and output as a 2d noise
map.

111 of 148

7.3.5.3 Input Frames

KMOS type Amount Comments
F3I 1 data frame, with or without noise

F1S 0 or 1 the OH line spectrum. (opt)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.5.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX3 double any
CRVAL3 double any
CDELT3 double any

7.3.5.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
range string “start1,end1;start2,end2

;…”
“” The spectral ranges to

combine
(optional, applies only if a
OH-spectrum is provided)

threshold double any,
if threshold < 0 then no
thresholding is applied

0.1 The OH threshold level
(optional, applies only if a
OH-spectrum is provided)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ≥ 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ≥ 0
cmin ≥ 0

1
1

The number of maximum
and minimum pixel values

112 of 148

to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

7.3.5.6 Output Frames

KMOS type PRO Category Comments
F2I MAKE_IMAGE Collapsed data cubes

7.3.5.7 Examples

$ esorex kmo_make_image data.fits
$ esorex kmo_make_image data_noise.fits
$ esorex kmo_make_image --cmethod=”median” data_noise.fits
$ esorex kmo_make_image --cmethod=”average” --cpos_rej =2.2

--cneg_rej=1.7 --citer=2 data_noise.fits
$ esorex kmo_make_image --method=”min_max” --cmax=20 --cmin=10
 data_noise.fits
$ esorex kmo_make_image data.fits oh_spec.fits
$ esorex kmo_make_image --range=”1.8,1.9;2.0,2.1”

data.fits oh_spec.fits

7.3.6kmo_noise_map: Noise Estimation

Generate a noise map from a raw frame.

7.3.6.1 Description

The noise in each pixel of the input data is estimated using gain and readnoise. The readnoise is
expected to be in the primary header (ESO DET CHIP RON), the gain (ESO DET CHIP GAIN)
has to be in each of the subsequent headers of each detector frame. The output is the initial noise
map of the data frame.

7.3.6.2 Flow Chart

Figure 45: Flow chart of the recipe kmo_noise_map

The noise in each pixel of the input data is estimated according to the method described in Sect.
2.2.1. The output is the initial noise map of the data frame.

7.3.6.3 Input Frames

KMOS type Amount Comments

113 of 148

RAW 1 raw data frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.6.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
ESO DET CHIP GAIN double any
ESO DET CHIP RON double any

7.3.6.5 Configuration Parameters

None

7.3.6.6 Output Frames

KMOS type PRO Category Comments
F2D NOISE_MAP Initial noise map

7.3.6.7 Examples

$ esorex kmo_noise_map RAW.fits

7.3.7kmo_rotate: Rotating a Cube

Rotate a cube spatially.

7.3.7.1 Description

This recipe rotates a cube spatially (CCW). If the rotation angle isn’t a multiple of 90 degrees, the
output cube will be interpolated and get larger accordingly.
By default all IFUs will be rotated.

Basic parameters:
--rotations
This parameter must be supplied. It contains the amount of rotation to apply. The unit is in
degrees. If it contains one value (e.g. “3.5”) all IFUs are rotated by the same amount. If 24 values
are supplied each IFU is rotated individually (e.g. “2.3;15.7;…;-3.3”).

--imethod
The interpolation method to apply when rotating an angle not being a multiple of 90. There are
two methods available:

 BCS: Bicubic spline
 NN: Nearest Neighbor (currently disabled)

--ifu

114 of 148

If a single IFU should be rotated, it can be defined using the --ifu parameter (--rotations
parameter contains only one value).

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--extrapolate
By default the output frame grows when rotating an angle not being a multiple of 90. In this case
none of the input data is lost. When it is desired to keep the same size as the input frame this
parameter can be set to TRUE and the data will be clipped.

7.3.7.2 Flow Chart

Figure 46: Flow chart of the recipe kmo_rotate

The processing steps are:
1. First the LUT representing the spatial rotation is calculated.
2. Then the data cube and the optional noise map are interpolated according the LUT.
Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

7.3.7.3 Input Frames

KMOS type Amount Comments
F3I 1 data frame, with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.3.7.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

115 of 148

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2 double any
CRVAL1, CRVAL2 double any
CDELT1, CDELT2 double any
CD-Matrix double any

7.3.7.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
rotations string string with 1 or 24 elements

[degrees]
e.g. “2.3;15.7;…;-3.3”

“” The rotations for all
specified IFUs
(mandatory)

imethod string “BCS”
“NN”

“BCS” Interpolation method:
BCS: Bicubic spline
NN: Nearest Neighbor
(optional, applies only
when rotation angle
isn’t a multiple of 90
degrees)

ifu int 24 ≥ ifu ≥ 0 0 The ifu to rotate.
0 rotates all ifus the
same amount
(optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE FALSE Apply flux

conservation
extrapolate bool TRUE, FALSE FALSE FALSE: Output frame

will be larger than the
input
TRUE: Output and
input frame have the
same size, data will be
clipped
(optional, applies only
when rotation angle
isn’t a multiple of 90
degrees

7.3.7.6 Output Frames

KMOS type PRO Category Comments
F3I ROTATE Rotated cube

7.3.7.7 Examples

$ esorex kmo_rotate –-ifu=8 –-rotations=”93.87” data.fits

116 of 148

$ esorex kmo_rotate –rotations=”1.1;3.8;-4.5;……;18,9” data.fits

117 of 148

7.3.8kmo_shift: Translating a Cube

Shift a cube spatially.

7.3.8.1 Description

This recipe shifts a cube spatially. A positive x-shift shifts the data to the left, a positive y-shift
shifts upwards, where a shift of one pixel equals 0.2 arcsec. The output will still have the same
dimensions, but the borders will be filled with NaNs accordingly.
To adjust only the WCS without moving the data the --wcs-only parameter has to be set to
TRUE. The WCS is updated in the same way as if the data would have moved as well. This
means that the point at (x,y) has the same coordinates as the point (x+1,y+1) after updating the
WCS (the WCS moved in the opposite direction).

Basic parameters:
--shifts
This parameter must be supplied. It contains the amount of shift to apply. The unit is in arcsec. If
the --shifts parameter contains only two values (x,y), all IFUs will be shifted by the same
amount. If it contains 48 values (x1,y1;x2,y2;...;x24,y24), the IFUs are shifted individually.

--imethod
The interpolation method to apply when the shift value isn’t a multiple of the pixel scale. There
are two methods available:

 BCS: Bicubic spline
 NN: Nearest Neighbor

--ifu
If a single IFU should be shifted, it can be defined using the --ifu parameter (--shifts
parameter contains only two values).

Advanced parameters:
--flux
Specify if flux conservation should be applied when applying a subpixel shift.

--extrapolate
By default no extrapolation is applied. At the borders NaN values are introduced. When choosing
“BCS” as interpolation method and applying a sub-pixel shift, extrapolation can be switched on.

--wcs-only
By default data and WCS are shifted in sync. If this parameter is set to TRUE only the WCS is
updated (i.e. if someone thinks that the IFU isn’t pointing exactly to the correct coordinates).

118 of 148

7.3.8.2 Flow Chart

Figure 47: Flow chart of the recipe kmo_shift

The processing steps are:
1. First the LUT representing the shift is calculated.
2. Then the data cube and the optional noise map are interpolated according the LUT.
Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

7.3.8.3 Input Frames

KMOS type Amount Comments
F3I 1 data frame, with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.3.8.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2 double any
CRVAL1, CRVAL2 double any
CDELT1, CDELT2 double any
CD-Matrix double any

7.3.8.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
shifts string string with 2 or 48 elements “” The shifts for each spatial

119 of 148

[arcsec]
e.g. [x1, y1; x2, y2;…]

dimension for all specified
IFUs (mandatory)

imethod string “BCS”
“NN”

“BCS” Interpolation method:
BCS: Bicubic spline
NN: Nearest Neighbor
(optional, applies only
when the shift isn’t a
multiple of the pixel scale)

ifu int 24 ≥ ifu ≥ 0 0 The ifu to shift.
0 shifts all ifus the same
amount
(optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE FALSE Apply flux conservation

(optional)
extrapolate bool TRUE, FALSE FALSE FALSE: shifted IFU will

be filled with NaNs at the
borders
TRUE: shifted IFU will
be extrapolated at the
borders
 (optional, applies only
when method=BCS and
doing sub pixel shifts)

wcs-only bool TRUE, FALSE FALSE FALSE: data and WCS
are shifted together
TRUE: only the WCS is
shifted

7.3.8.6 Output Frames

KMOS type PRO Category Comments
F3I SHIFT Shifted cube

7.3.8.7 Examples

$ esorex kmo_shift –-ifu=8 –-shifts=”0.2,0.11” data.fits
$ esorex kmo_shift –shifts=”0.4,0.2;-0.01,-0.09;……;0.1;0.1” data.fits

120 of 148

7.3.9kmo_sky_mask: Creating a Mask of Sky Pixels

Create a mask of spatial pixels that indicates which pixels can be considered as sky.

7.3.9.1 Description

This recipes calculates masks of the skies surrounding the objects in the different IFUs of a
reconstructed F3I frame. In the resulting mask pixels belonging to objects have value 1 and sky
pixels have value 0.

The noise and the background level of the input data cube are estimated using the mode calculated
in kmo_stats. If the results aren't satisfactory, try changing --cpos_rej and --cneg_rej.
Then pixels are flagged in the data cube which have a value less than the mode plus twice the
noise (val < mode + 2*sigma). For each spatial pixel the fraction of flagged pixels in its spectral
channel is determined.
Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95
(corresponding to the 2*sigma above).

The input cube can contain noise extensions, but they will be ignored. The output doesn’t contain
noise extensions.

Basic parameters:
--fraction
The fraction of pixels that have to be greater than the threshold can be defined with this parameter
(value must be between 0 and 1).

--range
If required, a limited wavelength range can be defined (e.g. “1.8,2.1).

Advanced parameters:
--cpos_rej
--cpos_rej
--citer
An iterative sigma clipping is applied in order to calculate the mode (using kmo_stats). For each
position all pixels in the spectrum are examined. If they deviate significantly, they will be rejected
according to the conditions:

val > mean + stdev * cpos_rej
and

val < mean - stdev * cneg_rej
In the first iteration median and percentile level are used.

121 of 148

7.3.9.2 Flow Chart

Figure 48: Flow chart of the recipe kmo_sky_mask

The processing steps are:
1. The noise and the background level (mode) of the input data cube are estimated. Note that

although the noise varies with wavelength, a single estimate of the noise is sufficient for
the purpose here.

2. Flag pixels in the data cube which have a value less than the mode plus twice the noise
(val < mode + 2σ)

3. For each spatial pixel the fraction of flagged pixels in its spectral channels is determined.
If required, a limited wavelength range can be provided for this step.

4. Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95
(corresponding to the 2σ above)

5. If less than a specified percentage of spatial pixels are included, then increase the selection
to include this many.

Create a mask indicating ‘sky’ pixels (sky = 0, object = 1).

122 of 148

7.3.9.3 Input Frames

KMOS type Amount Comments
F3I 1 one reconstructed frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.9.4 Fits Header Keywords

Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX3 double any
CRVAL3 double any
CDELT3 double any

7.3.9.5 Configuration Parameters

Basic parameters

Name Type valid values Default Comments
fraction double 1.0 ≥ fraction ≥ 0.0 0.95 Minimum fraction of

spatial pixels to select
as sky
(optional)

range string “start,end” “” Min & max spectral
range to use in sky
pixel determination
(microns)
(optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and
negative rejection
thresholds for bad
pixels
(optional)

citer int citer ≥ 1 3 The number of
iterations for kappa-
sigma-clipping.
(optional)

7.3.9.6 Output Frames

KMOS type PRO Category Comments
F2I SKY_MASK The sky mask frame

123 of 148

7.3.9.7 Examples

$ esorex kmo_sky_mask f3i.fits
$ esorex kmo_sky_mask –fraction=0.6 f3i.fits
$ esorex kmo_sky_mask --range=”1.8,1.9” f3i.fits

7.3.10 kmo_stats: Basic Statistics

Perform basic statistics on a KMOS-conform fits-file.

7.3.10.1Description

This recipe performs basic statistics on KMOS-conform data-frames of type F2D, F1I, F2I and
F3I either with or without noise and RAW. Optionally a 2D mask can be provided to define a
region on which the statistics should be calculated on (mask 0: exclude pixel, mask 1: include
pixel). A mask can’t be provided for statistics on F1I frames.
The output is stored in a vector of length 11. The vector represents following values:

1. Number of pixels
2. Number of finite pixels
3. Mean
4. Standard Deviation
5. Mean with iterative rejection (i.e. mean & sigma are calculated iteratively, each time

rejecting pixels more than +/-N sigma from the mean)
6. Standard Deviation with iterative rejection
7. Median
8. Mode (i.e. the peak in a histogram of pixel values)
9. Noise (a robust estimate given by the standard deviation from the negative side of the

histogram of pixel values)
10. Minimum
11. Maximum

The same numerical operations are applied to the noise as with the data itself.

Basic parameters:
--ext
These parameters specify with extensions to process. The value 0, which is default, calulates all
extensions.

Advanced parameters:
--cpos_rej
--cpos_rej
--citer
An iterative sigma clipping is applied in order to calculate the mode. For each position all pixels
in the spectrum are examined. If they deviate significantly, they will be rejected according to the
conditions:

val > mean + stdev * cpos_rej
and

val < mean - stdev * cneg_rej
In the first iteration median and percentile level are used.

124 of 148

7.3.10.2Flow Chart

Figure 49: Flow chart of the recipe kmo_ stats

The input data and an optional mask (2D) are taken as inputs and a vector of length 11 is returned
as output.

7.3.10.3Input Frames

KMOS type Amount Comments
F3I,F2I,F1I,F2D,B2D,RAW 1 one frame, with or without noise

F2I,F2D,B2D,RAW 0 or 1 mask (optional)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.10.4Fits Header Keywords

None

7.3.10.5Configuration Parameters

Basic parameters

Name Type valid values Default Comments
ext int ext ≥ 0 0 Specifies which

extensions to calculate. 0
calculates them all
 (optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

doubl
e

cpos_rej ≥ 0,
cneg_rej ≥ 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels (optional)

citer int citer ≥ 1 3 The number of iterations
for kappa-sigma-clipping.
(optional)

ifu int ifu ≥ 0 0 Specifies which
extensions to calculate. 0
calculates them all
(optional, applies only for
F1I, F2I and F3I frames)

125 of 148

det int det ≥ 0 0 Specifies which
extensions to calculate. 0
calculates them all
(optional, applies only for
F2D and RAW frames)

7.3.10.6Output Frames

KMOS type DO Category Comments
F1I STATS The calculated statistics parameters

7.3.10.7Examples

$ esorex kmo_stats F3I.fits
$ esorex kmo_stats –ext=1 F3I.fits F2I.fits

7.3.11 kmo_fits_strip: Stripping FITS files

Strip noise, rotator and/or empty extensions from a processed KMOS fits frame.

7.3.11.1Description

With this recipe KMOS fits frames can be stripped in following way:

Basic parameters:
--noise
All noise extensions will be removed. Only the data extensions remain.

--angle
Applies only to calibration products from kmos_flat and kmos_wave_cal.
All extensions matching provided angle are kept, the others are removed.
Supply a single integer value.

--empty
All empty extensions will be removed.

--extension
Supply a comma-separated string with integer values indicating the extensions to keep. The other
extensions are removed (any data or noise information is disregarded, the values are interpreted
absolutely)

The parameters --noise, --angle and --empty can be combined.
When --extension is specified, all other parameters are ignored.
When no parameter is provided, no output will be generated.

126 of 148

7.3.11.2Flow Chart

Figure 50: Flow chart of the recipe kmo_ fits_strip

7.3.11.3Input Frames

KMOS type Amount Comments
F3I,F2I,F1I,F2D 1 one frame, with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.11.4Fits Header Keywords

None

7.3.11.5Configuration Parameters

Basic parameters

Name Type valid values Default Comments
noise bool TRUE, FALSE FALSE If set to TRUE, all noise

extensions are stripped
 (optional)

angle int angle >=0 and angle <
360

-1 Aplies to calibration
frames with several rotatr
angles included. If set to a
valid value only the
specified rotator angle is
kept, the others are
removed

empty bool TRUE, FALSE FALSE If set to TRUE, all empty
extensions are stripped
(optional)

extension string e.g. “1,4,6” “” IFU IDs provided mustn’t
be bigger than the actual
number of extensions
(optional)

7.3.11.6Output Frames

KMOS type PRO Category Comments
F3I,F2I,F1I,F2D STRIP The stripped frame

127 of 148

7.3.11.7Examples

$ esorex kmo_fits_strip --noise F3I_data_noise.fits
$ esorex kmo_fits_strip --empty F3I_data_empty.fits
$ esorex kmo_fits_strip --angle=120 xcal_HHH.fits

8 Data Reduction Library Functions
All recipes described in Section 7 are implemented as functions with similar names inside the
library. Their descriptions have not been repeated here. By implementing them as functions allows
one to create an appropriate simple wrapper so that they can be used either as recipe plugins or for
use within KMCLIPM, without having to repeat the functional part of the code.

In addition, there are a few extra functions, which are defined as such because they are used
repeatedly in various recipes or fulfil another special task. These are the functions described
explicitly in this chapter.

8.1 Acquisition Reduction for RTD
Recipe name used in recipe/function uses recipe/function
kmclipm_rtd_image - kmo_make_image

kmo_fit_profile
kmos_reconstruct

128 of 148

kmclipm_rtd_image is intended to be used only by the Instrument Control Software (ICS).
In order to use it the function

kmclipm_set_cal_path(const char *path, int test_mode)
has to be called once, defining the path where the xcal-, ycal- and lcal-calibration files are stored
and whether we are in test mode (default: test_mode = FALSE) or not.
The calibration files are generated using the recipes kmos_flat and kmos_wave_cal (see Sec.
7.1.2 and 7.1.3) and have manually to be copied to the specified directory in order to use the real
time display (RTD) in ICS.
To create the necessary raw frames for the above mentionned recipes, the templates

KMOS_spec_cal_calunit and
KMOS_spec_cal_wave

have to be executed. There the number of rotator offsets has to be specified (for the moment
beeing 6 offsets are recommended). So we get for 5 bands and 6 angles and 3 different calibration
files a total of 90 calibration files.
The naming of the calibration files follows this convention:
e.g. xcal_xxx_yyy_z.fits
x: grating for every detector
y: filter for every detector
z: rotator angle

8.1.1Description

In general, only a few bright stars are observed with a few IFUs (with short DIT). The other IFUs
point to faint objects that will not necessarily be visible with the short DIT used for acquisition.
Thus a vector is provided indicating the IFUs, which are to be processed. However, in some cases,
the calculations and image reconstruction will be performed for all IFUs (initial tests, calibrations,
etc).

129 of 148

8.1.2Flow Chart

Figure 51: Flow chart of the recipe kmclipm_rtd_image
The processing steps are:

1. From the raw object frame and the master dark (or a specified sky frame) the desired IFU
frame is extracted.

2. The two IFU frames are subtracted.
3. The resulting frame is reconstructed into a cube using the bad pixel mask, the spectral

curvature calibration frame and the wavelength calibration frame.
4. The cube is collapsed along the spectral axis within specified wavelength range. If

required wavelengths across OH sky emission lines are omitted.
5. If automatic centres are required, they will be extracted now. The resulting x- & y-values

are stored in a vector.
6. The steps above are repeated for each IFU to process.
7. The resulting images are merged into a single combined image.

130 of 148

8.2 Combine frames using pixel rejection
Recipe name used in recipe/function uses recipe/function
kmclipm_combine_frames kmos_dark

kmos_flat
kmos_illumination

-

Combines data frames with or without noise and either (re)calculates or propagates noise.

8.2.1Description

This function is always used when several input frames have to be combined into one. For each
pixel position the pixel values at this position of every frame are put into a vector. This vector is
to be averaged according one of the following methods available:

 Kappa-sigma clipping
Any value of the vector which deviates significantly will be rejected. This method is
iterative.
(value > mean +  * pos_rejection_threshold or
value < mean -  * neg_rejection_threshold)
In the first iteration median and percentile level are used.

 Min-max clipping
The specified number of minimum and maximum values of the vector will be rejected.
This method is applied once.

 Average
The average of all values of the vector is calculated.

 Median
The median of all values of the vector is calculated.

 Sum
The sum of all values of the vector is calculated.

The above mentionned methods act all the same regardless the number of input data frames. For
reasonable noise estimations it is recommended to provide at least three or more frames. If less
than three frames are provided the noise estimation is performed as depicted in Table 1 below.

131 of 148

8.2.2Flow Chart

Figure 52: Flow chart for kmclipm_combine_frames

The processing steps are:
1. Depending on the method chosen the frames will be combined differently:

a. Kappa-sigma clipping
i. Two thresholds are calculated

132 of 148

ii. All pixels above or below the thresholds are rejected
iii. These steps are repeated as many times as desired

b. Min-max clipping
i. The desired number of minimum and maximum values is clipped

c. Average
i. For all pixel positions the average of the values is calculated

d. Median
i. For all pixel positions the median of the values is calculated

e. Sum
i. For all pixel positions the sum of the values is calculated

≥3 frames 2 frames 1 frame

avgdata = combine(datain) avgdata = combine (datain) avgdata = datain

with
noisein

for ‘median’ method:

avgnoise =

stdevmedian (data in)

n
for all other methods:

avgnoise =

stdev(data in)

n

for ‘sum’ method:

avgnoise =

noisein1
2 noisein2

2

2
for all other methods:

avgnoise =

1

2

noisein1
2 noisein2

2

2

avgnoise = noisein

avgdata = combine (datain) avgdata = combine (datain) avgdata = datain

w/o
noisein

avgnoise =

stdev(data in)

n avgnoise =

datain1 datain2

2

avgnoise = stdev(datain)

Table 1 The function combine() stands for kmclipm_combine_frames() and handles the input data
as described above. n is the number of input frames.

133 of 148

PART III: DRS MAINTAINANCE &
DEVELOPMENT

In this section different aspects regarding the creation of new calibration data and the
maintainance of the KMOS DRS pipeline for further development are described.

9 Updating the Calibration Data
After instrument maintainance or after a warming up/cooling down-cycle the instrument, the arms
and spectrographs are expected to have different characteristics than before. In this case it is
strongly recommended to renew the calibration files. Manipulation of the arms particularly affects
all spatial calibration files (BADPIXEL_DARK, BADPIXEL_FLAT, FLAT_EDGE,
ILLUM_CORR, MASTER_DARK, MASTER_FLAT, TELLURIC, XCAL, YCAL),
manipulation of the spectrographs affects all spectral calibrations (WAVE_BAND, REF_LINES,
LCAL, ILLUM_CORR, TELLURIC).
Besides this the spatial and spectral calibration frames are expected to be stable in time. So we
recommend to renew these files every few months to a year (exact intervals have to be defined
during operation) in normal operating conditions.

9.1 Standard Data Handling at the VLT
As depicted in Figure 53, the standard workflow for obtaining exposures follows the solid blue
arrows from top to bottom. The user triggers any template on the IWS which in succession
generates arbitrary exposures. These are sent to the PWS where they are automatically archived
and processed by the DO and the DRS. The raw frames and the products are copied to the OWS
as well mirrored to ESO Garching.

The PWS acts as a sort of master in this scenario on which the other workstations depend on. It is
asserted that the raw frames, products and calibration data are kept synchronized on the OWS. In
fact all steps described above are standard ones and apply to all instruments at the VLT.

Following the standard way at ESO, the QC department creates new calibration files and will
copy them to the PWS.

134 of 148

 e
ve

ry
 o

bs
er

va
tio

n
w

ith
 K

M
O

S

ev
er

y
fe

w
 m

on
th

s
or

af

te
r

in
st

ru
m

en
t

m
ai

nt
ai

na
nc

e

PW
S

D
O

DR
S

Calib
DB
IWS
calib

(subset)

IW
SRT

D

IWS
calib

(subset)

OW
S

Calib
DB
IWS
calib

(subset)

Use
r te

m
pl

a
te

ra w

ra
w

produc
ts

ra
w

produc
tsDR

S

IWS calib (subset of
Calib DB, see section
Error: Reference
source not found)

135 of 148

Due to the huge amount of calibration data, ESO at Paranal will create new calibration data from
KMOS on its own to avoid the lengthy data transfer from Garching to Paranal.

Regarding KMOS an additional step has to be performed:
A subset of the Calib DB on the PWS has to be kept synchronized on the IWS (dashed orange
arrow). The ESO DHA has to assert this.

Calib DB (whole set of
calibration data, see
section 9.2)

Figure 53 Standard data flow at the VLT

9.2
A

lphabetical listing of all calibration files
There are 5 bands (H, HK, IZ, K, YJ). For each band there are 6 rotator angles (0, 60, 120, 180,
240, 360 degrees). Therefore the band-specific calibrations will amount to 15 files.1

The “Calib DB” depicted in Figure 53 consists of the frames listed below:

PRO CATG size # comments__________________

ARC_LIST 8.5 KB 5 Arcline lists
ATMOS_MODEL 35 KB 5 Atmospheric models
BADPIXEL_DARK 48 MB 1 Badpixel frame
BADPIXEL_FLAT 289 MB 5 Badpixel frame after flat-fielding
FLAT_EDGE 1.5 MB 5 Table with edge fitting parameters

1 The filter resp. grating setting can be extracted from following keywords (It is guaranted by the ICS that these
keywords always contain the same value):

ESO INS FILT1 ID ESO INS GRAT1 ID
ESO INS FILT2 ID ESO INS GRAT2 ID
ESO INS FILT3 ID ESO INS GRAT3 ID

The rotator angle can be extracted from:
ESO OCS NAANGLEx

136 of 148

IWS: Instrument Workstation Karma: OB Preparation Tool
PWS: Pipeline Workstation RTD: Real Time Display

(or Online Workstation) DO: Data Organiser
OWS: Offline Workstation DRS: Data Reduction Software

LCAL 289 MB 5 Spectral calibration file
MASTER_DARK 97 MB 1 Master dark frame
MASTER_FLAT 577 MB 5 Master flat frames
OH_SPEC 300 KB 5
REF_LINES 8.5 KB 1 Table with arcline fitting parameters
SOLAR_SPEC 50 KB 5 Solar spectra
SPEC_TYPE_LOOKUP 8.5 KB 1 Spectral lookup table
XCAL 289 MB 5 Spatial calibration file No. 1
YCAL 289 MB 5 Spatial calibration file No. 2
WAVE_BAND 8.5 KB 1 Fits table with start-/end-values of wavebands
__
Σ 8.8 GB 55 files

9.2.1Subset of calibration files needed for Karma and
RTD (kmclipm)

The “IWS calib (subset)” consists of a subset of above frames:

PRO CATG size # comments__________________

LCAL 289 MB 5 Important: on IWS the original
XCAL 289 MB 5 filenames have to be used and
YCAL 289 MB 5 not the archived filenames (e.g.
WAVE_BAND 8.5 KB 1 lcal_HHH_HHH.fits and

kmos_wave_band.fits)
__
Σ 4.3 GB 16 files

137 of 148

9.3 Calibration Schedule

9.3.1Every few months to a year or after instrument maintainance

BADPIXEL_DARK MASTER_DARK XCAL
BADPIXEL_FLAT MASTER_FLAT YCAL
FLAT_EDGE TELLURIC LCAL
ILLUM_CORR

These calibration frames can be produced using the KMOS data reduction pipeline. As input data
new calibration exposures have to be produced using the following ICS templates with default
settings (the templates switch the filters and gratings automatically where appropriate):

Template ID DO category Associated recipe DO category

KMOS_spec_cal_dark2 DARK kmos_dark
MASTER_DARK
BADPIXEL_DARK

KMOS_spec_cal_unit3 FLAT_ON
FLAT_OFF

kmos_flat

MASTER_FLAT
BADPIXEL_FLAT
XCAL
YCAL
FLAT_EDGE

KMOS_spec_cal_wave3 ARC_ON
ARC_OFF

kmos_wave_cal
LCAL
DET_IMAGE_WAVE

To check the quality of the calibration frames the QC parameters can be checked and compared to
former values, best to be stored in an external database. Additionally a quick visual check consists
of looking at the generated DET_IMG_WAVE frames from kmos_wave_cal-recipe. Obvious
errors in the wavelength calibration are easy to identify.

The estimated execution time for the first three templates involved in this procedure is about 3.5
hours. About the same time is needed to execute the associated pipeline recipes.

9.3.2After instrument maintainance

9.3.2.1 WAVE_BAND

This file can be updated using the DRS pipeline and a text file containing the actual values.

9.3.2.2 REF_LINES

Introduction

The KMOS spectral calibration recipe uses a two step approach to fit the calibration lamp images
to the spectral line lists. In the first step it tries to fit a few selected well isolated (reference) lines.
Using the position of these lines a first attempt to fit the position of the lines versus their
wavelength is done. For the rest of the lines this estimate is used to detect them in a much smaller
search range.
An IDL tool is available to create and maintain a table of reference lines for each band each table
holding the lines for the three detectors.

2 single execution at any rotator angle
3 multiple executions at following rotator angles: 0, 60, 120, 180, 240, 300 degrees

138 of 148

Prerequisites

Trace files:
The IDL tool to generate the reference table needs some data input files which hold the trace over
the detector for each slitlet of each IFU in lambda direction. These data files are created using the
KMOS pipeline running the KMOS_WAVE_CAL recipe. To trigger the creation of the data files
the environment variable KMO_WAVE_CAL_DATA_PREFIX must be set. The string you
choose will prefix all data files. The file name will be completed by the recipe with band ID, IFU
and slitlet number. It is a good choice to start the KMO_WAVE_CAL_DATA_PREFIX with a “.”
character to hide the trace data files in standard directory views.
The trace data files will be created in the current working directory.
When no reference table calibration file exists yet or it is too bad to process all slitlets it is
necessary to use a different line estimation method in the KMOS_WAVE_CAL recipe. Again an
environment variable is used, KMO_WAVE_LINE_ESTIMATE. Setting it to value of “0” shall
result in a stable run of the KMOS_WAVE_CAL recipe to generate the trace data files.
Don't forget to remove the environment variables after the trace data files are generated.

Examples:
 bash shell:

$ export KMO_WAVE_CAL_DATA_PREFIX=.wave_cal_data
$ export KMO_WAVE_LINE_ESTIMATE=0
$ esorex kmos_wave_cal wavecal.sof
$ unset KMO_WAVE_CAL_DATA_PREFIX
$ unset KMO_WAVE_LINE_ESTIMATE

 csh shell:
$ setenv KMO_WAVE_CAL_DATA_PREFIX .wave_cal_data
$ setenv KMO_WAVE_LINE_ESTIMATE 0
$ esorex kmos_wave_cal wavecal.sof
$ unsetenv KMO_WAVE_CAL_DATA_PREFIX
$ unsetenv KMO_WAVE_LINE_ESTIMATE

Line lists:
The IDL tool to generate the reference table needs the same line list files as used by the
KMOS_WAVE_CAL recipe of the pipeline. The combined AR and NE line list files are expected
to have the file naming convention:

kmos_ar_ne_list_%s.fits
with %s being the lower case band name (h, k, hk, yj or iz).

Usage of the IDL tool

The IDL tool to generate the reference table is distributed as compressed TAR file. Create a new
empty directory, use it as working directory and untar the TAR file:

$ mkdir <dirName>
$ cd <dirName>
$ tar ­cxf <tarfile>

There are several ways to start the IDL tool
1. $ idl main.pro

Use this way if your IDL installation allows the call of IDL batch file as argument. In this
case you can edit main.pro to setup your default values for the arguments.

2. $ idl ­idl_startup main.pro
This way should work with any IDL installation. Again you can edit main.pro to setup
your default values for the arguments.

139 of 148

3. $ idl ­vm=kmo_wave_calib.sav
This way should work with any IDL installation. All required arguments must be specified
in the command line.

4. $ idl ­vm=installationDir/kmo_wave_calib.sav
This way should work with any IDL installation. This way your working directory can be
different. All required arguments must be specified in the command line.

Following arguments are required by the IDL tool:
cal_dir Specifies the directory where the line list calibration files will be found
data_dir Specifies the directory where the trace data file will be found.
prefix Specifies the name prefix of the trace data files.
table Specifies the name (including the directory path) of the reference lines table

Following arguments are optional:
table Specifies a FITS table with a set of reference line to start with. The default

is an empty table.
 pattern Specifies file pattern for line list FITS tables. The pattern must contain at

least one “%s” placeholder for the band name. The default is the pattern
kmos_ar_ne_list_%s.fits

Default values for your installation can be fixed in the file main.pro.

Examples:
$ idl main.pro ­args –table=../ref_lines.fits
The other argument values are defined in main.pro.

$ idl ­idl_startup main.pro ­args ­table=../ref_lines.fits \
 ­­prefix=test

The other argument values are defined in main.pro.

$ idl ­vm=kmo_wave_calib.sav ­args –table=../ref_lines.fits \
 ­­prefix=.wave_cal_data \
 ­cal_dir=../calFiles \
 ­data_dir=../data

9.4 How to create XCAL, YCAL and LCAL
To create proper XCAL, YCAL and LCAL frames at the standard 6 rotator angles of 0°, 60°,
120°, 180°, 240° and 300° following templates have to be executed: KMOS_spec_cal_dark,
KMOS_spec_cal_calunitflat and KMOS_spec_cal_wave. Best practice is to run these
templates in a single OB with their default values.
Furthermore the following static calibration frames of type ARC_LIST, REF_LINES and
WAVE_BAND are needed. They can be found in the SVN repository kmos-calib or in the
pipeline deliverable.

kmos_ar_ne_list_h.fits
kmos_ar_ne_list_hk.fits
kmos_ar_ne_list_k.fits
kmos_ar_ne_list_iz.fits
kmos_ar_ne_list_yj.fits
kmos_wave_band.fits
kmos_wave_ref_table.fits

140 of 148

The following workflow creates all needed calibration frames for the RTD, for the pipeline
workstation and for anyone using the KMOS DRS pipeline. The needed python script
kmos_calib.py can either be found in the SVN repository kmosp/tools/ or in the bin
folder of the installed pipeline (e.g. using the distributed kmos-kit).

10 Environment variables
Here all environment variables influencing the behaviour of the pipeline are described.

10.1 Variables influencing wavelength calibration

KMO_WAVE_CAL_DATA_PREFIX
Used in kmos_wave_cal recipe.
If this environment variable is set, special FITS files will be created to support the editing of the
reference lines calibration file. The value of this environment variable will be used as prefix for
those files. As there will be generated more than 2000 files this prefix usually starts with a “.”
character to hide them from file listings. The final file name will be:

{PREFIX}_{BAND}_ifu_{IFUNUMBER}_slitlet_{SLITLETNUMBER}.fits

10.2 Variables influencing reconstruction

KMO_WAVE_RECONSTRUCT_METHOD (default if not set: “lwNN”)
Used in kmos_wave_cal recipe.
Specifies the reconstruction method for creating the reconstructed detector image. Following
values are allowed:

 NN nearest neighbor
 lwNN linear weighted nearest neighbor (default)
 swNN square weighted nearest neighbor
 MS Modified Shephards method
 CS cubic spline


KMCLIPM_PRIV_RECONSTRUCT_LUT_MODE (default if not set: FILE)
Influences the handling of the LUT. There are four modes. They are explained in detail in section
6.4.

 NONE
 MEMORY
 FILE
 BOTH

10.3 Variables influencing RTD reconstruction

RTD_CHECK_FOR_SATURATION
If defined the detector image given to reconstruction will be checked for saturated pixels.
Saturated pixels will be added to the bad pixel mask.

KMO_RECONSTRUCT_BADPIXEL_VALUE
If this variable is not set bad pixel will be ignored. If it is set all bad pixels will be set to this value
before reconstruction.

RTD_RECONSTRUCT_METHOD (default if not set: NN)

141 of 148

If this variable is not set RTD reconstruction will use simple nearest neighbor reconstruction. It
can be set to:

 NN nearest neighbor (default)
 LWNN linear weighted nearest neighbor
 SWNN square weighted nearest neighbor
 MS Modified Shephards method
 CS cubic spline

10.4 Variables influencing the debugging

KMO_TEST_VERBOSE (default if not set: no error messages shown)
Switches on and off error-messages for the unit tests globally. It is only seen if a test fails or not.
Either et this variable or look at the generated log files for debugging the unit tests.

KMCLIPM_ DEBUG (default if not set: no fit-parameters displayed or stored)
Prints gauss-fit parameters to the console and saves them as well in a file at
KMCLIPM_DEBUG/tmp/kmclipm_fitpar.txt

This variable is somehow obsolete, since now all fit aprameters are returned from
kmclipm_rtd_image() anyway. This way the ICS software has full control over the decision how
to handle a reconstructed and collapsed cube.

142 of 148

Appendix A Data Processing Tables

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters
kmos_dark KMOS_spec_cal_dark DO cat = DARK

DPR.TYPE = DARK
DPR.CATG = CALIB
DPR.TECH = IMAGE

- Master Dark frame
 Preliminary Bad pixel mask
 Dark Current
 Read noise

 Mean Bias
 Mean Read Noise
 Number of bad pixels

 Mean Dark Current

Processing: iterative mean of frames; identify bad pixels
FITS keywords: DIT, MINDIT

kmos_flat KMOS_spec_cal_calunit DO cat = FLAT_ON
DPR.TYPE = FLAT,LAMP
DPR.CATG = CALIB
DPR.TECH = SPECTRUM

DO cat = FLAT_OFF
DPR.TYPE = FLAT,OFF
DPR.CATG = CALIB
DPR.TECH = IMAGE

Preliminary Bad pixel mask
 (from kmos_dark)

 Master Flat
 Spectral Curvature Calibration frames
 Final Bad pixel mask

 Mean shift of slitlet edges
 RMS shift of slitlet edges
 Lamp efficiency
 Number of saturated pixels in flatfield
 Mean S/N in flatfield
 Mean change in 0th order coefficients
 RMS change in 0th order coefficients
 Mean change in 1st order Y coefficients
 RMS change in 1st order Y coefficients

Processing: subtract mean of on & off frames; identify pixels that are bad or not illuminated; fit functions to spectral traces; generate frame where the pixel value corresponds to the spatial position (in
arcsec) of that pixel
FITS keywords: INS.FILTi.NAME, INS.LAMP3.ST, INS.LAMP4.ST

kmos_illumination KMOS_spec_cal_skyflat DO cat = FLAT_SKY
DPR.TYPE = FLAT,SKY
DPR.CATG = CALIB
DPR.TECH = IFU

Final Bad pixel mask
Master Flat frame
Spectral Curvature Calibration frame
Wavelength Calibration frame

 Illumination Correction frame Spatial uniformity of flatfield
 Max deviation of an IFU
 identification of that IFU
 Max non-uniformity within an IFU
 identification of that IFU

Processing: average frames; reconstruct cubes; collapse to images; normalise
FITS keywords: INS.FILTi.NAME

kmos_wave_cal KMOS_spec_cal_wave DO cat = ARC_ON
DPR.TYPE = WAVE,LAMP
DPR.CATG = CALIB
DPR.TECH = SPECTRUM

DO cat = ARC_OFF
DPR.TYPE = WAVE,OFF
DPR.CATG = CALIB
DPR.TECH = IMAGE

Final Bad pixel mask
Arc line wavelength table

 Wavelength Calibration frame Arc lamp efficiency
 Number of saturated pixels in arc frame
 Spectral Resolution
 Mean change in 0th order coefficients
 RMS change in 0th order coefficients
 Mean change in 1st order Y coefficients
 RMS change in 1st order Y coefficients

Processing: subtract on & off frames; fit functions to arc line traces; generate frame where the pixel value corresponds to the wavelength (in microns) of that pixel
FITS keywords: INS.FILTi.NAME, INS.LAMP1.ST, INS.LAMP2.ST

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters

143 of 148

kmos_std_star KMOS_spec_cal_std DO cat = STD
DPR.TYPE =
 OBJECT,SKY,STD,FLUX
DPR.CATG = CALIB
DPR.TECH = IFU

Final Bad pixel mask
Master flat frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
Illumination Correction Frame
Model Atmospheric Transmission Spectrum
Solar Spectrum
Spectral Type Lookup Table

 Telluric Correction Spectrum
 Images of the stars
 (for seeing measurement)
 Flux Calibration
 (if star magnitude given)

 Mean Zeropoint
 Mean & Std Dev Throughput
 Mean Spatial Resolution
 Straightness of corrected trace

Processing: subtract object & sky frames; reconstruct cube; extract spectrum; correct stellar imprint; calculate flux calibration
FITS keywords: INS.FILTi.NAME, OCS.ARMi.TYPE

kmos_sci_red KMOS_spec_obs_nodtosky
KMOS_spec_obs_stare
KMOS_spec_obs_mapping

DO cat = SCIENCE
DPR.TYPE = OBJECT,SKY
DPR.CATG = SCIENCE
DPR.TECH = IFU

Final Bad pixel mask
Master flat frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
Illumination Correction Frame
Telluric Correction Spectrum

Reduced Science Cube none

Processing: subtract object & sky frames; reconstruct cube; divide out telluric imprint; calibrate flux
FITS keywords: INS.FILTi.NAME, OCS.ARMi.ALPHA, OCS.ARMi.DELTA, OCS.ARMi.TYPE, OCS.ARMi.NAME

kmo_rtd_image triggered by CLIP N/A Final Bad pixel mask
Master Dark frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
OH line wavelength table

Reconstructed images
 (to display on RTD)

none

Processing: subtract object & sky/dark frames; reconstruct cube; excise regions near OH lines; collapse spectral axis to create image
FITS keywords: N/A

144 of 148

Appendix B The KMOS data interface dictionary

The column dependency indicates that the QC parameter will be different for (i.e. depends on) each detector (‘D’), each IFU (‘I’) and/or each
bandpass (‘B’) respectively.

Table of (possibly) generated keywords by the calibration recipes of the DRS:

name header unit data
type

depen-
dency

description

HIERARCH ESO PRO ARMx NOTUSED primary - string I This keyword is only present when a recipe wasn’t able to process a specific IFU
([] IFU set inactive by <recipe_name>)

HIERARCH ESO PRO BOUND IFUi_L primary pix int I This keyword contains the left bound of the area on the detector containing IFU
i. This keyword is generated in kmos_flat and stored in the xcal-frame for
every active IFU. This information is reused when reconstructing.

HIERARCH ESO PRO BOUND IFUi_R primary pix int I This keyword contains the right bound of the area on the detector containing IFU
i. See also comment above.

HIERARCH ESO PRO ROT NAANGLE extension deg double D This keyword is set by kmos_flat and kmos_wave_cal to indicate which
extension belongs to which rotator angle.

Table of generated QC keywords by the calibration recipes (see section 5.1 for more detailed information):

name header unit data
type

depen-
dency

description

kmos_dark
HIERARCH ESO QC DARK extension adu double D mean value of Master Dark
HIERARCH ESO QC DARK MEDIAN extension adu double D median value of Master Dark
HIERARCH ESO QC RON extension adu double D mean value of noise of Master Dark
HIERARCH ESO QC RON MEDIAN extension adu double D median value of noise of Master Dark
HIERARCH ESO QC DARKCUR extension e-/s double D iterative mean dark current in Master Dark divided by gain
HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Dark

kmos_flat
HIERARCH ESO QC FLAT EFF extension e-/s double DB relative brightness of flatfield lamp
HIERARCH ESO QC FLAT SAT NCOUNTS extension - int DB number of saturated pixels in Master Flat

145 of 148

HIERARCH ESO QC FLAT SN extension - double DB signal-to-noise in Master Flat
HIERARCH ESO QC GAP MEAN extension pix double DB mean gap width between slitlets
HIERARCH ESO QC GAP SDV extension pix double DB standard deviation of gap width between slitlets
HIERARCH ESO QC GAP MAXDEV extension pix double DB maximum deviation of gap width between slitlets
HIERARCH ESO QC SLIT MEAN extension pix double DB mean slitlet width
HIERARCH ESO QC SLIT SDV extension pix double DB standard deviation of slitlet width
HIERARCH ESO QC SLIT MAXDEV extension pix double DB maximum deviation of slitlet width
HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Flat

kmos_wave_cal
HIERARCH ESO QC ARC AR EFF extension e-/s double B relative brightness of argon arclamp
HIERARCH ESO QC ARC NE EFF extension e-/s double B relative brightness of neon arclamp
HIERARCH ESO QC ARC SAT NCOUNTS extension - int B number of saturated pixels in arc frame
HIERARCH ESO QC ARC AR POS MEAN extension km/s double DB mean of all Argon reference line position offsets (measured vs. expected)
HIERARCH ESO QC ARC AR POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Argon reference line position
HIERARCH ESO QC ARC AR POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset
HIERARCH ESO QC ARC AR POS STDEV extension km/s double DB mean standard deviation of position offset for Argon reference line
HIERARCH ESO QC ARC AR POS 95%ILE extension km/s double DB mean 95%ile of position offset for Argon reference line
HIERARCH ESO QC ARC AR FWHM MEAN extension km/s double DB mean of FWHM for Argon reference line
HIERARCH ESO QC ARC AR FWHM STDEV extension km/s double DB mean stdev of FWHM for Argon reference line
HIERARCH ESO QC ARC AR FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Argon reference line
HIERARCH ESO QC ARC NE POS MEAN extension km/s double DB mean of all Neon reference line position offsets (measured vs. expected)
HIERARCH ESO QC ARC NE POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Neon reference line position
HIERARCH ESO QC ARC NE POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset
HIERARCH ESO QC ARC NE POS STDEV extension km/s double DB mean standard deviation of position offset for Neon reference line
HIERARCH ESO QC ARC NE POS 95%ILE extension km/s double DB mean 95%ile of position offset for Neon reference line
HIERARCH ESO QC ARC NE FWHM MEAN extension km/s double DB mean of FWHM for Neon reference line
HIERARCH ESO QC ARC NE FWHM STDEV extension km/s double DB mean stdev of FWHM for Neon reference line
HIERARCH ESO QC ARC NE FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Neon reference line

kmos_illumination
HIERARCH ESO QC SPAT UNIF primary adu double B uniformity across all illumination corrections
HIERARCH ESO QC SPAT MAX DEV ID primary - int B identification of the IFU whose illumination correction deviates most from unity
HIERARCH ESO QC SPAT MAX DEV primary adu double B value of this deviation
HIERARCH ESO QC SPAT MAX NONUNIF ID primary - int B identification of the IFU which has the most non-uniform illumination correction
HIERARCH ESO QC SPAT MAX NONUNIF primary adu double B standard deviation of the illumination correction for this IFU

kmos_std_star
HIERARCH ESO QC ZPOINT extension mag double DB zeropoint (magnitude) [stored in extension headers of telluric]

146 of 148

HIERARCH ESO QC THRUPUT extension - double DB throughput of KMOS (i.e. ratio of number of photons detected to number
expected from the standard star) [stored in extension headers of telluric]

HIERARCH ESO QC THRUPUT MEAN primary - double B mean of throughput of all detectors [stored in primary header of telluric]
HIERARCH ESO QC THRUPUT SDV primary - double B standard deviation of throughput of all detectors [stored in primary header of

telluric]
HIERARCH ESO QC SPAT RES extension - double DB spatial resolution (FWHM) [stored in extension headers of std_image]
HIERARCH ESO QC STD TRACE extension pix double DB a measure of how straight the corrected trace of a star is (i.e. how well the

spectral curvature has been corrected) [stored in extension headers of std_image]
HIERARCH ESO QC NR STD STARS primary - int I the number of standard stars in a standard star exposure [stored in primary

headers of all output frames]
HIERARCH ESO QC SNR extension - double B the signal to noise ratio [stored in extension headers of noise_spec]

Table of generated keywords by kmo_fit_profile (see section 7.3.4 for more detailed information):

name header unit data
type

depen-
dency

description

HIERARCH ESO PRO FIT MAX PIX extension pix double I Position of the maximum (1D fit)
HIERARCH ESO PRO FIT MAX PIX X extension pix double I Position of the maximum in x (2D fit)
HIERARCH ESO PRO FIT MAX PIX Y extension pix double I Position of the maximum in y (2D fit)
HIERARCH ESO PRO FIT CENTROID extension pix double I Position of the centroid (1D fit)
HIERARCH ESO PRO FIT CENTROID X extension pix double I Position of the centroid in x (2D fit)
HIERARCH ESO PRO FIT CENTROID Y extension pix double I Position of the centroid in y (2D fit)
HIERARCH ESO PRO FIT RADIUS X extension pix double I Radius in x of fitted 2D profile
HIERARCH ESO PRO FIT RADIUS Y extension pix double I Radius in y of fitted 2D profile
HIERARCH ESO PRO FIT OFFSET extension adu double I Background/offset
HIERARCH ESO PRO FIT INTENS extension adu double I Intensity of the function
HIERARCH ESO PRO FIT SIGMA extension pix double I Sigma of the gauss function
HIERARCH ESO PRO FIT ALPHA extension - double I Alpha of fitted Moffat function
HIERARCH ESO PRO FIT BETA extension - double I Beta of fitted Moffat function
HIERARCH ESO PRO FIT SCALE extension adu double I Scale of fitted Lorentz function
HIERARCH ESO PRO FIT ROT extension deg double I Rotation angle (clockwise)
HIERARCH ESO PRO FIT ERR CENTROID extension pix double I Error in position of the centroid (1D fit)
HIERARCH ESO PRO FIT ERR CENTROID X extension pix double I Error in position of the centroid in x (2D fit)
HIERARCH ESO PRO FIT ERR CENTROID Y extension pix double I Error in position of the centroid in y (2D fit)
HIERARCH ESO PRO FIT ERR RADIUS X extension pix double I Error in radius in x of fitted 2D profile
HIERARCH ESO PRO FIT ERR RADIUS Y extension pix double I Error in radius in y of fitted 2D profile
HIERARCH ESO PRO FIT ERR OFFSET extension adu double I Error in background/offset

147 of 148

HIERARCH ESO PRO FIT ERR ROT extension deg double I Error in rotation angle (clockwise)
HIERARCH ESO PRO FIT ERR INTENS extension adu double I Error in intensity of the function
HIERARCH ESO PRO FIT ERR SIGMA extension pix double I Error in sigma of the gauss function
HIERARCH ESO PRO FIT ERR ALPHA extension - double I Error in alpha of fitted Moffat function
HIERARCH ESO PRO FIT ERR BETA extension - double I Error in beta of fitted Moffat function
HIERARCH ESO PRO FIT ERR SCALE extension adu double I Error in scale of fitted Lorentz function
HIERARCH ESO PRO FIT RED CHISQ extension - double I Reduced chi square error of the fit

___oooOOOooo___

148 of 148

	Change Record
	Table of Contents
	Acronyms and Abbreviations
	Applicable and Referenced Documents
	Scope of this Document
	Release Notes
	Release Notes History
	PART I: DRS DESIGN
	1 Instrument Description
	1.1 Brief Description
	1.2 Modes and Configurations
	1.2.1 Instrument Flexure
	1.2.2 Inputs
	1.2.3 Outputs
	1.2.4 Data Formats
	1.2.5 Pipeline Modes

	2 Mathematical Description
	2.1 Interpolation
	2.1.1 Nearest Neighbour
	2.1.2 Cubic Spline Interpolation
	2.1.3 Modified Shepard’s Method

	2.2 Error Propagation
	2.2.1 Initial Noise Estimate
	2.2.2 Mathematical Manipulations
	2.2.3 Combining Datasets
	2.2.4 Extracting Spectra
	2.2.5 Creating Images

	3 Instrument Data Description
	3.1 Orientation of the IFUs on the detectors
	3.2 FITS header keywords
	3.2.1 Primary header
	3.2.2 Extension header

	3.3 Raw file types
	3.3.1 Dark
	3.3.2 Flatfields
	3.3.3 Wavelength
	3.3.4 Standard Star
	3.3.5 Science Object

	3.4 Processing Table
	3.5 IFU Layout in the Mapping Templates

	4 Data Reduction Library Data Structures
	4.1 Classification Tags
	4.2 Intermediate Data Formats
	4.2.1 Detector based floating point products
	4.2.2 1-dimensional detector based products
	4.2.3 Detector based binary digit products
	4.2.4 1-dimensional IFU based products
	4.2.5 2-dimensional IFU based products
	4.2.6 Naming convention

	4.3 External Data Formats
	4.3.1 Lists
	4.3.2 1-dimensional spectra
	4.3.3 Lookup tables

	4.4 Final Output Data Formats
	4.4.1 3-dimensional IFU based products

	4.5 Calibration Data Formats
	4.5.1 Calibration at multiple rotator angles

	4.6 RTD Data Formats

	5 Data Reduction Library QC1 Parameters
	5.1 QC1 Parameter descriptions
	5.1.1 Dark Frames
	5.1.2 Flat Frames
	5.1.3 Wavelength Calibration
	5.1.4 Illumination Correction
	5.1.5 Standard Star Observations

	PART II: DRS RECIPE REFERENCE
	6 Preliminaries
	6.1 Standard workflow
	6.2 Generating Test Data
	6.3 Predefined wavelength ranges
	6.4 Lookup table (LUT) for reconstruction

	7 Recipes
	7.1 Calibration Recipes
	7.1.1 kmos_dark: Master Dark Frames
	7.1.1.1 Description
	7.1.1.2 Flow Chart
	7.1.1.3 Input Frames
	7.1.1.4 Fits Header Keywords
	7.1.1.5 Configuration Parameters
	7.1.1.6 Output Frames
	7.1.1.7 Examples

	7.1.2 kmos_flat: Master Flat Field
	7.1.2.1 Description
	7.1.2.2 Flow Chart
	7.1.2.3 Input Frames
	7.1.2.4 Fits Header Keywords
	7.1.2.5 Configuration Parameters
	7.1.2.6 Output Frames
	7.1.2.7 Examples

	7.1.3 kmos_wave_cal: Wavelength Calibration
	7.1.3.1 Description
	7.1.3.2 Flow Chart
	7.1.3.3 Input Frames
	7.1.3.4 Fits Header Keywords
	7.1.3.5 Configuration Parameters
	7.1.3.6 Output Frames
	7.1.3.7 Examples

	7.1.4 kmos_illumination: Illumination Correction
	7.1.4.1 Description
	7.1.4.2 Flow Chart
	7.1.4.3 Input Frames
	7.1.4.4 Fits Header Keywords
	7.1.4.5 Configuration Parameters
	7.1.4.6 Output Frames
	7.1.4.7 Examples

	7.1.5 kmos_std_star: Telluric Standard Star
	7.1.5.1 Description
	7.1.5.2 Flow Chart
	7.1.5.3 Input Frames
	7.1.5.4 Fits Header Keywords
	7.1.5.5 Configuration Parameters
	7.1.5.6 Output Frames
	7.1.5.7 Examples

	7.2 Science Reduction Recipes
	7.2.1 kmos_sci_red: Processing for Science Data
	7.2.1.1 Description
	7.2.1.2 Flow Chart
	7.2.1.3 Input Frames
	7.2.1.4 Fits Header Keywords
	7.2.1.5 Configuration Parameters
	7.2.1.6 Output Frames
	7.2.1.7 Examples

	7.2.2 kmos_reconstruct: Reconstructing a Cube
	7.2.2.1 Description
	7.2.2.2 Flow Chart
	7.2.2.3 Input Frames
	7.2.2.4 Fits Header Keywords
	7.2.2.5 Configuration Parameters
	7.2.2.6 Output Frames
	7.2.2.7 Examples

	7.2.3 kmos_combine: Combining Cubes
	7.2.3.1 Description
	7.2.3.2 Flow Chart
	7.2.3.3 Input Frames
	7.2.3.4 Fits Header Keywords
	7.2.3.5 Configuration Parameters
	7.2.3.6 Output Frames
	7.2.3.7 Examples

	7.2.4 kmos_sky_tweak: Second Order Sky Subtraction
	7.2.4.1 Description
	7.2.4.2 Flow Chart
	7.2.4.3 Input Frames
	7.2.4.4 Fits Header Keywords
	7.2.4.5 Configuration Parameters
	7.2.4.6 Output Frames
	7.2.4.7 Examples

	7.3 Common Utilities
	7.3.1 kmo_arithmetic: Basic Arithmetic
	7.3.1.1 Description
	7.3.1.2 Flow Chart
	7.3.1.3 Input Frames
	7.3.1.4 Fits Header Keywords
	7.3.1.5 Configuration Parameters
	7.3.1.6 Output Frames
	7.3.1.7 Examples

	7.3.2 kmo_copy: Copy Cube Sections
	7.3.2.1 Description
	7.3.2.2 Flow Chart
	7.3.2.3 Input Frames
	7.3.2.4 Fits Header Keywords
	7.3.2.5 Configuration Parameters
	7.3.2.6 Output Frames
	7.3.2.7 Examples

	7.3.3 kmos_extract_spec: Extracting Spectra
	7.3.3.1 Description
	7.3.3.2 Flow Chart
	7.3.3.3 Input Frames
	7.3.3.4 Fits Header Keywords
	7.3.3.5 Configuration Parameters
	7.3.3.6 Output Frames
	7.3.3.7 Examples

	7.3.4 kmo_fit_profile: Fitting Spectral and Spatial Profiles
	7.3.4.1 Description
	7.3.4.2 Flow Chart
	7.3.4.3 Input Frames
	7.3.4.4 Fits Header Keywords
	7.3.4.5 Configuration Parameters
	7.3.4.6 Output Frames
	7.3.4.7 Examples

	7.3.5 kmo_make_image: Making Images
	7.3.5.1 Description
	7.3.5.2 Flow Chart
	7.3.5.3 Input Frames
	7.3.5.4 Fits Header Keywords
	7.3.5.5 Configuration Parameters
	7.3.5.6 Output Frames
	7.3.5.7 Examples

	7.3.6 kmo_noise_map: Noise Estimation
	7.3.6.1 Description
	7.3.6.2 Flow Chart
	7.3.6.3 Input Frames
	7.3.6.4 Fits Header Keywords
	7.3.6.5 Configuration Parameters
	7.3.6.6 Output Frames
	7.3.6.7 Examples

	7.3.7 kmo_rotate: Rotating a Cube
	7.3.7.1 Description
	7.3.7.2 Flow Chart
	7.3.7.3 Input Frames
	7.3.7.4 Fits Header Keywords
	7.3.7.5 Configuration Parameters
	7.3.7.6 Output Frames
	7.3.7.7 Examples

	7.3.8 kmo_shift: Translating a Cube
	7.3.8.1 Description
	7.3.8.2 Flow Chart
	7.3.8.3 Input Frames
	7.3.8.4 Fits Header Keywords
	7.3.8.5 Configuration Parameters
	7.3.8.6 Output Frames
	7.3.8.7 Examples

	7.3.9 kmo_sky_mask: Creating a Mask of Sky Pixels
	7.3.9.1 Description
	7.3.9.2 Flow Chart
	7.3.9.3 Input Frames
	7.3.9.4 Fits Header Keywords
	7.3.9.5 Configuration Parameters
	7.3.9.6 Output Frames
	7.3.9.7 Examples

	7.3.10 kmo_stats: Basic Statistics
	7.3.10.1 Description
	7.3.10.2 Flow Chart
	7.3.10.3 Input Frames
	7.3.10.4 Fits Header Keywords
	7.3.10.5 Configuration Parameters
	7.3.10.6 Output Frames
	7.3.10.7 Examples

	7.3.11 kmo_fits_strip: Stripping FITS files
	7.3.11.1 Description
	7.3.11.2 Flow Chart
	7.3.11.3 Input Frames
	7.3.11.4 Fits Header Keywords
	7.3.11.5 Configuration Parameters
	7.3.11.6 Output Frames
	7.3.11.7 Examples

	8 Data Reduction Library Functions
	8.1 Acquisition Reduction for RTD
	8.1.1 Description
	8.1.2 Flow Chart

	8.2 Combine frames using pixel rejection
	8.2.1 Description
	8.2.2 Flow Chart

	PART III: DRS Maintainance & Development
	9 Updating the Calibration Data
	9.1 Standard Data Handling at the VLT
	9.2 Alphabetical listing of all calibration files
	9.2.1 Subset of calibration files needed for Karma and RTD (kmclipm)

	9.3 Calibration Schedule
	9.3.1 Every few months to a year or after instrument maintainance
	9.3.2 After instrument maintainance
	9.3.2.1 WAVE_BAND
	9.3.2.2 REF_LINES

	9.4 How to create XCAL, YCAL and LCAL

	10 Environment variables
	10.1 Variables influencing wavelength calibration
	10.2 Variables influencing reconstruction
	10.3 Variables influencing RTD reconstruction
	10.4 Variables influencing the debugging

	Appendix A Data Processing Tables
	Appendix B The KMOS data interface dictionary

