**EUROPEAN SOUTHERN OBSERVATORY** 



Γ

Organisation Européenne pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

# **VERY LARGE TELESCOPE**

## FLAMES-UVES Pipeline User Manual

٦

VLT-MAN-ESO-19500-3016

Issue 15.0

Date 2013-05-06

Prepared: 2013-05-06 Andrea Modigliani and Jonas Møller Larsen Name Date Signature Approved: P.Ballester . . . . . . . . Name . . . . . . . . . . . . Date Signature Released: M. Peron . . . . . . . . . . . . . . . . . . . Name Date Signature

This page was intentionally left blank

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 3 of 104                      |

## Change record

| Issue/Rev. | Date       | Section/Parag. affected | Reason/Initiation/Documents/Remarks              |
|------------|------------|-------------------------|--------------------------------------------------|
| 5.0        | 28/11/2008 |                         | Documentation describing CPL based release 4.3.0 |
| 6.0        | 03/11/2009 |                         | Update to 4.4.8                                  |
| 8.0        | 29/07/2010 |                         | Update to 4.7.8                                  |
| 9.0        | 24/01/2011 |                         | Update to 4.9.0                                  |
| 10.0       | 15/04/2011 |                         | Update to 4.9.5                                  |
| 11.0       | 31/10/2011 |                         | Update to 4.9.8                                  |
| 12.0       | 22/05/2012 |                         | Update to 5.0.9                                  |
| 13.0       | 15/10/2012 |                         | Update to 5.0.17                                 |
| 15.0       | 06/05/2013 |                         | Update to 5.2.0                                  |

This page was intentionally left blank

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 5 of 104                      |

## Contents

| 1 | Intr | oduction                                   | 11 |
|---|------|--------------------------------------------|----|
|   | 1.1  | Purpose                                    | 11 |
|   | 1.2  | Acknowledgements                           | 11 |
|   | 1.3  | Scope                                      | 11 |
|   | 1.4  | Reference documents                        | 11 |
| 2 | Ove  | rview                                      | 13 |
| 3 | Wha  | at's new in pipeline release 5.2.0         | 14 |
| 4 | FLA  | MES Instrument Description                 | 15 |
|   | 4.1  | Instrument overview                        | 15 |
| 5 | Quie | ck start                                   | 18 |
|   | 5.1  | FLAMES-UVES pipeline recipes               | 18 |
|   | 5.2  | An introduction to Gasgano and EsoRex      | 18 |
|   |      | 5.2.1 Using Gasgano                        | 19 |
|   |      | 5.2.2 Using EsoRex                         | 24 |
|   | 5.3  | Example of data reduction using EsoRex     | 26 |
| 6 | Kno  | wn problems                                | 37 |
| 7 | Inst | rument Data Description                    | 38 |
|   | 7.1  | Bias frames                                | 38 |
|   | 7.2  | Dark frames                                | 38 |
|   | 7.3  | Slit flat-field frames                     | 38 |
|   | 7.4  | Formatcheck frames                         | 39 |
|   | 7.5  | Single fibre order definition frames       | 39 |
|   | 7.6  | Fibre Flat-Field (odd-even-all) frames     | 39 |
|   | 7.7  | Wavelength calibration frames              | 40 |
|   | 7.8  | Supported raw frames (keyword identifiers) | 41 |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 6 of 104               |

| 8  | Stati | c Calibration Data                 | <b>48</b> |
|----|-------|------------------------------------|-----------|
|    | 8.1   | Line reference table               | 48        |
|    | 8.2   | Table to monitor line intensity    | 48        |
| 9  | Data  | Reduction                          | 49        |
|    | 9.1   | Data reduction overview            | 49        |
|    | 9.2   | Required input data                | 49        |
|    | 9.3   | Reduction cascade                  | 50        |
|    |       | 9.3.1 Data reduction peculiarities | 51        |
| 10 | Pipe  | line Recipes Interfaces            | 53        |
|    | 10.1  | uves_cal_mbias                     | 54        |
|    |       | 10.1.1 Input                       | 54        |
|    |       | 10.1.2 Output                      | 54        |
|    |       | 10.1.3 Quality control             | 54        |
|    |       | 10.1.4 Parameters                  | 55        |
|    | 10.2  | uves_cal_mdark                     | 55        |
|    |       | 10.2.1 Input                       | 55        |
|    |       | 10.2.2 Output                      | 55        |
|    |       | 10.2.3 Quality control             | 55        |
|    |       | 10.2.4 Parameters                  | 56        |
|    | 10.3  | flames_cal_mkmaster                | 56        |
|    |       | 10.3.1 Input                       | 57        |
|    |       | 10.3.2 Output                      | 57        |
|    |       | 10.3.3 Quality control             | 57        |
|    |       | 10.3.4 Parameters                  | 57        |
|    | 10.4  | flames_cal_predict                 | 58        |
|    |       | 10.4.1 Input                       | 58        |
|    |       | -                                  | 58        |
|    |       | -                                  | 59        |
|    |       |                                    | 60        |

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
|     |                                  | Date:  |                               |
|     |                                  | Page:  | 7 of 104                      |

|    | 10.5 | flames_cal_orderpos             | 60 |
|----|------|---------------------------------|----|
|    |      | 10.5.1 Input                    | 60 |
|    |      | 10.5.2 Output                   | 60 |
|    |      | 10.5.3 Quality control          | 61 |
|    |      | 10.5.4 Parameters               | 61 |
|    | 10.6 | flames_cal_prep_sff_ofpos       | 62 |
|    |      | 10.6.1 Input                    | 62 |
|    |      | 10.6.2 Output                   | 63 |
|    |      | 10.6.3 Quality control          | 64 |
|    |      | 10.6.4 Parameters               | 64 |
|    | 10.7 | flames_cal_wavecal              | 64 |
|    |      | 10.7.1 Input                    | 64 |
|    |      | 10.7.2 Output                   | 64 |
|    |      | 10.7.3 Quality control          | 66 |
|    |      | 10.7.4 Parameters               | 67 |
|    | 10.8 | flames_obs_scired               | 69 |
|    |      | 10.8.1 Input                    | 69 |
|    |      | 10.8.2 Output                   | 70 |
|    |      | 10.8.3 Quality control          | 71 |
|    |      | 10.8.4 Parameters               | 71 |
|    | 10.9 | flames_obs_redchain             | 72 |
|    |      | 10.9.1 Input                    | 72 |
|    |      | 10.9.2 Output                   | 72 |
|    |      | 10.9.3 Quality control          | 72 |
|    |      | 10.9.4 Parameters               | 73 |
| 11 | Algo | rithms and recipe details       | 79 |
|    | U    | •                               | 79 |
|    |      |                                 | 79 |
|    |      |                                 | 79 |
|    |      | 11.1.3 Fibre frames preparation | 79 |

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
|     |                                  | Date:  |                               |
|     |                                  | Page:  | 8 of 104                      |

| 11.1.4 Slit frames pre  | reparation                                                                           | . 80 |
|-------------------------|--------------------------------------------------------------------------------------|------|
| -                       | setting                                                                              |      |
| -                       | ackground determination                                                              |      |
|                         | termination                                                                          |      |
|                         | f UVES related fibre information                                                     |      |
|                         | ration                                                                               |      |
|                         | p preparation                                                                        |      |
|                         | acing                                                                                |      |
|                         | kground determination                                                                |      |
|                         | at part size of Slit frames                                                          |      |
|                         | reparation                                                                           |      |
|                         | preparation                                                                          |      |
|                         | normalization                                                                        |      |
|                         | extraction                                                                           |      |
|                         | merging                                                                              |      |
|                         | ckground subtraction                                                                 |      |
|                         | orm                                                                                  |      |
| C                       |                                                                                      |      |
|                         | ´<br>• • • • • • • • • • • • • • • • • • •                                           |      |
|                         | calibration first solution determination                                             |      |
|                         | ation                                                                                |      |
|                         |                                                                                      |      |
| _                       | generation                                                                           |      |
| -                       | generation                                                                           |      |
|                         | nat guess                                                                            |      |
| -                       | order table generation                                                               |      |
| 11.2.5 Master slit flat | at field generation                                                                  | . 90 |
|                         | paration, odd-even-all fibre flats preparation, normalization and fibre-order nation |      |
| 11.2.7 Wavelength C     | Calibration                                                                          | . 91 |
| 11.2.8 Science data r   | reduction                                                                            | . 91 |

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 9 of 104                      |

|   | 11.2.9 Full UVES-FIBRE data reduction          | 92  |
|---|------------------------------------------------|-----|
| A | Installation                                   | 94  |
|   | A.1 Supported platforms                        | 94  |
|   | A.2 Requirements                               | 94  |
|   | A.3 Building the UVES pipeline                 | 95  |
| B | FLAMES-UVES pipeline data reduction parameters | 97  |
| С | Abbreviations and acronyms                     | 104 |

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 10 of 104              |

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 11 of 104              |

## **1** Introduction

## 1.1 Purpose

The FLAMES-UVES pipeline is a subsystem of the *VLT Data Flow System* (DFS). Its target user is ESO *Data Flow Operations* (DFO) in the generation of master calibration data, in the reduction of scientific exposures, and in the data quality control. It should also serve as a quick look tool for *Paranal Science Operations* (PSO). Additionally, the FLAMES-UVES pipeline recipes are made public to the user community, to allow a more personalised processing of the data from the instrument.

This manual is a complete description of the data reduction recipes implemented by the CPL based FLAMES-UVES pipeline, reflecting the status of the FLAMES-UVES pipeline as of May 6, 2013 (version 5.2.0). Release 5.2.0 supports the reduction of UVES frames obtained when the UVES slit is fed by the fiber link to FLAMES.

## 1.2 Acknowledgements

The FLAMES-UVES pipeline has been initially (2001-2003) developed as a MIDAS package by Andrea Modigliani, as a wrapper of the FLAMES-UVES Data Reduction Software developed by Giacomo Mulas, Ignazio Porceddu and Francesco Damiani of the Ital-FLAMES consortium. Starting in winter 2006, to standardize implementation across all ESO pipelines, the FLAMES-UVES pipeline has been ported to CPL by Andrea Modigliani and Jonas Møller Larsen. Thanks to John Pritchard, from the Data Products Department <sup>2</sup>, and Domenic Naef from Paranal Science Operations for the feedback provided to improve this release.

## 1.3 Scope

This document describes the CPL based FLAMES-UVES pipeline used at ESO-Garching and ESO-Paranal for the purpose of data assessment and data quality control. Updated versions of the present document may be found on [12]. For general information about the current instrument pipeline status we remind the user of [5]. Quality Control information are at [4]. Additional information on the Common Pipeline Library (CPL) and EsoRex can be found respectively at [11], [11]. The Gasgano front end is described in [13]. Description of the instrument are in [6],[8]. The FLAMES-UVES instrument user manual is in [8]. The FLAMES-UVES calibration plan is in [3], while results of Science Verifications (SV) are at [7]. Additional information on the DFS and VLT data interfaces are in [2], [10], and [16]. A clear and detailed description of the FLAMES-UVES data reduction software are described in [17]. The UVES user manual can be found at [9]. The UVES pipeline user manual can be found at [14]. A clear and compact description of the FLAMES-UVES pipeline is in [15].

### 1.4 Reference documents

<sup>&</sup>lt;sup>1</sup>While the pipeline will generally cope with data acquired in non-standard modes ESO offers NO quality control over such data, and therefore it is responsibility of the user to verify the scientific efficacy of any calibration and/or science products produced by the pipeline for non-standard modes

<sup>&</sup>lt;sup>2</sup>formerly Data Flow Operation Department

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 12 of 104              |

- [1] FLAMES-UVES Data Reduction Software Design and Architecture Report. 11, 51
- [2] ESO. VLT Data Flow System Specifications for Pipeline and Quality Control. VLT-SPE-ESO-19600-1233. 11
- [3] ESO, VLT FLAMES Calibration Plan. VLT-PLA-ESO-13200-1567. 11
- [4] ESO/DMO/DFO, http://www.eso.org/observing/dfo/quality/. ESO-Data Flow Operation home page. 11
- [5] ESO/DMO/DFO, http://www.eso.org/observing/dfo/quality/pipeline-status.html. FLAMES-UVES Pipeline Current Status. 11
- [6] ESO/INS, http://www.eso.org/sci/facilities/paranal/instruments/flames. FLAMES instrument home page. 11, 41
- [7] ESO/INS, http://www.eso.org/science/vltsv/flamessv. FLAMES SV home page. 11
- [8] ESO/INS, http://www.eso.org/sci/facilities/paranal/instruments/flames/doc. FLAMES User Manual. VLT-MAN-ESO-13700-2994. 11, 41
- [9] ESO/INS, http://www.eso.org/sci/facilities/paranal/instruments/uves/doc. UVES User Manual. VLT-MAN-ESO-13200-1825. 11
- [10] ESO/SDD/DFS. DFS Pipeline & Quality Control User Manual. VLT-MAN-ESO-19500-1619. 11
- [11] ESO/SDD/DFS, http://www.eso.org/cpl/esorex.html. ESOREX home page. 11, 25
- [12] ESO/SDD/DFS, http://www.eso.org/pipelines. FLAMES-UVES Pipeline Users' Manual. VLT-MAN-ESO-19500-3016. 11, 51
- [13] ESO/SDD/DFS, http://www.eso.org/gasgano/. Gasgano User's Manual. VLT-PRO-ESO-19000-1932. 11, 13, 20
- [14] ESO/SDD/DFS, http://www.eso.org/pipelines. UVES Pipeline User Manual. VLT-MAN-ESO-19500-2964. 11, 90, 91
- [15] A. Modigliani et al. The FLAMES-UVES Pipeline. ESO/SDD/PSD, http://www.eso.org/sci/publications/messenger. The Messenger, 118, 8, 2004. 11
- [16] http://archive.eso.org/cms/tools-documentation/eso-data-interface-control.html. ESO DICB Data Interface Control Document. ESO/DMO. GEN-SPE-ESO-19400-0794 (5.0). 11
- [17] Andrea Modigliani. Automatic data reduction in support of the FLAMES-UVES VLT facility. ESO/SDD/PSD, ADS. SPIE, **4844**, 310-320, 2002. 11, 51

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 13 of 104              |

## 2 Overview

In collaboration with instrument consortia, the Pipeline Systems Department (PSD) of the Software Development Division is implementing data reduction pipelines for the most commonly used VLT/VLTI instrument modes. These data reduction pipelines have the following three main purposes:

- **Data quality control:** pipelines are used to produce the quantitative information necessary to monitor instrument performance.
- Master calibration product creation: pipelines are used to produce master calibration products (*e.g.*, combined bias frames, super-flats, wavelength dispersion solutions).
- Science product creation: using pipeline-generated master calibration products, science products are produced for the supported instrument modes (*e.g.*, combined ISAAC jitter stacks; bias-corrected, flat-fielded FORS images, wavelength-calibrated UVES spectra). The accuracy of the science products is limited by the quality of the available master calibration products and by the algorithmic implementation of the pipelines themselves. In particular, adopted automatic reduction strategies may not be suitable or optimal for all scientific goals.

Instrument pipelines consist of a set of data processing modules that can be called from the command line, from the automatic data management tools available on Paranal or from Gasgano.

ESO offers two front-end applications for launching pipeline recipes, *Gasgano* [13] and *EsoRex*, both included in the pipeline distribution (see Appendix A, page 94). These applications can also be downloaded separately from www.eso.org/gasgano and www.eso.org/cpl/esorex.html. An illustrated introduction to Gasgano is provided in Section 5.

The FLAMES facility and the different types of FLAMES-UVES raw frames and auxilliary data are described in Sections 4, 7, and 8.

A brief introduction to the usage of the available reduction recipes using Gasgano or EsoRex is presented in Section 5. In section 6 we advise the user about known data reduction problems.

An overview of the data reduction, the input data, and the recipes involved in the calibration cascade is provided in section 9.

More details on inputs, products, quality control measured quantities, and controlling parameters of each recipe is given in section 10.

More detailed descriptions of the data reduction algorithms used by the individual pipeline recipes can be found in Section 11.

In Appendix A the installation of the FLAMES-UVES pipeline recipes is described, in Appendix B the full list of relevant data reduction parameters is provided, and in Appendix C a list of used abbreviations and acronyms is given.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 14 of 104              |

## 3 What's new in pipeline release 5.2.0

The following major changes has been realised on the FLAMES-UVES pipeline:

- Solved spectrum "hole" problem on extraction quality.
- Added an experimental workflow to support basic FLAMES-UVES data reduction. To reduce FLAMES-UVES data in 520 mode, as a few reduction parameter defaults are different, we provide an additional dedicated workflow. Please note that this workflow was produced without validation of the quality of the science products.

|     | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO |                                             | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 15 of 104              |

## 4 FLAMES Instrument Description

FLAMES is the multi-object, intermediate and high resolution spectrograph of the VLT. Mounted at UT2, FLAMES can access targets over a field of view 25 arcmin in diameter. FLAMES feeds two different spectrographs covering the whole visual spectral range: GIRAFFE and UVES. GIRAFFE allows the observation of up to 130 targets at the time or to do integral field spectroscopy, with intermediate resolution (either R  $\approx$  25000 or R  $\approx$  10000). UVES provides the maximum possible resolution (R=47000) but can access only up to 8 objects at the time. The instrument has been made available to the community and started operations in Paranal on April 1<sup>st</sup>, 2000.

In this chapter a brief description of the FLAMES-UVES fiber link and the UVES instrument is given. A more complete documentation can be found in the FLAMES and UVES User Manuals [10,18].



Figure 4.1: A photo of FLAMES mounted at the Nasmyth A focus of Kuyen (VLT-UT2).

## 4.1 Instrument overview

FLAMES consists of three main components:

• A Fibre Positioner (OzPoz) hosting two plates: while one plate is observing the other positions the fibres for the subsequent observations, therefore limiting the dead time between one observation and the next to less than 15 minutes, including the telescope preset and the acquisition of the next field.

|     | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO |                                             | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 16 of 104              |

- A medium-high resolution optical spectrograph, GIRAFFE, with three types of fibre-fed systems : MEDUSA (132 individually deployable 1.2 arccc entrance aperture fibres), IFU (15 deployable 2x3 arcmin aperture IFUs), ARGUS (an 11.5 or 6.6x4.2 arcsec Integral Field Unit).
- A link to the UVES spectrograph (Red Arm) via 8 single fibres of 1 arcsec entrance aperture.

Special observing software (FLAMES OS) coordinates the operation of the different subsystems, also allowing simultaneous acquisition of UVES and GIRAFFE observations. For combined observations, the exposure times for UVES and GIRAFFE do not need to be the same. Note that it is not possible to observe simultaneously in two GIRAFFE modes, or to observe the same target simultaneously with the two spectrographs.

UVES is the high resolution spectrograph at UT2 of the VLT (see Section 6.4). It was designed to work in long slit mode but it has been possible to add a fibre mode (6 or 8 fibres, depending on setup and/or mode)<sup>3</sup> fed by the FLAMES positioner to its Red Arm only. Only three standard UVES Red setups are offered, with central wavelength of 520, 580 and 860 nm respectively (see the manual for details). The standard readout mode of FLAMES-UVES is 225 kHz (unbinned) which ensures low readout noise. As of P76 a high-speed readout mode (625 kHz, unbinned, low gain) with increased readout noise but less overheads is offered in visitor mode only. No pipeline support is available in this mode. With an aperture on the sky of 1 arcsec, the fibres project onto a resolution spot of diameter 5 UVES pixels giving a resolving power of 47000. For faint objects and depending on the spectral region, one or more fibres can be devoted to recording the sky contribution. In addition, for the 580 nm setup only, a separate calibration fibre is available to acqire simultaneous ThAr calibration spectra. This allows very accurate radial velocity determinations. In this configuration, 7 fibres remain available for targets on sky.

| Spectrograph | Mode    | N. of Objects    | Aperture (arcsecs) | Resolving power | Spectral Band [nm] | Central wavelength | Observing Mode |
|--------------|---------|------------------|--------------------|-----------------|--------------------|--------------------|----------------|
| UVES         | Red arm | 8                | 1.0                | 47000           | 200                | 520/580/860        | OzPoz          |
| UVES         | Red arm | 7+1(calibration) | 1.0                | 47000           | 200                | 580                | SimCal         |

Table 4.1: This table summarize main features of UVES fibres observations

<sup>&</sup>lt;sup>3</sup>Pls note that FIBER mode data obtained in plate2 after 9 September 2012 the fiber assigned to button 37 is not connected

|     |                                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------------------|--------|------------------------|
| ESO | <b>ESU</b>   FLAMES-UVES Pipeline User Manual  - | Issue: | Issue 15.0             |
| LOU |                                                  | Date:  | Date 2013-05-06        |
|     |                                                  | Page:  | 17 of 104              |

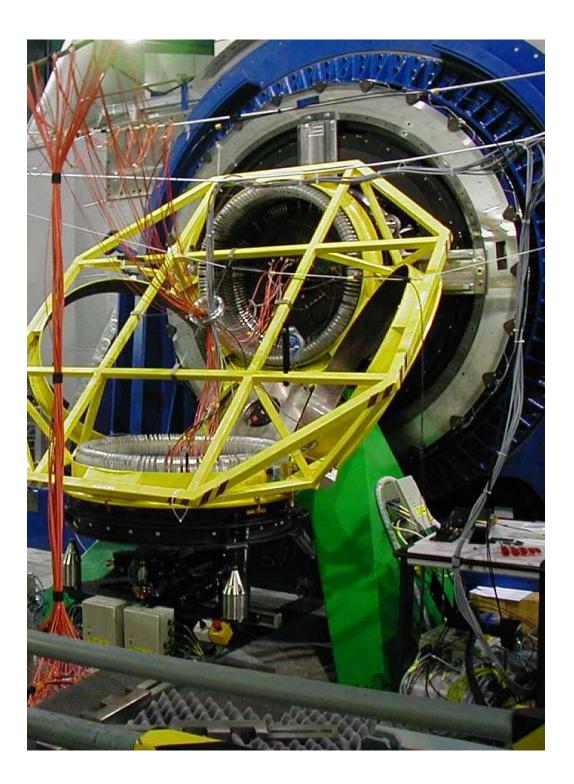



Figure 4.2: A photo of the OzPoz fibre positioner. While one plate is observing, the other one is positioning the fibres for the subsequent observations.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 18 of 104              |

## 5 Quick start

This section describes the most immediate usage of the FLAMES-UVES pipeline recipes.

## 5.1 FLAMES-UVES pipeline recipes

The current FLAMES-UVES pipeline is based on a set of 7 stand-alone recipes plus one utility recip (and uses 2 recipes from the UVES pipeline to combine biases and darks) involved in the data reduction cascade:

uves\_cal\_mbias creates a master bias frame.

- uves\_cal\_mdark creates a master dark frame.
- **flames\_cal\_predict** implements the UVES physical model (and applies a shift to reflect the offset between the calibration fibre and the order centre).
- flames\_cal\_orderpos defines the calibration fibre order positions.
- flames\_cal\_mkmaster creates master slit flat-field frames.
- **flames\_cal\_prep\_sff\_ofpos** process master slit flats and odd-even-all fibre flats to determine the a table tracing all fibres and creates additional frames, needed to extract the science data.
- flames\_cal\_wavecal performs the wavelength calibration.
- flames\_obs\_scired reduces a science frame.
- **flames\_utl\_unpack** uppack products relative to each fibre from the products usually delivered by the Quality Control Group of ESO, Garching.

## 5.2 An introduction to Gasgano and EsoRex

Before being able to call pipeline recipes on a set of data, the data must be properly classified, and associated with the appropriate calibrations. *Data Classification* consists of tasks such as: "What kind of data am I?", *e.g.*, BIAS, "to which group do I belong?", *e.g.*, to a particular Observation Block or template. *Data Association* is the process of selecting appropriate calibration data for the reduction of a set of raw science frames. Typically, a set of frames can be associated if they share a number of properties, such as instrument and detector configuration. As all the required information is stored in the FITS headers, data association is based on a set of keywords (called "association keywords") which, generally, are specific to each type of calibration.

The process of data classification and association is known as data organisation.

Service Mode users also receive, as part of their Service Mode Data Package, files called Association Blocks (or ABs) which, amongst other things, specify the "optimum" (normally in the sense of closest in time certified by QC calibration) associations as determined by the Data Product and Quality Control Group of ESO, Garching.

|     | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO |                                             | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 19 of 104              |

An instrument pipeline consists of a set of data processing modules that can be called from different host applications, either from the command line with *EsoRex*, from the automatic data management tools available at Paranal, or fr, generaom the graphical *Gasgano* tool.

*Gasgano* is a data management tool that simplifies the data organisation process, offering automatic data classification and making the data association easier (*even if automatic association of frames is not yet provided*). *Gasgano* determines the classification of a file by applying an instrument specific rule, while users must provide this information to the recipes when they are executed manually using *EsoRex* from the command line. In addition, *Gasgano* allows the user to execute directly the pipeline recipes on a set of selected files.

### 5.2.1 Using Gasgano

To get familiar with the FLAMES-UVES pipeline recipes and their usage, it is advisable to begin with *Gasgano*, because it provides a complete graphic interface for data browsing, classification and association, and offers several other utilities such as easy access to recipe documentation and preferred data display tools.

*Gasgano* can be started from the system prompt in the following way:

```
gasgano $HOME/gasgano/config/UVES.prefs &
```

where we have passed as first optional argument explicitly the UVES preference file which defines proper defaults for UVES data reduction (for both ECHELLE and FIBER modes). The user may like to realias the gasgano command to the previous command. The *Gasgano* main window will appear. In Figure 5.1 (next page), a view on a set of FLAMES-UVES data is shown as an example. *Gasgano* can be pointed to the directories where the data to be handled are located using the navigation panels accessible via the *Add/Remove Files* entry of the *File* menu (shown on the upper left of the figure).

The data are hierarchically organised as preferred by the user. After each file name are shown the classification and the values of the following FITS keywords (we omit the prefix HIERARCH.ESO):

| Keyword name   | Purpose                               |
|----------------|---------------------------------------|
| CLASSIFICATION | Data classification                   |
| OBS.TARG.NAME  | Observation Block target name         |
| EXPTIME        | Exposure time                         |
| DATE           | Observing date                        |
| INS.GRAT2.WLEN | Instrument setting central wavelength |
| DET.READ.SPEED | Readout speed                         |
| INS.OBSPLATE   | Observation plate                     |
| OCS.SIMCAL     | Simultaneous calibration              |

Additionally Gasgano uses other keywords neded to properly classify UVES data taken using the slit mode.

The CLASSIFICATION field provides either the value of the PRO.CATG, for pipeline products; or a user defined file classification, if provided, defined in the classification rule file, which can be accessed by Gasgano from the Tools –> Classification rules... tab; or the default value "UNDEFINED". File classification rules are selection rules which assign to a FITS file a classification based on the value of a few FITS keywords, usually the

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 20 of 104              |

DPR.TYPE, DPR.TECH, DPR.CATG values, which respectively define the file data type, acquisition technique and category.

| Keyword name   | Purpose                      |
|----------------|------------------------------|
| DET.CHIPS      | # of chips in detector array |
| INS.MODE       | Instrument mode used         |
| INS.GRAT2.NAME | Instrument grating name      |
| INS.SLIT3.WID  | Instrument slit width        |
| DET.WIN1.BINX  | Binning factor along X       |
| DET.WIN1.BINY  | Binning factor along Y       |

Additional relevant keywords for FLAMES-UVES data are INS.GRATi.WLEN, INS.OBSPLATE, OCS.SIMCAL. In order to properly classify data taken in slit mode it is useful also to display the keyword values of DET.CHIPS, INS.SLITi.NAME, DET.WIN1.BINX/Y, INS.MODE, INS.GRATi.NAME. Those relevant keywords are indicated by Gasgano either in the file section, or by selecting each file, in the section which shows the FITS file header content.

More information about a single frame can be obtained by clicking on its name: the corresponding FITS file header will be displayed on the bottom panel, where specific keywords can be filtered and searched. Images and tables may be easily displayed using the viewers specified in the appropriate *Preferences* fields. Such a field also allows to set the file filter, which should point to the \$HOME/gasgano/config/uves.oca. This rule file provides simple filtering rules to select FLAMES-UVES data corresponding to a given standard data reduction setting.

Frames can be selected from the main window for by the appropriate recipe: in Figure 5.2, the Wavelength calibration frame (CLASSIFICATION=FIB\_ARC\_LAMP\_RED), previously produced master bias and master flat frames, together with line and order tables, a table with the reference standard star spectra and one with the atmospheric dispersion are all selected and sent to the *flames\_cal\_wavecal* recipe. This will open a *Gasgano* recipe execution window (see Figure 5.3), having all the specified files listed in its *Input Frames* panel.

Help for the recipe is available from the *Help* menu. Before launching the recipe, its configuration may be modified on the *Parameters* panel (on top). The window contents might be saved for later use by selecting the *Save Current Settings* entry from the *File* menu, as shown in figure.

At this point the recipe can be launched by pressing the *Execute* button. Messages from the running recipe will appear on the *Log Messages* panel at the bottom, and in case of successful completion the products will be listed on the *Output Frames* panel, where they can be easily viewed and located back on the Gasgano main window. To produce useful plots the user needs to set to 'gnuplot -persist' the **plotter** recipe parameter value (and have a valid installation of gnuplot package, and the gnuplot command available in the PATH). This basic plotting functionality is supported by EsoRex but not by gasgano.

Please refer to the Gasgano User's Manual [13] for a more complete description of the Gasgano interface.

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 21 of 104              |

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _               |                |                                       |              |                    |                |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------------------------------|--------------|--------------------|----------------|
| 鲹 🥝 🎘                                | Default grouping 💌 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | collapse Fi     | nd entry:      | •                                     | find         |                    |                |
| File                                 | CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INS.SETUP.ID    | INS.OPTI1.NA   | ME TPL.EXPNO                          | TPL.N        | EXP OBS.TARG.NAM   | E DPR. TYPE    |
| Displaying 89 files Unfiltered.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| 回团 073.D-0211(4) UVES UNKNOWN        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| ዮ 🔤 155910 N0288HR11b                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| UVES.2004-07-26T05:24:13.263.fits    | FIB_SCI_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | OUT            | 2                                     | 2            | NGC288             | OBJECT, OzPoz  |
| 回 60.A-9022(A) UVES UNKNOWN          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| - 🖻 200006102 red_225kHz_1x1_low_cal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| 🗕 🔤 mbias_l.fits                     | MASTER_BIAS_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                | 1                                     | 5            | Calibration-ob     | BIAS           |
| — 🜌 mbias_u.fits                     | MASTER_BIAS_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                | 1                                     | 5            | Calibration-ob     | BIAS           |
| — 🖪 mbsre1x1.fits                    | MASTER_BIAS_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                | 1                                     | 5            | Calibration-ob     | BIAS           |
| 🔤 mbsrm1x1.fits                      | MASTER_BIAS_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                | 1                                     | 5            | Calibration-ob     | BIAS           |
| 0.A-9022(B) UVES                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| - 60 200117229 Calibration           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| UVES.2003-02-02T11:08:23.305.fits    | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 1                                     | 9            |                    | LAMP, SFLAT    |
| - UVES.2003-02-02T11:09:47.871.fits  | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 2                                     | 9            |                    | LAMP, SFLAT    |
| UVES.2003-02-02T11:11:12.282.fits    | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 3                                     | 9            |                    | LAMP, SFLAT    |
| UVES.2003-02-02T11:14:04.807.fits    | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 5                                     | 9            |                    | LAMP, SFLAT    |
| - VVES.2003-02-02T11:15:28.876.fits  | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 6                                     | 9            |                    | LAMP, SFLAT    |
| UVES.2003-02-02T11:17:03.161.fits    | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 7                                     | 9            |                    | LAMP, SFLAT    |
| UVES.2003-02-02T11:18:27.022.fits    | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 8                                     | 9            |                    | LAMP, SFLAT    |
| - UVES.2003-02-02T11:19:52.398.fits  | SFLAT_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | OUT            | 9                                     | 9            |                    | LAMP, SFLAT    |
| - UVES.2003-02-02-11113.32.338.hts   | FIB_FF_ODD_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | OUT            | 1                                     | 3            |                    | LAMP, FLAT, O. |
| - UVES.2004-07-25T11:06:43.602.fits  | FIB_FF_EVEN_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | OUT            | 2                                     | 3            |                    | LAMP, FLAT, EV |
| - UVES.2004-07-25T11:08:43:802.hts   | FIB_FF_ALL_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | OUT            | 3                                     | 3            |                    | LAMP, FLAT, AL |
| UVES.2004-07-25T11:24:23.142.fits    | FIB_ARC_LAMP_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               | OUT            | 1                                     | 1            |                    | LAMP, WAVE, O  |
| UVES.2004-07-25111:24:25.142.hts     | FIB_ORDEF_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | OUT            | 1                                     | 1            |                    | LAMP, ORDER.   |
| - UVES.2004-07-25113:08:16.774.hts   | FIB_ARC_LAMP_FORM_RED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | OUT            | 1                                     | 1            |                    | LAMP, FMTCH.   |
| - b set 1 mf580 1x1 s10 l.fits       | MASTER_SFLAT_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | OUT            | 1                                     | 9            |                    | LAMP, SFLAT    |
|                                      | MASTER_SFLAT_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | OUT            | 1                                     | 9            |                    | LAMP, SPLAT    |
| b_set_1_mf580_1x1_s10_u.fits         | 1999년 1997년 전 1997년 1997년 <sup>-</sup> 1997년 199 |                 | OUT            | 4                                     | 9            |                    |                |
| b_set_2_mf580_1x1_s10_l.fits         | MASTER_SFLAT_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                |                                       | 9            |                    | LAMP, SFLAT    |
| b_set_2_mf580_1x1_s10_u.fits         | MASTER_SFLAT_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | OUT            | 4                                     | 20           |                    | LAMP, SFLAT    |
| b_set_3_mf580_1x1_s10_l.fits         | MASTER_SFLAT_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | OUT            | 7                                     | 9            |                    | LAMP, SELAT    |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •••••••         |                |                                       |              |                    | 1 86411 (11 81 |
| /media/disk/flames/flames_uves_den   | no/raw/mos/UVES.2004-07-25T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:24:23.142.fit | s FLAN         | AES_UVES_WAVE2                        | 07_0001.fits | s FIB_ARC_LAMP_RED |                |
| Extension: HEADER                    | Find in header:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | ▼ find         | Load Filter                           | ○ Filter     | 🔾 Auto Display     |                |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                       |              |                    |                |
| Keyword                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | т               |                |                                       | Value        |                    |                |
| LE X                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16              |                |                                       |              |                    |                |
| ^                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0               |                |                                       |              |                    |                |
| END                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T               |                |                                       |              |                    |                |
| IN                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ES0             |                |                                       |              |                    |                |
| E                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2004-07-2       | 5T11:25:15.713 |                                       |              |                    |                |
| SCOP                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESO-VLT-UZ      | 6              | · · · · · · · · · · · · · · · · · · · |              |                    |                |
| RUME                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UVES            |                |                                       |              |                    |                |
| СТ                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LAMP, WAVE,     | OzPoz          |                                       |              |                    |                |
| IME                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51.6637         |                |                                       |              |                    |                |
| -OBS                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53211.4752      |                |                                       |              |                    |                |

Figure 5.1: The Gasgano main window.

|     |                                     | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|-------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual    | Issue: | Issue 15.0             |
| LOU | 1 LANILO O VLO I ipenne Oser Manuar | Date:  | Date 2013-05-06        |
|     |                                     | Page:  | 22 of 104              |

| ASGANO Version: 2.2.7 esom | idas / Linux   |                           |                   |                            |                |                  |                 |                |                 |
|----------------------------|----------------|---------------------------|-------------------|----------------------------|----------------|------------------|-----------------|----------------|-----------------|
| Selected files Tools Hel   | p              |                           |                   |                            |                |                  |                 |                |                 |
| Display                    | 1              |                           |                   |                            |                |                  | ]               |                |                 |
|                            | Load Recipe >  | flames_cal_mkmaster       | ng 🔻              | collapse   Fin             | d entry:       | -                | find            |                |                 |
| To Recipe Request Pool >   | Louis Recipe . | flames_cal_orderpos       |                   |                            |                |                  |                 |                | 4               |
|                            | e              | flames_cal_predict        | CATION            | INS.SETUP.ID               | INS.OPTI1      | NAME TPL.EXPNC   | TPL.NEXP        | OBS.TARG.NAM   | E DPR.TYPE      |
| L                          |                | flames_cal_prep_sff_ofpos |                   |                            |                |                  |                 |                |                 |
| E                          | UNKNOWN        |                           |                   |                            |                |                  |                 |                |                 |
| opy                        | Prostanter     | flames_cal_wavecal        |                   |                            |                |                  |                 |                |                 |
| Tar                        | T05:24:13.26   | flames_obs_redchain       |                   |                            | OUT            | 2                | 2               | NGC288         | OBJECT, OzPoz   |
| Run                        | NKNOWN         | flames_obs_scired         |                   |                            |                |                  |                 |                |                 |
|                            | kHz_1x1_low_ca | flames_utl_unpack         |                   |                            |                |                  |                 |                |                 |
| 📕 mbias_l.fits             |                | uves_cal_cd_align         | REDL              |                            |                | 1                | 5               | Calibration-ob | BIAS            |
| 📕 mbias_u.fits             |                | uves_cal_mbias            | REDU              |                            |                | 1                | 5               | Calibration-ob | BIAS            |
| — 📓 mbsre1x1.fits          |                | uves_cal_mdark            | REDL              |                            |                | 1                | 5               | Calibration-ob | BIAS            |
| 🗕 🖪 mbsrm1x1.fits          |                | uves_cal_mflat            | REDU              |                            |                | 1                | 5               | Calibration-ob | BIAS            |
| 🔟 60.A-9022(B) UVES        |                | uves_cal_mkmaster         |                   |                            |                |                  |                 |                |                 |
| - 🖻 200117229 Calibrat     | ion            | uves_cal_orderpos         |                   |                            |                |                  |                 |                |                 |
| UVES.2003-02-02            | T11:08:23.30   | uves_cal_predict          |                   |                            | OUT            | 1                | 9               |                | LAMP, SFLAT     |
| - UVES.2003-02-02          |                |                           |                   |                            | OUT            | 2                | 9               |                | LAMP, SFLAT     |
| - UVES.2003-02-02          |                | uves_cal_response         |                   |                            | OUT            | 3                | 9               |                | LAMP, SFLAT     |
| - UVES.2003-02-02          |                | uves_cal_tflat            |                   |                            | OUT            | 5                | 9               |                | LAMP, SFLAT     |
| UVES.2003-02-02            |                | uves_cal_wavecal          |                   |                            | OUT            | 6                | 9               |                | LAMP, SFLAT     |
| - UVES.2003-02-02          |                | uves_obs_redchain         |                   |                            | OUT            | 7                | 9               |                | LAMP, SFLAT     |
| - UVES.2003-02-02          |                | uves_obs_scired           |                   |                            | OUT            | 8                | q               |                | LAMP, SFLAT     |
| -UVES.2003-02-02           |                | fits SFLAT_RED            |                   |                            | OUT            | 9                | 9               |                | LAMP, SFLAT     |
| UVES.2003-02-02            |                |                           | 2ED               |                            | OUT            | 1                | 3               |                | LAMP.FLAT.O     |
|                            |                |                           |                   |                            | OUT            | 2                | 2               |                | LAMP, FLAT, E   |
| - UVES.2004-07-25          |                |                           |                   |                            | OUT            | 3                | 2               |                | LAMP, FLAT, AL. |
| UVES.2004-07-25            |                |                           |                   | 1                          | OUT            | 3                | 5               | -              |                 |
| UVES.2004-07-25            |                |                           | Decle 2010 Alexan | 1                          | ALL DECOMPTING | 1.1.1            | 1               |                | LAMP, WAVE, O.  |
| - UVES.2004-07-25          |                |                           |                   |                            | OUT            | 1                | 1               |                | LAMP, ORDER     |
| - UVES.2004-07-25          |                |                           |                   |                            | OUT            | 1                | 1               |                | LAMP, FMTCH     |
| b_set_1_mf580_1:           |                | MASTER_SFLA               |                   |                            | OUT            | 1                | 9               |                | LAMP, SFLAT     |
| — 📕 b_set_1_mf580_1:       |                | MASTER_SFLA               |                   |                            | OUT            | 1                | 9               |                | LAMP, SFLAT     |
| b_set_2_mf580_1:           | <1_s10_l.fits  | MASTER_SFLA               | T_REDL            |                            | OUT            | 4                | 9               |                | LAMP, SFLAT     |
| b_set_2_mf580_1:           | (1_s10_u.fits  | MASTER_SFLA               | T_REDU            |                            | OUT            | 4                | 9               |                | LAMP, SFLAT     |
| - 🖪 b_set_3_mf580_1:       | (1_s10_l.fits  | MASTER_SFLA               | T_REDL            |                            | OUT            | 7                | 9               |                | LAMP, SFLAT     |
| — 📓 b_set_3_mf580_1:       | <1_s10_u.fits  | MASTER_SFLA               | AT_REDU           |                            | OUT            | 7                | 9               |                | LAMP, SFLAT     |
| - 🖬 fibreff_l_badpixel     | D1.fits        | FIB_FF_ODD_F              | RED               |                            | OUT            | 1                | 3               |                | LAMP, FLAT, O   |
|                            | /media/dis     | k/flames/flames_uves_demo | /cdb/mos/m        | bias_l.fits                | UVES_REE       | CAL072.12.fits M | ASTER_BIAS_REDL |                |                 |
|                            | Extension:     | Find in header:           |                   | ▼ find                     | Load           | Filter O Filter  | 🔾 Auto Display  | ]              |                 |
|                            |                |                           |                   |                            |                |                  |                 |                |                 |
| E                          | Keyw           |                           |                   | Т                          |                |                  | Value           |                |                 |
| X                          |                |                           |                   | -32                        |                |                  |                 |                |                 |
| 5                          |                |                           |                   | 2                          |                |                  |                 |                |                 |
| 51                         |                |                           |                   | 4096                       |                |                  |                 |                |                 |
| 52                         |                |                           |                   | 2048                       |                |                  |                 |                |                 |
| IND                        |                |                           |                   | Т                          |                |                  |                 |                |                 |
|                            |                |                           |                   | 1.                         |                |                  |                 |                |                 |
|                            |                |                           |                   | A                          |                |                  |                 |                |                 |
| tO                         |                |                           |                   | 0.                         | T00-12-25      |                  |                 |                |                 |
| ALE<br>RO<br>E<br>X1       |                |                           |                   | 0.<br>2007-10-2:<br>-2197. | 9T09:13:35     |                  |                 |                |                 |

Figure 5.2: Selecting files to be processed by a FLAMES-UVES pipeline recipe.

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU | TERMILS OVESTIPEINE Oser Manual  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 23 of 104              |

| ames_cal_wavecal v40203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---|-------------------------------------------|
| Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
| Current Queued Executing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   | 1                                         |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default           | Range             |   |                                           |
| uves. debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the second second                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   | Add an uni                                |
| uves.plotter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no                                                                                                                                | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                   |   | Add to po                                 |
| uves.process_chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | both                                                                                                                              | both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |   |                                           |
| flames_cal_wavecal.nwindows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                 | 12147483647       |   | 1                                         |
| flames_cal_wavecal.length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0               | -2.01.797693134   |   | Request Pool                              |
| flames_cal_wavecal.offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 0.01.7976931348.  |   |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
| -Input Frames                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
| Include Filename                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classific                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   |   |                                           |
| mbias_I.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MASTER_BIA                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Locate            | Display           | - |                                           |
| mbias_u.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MASTER_BIA                                                                                                                        | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Locate            | Display           |   |                                           |
| UVES.2004-07-25T11:24:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Locate            | Display           |   |                                           |
| lineguesstable_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIB_LIN_GUE                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Locate            | Display           |   |                                           |
| lineguesstable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FIB_LIN_GUE                                                                                                                       | and the second se | Locate            | Display           |   |                                           |
| order_def_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIB_ORDEF_                                                                                                                        | REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Locate            | Display           | - |                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /esomidas/tmp                                                                                                                     | Brows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se Naming         | g Scheme: Numeric |   | Execute Selec                             |
| Product Root Directory: /diska/home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | Brows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se Naminț         | g Scheme: Numeric |   | Execute Sele                              |
| utput Frames—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Execute                                                                                                                           | ]\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se Naming         | g Scheme: Numeric |   | Execute Selec                             |
| Product Root Directory: //diska/home<br>utput Frames<br>Filename                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Execute                                                                                                                           | ] <del>}</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | se Naming         |                   |   | Execute Seler                             |
| Product Root Directory: //diska/home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Execute                                                                                                                           | ification<br>E_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se Naminț         | g Scheme: Numeric |   | Execute Selu                              |
| Product Root Directory: //diska/home utput Frames Filename etable_redl_0000.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Class<br>FIB_LINE_TABL                                                                                                            | ification<br>E_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se Naming         | Locate            |   | Execute Selec                             |
| Product Root Directory: //diska/home utput Frames Filename etable_redl_0000.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Class<br>FIB_LINE_TABL                                                                                                            | ification<br>E_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se Naming         | Locate            |   | Execute Sele<br>CI<br>Display             |
| Product Root Directory: //diska/home<br>utput Frames<br>Filename<br>etable_redl_0000.fits<br>etable_redu_0000.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Class<br>FIB_LINE_TABL                                                                                                            | ification<br>E_REDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | se Naminı         | Locate            |   | Execute Selec<br>Cl<br>Display<br>Display |
| Product Root Directory: //diska/home<br>utput Frames<br>Filename<br>etable_redl_0000.fits<br>etable_redu_0000.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vindow #1 saved to extens<br>vindow #1 saved to extens<br>vindow #1 saved to extens<br>vindow #1 saved to extens<br>red_0000.fits | ification<br>E_REDL<br>E_REDU<br>E_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of "linetable_rec | Locate<br>Locate  |   | Execute Selec                             |
| Product Root Directory: //diska/home<br>utput Frames<br>Filename<br>etable_redl_0000.fits<br>etable_redu_0000.fits<br>Product Rames<br>Product Rames<br>Pro | Vindow #1 saved to extens<br>vindow #1 saved to extens<br>vindow #1 saved to extens<br>vindow #1 saved to extens<br>red_0000.fits | ification<br>E_REDL<br>E_REDU<br>E_REDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of "linetable_rec | Locate<br>Locate  |   | Execute Sele<br>Cl<br>Display<br>Display  |

Figure 5.3: The Gasgano recipe execution window.

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 24 of 104              |

#### 5.2.2 Using EsoRex

*EsoRex* is a command line utility for running pipeline recipes. It can be used in data reduction scripts for the automation of processing tasks. Unlike when using *Gasgano*, the user must classify and associate the data using the information contained in the FITS header keywords (see Section 7, page 38)<sup>4</sup>. The user should also take care of defining the input set-of-frames and the appropriate configuration parameters for each recipe run:

**The set-of-frames:** Each pipeline recipe is run on a set of input FITS data files. When using *EsoRex* the filenames must be listed together with their DO category <sup>5</sup> in an ASCII file, the *set-of-frames* (SOF), that is required when launching a recipe. <sup>6</sup> DO categories for the supported FLAMES-UVES input raw frames are indicated in section 7.8.

| <pre>/path_raw/UVES.2004-08-14T10:20:56.497.fits</pre> | FIB_ARC_LAMP_RED                  |
|--------------------------------------------------------|-----------------------------------|
| /path_pro/orfl.fits                                    | FIB_ORDEF_TABLE_REDL              |
| <pre>/path_pro/lineguess_redl.fits</pre>               | FIB_LIN_GUE_REDL                  |
| /path_pro/orfu.fits                                    | FIB_ORDEF_TABLE_REDU              |
| /path_pro/lineguess_redu.fits                          | FIB_LIN_GUE_REDU                  |
| /path_pro/thargood_3.fits                              | LINE_REFER_TABLE                  |
| /path_pro/masterbias_redl.fits                         | MASTER_BIAS_REDL (optional)       |
| /path_pro/masterbias_redu.fits                         | MASTER_BIAS_REDU (optional)       |
| /path_pro/masterflat_redl.fits                         | MASTER_FLAT_REDL (optional-recomm |
| /path_pro/masterflat_redu.fits                         | MASTER_FLAT_REDU (optional-recomm |

It contains for each input frame the full path file name and its DO category. The pipeline recipe will access the listed files when required by the reduction algorithm.

Note that the FLAMES-UVES pipeline recipes do not verify in any way the correctness of the classification tags specified by the user in the SOF. In the above example, the recipe *flames\_cal\_wavecal* will treat the frame /path\_raw/UVES.2004-08-14T10:20:56.497.fits as an FIB\_ARC\_LAMP\_RED, the frame /path\_pro/orfl.fits as a FIB\_ORDEF\_TABLE\_REDL, etc., even when they do not contain this type of data. The recipe will also assume that all frames are associated correctly, *i.e.*, that they all come from the same arm, dichroic and bin setting.

The reason for this lack of control is that the FLAMES-UVES recipes are just the DRS component of the complete pipeline running on Paranal, where the task of data classification and association is carried out by separate applications. Moreover, using *Gasgano* as an interface to the pipeline recipes will always ensure a correct classification of all the data frames, assigning the appropriate DO category to each one of them (see Section 5.2.1, page 19). Also this lack of control allows the user to reduce e.g. an arc lamp frame pretending it is a science frame.

A recipe handling an incorrect SOF may stop or display unclear error messages at best. In the worst cases, the recipe would apparently run without any problem, producing results that may look reasonable, but are actually flawed.

<sup>&</sup>lt;sup>4</sup>Service Mode users could also use the association information contained in the Association Blocks (or ABs) included in their Service Mode Data Packages

<sup>&</sup>lt;sup>5</sup>The indicated *DO category* is a label assigned to any data type after it has been classified, which is then used to identify the frames listed in the *set-of-frames* 

<sup>&</sup>lt;sup>6</sup>The set-of-frames corresponds to the *Input Frames* panel of the *Gasgano* recipe execution window (see Figure 5.3, page 23).

EsoRex syntax: The basic syntax to use EsoRex is the following:

#### esorex [esorex\_options] recipe\_name [recipe\_options] set\_of\_frames

To get more information on how to customise EsoRex (see also [11]) run the command:

#### esorex - -help

To generate a configuration file esorex.rc in the directory \$HOME/.esorex run the command:

#### esorex - -create-config

A list of all available recipes, each with a one-line description, can be obtained using the command:

#### esorex - -recipes

EsoRex searches for recipes in the directory specified by the option

#### esorex - -recipe-dir=installation\_directory

All recipe parameters (aliases) and their default values can be displayed by the command

#### esorex - -params recipe\_name

To get a brief description of each parameter meaning execute the command:

#### esorex - -help recipe\_name

To get more details about the given recipe give the command at the shell prompt:

#### esorex - -man-page recipe\_name

**Recipe configuration:** Each pipeline recipe may be assigned an *EsoRex* configuration file, containing the default values of the parameters related to that recipe.<sup>7</sup> The configuration files are normally generated in the directory \$HOME/.esorex, and have the same name as the recipe to which they are related, with the filename extension .rc. For instance, the recipe *flames\_cal\_wavecal* has its *EsoRex* generated configuration file named flames\_cal\_wavecal.rc, and is generated with the command:

#### esorex - -create-config flames\_cal\_wavecal

The definition of one parameter of a recipe may look like this:

```
# --tolerance
# Tolerance of fit. If positive, 'tolerance' is in pixel units. If negative,
# abs('tolerance') is in wavelength units. Lines with residuals worse than
# the tolerance are excluded from the final fit. Unlike in previous versions,
# this parameter is not corrected for CCD binning.
flames_cal_wavecal.calibrate.tolerance=0.6
```

In this example, the parameter flames\_cal\_wavecal.calibrate.tolerance is set to the value 0.6. In the configuration file generated by *EsoRex*, one or more comment lines are added containing information about the possible values of the parameter, and an alias that could be used as a command line option.

The command

#### esorex - -create-config recipe\_name

<sup>&</sup>lt;sup>7</sup>The *EsoRex* recipe configuration file corresponds to the *Parameters* panel of the *Gasgano* recipe execution window (see Figure 5.3, page 23).

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 26 of 104              |

generates a default configuration file recipe\_name.rc in the directory \$HOME/.esorex<sup>8</sup>.

A recipe configuration file different from the default one can be specified on the command line:

#### esorex - -recipe-config=my\_alternative\_recipe\_config

Recipe parameters are provided in section 10 and their role is described in Section 11.

More than one configuration file may be maintained for the same recipe but, in order to be used, a configuration file not located under \$HOME/.esorex, or having a name different from the recipe name, should be explicitly specified when launching a recipe.

**Recipe execution:** A recipe can be run by giving its name to *EsoRex*, together with the name of a set-of-frames. For instance, the following command line would be used to run the recipe *flames\_cal\_wavecal* for processing the files specified in the set-of-frames flames\_cal\_wavecal.sof:

#### esorex flames\_cal\_wavecal flames\_cal\_wavecal.sof

The recipe parameters can be modified either by editing directly the used configuration file, or by specifying new parameter values on the command line using the command line options defined for this purpose. Such command line options should be inserted after the recipe name and before the SOF name, and they will supersede the system defaults and/or the configuration file settings. For instance, to set the *flames\_cal\_wavecal* recipe *tolerance* parameter to 0.07, the following should be typed:

#### esorex flames\_cal\_wavecal - -tolerance=0.07 flames\_cal\_wavecal.sof

Every recipe provides a parameter *debug* which – when enabled – causes intermediate results to be saved to the local directory. This allows more detailed inspection of the recipe processing

#### esorex flames\_cal\_wavecal - -debug flames\_cal\_wavecal.sof

Basic plotting functionality can be enabled on systems which have the gnuplot tool:

### esorex flames\_cal\_wavecal - -plotter='gnuplot -persist' flamses\_cal\_wavecal.sof

For more advanced visualisation a dedicated FITS viewer should be used with the FITS files produced by the recipe.

For more information on *EsoRex*, see www.eso.org/cpl/esorex.html.

## 5.3 Example of data reduction using EsoRex

Here we provide an example of data reduction for data obtained with the FLAMES-UVES.

In Table 5.3 we list the category Data Products (DPR) keywords for the currently supported data.

The plate No. is identified through the keyword ESO.INS.OBSPLATE. Plate No. 1 corresponds to a keyword value equal to 1. Plate No. 2 corresponds to a keyword value equal to 2.

The keyword ESO.OCS.SIMCAL will be used to associate the proper master calibration frame to the input raw frame separating the cases in which the simultaneous calibration fibre is involved (value equal to 1) or not (value equal to 0).

<sup>&</sup>lt;sup>8</sup>If a number of recipe parameters are specified on the command line, the given values will be used in the created configuration file.

|     |                                     | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|-------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual    | Issue: | Issue 15.0             |
| LOU | T LAWILD & VLOT Ipenne & ser Manuar | Date:  | Date 2013-05-06        |
|     |                                     | Page:  | 27 of 104              |

| Frame Type             | ТҮРЕ                  | CATG          | TECH    | Note                         |  |  |
|------------------------|-----------------------|---------------|---------|------------------------------|--|--|
| Science frames         |                       |               |         |                              |  |  |
| Science in OzPoz mode  | OBJECT,OzPoz          | SCIENCE       | MOS     | 8 OzPoz fibres               |  |  |
| Science in SimCal mode | OBJECT,SimCal         | SCIENCE       | MOS     | 7 OzPoz, 1 SimCal            |  |  |
|                        | Calibration fib       | re fed frames |         |                              |  |  |
| Bias                   | BIAS                  | CALIB         | IMAGE   | Same as UVES                 |  |  |
| Dark                   | DARK                  | CALIB         | IMAGE   | Same as UVES                 |  |  |
| Nasmyth Screen FF      | LAMP,FLAT,NASMYTH     | CALIB         | MOS     | Nasmyth Screen               |  |  |
| Wavelength calibration | LAMP,WAVE,OzPoz       | CALIB         | MOS     | 8 OzPoz fed                  |  |  |
|                        |                       |               |         | by ThAr                      |  |  |
| Wavelength calibration | LAMP,WAVE,SimCal      | CALIB         | MOS     | 7 OzPoz, 1 SimCal fed        |  |  |
|                        |                       |               |         | by ThAr                      |  |  |
| Odd FF                 | LAMP,FLAT,ODD,OzPoz   | CALIB         | MOS     | Odd Fiber FF, 4 OzPoz        |  |  |
| Even FF                | LAMP,FLAT,EVEN,OzPoz  | CALIB         | MOS     | Even Fiber FF, 4 OzPoz       |  |  |
| All FF                 | LAMP,FLAT,ALL,OzPoz   | CALIB         | MOS     | All Fiber FF, 8 OzPoz        |  |  |
| Odd FF                 | LAMP,FLAT,ODD,SimCal  | CALIB         | MOS     | Odd fibre FF, 4 OzPoz        |  |  |
| Even FF                | LAMP,FLAT,EVEN,SimCal | CALIB         | MOS     | Even Fiber FF, 4 OzPoz       |  |  |
| All FF                 | LAMP,FLAT,ALL,SimCal  | CALIB         | MOS     | All Fiber FF, 7 OzPoz        |  |  |
| Formatcheck            | LAMP,FMTCHK,SimCal    | CALIB         | MOS     | 1 SimCal fed by ThAr         |  |  |
| Order Trace            | LAMP,ORDERDEF,SimCal  | CALIB         | MOS     | 1 SimCal fed by Flat         |  |  |
|                        | Special frames i      | n echelle moo | le      | ·                            |  |  |
| Slit Flat Fields       | LAMP,SFLAT            | CALIB         | ECHELLE | 3 sets of 3 slit FF each     |  |  |
|                        |                       |               |         | each set taken at diff Y pos |  |  |

Table 5.3: Required DPR keywords

When an accuracy better than 2% is required for the absolute fluxes, one should take flat fields using the Nasmyth screen and "attached templates".

In Table 5.4 we list the DO\_CLASSIFICATION values for the currently supported data.

In the following a typical step-by-step data reduction procedure is described. <sup>9</sup> Figure 5.4 gives an overview.

/path\_ref indicates the full path to the source tree directory containing reference ancillary data, /path\_pro indicates the full path to the source tree directory containing product data.

Bias frames: these frames are characterized by DPR.TYPE='BIAS'

| <pre>/path_raw/uves_bias_red1.fits</pre> | BIAS_RED |
|------------------------------------------|----------|
| <pre>/path_raw/uves_bias_red2.fits</pre> | BIAS_RED |
| <pre>/path_raw/uves_bias_red3.fits</pre> | BIAS_RED |
| <pre>/path_raw/uves_bias_red4.fits</pre> | BIAS_RED |
| <pre>/path_raw/uves_bias_red5.fits</pre> | BIAS_RED |

<sup>&</sup>lt;sup>9</sup>The procedure using *Gasgano* is conceptually identical.

|     |                                             | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 28 of 104              |

#### Dark frames: these frames are characterized by DPR.TYPE='DARK'

/path\_raw/uves\_dark\_red1.fits DARK\_RED
/path\_raw/uves\_dark\_red2.fits DARK\_RED
/path\_raw/uves\_dark\_red3.fits DARK\_RED

Slit Flat-field lamp frames: these frames are characterized by DPR.TYPE='LAMP,SFLAT'

```
/path_raw/uves_flat_set1_red1.fits SFLAT_RED
/path_raw/uves_flat_set1_red2.fits SFLAT_RED
/path_raw/uves_flat_set1_red3.fits SFLAT_RED
/path_raw/uves_flat_set2_red1.fits SFLAT_RED
/path_raw/uves_flat_set2_red2.fits SFLAT_RED
/path_raw/uves_flat_set2_red3.fits SFLAT_RED
/path_raw/uves_flat_set3_red1.fits SFLAT_RED
/path_raw/uves_flat_set3_red2.fits SFLAT_RED
/path_raw/uves_flat_set3_red3.fits SFLAT_RED
/path_raw/uves_flat_set3_red3.fits SFLAT_RED
```

Formatcheck: these frames are characterized by DPR.TYPE='LAMP,FMTCHK',

/path\_raw/flames\_uves\_arc\_lamp\_form\_red.fits FIB\_ARC\_LAMP\_FORM\_RED

Single fibre order tracing flat-field frames: these frames are characterized by DPR.TYPE='LAMP,ORDERDEF,SimCal'

/path\_raw/flames\_uves\_order\_flat\_red.fits FIB\_ORDER\_FLAT\_RED

Arc lamp frames to compute the wavelength calibration: these frames have DPR.TYPE respectively equal to 'LAMP,WAVE,OzPoz'.

/path\_raw/flames\_uves\_arc\_lamp\_red.fits FIB\_ARC\_LAMP\_RED

science frames: these frames are characterized by DPR.TYPE='OBJECT'.

/path\_raw/flames\_uves\_science\_red.fits FIB\_SCI\_RED

In the following examples we assume that pipeline product filenames are the original as set by the pipeline. This corresponds to have the parameter **esorex.caller.suppress-prefix** in the EsoRex configuration file

(\$HOME/.esorex/esorex.rc) set to TRUE. Otherwise EsoRex will rename the pipeline producs using a common prefix (set by the parameter **esorex.caller.output-prefix**), a four digits increasing number, and terminating the FITS file with the extention ".fits". We suggest to verify to have the flag *readonly* set to FALSE, if the user would like to run the same recipe several times with EsoRex having standard values for product files. This setting allows the pipeline to overwrite previously generated products <sup>10</sup>.

<sup>&</sup>lt;sup>10</sup>By default installation in the EsoRex configuration file (\$HOME/.esorex/esorex.rc) the flag *suppress-prefix* is set to FALSE and the flag *readonly* is set to FALSE, a possible combination, in which case pipeline product filenames will have a prefix out\_, an increasing four digit number, and extention .fits.

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | ESO FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 29 of 104              |

1. Generated master flat frames. One selects the raw biases and lists them in an ASCII file uves\_cal\_mbias.sof:

/path\_raw/uves\_bias\_red1.fits BIAS\_RED
/path\_raw/uves\_bias\_red2.fits BIAS\_RED
/path\_raw/uves\_bias\_red3.fits BIAS\_RED
/path\_raw/uves\_bias\_red4.fits BIAS\_RED
/path\_raw/uves\_bias\_red5.fits BIAS\_RED

The command:

#### esorex uves\_cal\_mbias uves\_cal\_mbias.sof

will generate the following products:

| default recipe filename | format             | PRO.CATG         | short description |
|-------------------------|--------------------|------------------|-------------------|
| masterbias_redl         |                    | MASTER_BIAS_REDL |                   |
| masterbias_redu         | 2d image (pix-pix) | MASTER_BIAS_REDU | master bias       |

#### mv \*.fits \*.paf /path\_pro

2. Then one selects the raw darks and lists them in an ASCII file uves\_cal\_mdark.sof.

```
/path_raw/uves_dark_red1.fits DARK_RED
/path_raw/uves_dark_red2.fits DARK_RED
/path_raw/uves_dark_red3.fits DARK_RED
/path_pro/masterbias_red1.fits MASTER_BIAS_REDL (optional-recommended)
/path_pro/masterbias_redu.fits MASTER_BIAS_REDU (optional-recommended)
```

The command:

### esorex uves\_cal\_mdark uves\_cal\_mdark.sof

will generate the following products:

| default recipe filename | format             | PRO.CATG         | short description |
|-------------------------|--------------------|------------------|-------------------|
| masterdark_redl         | 2d image (pix-pix) | MASTER_DARK_REDL | master dark       |
| masterdark_redu         | 2d image (pix-pix) | MASTER_DARK_REDU | master dark       |

### mv \*.fits \*.paf /path\_pro

3. Generate order and line guesses. Formatcheck frames are listed together with the required calibration frames in an ASCII file, flames\_cal\_predict.sof. This file will look like as follows:

```
/path_raw/flames_uves_arc_lamp_form_red.fits FIB_ARC_LAMP_FORM_RED
/path_ref/thargood_3.fits LINE_REFER_TABLE
/path_pro/uves_masterbias_redl.fits MASTER_BIAS_REDL (optional)
/path_pro/uves_masterbias_redu.fits MASTER_BIAS_REDU (optional)
```

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | ESO FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 30 of 104              |

Then the user can generate the order and line guesses with the command

#### esorex flames\_cal\_predict flames\_cal\_predict.sof

This command will generate four files (in the following table FITS files have extention .fits):

| default recipe filename | format | PRO.CATG         | short description |
|-------------------------|--------|------------------|-------------------|
| lineguesstable_redl     | table  | FIB_LIN_GUE_REDL | guess line table  |
| orderguesstable_redl    | table  | FIB_ORD_GUE_REDL | guess order table |
| lineguesstable_redu     | table  | FIB_LIN_GUE_REDU | guess line table  |
| orderguesstable_redu    | table  | FIB_ORD_GUE_REDU | guess order table |

#### mv \*.fits \*.paf /path\_pro

4. Generate order table and order definition frames. Order definition frames are necessary later in the data reduction to have a full set of flat frames that cover also the simultaneous calibration fibre as the odd-even fibre frames cover only the other fibres.

A set of narrow slit raw flat-field frames may be put in the ASCII file flames\_cal\_orderpos.sof.

```
/path_raw/flames_uves_order_flat_red.fits FIB_ORDEF_RED
/path_pro/orderguesstable_redl.fits FIB_ORD_GUE_REDL
/path_pro/orderguesstable_redu.fits FIB_ORD_GUE_REDU
/path_pro/masterbias_redl.fits MASTER_BIAS_REDL (optional)
/path_pro/masterbias_redu.fits MASTER_BIAS_REDU (optional)
```

The user can generate order tables and reoriented single fibre order flats with the command:

### esorex flames\_cal\_orderpos flames\_cal\_orderpos.sof

This command will generate the following products:

| default recipe filename | format | PRO.CATG         | short description                          |
|-------------------------|--------|------------------|--------------------------------------------|
| ordertable_redl         | table  | FIB_ORD_TAB_REDL | simultaneous calibration fibre order table |
| order_def_redl          | image  | FIB_ORDEF_REDL   | simultaneous calibration fibre order frame |
| ordertable_redu         | table  | FIB_ORD_TAB_REDU | simultaneous calibration fibre order table |
| order_def_redu          | image  | FIB_ORDEF_REDU   | simultaneous calibration fibre order frame |

### mv \*.fits \*.paf /path\_pro

5. Then one selects the raw slit flat-field frames and lists them in an ASCII file flames\_cal\_mflat.sof together with some master calibrations and previously obtained products:

```
/path_raw/flames_uves_flat_set1_red1.fits SFLAT_RED
/path_raw/flames_uves_flat_set1_red2.fits SFLAT_RED
/path_raw/flames_uves_flat_set1_red3.fits SFLAT_RED
/path_raw/flames_uves_flat_set2_red1.fits SFLAT_RED
/path_raw/flames_uves_flat_set2_red2.fits SFLAT_RED
```

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | ESO FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 31 of 104              |

```
/path_raw/flames_uves_flat_set2_red3.fits SFLAT_RED
/path_raw/flames_uves_flat_set3_red1.fits SFLAT_RED
/path_raw/flames_uves_flat_set3_red2.fits SFLAT_RED
/path_raw/flames_uves_flat_set3_red3.fits SFLAT_RED
/path_pro/ordertable_red1.fits FIB_ORD_TAB_REDL
/path_pro/ordertable_redu.fits FIB_ORD_TAB_REDU
/path_pro/masterbias_red1.fits MASTER_BIAS_REDL (optional-recommen
/path_pro/masterbias_redu.fits MASTER_BIAS_REDU (optional-recommen
```

The command:

#### esorex flames\_cal\_mflat flames\_cal\_mflat.sof

will generate the following products:

| default recipe filename | format             | PRO.CATG          | Note        |
|-------------------------|--------------------|-------------------|-------------|
| masterflat_set1_redl    | 2d image (pix-pix) | MASTER_SFLAT_REDL | master flat |
| masterflat_set2_redl    | 2d image (pix-pix) | MASTER_SFLAT_REDL | master flat |
| masterflat_set3_redl    | 2d image (pix-pix) | MASTER_SFLAT_REDL | master flat |
| masterflat_set1_redu    | 2d image (pix-pix) | MASTER_SFLAT_REDU | master flat |
| masterflat_set2_redu    | 2d image (pix-pix) | MASTER_SFLAT_REDU | master flat |
| masterflat_set3_redu    | 2d image (pix-pix) | MASTER_SFLAT_REDU | master flat |

#### mv \*.fits \*.paf /path\_pro

6. Then the order table for all fibre traces is determined. A set of three raw fibre frames illuminating respectively the odd, even and all fibre frames are put in an the ASCII file flames\_cal\_prep\_sff\_ofpos.sof.

```
/path_raw/flames_uves_odd_red.fits
                                     FIB_FF_ODD_RED
/path_raw/flames_uves_even_red.fits
                                     FIB_FF_EVEN_RED
/path_raw/flames_uves_all_red.fits
                                     FIB_FF_ALL_RED
/path_pro/masterbias_redl.fits
                                     MASTER_BIAS_REDL (optional)
/path_pro/order_def_redl.fits
                                     FIB_ORDEF_REDL
/path_pro/ordertable_redl.fits
                                     FIB_ORD_TAB_REDL
/path_pro/masterflat_set1_redl.fits
                                     MASTER_SFLAT_REDL
/path_pro/masterflat_set2_redl.fits
                                     MASTER SFLAT REDL
/path_pro/masterflat_set2_redl.fits
                                     MASTER_SFLAT_REDL
                                     MASTER_BIAS_REDU (optional)
/path_pro/masterbias_redu.fits
/path_pro/order_def_redu.fits
                                     FIB_ORDEF_REDU
/path_pro/ordertable_redu.fits
                                     FIB_ORD_TAB_REDU
/path_pro/masterflat_set1_redu.fits
                                     MASTER_SFLAT_REDU
/path_pro/masterflat_set2_redu.fits
                                     MASTER_SFLAT_REDU
/path_pro/masterflat_set2_redu.fits
                                     MASTER_SFLAT_REDU
```

Note that the input master bias frames are optional but recommended input.

### The command

#### esorex flames\_cal\_prep\_sff\_ofpos flames\_cal\_prep\_sff\_ofpos.sof

will generate the following products:

| default recipe filename | format    | PRO.CATG             | short description                 |
|-------------------------|-----------|----------------------|-----------------------------------|
| xt_odd_1                | table     | FIB_FF_ODD_INFO_TAB  | info table                        |
| xt_even_1               | table     | FIB_FF_EVEN_INFO_TAB | info table                        |
| xt_all_l                | table     | FIB_FF_ODD_INFO_TAB  | info table                        |
| slitff_common_redl      | imagelist | SLIT_FF_COM_REDL     | slitff common frame               |
| slitff_norm_redl        | image     | SLIT_FF_NOR_REDL     | slitff common frame               |
| slitff_dtc_redl         | imagelist | SLIT_FF_DTC_REDL     | slitff data frame                 |
| slitff_sgc_redl         | imagelist | SLIT_FF_SGC_REDL     | slitff sigma frame                |
| slitff_bpc_redl         | imagelist | SLIT_FF_BPC_REDL     | slitff badpixel frame             |
| slitff_bnc_redl         | imagelist | SLIT_FF_BNC_REDL     | slitff frames boundaries          |
| orfl                    | table     | FIB_ORDEF_TABLE_REDL | fibre order table                 |
| fibreff_common_redl     | imagelist | FIB_FF_COM_REDL      | fibff common frame                |
| fibreff_norm_redl       | imagelist | FIB_FF_NOR_REDL      | fibff common frame                |
| fibreff_nsigma_redl     | imagelist | FIB_FF_NSG_REDL      | Normalisation sigmas for fibre FF |
| fibreff_dtc_redl        | imagelist | FIB_FF_DTC_REDL      | fibff data frame                  |
| fibreff_sgc_redl        | imagelist | FIB_FF_SGC_REDL      | fibff sigma frame                 |
| fibreff_bpc_redl        | imagelist | FIB_FF_BPC_REDL      | fibff badpixel frame              |
| slitff_common_redu      | imagelist | SLIT_FF_COM_REDU     | slitff common frame               |
| slitff_norm_redu        | image     | SLIT_FF_NOR_REDU     | slitff common frame               |
| slitff_dtc_redu         | imagelist | SLIT_FF_DTC_REDU     | slitff data frame                 |
| slitff_sgc_redu         | imagelist | SLIT_FF_SGC_REDU     | slitff sigma frame                |
| slitff_bpc_redu         | imagelist | SLIT_FF_BPC_REDU     | slitff badpixel frame             |
| slitff_bnc_redu         | imagelist | SLIT_FF_BNC_REDU     | slitff frames boundaries          |
| ordu                    | table     | FIB_ORDEF_TABLE_REDU | fibre order table                 |
| fibreff_common_redu     | imagelist | FIB_FF_COM_REDU      | fibff common frame                |
| fibreff_norm_redu       | imagelist | FIB_FF_NOR_REDU      | fibff common frame                |
| fibreff_nsigma_redu     | imagelist | FIB_FF_NSG_REDU      | Normalisation sigmas for fibre FF |
| fibreff_dtc_redu        | imagelist | FIB_FF_DTC_REDU      | fibff data frame                  |
| fibreff_sgc_redu        | imagelist | FIB_FF_SGC_REDU      | fibff sigma frame                 |
| fibreff_bpc_redu        | imagelist | FIB_FF_BPC_REDU      | fibff badpixel frame              |

## mv \*.fits \*.paf /path\_pro

7. Then the wavelength calibration is performed. A raw frame illuminated by the long slit through the fibres by an arc lamp are put in the ASCII file flames\_cal\_wavecal.sof.

| <pre>/path_raw/flames_uves_arc_lamp_red.fits</pre> | FIB_ARC_LAMP_RED            |
|----------------------------------------------------|-----------------------------|
| /path_pro/orfl.fits                                | FIB_ORDEF_TABLE_REDL        |
| /path_pro/lineguesstable_redl.fits                 | FIB_LIN_GUE_REDL            |
| /path_pro/masterbias_redl.fits                     | MASTER_BIAS_REDL (optional) |
| /path_pro/orfu.fits                                | FIB_ORDEF_TABLE_REDU        |

|     |                                       | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual      | Issue: | Issue 15.0             |
| LOU | ESC I LIMILS CALST Ipenne Oser Mandar | Date:  | Date 2013-05-06        |
|     |                                       | Page:  | 33 of 104              |

| /path_pro/lineguesstable_redu.fits | FIB_LIN_GUE_REDU |            |
|------------------------------------|------------------|------------|
| /path_pro/masterbias_redu.fits     | MASTER_BIAS_REDU | (optional) |
| /path_ref/thargood_3.fits          | LINE_REFER_TABLE |            |

Note that the input master bias and master flat frames are optional but recommended inputs.

The command

#### esorex flames\_cal\_wavecal flames\_cal\_wavecal.sof

will generate the following products:

| default recipe filename | format | PRO.CATG            | short description |
|-------------------------|--------|---------------------|-------------------|
| linetable_redl          | table  | FIB_LINE_TABLE_REDL | line table        |
| linetable_redu          | table  | FIB_LINE_TABLE_REDU | line table        |

This table contains the solutions for each extracted fibres in several extensions according to the following schema:

Line table for fibre 1, saved to extensions 1-3 of 'linetable\_redl/redu' Line table for fibre 2, saved to extensions 4-6 of 'linetable\_redl/redu' Line table for fibre 3, saved to extensions 7-9 of 'linetable\_redl/redu' Line table for fibre 4, saved to extensions 10-12 of 'linetable\_redl/redu' Line table for fibre 5, saved to extensions 13-15 of 'linetable\_redl/redu' Line table for fibre 6, saved to extensions 16-18 of 'linetable\_redl/redu' Line table for fibre 7, saved to extensions 19-21 of 'linetable\_redl/redu' Line table for fibre 8, saved to extensions 22-24 of 'linetable\_redl/redu' Line table for fibre 9, saved to extensions 25-27 of 'linetable\_redl/redu'

#### mv \*.fits \*.paf /path\_pro

8. Finally, the raw science frame is reduced. The raw science frame is listed together with master calibration products in the following ASCII file flames\_obs\_scired.sof:

```
/path_raw/flames_uves_science_red.fits FIB_SCI_RED
/path_pro/masterbias_redl.fits
                                       MASTER_BIAS_REDL (optional)
/path_pro/slitff_com_redl.fits
                                       SLIT_FF_COM_REDL
/path_pro/slitff_nor_redl.fits
                                       SLIT_FF_NOR_REDL
/path pro/slitff dtc redl.fits
                                       SLIT FF DTC REDL
/path_pro/slitff_bpc_redl.fits
                                       SLIT FF BPC REDL
/path_pro/slitff_sgc_redl.fits
                                       SLIT_FF_SGC_REDL
/path_pro/fibff_com_redl.fits
                                       FIB_FF_COM_REDL
/path_pro/fibff_nor_redl.fits
                                       FIB_FF_NOR_REDL
/path_pro/fibff_dtc_redl.fits
                                       FIB_FF_DTC_REDL
/path_pro/fibff_bpc_redl.fits
                                       FIB_FF_BPC_REDL
/path_pro/fibff_sgc_redl.fits
                                       FIB_FF_SGC_REDL
/path_pro/fibff_bnc_redl.fits
                                       FIB_FF_BNC_REDL
/path_pro/orfl.fits
                                       FIB_ORDEF_TABLE_REDL
/path_pro/linetable_redl.fits
                                       FIB_LINE_TABLE_REDL
/path_pro/masterbias_redu.fits
                                       MASTER_BIAS_REDU (optional)
```

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 34 of 104              |

```
/path_pro/slitff_com_redu.fits
/path_pro/slitff_nor_redu.fits
/path_pro/slitff_bpc_redu.fits
/path_pro/slitff_sgc_redu.fits
/path_pro/fibff_com_redu.fits
/path_pro/fibff_dtc_redu.fits
/path_pro/fibff_bpc_redu.fits
/path_pro/fibff_bpc_redu.fits
/path_pro/fibff_bnc_redu.fits
/path_pro/fibff_bnc_redu.fits
/path_pro/orfu.fits
/path_pro/linetable_redu.fits
```

```
SLIT_FF_COM_REDU
SLIT_FF_NOR_REDU
SLIT_FF_DTC_REDU
SLIT_FF_BPC_REDU
SLIT_FF_SGC_REDU
FIB_FF_COM_REDU
FIB_FF_DTC_REDU
FIB_FF_BPC_REDU
FIB_FF_SGC_REDU
FIB_FF_BNC_REDU
FIB_ORDEF_TABLE_REDU
FIB_LINE_TABLE_REDU
```

The command:

#### esorex flames\_obs\_scired flames\_obs\_scired.sof

will generate the following products:

| default recipe file name | format             | PRO.CATG              | short description                                     |
|--------------------------|--------------------|-----------------------|-------------------------------------------------------|
| bin_table_info_redl      | 2d table           | FIB_SCI_INFO_TAB_REDL | table with fibre information                          |
| fxb_l_raw000i            | 2d (pix-ord) image | XB_SCI_RAW_REDL       | extracted, flatfielded raw frame                      |
| fxb_l_rawsig000i         | 2d (pix-ord) image | ERR_XB_SCI_RAW_REDL   | error frame                                           |
| wfxb_l_raw000i           | 2d (wav-ord) image | WXB_SCI_RAW_REDL      | rebinned, extracted, flatfielded raw frame            |
| wfxb_l_rawsig000i        | 2d (wav-ord) image | ERR_WXB_SCI_RAW_REDL  | error frame                                           |
| mwfxb_l_rawsig000i       | 1d (wav) image     | MWXB_SCI_RAW_REDL     | merged, rebinned, extracted, flat-fielded raw frame   |
| mwfxb_l_raw000i_sigma    | 1d (wav) image     | ERR_MWXB_SCI_RAW_REDL | merged, rebinned, extracted, flat-fielded error frame |
| fxb_1_000i               | 2d (pix-ord) image | XB_SCI_REDL           | extracted, flatfielded raw frame                      |
| fxb_l_sig000i            | 2d (pix-ord) image | ERR_XB_SCI_REDL       | error frame                                           |
| wfxb_l_000i              | 2d (wav-ord) image | WXB_SCI_REDL          | rebinned, extracted, flatfielded raw frame            |
| wfxb_l_sig000i           | 2d (wav-ord) image | ERR_WXB_SCI_REDL      | error frame                                           |
| mwfxb_l_000i             | 1d (wav) image     | MWXB_SCI_REDL         | merged, rebinned, extracted, flat-fielded raw frame   |
| mwfxb_l_000i_sigma       | 1d (wav) image     | ERR_MWXB_SCI_REDL     | merged, rebinned, extracted, flat-fielded raw frame   |
| bin_table_info_redu      | 2d table           | FIB_SCI_INFO_TAB_REDU | table with fibre information                          |
| fxb_u_raw000i            | 2d (pix-ord) image | XB_SCI_RAW_REDU       | extracted, flatfielded raw frame                      |
| fxb_u_rawsig000i         | 2d (pix-ord) image | ERR_XB_SCI_RAW_REDU   | error frame                                           |
| wfxb_u_raw000i           | 2d (wav-ord) image | WXB_SCI_RAW_REDU      | rebinned, extracted, flatfielded raw frame            |
| wfxb_u_rawsig000i        | 2d (wav-ord) image | ERR_WXB_SCI_RAW_REDU  | error frame                                           |
| mwfxb_u_rawsig000i       | 1d (wav) image     | MWXB_SCI_RAW_REDU     | merged, rebinned, extracted, flat-fielded raw frame   |
| mwfxb_u_raw000i_sigma    | 1d (wav) image     | ERR_MWXB_SCI_RAW_REDU | merged, rebinned, extracted, flat-fielded error frame |
| fxb_u_000i               | 2d (pix-ord) image | XB_SCI_REDU           | extracted, flatfielded raw frame                      |
| fxb_u_sig000i            | 2d (pix-ord) image | ERR_XB_SCI_REDU       | error frame                                           |
| wfxb_u_000i              | 2d (wav-ord) image | WXB_SCI_REDU          | rebinned, extracted, flatfielded raw frame            |
| wfxb_u_sig000i           | 2d (wav-ord) image | ERR_WXB_SCI_REDU      | error frame                                           |
| mwfxb_u_sig000i          | 1d (wav) image     | MWXB_SCI_REDU         | merged, rebinned, extracted, flat-fielded raw frame   |
| mwfxb_u_000i_sigma       | 1d (wav) image     | ERR_MWXB_SCI_REDU     | merged, rebinned, extracted, flat-fielded error frame |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 35 of 104              |

| Frame Type                   | DO_CLASSIFICATION    |
|------------------------------|----------------------|
| Raw F                        | rames                |
| ThAr line reference table    | LINE_REFER_TABLE     |
| Formatcheck frame            | FMTCHK CHIP          |
| Reference Formatcheck frame  | ARC_LAMP_FORM_CHIP   |
| Single Order trace frame     | FIB_ORDEF_CHIP       |
| Bias                         | BIAS_CHIP            |
| Master Bias                  | MASTER_CHIP          |
| Dark                         | DARK_CHIP            |
| Slit Flat Field              | SFLAT_CHIP           |
| Nasmyth Screen Flat Field    | FIB_FF_NASMYTH_CHIP  |
| Wavelength Calibration frame | FIB_ARC_LAMP_CHIP    |
| Odd Flat Field               | FIB_FF_ODD_CHIP      |
| Even Flat Field              | FIB_FF_EVEN_CHIP     |
| All Flat Field               | FIB_FF_ALL_CHIP      |
| Science OzPoz                | FIB_SCI_CHIP         |
| Science SimCal               | FIB_SCI_SIM_CHIP     |
| Science COMBINED             | FIB_SCI_COM_CHIP     |
| Data Pr                      | oducts               |
| MASTER Slit Flat Field       | MASTER_SFLAT_CHIP    |
| DRS Setup Table              | FIB_DRS_CHIP         |
| Guess Order Table            | FIB_ORD_GUE_CHIP     |
| Guess Line Table             | FIB_LIN_GUE_CHIP     |
| Background Table             | FIB_BKG_CHIP         |
| Order-Fibre Table            | FIB_ORDEF_TABLE_CHIP |
| Line-Fibre Table             | FIB_LINE_TABLE_CHIP  |
| Fibre data* frames           | FIB_FF_D0n_CHIP      |
| Fibre common frames          | FIB_FF_COM_CHIP      |
| Fibre norm frames            | FIB_FF_NOR_CHIP      |
| Fibre nsigma frames          | FIB_FF_NSIGMA_CHIP   |
| Fibre sigma frames           | FIB_FF_SOn_CHIP      |
| Fibre badpixel frames        | FIB_FF_BPn_CHIP      |
| Slit FF data frames          | SLIT_FF_D0n_CHIP     |
| Slit FF common frames        | SLIT_FF_COM_CHIP     |
| Slit FF norm frames          | SLIT_FF_NOR_CHIP     |
| Slit FF sigma frames         | SLIT_FF_S0n_CHIP     |
| Slit FF badpixel frames      | SLIT_FF_BPn_CHIP     |
| Slit FF bound frames         | SLIT_FF_BNDn_CHIP    |

Table 5.4: List of frame types and corresponding tag values. \*Note: CHIP= REDL or REDU; n=1,2,..nflats where in case of slit flat fields NFLATS is a FITS keyword indicating the (automatically determined) minimum number of equalized flat fields which are necessary to cover the total Y span, while in case of the fibre flat fields it indicates the number of basic (uncontaminated) fibre flat fields, typically (but not necessarily) 2 (odd/even).

|     | Doc:                             | VLT-MAN-ESO-19500-3016 |                 |
|-----|----------------------------------|------------------------|-----------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue:                 | Issue 15.0      |
| LOU |                                  | Date:                  | Date 2013-05-06 |
|     |                                  | Page:                  | 36 of 104       |



Figure 5.4: The FLAMES-UVES calibration cascade.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 37 of 104              |

# 6 Known problems

We suggest the user to execute the data reduction recipes using parameter defaults and all the reference and master calibrations indicated in this manual. The following is a list of currently-known problems with FLAMES-UVES recipes, and workarounds, if available:

- Sometimes the recipe flames\_cal\_sff\_ofpos fails to save SFLAT processed products. This may happen when those frames are over-exposed. If this happen we recommend the user to eventually use another set of SFLAT frames, taken close in time to the observation. It is also critical to verify that the slitff\_l\_data\_0N.fits and slitff\_u\_data\_0N.fits images appear smooth, without artifacts that otherwhise may hamper the final science spectra extraction quality. In particular in the 520 setting often a value of save\_flat\_size of 1 in the recipe flames\_cal\_prep\_sff\_ofpos gives good science extraction quality.
- From July 2012 has been noted that 520 plate1 data reduction encounter problems during wavelength calibration (not robust, not accurate, sometimes a fibre is automatically switched off). These problems can be solved by setting **mbox\_x** to 15 in flames\_cal\_predict, **save\_flat\_size** to 1 in flames\_cal\_sff\_ofpos, **tolerance** to 1.4 and **minlines** to 800 in flames\_cal\_wavecal
- The radial velocity correlation has not yet been verified to give the same results as the ones provided by FLAMES-UVES MIDAS based pipeline. In particular the zero points, are not yet computed during wavelength calibration. The user interested on those results is invited to run the MIDAS based pipeline release.
- Gnuplots do not work with Gasgano.
- FIBER mode data obtained with 520 setting should be executed with the FlamesUves\_520.xml workflow. FIBER mode data obtained with 580 or 860 should be executed with the FlamesUves.xml workflow.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 38 of 104              |

# 7 Instrument Data Description

To reduce a science frame, the following calibration frames are needed:

- Bias(es)
- Dark(s)
- Fibre formatcheck
- Single Fibre Order definition
- Slit Flat-field(s)
- Fibre flat-field frames having illuminated: odd, even, all fibres
- Fibre wavelength calibration

It is also necessary to have handy a reference (ThAr) line table. The table thargood\_3.tfits is included in the pipeline installation kit. The table thargood\_< n >.tfits (where n is 2 or 3) was also included in Pre P82 Service mode packages. The file UV\_GLRE\_<YYMMDD>A\_line\_refer\_table.fits is included in Service mode packages for P82 onward.

#### 7.1 Bias frames

Bias frames give the read out of the CCD detector of zero integration time with the shutter closed. Usually they are taken as a set of five exposures from which, through stacking, a Master Bias is created thus reducing the read out noise. This needs to be subtracted for example from the science frame to get the signal contribution from the source only.

### 7.2 Dark frames

Dark frames are measured occasionally, with the shutter closed. They are used to measure the dark current. They are measured for 1x1 binning with typical exposure times of 1h. There are also open-shutter DARKs (since December 2001). They include, in addition to the CCD dark current, contributions from the camera enclosure. Typical values are reported on the ESO Website under www.eso.org/observing/dfo/quality/UVES/qc/dark\_qc1.html. As the contribution of UVES dark exposures may be considered, in first approximation, negligible, they can be excluded from the data reduction chain as we will assume here in the following section.

### 7.3 Slit flat-field frames

Slit flat-field frames are long slit exposures taken with a continuum lamp. They give information on the response of the detector, allowing to measure variations in efficiency at small (pixel-to-pixel), intermediate (fringing, in the far red) and large (the blaze function) scale. Thus they are usually taken as three sets of three frames each at a

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 39 of 104              |

given cross disperser setting, which after bias subtraction are stacked in a master to reject statistical outliers like cosmic ray events. The final Master flat-field is also background subtracted to eliminate diffused light from the orders in the inter-order regions. Science frames need to be corrected for pixel-to-pixel variations, interference fringes and the blaze function through division by the master flat-field frame.

To properly evaluate the background level and avoid overlapping of orders, each slit flat-field frame has to be taken with a limited slit aperture. To cover all the fibres (allowing also for some variability in their placement) several slit flat-field frames are thus necessary, taken with different offsets with respect to a central position and overlapping between each other.

# 7.4 Formatcheck frames

It is necessary to have a special formatcheck frame taken by illuminating the simultaneous calibration fibre with a ThAr lamp. This is used in combination with a physical model of UVES and the information contained in the FITS header and in a ThAr reference line table, and the known offset of the simultaneous calibration fibre from the UVES slit's center, to find a "guess" solution of the spectral format (order locations and wavelength calibration). This allows the user later on to obtain robust and automatic spectral format solutions.

# 7.5 Single fibre order definition frames

A single fibre order definition frame is a calibration exposure obtained with the calibration fibre illuminated by a continuum lamp. It is a very high signal-to-noise ratio fibre-echelle frame describing accurately the simultaneous calibration fibre order locations.

# 7.6 Fibre Flat-Field (odd-even-all) frames

The fibre flat-fields serve to locate the fibre positions, both relative to one another and absolute, within some tolerance; to know the cross-sectional profile of each fibre at each wavelength; and to determine the relative throughput of different fibres. These fibre flat-fields are only usable if the fibre traces fall in regions illuminated in at least one of the slit flat-fields; fibres whose light falls, even in part, in dark regions of the slit flat-field frame discarded. The data reduction software considers as really flat only a subregion of each slit flat-field frame discarding a few pixels at the flat-field border.

The fibres' images on the detector are so closely packed that the cross-sectional profiles of adjacent fibres overlap to some non-negligible extent. Therefore, a single flat-field frame, would not yield enough information on individual fibres to perform a correct data reduction. Instead, the pipeline requires fibre flat-fields on which the fibres can be clearly separated, such as one containing only odd-numbered fibres and another containing only even-numbered fibres.

The order definition frame, if taken with the simultaneous fibre, could also be used as an additional flat-field frame covering the simultaneous calibration fibre. Such inclusion is necessary to be able to extract the simultaneous calibration fibre. In such a case one would add it into the pool of odd-even fibre flat fields (see below), and this set of frames would thus contain completely separable images of all fibres.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 40 of 104              |

In addition to the above, an all-fibre flat-field is needed to correct for relative throughput differences between odd and even fibres. This can be replaced by a Nasmyth screen all-fibre flat-field for higher accuracy.

If it is planned to observe using the simultaneous calibration fibre, it is also necessary to have in the calibration data a ThAr frame with the ThAr lamp feeding all the same fibres used during the night (7OzPoz+1SimCal) as well as an all fibre flat-field with the flat-field lamp feeding all the same fibres used during the night (7OzPoz+1SimCal). This is the minimum fibre flat-field set usable by the pipeline.

## 7.7 Wavelength calibration frames

Wavelength calibration frames are fibre exposures taken (for FLAMES-UVES) illuminating all fibres with a ThAr arc lamp. They are used to find the wavelength calibration solution.

The wavelength calibration frames must be taken through the same set of fibres as the science frame.

We would like to emphasize the importance of having "correct" calibration data to be able to reduce the science observations with best quality. For example, if because of thermal shifts the available slit flat-fields do not cover the position where a (science-frame) fibre is located, this fibre will be discarded and the pipeline will be unable to extract its signal. The same is true if fibre positions in the science-frame are shifted too much with respect to the corresponding positions of the fibre flat-field frames used to do the data reduction. This may occur in case of automatic online pipeline data reduction on Paranal where usually the calibration data base is updated with several months time scale. Moreover, the cross-sectional profiles of the fibres may change e. g. due to slightly different focusing. Since this, in turn, changes the contamination between adjacent fibres, a significantly different profile between calibrations and science data will lead to an incorrect deconvolution of the fibres. The pipeline searches for possible instrument shifts along Y (i. e. perpendicular to dispersion) in the interval [-6,6] pixel. It satisfactorily reduced commissioning data which, due a not completely stable instrument setup at the time, were characterized by shifts between the science observation and the calibration in the range [-3.5,3.5]. It must be said that the source of such Y shift was discovered and fixed during an instrument software upgrade conducted before the beginning of FLAMES operations and so we do not expect the user will receive data affected by shifts between science and calibrations of more than one pixel. The pipeline allows to interactively recover extraction also in cases of shifts wider than 6 pixels. This can be done by executing the science recipe once with parameter defaults; then by plotting the information available in the product cor\_table\_chip.fits (chip='l' or 'u') the user can asses the proper value of the correlation shift, and set correspondly the correlation offset in order to reduce, within a narrower correlation range centered on the given offset, the given science data in a following data reduction iteration.

The FLAMES positioner uses two plates and two distinct sets of fibres, with two distinct entrance positions in UVES.

A simultaneous calibration fibre for precise radial velocity measurements is also available. Using this fibre the spectral format changes, including (at most) 7 OzPoz fibres and 1 SimCal fibre. Therefore, only calibration data need to be taken with the same FLAMES plate and ( $\leq 8$  OzPoz fibres)/( $\leq 7$  OzPoz fibres+1 SimCal fibre) configuration as the actual science frames to be reduced should be used in the reduction.

Although we introduced means to detect and appropriately treat saturated pixels in the data reduction, it might happen that a saturated frame affects the data reduction. More specifically, while isolated saturated pixels can be easily detected by the pipeline and excluded from the subsequent data reduction, strongly saturated emission lines can produce a very irregular distribution of scattered light on the frame, causing a poor background subtrac-

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 41 of 104              |

tion and, as a consequence, wrong results in the determination of shifts to be applied to each fibre (correlation step). In particularly pathological cases, this may lead to a failure of the automatic data reduction procedure, and require manual intervention to properly extract the data.

# 7.8 Supported raw frames (keyword identifiers)

In this section we describe all possible types of raw frames for the different observing modes. More information on those data may be found on www.eso.org/qc/uves. The different frame types can be identified by the values of the DPR keywords of their FITS headers (see [8]). These keywords are generated by the FLAMES-UVES templates (for a description of the FLAMES-UVES templates see [6]). A given frame type can be processed by one or several different dedicated pipeline recipes. The individual pipeline recipes are described in section 11. In most cases, calibration data frames are needed to reduce a given frame. These calibration data have to match the input frame in a number of instrument parameters (e.g. to apply a flat-field correction to a science frame only a flat-field frame taken in the same central wavelength, same slit length, etc. should be used for the correction). These parameters are listed under *relevant instrument parameters*.

The following raw frame types are possible:

• Relevant instrument parameters group 1 common to all raw frames:

Conversion  $e \rightarrow ADU$ : ESO DET OUT1 CONAD

• Relevant instrument parameters group 2 common to some raw frames:

| Grating used:             | ESO | INS  | GRAT2 | ID   |
|---------------------------|-----|------|-------|------|
| Central wavelength used:  | ESO | INS  | GRAT2 | WLEN |
| Observation Plate used:   | INS | OBSI | PLATE |      |
| Simultaneous calibration: | OCS | SIM  | CAL   |      |

### **Bias frames**

- Template signature: UVES\_x\_cal\_bias (x: red, dic1, dic2)
- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = BIAS ESO DPR TECH = IMAGE
- DO category: BIAS\_RED
- Pipeline recipe: uves\_cal\_mbias

|     |       | Doc:            | VLT-MAN-ESO-19500-3016 |
|-----|-------|-----------------|------------------------|
| ESO |       | Issue:          | Issue 15.0             |
|     | Date: | Date 2013-05-06 |                        |
|     |       | Page:           | 42 of 104              |

- Relevant instrument parameters: group 1.
- Reference: Figure 7.1 (a).

### Dark frames

- Template signature: UVES\_x\_cal\_dark (x: red, dic1, dic2)
- DPR keywords:

ESO DPR CATG = CALIB ESO DPR TYPE = DARK ESO DPR TECH = IMAGE

- DO category: DARK\_RED
- Pipeline recipe: uves\_cal\_mdark
- Relevant instrument parameters: group 1.

#### Order definition flat-field frames

- Template signature: UVES\_x\_tec\_orderdef (x: red, dic1, dic2)
- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = LAMP,ORDERDEF,SimCal ESO DPR TECH = MOS
- DO category: ORDER\_FLAT\_RED
- Pipeline recipe: flames\_cal\_orderpos
- Relevant instrument parameters groups 1, 2.
- Reference: Figure 7.1 (c).

#### Spectroscopic Slit flat-field frames

```
• Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: flatatt, flatfree)
```

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 43 of 104              |

```
• DPR keywords:
ESO DPR CATG = CALIB
ESO DPR TYPE = LAMP, SFLAT
ESO DPR TECH = ECHELLE
```

- DO category: FLAT\_RED
- Pipeline recipe: flames\_cal\_mflat
- Relevant instrument parameters groups 1, 2.
- Reference: Figure 7.1 (e).

#### Format check spectra

```
• Template signature:
UVES_x_tec_fmtchk
(x: red, dic1, dic2)
```

- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = LAMP,FMTCHK,SimCal ESO DPR TECH = MOS
- DO category: FIB\_ARC\_LAMP\_FORM\_RED
- Pipeline recipe: flames\_cal\_predict
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (b).

### Odd Fibre flat calibration spectra

```
Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: waveatt, wavefree)
DPR keywords:

ESO DPR CATG = CALIB

ESO DPR TYPE LIME FLAT OF
```

```
ESO DPR TYPE = LAMP, FLAT, ODD
ESO DPR TECH = MOS
```

• DO category: FIB\_FF\_ODD\_RED

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 44 of 104              |

- Pipeline recipe: flames\_cal\_prep\_sff\_ofpos
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

### Even Fibre flat calibration spectra

```
• Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: waveatt, wavefree)
```

- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = LAMP,FLAT,EVEN ESO DPR TECH = MOS
- DO category: FIB\_FF\_EVEN\_RED
- Pipeline recipe: flames\_cal\_prep\_sff\_ofpos
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

#### All Fibre flat calibration spectra

```
Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: waveatt, wavefree)
DPR keywords:

ESO DPR CATG = CALIB

ESO DPR TYPE = LAMP, FLAT, ALL

ESO DPR TECH = MOS
DO category:

FIB_FF_ALL_RED
Pipeline recipe: flames_cal_prep_sff_ofpos
```

- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 45 of 104              |

### **OzPoz-fibre Wavelength calibration spectra**

```
• Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: waveatt, wavefree)
```

- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = LAMP, WAVE, OzPoz ESO DPR TECH = MOS
- DO category: FIB\_ARC\_LAMP\_RED
- Pipeline recipe: flames\_cal\_wavecal
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

### Simcal-fibre Wavelength calibration spectra

```
• Template signature:

UVES_x_cal_y

(x: red, dic1, dic2)

(y: waveatt, wavefree)
```

• DPR keywords:

ESO DPR CATG = CALIB ESO DPR TYPE = LAMP, WAVE, SimCal ESO DPR TECH = MOS

- DO category: FIB\_ARC\_LAMP\_RED
- Pipeline recipe: flames\_cal\_wavecal
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
|     |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 46 of 104              |

### Nasmyth screen Fibre flat calibration spectra

```
    Template signature:

        UVES_x_cal_y

        (x: red, dic1, dic2)

        (y: waveatt, wavefree)
```

- DPR keywords: ESO DPR CATG = CALIB ESO DPR TYPE = LAMP,FLAT,NASMYTH ESO DPR TECH = MOS
- DO category: FIB\_FF\_NASMYTH\_RED
- Pipeline recipe: flames\_cal\_prep\_sff\_ofpos
- Relevant instrument parameters: groups 1, 2.
- Reference: Figure 7.1 (d).

### Science spectra

```
• Template signatures:

UVES_x_obs_y

(x: blue, red, dic1, dic2)

(y: exp, expfree)
```

- DPR keywords: ESO DPR CATG = SCIENCE ESO DPR TECH = MOS
- DO category: FIB\_SCI\_RED (ESO DPR TYPE = OBJECT,OZPOZ) FIB\_SCI\_SIM\_RED (ESO DPR TYPE = OBJECT,SimCal ) FIB\_SCI\_COM\_RED (ESO DPR TYPE = OBJECT,OZPOZ )
- Pipeline recipe: uves\_obs\_scired
- Relevant instrument parameters: groups 1, 2.

| ESO FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|--------------------------------------|--------|------------|------------------------|
|                                      | Issue: | Issue 15.0 |                        |
|                                      |        | Date:      | Date 2013-05-06        |
|                                      |        | Page:      | 47 of 104              |

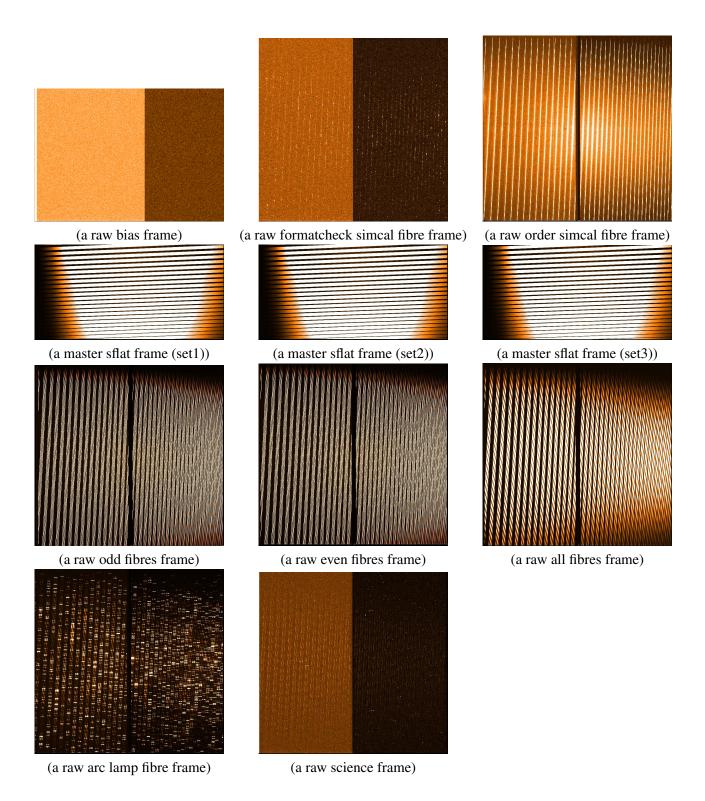



Figure 7.1: Several FLAMES-UVES raw frames.

|                                             |                                            | Doc:       | VLT-MAN-ESO-19500-3016 |
|---------------------------------------------|--------------------------------------------|------------|------------------------|
| <b>ESO</b> FLAMES-UVES Pipeline User Manual | Issue:                                     | Issue 15.0 |                        |
| LOU                                         | ESO I LAWLS-0 V LS I Ipellile Oser Walldar | Date:      | Date 2013-05-06        |
|                                             |                                            | Page:      | 48 of 104              |

# 8 Static Calibration Data

In the following section ancillary data required for FLAMES-UVES data reduction are listed. For each of them we indicate the corresponding value of the HIERARCH ESO PRO CATG, in short PRO.CATG, FITS keyword. This has to be used to identify the frames listed in the *Set of Frames* (see Section 5.2.2, page 24). More information on those data may be found on www.eso.org/qc/uves.

# 8.1 Line reference table

A reference list of arc lines is necessary to perform the wavelength calibration. Its PRO.CATG is LINE\_REFER\_TABLE. This frame is an input of the recipes uves\_cal\_predict and uves\_cal\_wavecal.

This release of the FLAMES-UVES pipeline provides a new reference line catalog (thargood\_3.fits)<sup>11</sup> more accurate than the previous one (thargood\_2.fits). Both catalogs are included but the user is recommended to use the new one.

# 8.2 Table to monitor line intensity

For quality control purposes, a table listing reference lines of intermediate intensity uniformly distributed on the blue/red detectors can be provided by DFO and has PRO.CATG equal to LINE\_INTMON\_TABLE.

<sup>&</sup>lt;sup>11</sup>These line reference tables are also included in Service Mode data packages. As of P82 thargood\_3.fits has been renamed to UV\_GLRE\_070222A\_line\_refer\_table.fits

# 9 Data Reduction

In this section, after an overview of the main problems the data reduction needs to solve, we list the required data and the recipes which allow to solve them, giving the data reduction sequence necessary to reduce calibration and science data.

# 9.1 Data reduction overview

In order to fully reduce a set of FLAMES-UVES data, including calibration and science frames, the following data reduction problems need to be solved:

- The detector bias and dark current levels should be measured and subtracted.
- The echelle fiber order traces need to be determined in a robust manner.
- Compute and correct for detector pixel to pixel gain variations and the blaze function.
- For each fibre perform the wavelength calibration in a robust and automatic manner.
- Reduce science fiber data recovering the cross order fibres contamination.

# 9.2 Required input data

To be able to reduce science data one needs to use raw, product and static calibration data together with the pipeline recipes in a given sequence so as to generate all the necessary input to each pipeline recipe at each step along the way. We call this sequence "**data reduction cascade**". The FLAMES-UVES pipeline involves the following input data:

- Raw frames:
  - Bias frames to determine a master bias.
  - Dark(s) (optional) frames to determine a master dark.
  - Slit flat frames to determine a set of master slit flats covering all the nine fibres.
  - Fibre formatcheck frames to determine guess order and line tables.
  - Calibration fibre flat frames to determine guess order tables and have a flat-field for that fibre.
  - Odd-even-all fibre order definition frames to determine the fibre order traces tables and construct a reference base of non contaminated fibre frames.
  - Fibre arc lamp frames to determine the line table for all fibres.
- calibration data products<sup>12</sup>:
  - A master bias and a master dark to subtract them from master flat, and science frames.

<sup>&</sup>lt;sup>12</sup>These are either created by processing the above data, or they might be provided by another source, e.g. as part of a Service mode data package, in which case the corresponding RAW data listed above is not needed

- Master slit flat-field frames to correct for different detector pixel
- Calibration fibre guess order tables to have a stable order tracing.
- Calibration fibre order flat frames to have a flat frame to flat the calibration fibre and completed the base of fibre flats used to estimate the contamination of each fibre to the others.
- Calibration line and order guess tables to have an automatic, accurate and stable wavelength calibration. efficiencies, the blaze function, the detector fringing at longer wavelengths.
- Line tables to calibrate the object and sky spectra in wavelength.
- Reference files:
  - Line table to produce guess and final line tables.

# 9.3 Reduction cascade

Here we outline the logical sequence of steps which are needed to perform a complete spectral extraction of FLAMES-UVES data. All these operations can be carried out using the provided recipes. Examples of data reduction are in chapter 5.

- 1. Master bias and dark frames are generated.
- 2. For most frames (fibre and slit flat-field frames, science frames) a variance frame and a bad-pixel mask must be created.
- 3. A so-called format-check frame is examined. This frame must have been taken with a single fibre illuminated by a (Th-Ar) wavelength-calibration lamp, and all other fibres dark. This frame is compared with a physical model of the CCD illumination, with the help of an appropriate table of lines emitted by the calibration lamp, to derive a first guess of the order positions and of the wavelength-calibration solution.
- 4. The simultaneous calibration fibre flat frame is used to refine the guess order table and add an otherwise missing flat fibre trace to the pool of odd-even fibres to be used in the science frame extraction.
- 5. The whole set of fibres is considered (or at least those used in the science exposure), by processing both an odd-numbered- and an even-numbered fibre flat-field frames. In this way a complete (raw) fibre-order position table is obtained.
- 6. From the latter, the inter-order (background) table is computed, for later computation and subtraction of scattered-light contamination.
- 7. Slit flat-field frames are processed. At least two half-slit flat-field frames are needed to cover the fibreilluminated region without overlapping, and these are combined and normalized. They will be used to remove pixel-to-pixel effects later. Associated variance frames and bad-pixel masks are also created.
- 8. odd/even fibre flat-field frames are processed. These frames contain the required information on the fibre cross-dispersion profile, and need to be input as separate odd/even fibre frames since adjacent fibres have partially overlapping profiles. Fibres for which there is no corresponding slit flat-field information are ignored. The frames are corrected for background light, and associated variance frames and bad-pixel masks are created.

|     | Doc:                                    | VLT-MAN-ESO-19500-3016 |                 |
|-----|-----------------------------------------|------------------------|-----------------|
|     | Issue:                                  | Issue 15.0             |                 |
| LOU | ESO I L'AMES-O VES I Ipenne Oser Manuar | Date:                  | Date 2013-05-06 |
|     |                                         | Page:                  | 51 of 104       |

- 9. The algorithm requires also an all-fibre flat-field frame, to compute the relative throughput among the odd and even fibres (that may have different intensity levels). It is treated as if it were a science frame, with the same extraction procedure, to obtain for each fibre and order a wavelength-dependent normalization (instead of a spectrum). Since the FLAMES-UVES data reduction includes two extraction methods (standard and optimal), the same method should be used to reduce the flat field and science frames if possible. Moreover, the all-fibre flat-field frame is also used as a reference for the positions of all fibres, since they are simultaneously lit here. For this purpose, the cross-dispersion shifts between the fibre positions in the odd and even fibre flat-field frames are computed with this common reference, and this additional information is stored in the order-fibre table.
- 10. Wavelength calibration is done, using a fibre frame with each fibre illuminated by a ThAr lamp, the guess line and fibre-order tables determined from previous data reduction steps. This step extracts each fibre spectrum, looks for ThAr lines and identifies them with help of the guess solution.
- 11. Eventually, the science spectra are extracted, either using standard or optimal extraction. Because of UVES stability limitations, there may be shifts between the fibre images in the flat-field frames and in the science frames. These shifts are expected to occur in the cross-dispersion direction and to be at most  $\pm 1$  pixel. Since especially optimal extraction is extremely sensitive to such shifts (spectra with large S/N cannot be extracted satisfactorily for shifts larger than 0.1 pix), the extraction routine computes the value of the shift (using a correlation-function method), and applies the opposite shift to the fibre flat-field frames). After doing that, the optimal extraction is performed using the fibre flat-field frames as a model to fit the science frame at every wavelength (the fitted amplitudes are the extracted spectra at each wavelength), using at the same time the fibre profile information to deconvolve the partial fibre overlap. Standard extraction is somewhat simpler, doing only a sum of the science frame fibre spectra over a pre-defined window across dispersion, without fitting, but including also a deconvolution of fibre cross-contamination.
- 12. Next, extracted spectra are wavelength-calibrated.
- 13. Last, wavelength-calibrated, merged spectra are created.

### 9.3.1 Data reduction peculiarities

The data reduction software design to reduce FLAMES-UVES fibre-echelle mode data (described in [12], [1] and [17]) has some peculiarities when compared for example to the standard echelle data reduction, or with respect to the extraction of fibre spectra like those of FEROS.

In constrast to the standard echelle package:

- The fibre flat-field cross dispersion profiles (with pixel resolution) are used as "true" physical model of the fibre light distribution at each pixel on the detector in the optimal extraction of science targets, instead of some analytic approximation (In UVES-echelle mode, the corr-dispersion profile is measured using the science frame itself).
- A very good solution of the adjacent fibre contamination (which is a peculiar problem of fibre-fed multiobject spectrographs with close packed fibres and thus does not occur in echelle mode) is achieved.

|     |                                             | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 52 of 104              |

- Spectra corresponding to different fibres, having a different fibre throughput, are corrected giving reliable relative fibre throughputs.
- Thanks to the use of three different kind of flat-field spectra (single fibre, odd-even-all fibres, slit flat-field frames) usually the final merged spectra have a very high quality, in which any residual oscillation artifacts are well below the noise level.

With respect to FEROS we have the same differences as before with an additional one:

• In FEROS the flat-fielding is done on the extracted spectra, first extracting the science and the flat-field and then dividing the first by the latter. Although this procedure has empirically been shown to lead to negligible differences with respect to the "correct" one, we still use the "correct" one (first correct science by flat-field, next extract the spectra).

The adopted data reduction together with the mentioned pros implies a number of cons. Essentially we have two:

- We need a lot of calibrations, compared for example to FEROS.
- The achieved high quality extraction quality is paid for with a quite extensive computational cost.

|     |                                         | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|-----------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual        | Issue: | Issue 15.0             |
| LOU | ESO I LAWLS-0 V LS I Ipenne Oser Manuar | Date:  | Date 2013-05-06        |
|     |                                         | Page:  | 53 of 104              |

# **10** Pipeline Recipes Interfaces

In this section, for each recipe example, the required input data (and their classification tags) are provided. The column labeled "nr" indicates the number of required input frames with the following convention:

- 1 for a single frame (in case of pipeline calibration products, one for each detector chip of the corresponding arm),
- + for one or more input frames,
- ? for input frames which are optional (in case of pipeline calibration products one for the redl and one for the redu detector chips).
- ! recommended input frame

In the following it is assumed that the input files (in our examples raw data are located in the directory /path\_raw, reference data are in the directory /path\_ref and pipeline products are in the directory /path\_pro) are existing FITS files (e.g. /data1/uves/com2/UVES.2004-08-16T02:54:04.353.fits, and /cal/uves/ech/cal/thargood\_3.fits, /cal/uves/ech/cal/linetable\_redu.fits).

A full list of pipeline products is also provided for each recipe, indicating their default recipe name (optionally replaced by EsoRex to a given standard), the value of the FITS keyword HIERARCH ESO PRO CATG (in short PRO.CATG) and a short description. The keyword PRO.CATG is used to classify each frame. The DPR and other relevant keywords are used to associate to each raw frame the proper calibration frame.

The data may be recognized and organized according to the values of the following FITS keywords:

| Association keyword         | Information                               |  |
|-----------------------------|-------------------------------------------|--|
| HIERARCH ESO DPR TYPE       | raw data type                             |  |
| HIERARCH ESO DPR CATG       | raw data category                         |  |
| HIERARCH ESO DPR TECH       | raw data technique                        |  |
| HIERARCH ESO INS GRAT2 WLEN | Instrument setup central wavelength       |  |
| HIERARCH ESO DET DIT        | Integration time                          |  |
| HIERARCH ESO INS OBSPLATE   | Observing plate                           |  |
| HIERARCH ESO OCS SIMCAL     | Simultaneous calibration observation mode |  |

The pipeline is able to also process pipeline products generated by the MIDAS based pipeline. The viceversa is not true.

For each recipe the input parameters (as they appear in the recipe configuration file), the corresponding parameter aliases (to be set on the command line) and their default values are listed. Each recipe has the following common parameters:

| debug   | ether or not to sav | ve intermediate results to local   |
|---------|---------------------|------------------------------------|
|         | rectory. [FALSE]    |                                    |
| plotter | y plots produced by | y the recipe are redirected to the |
|         | mmand specified by  | this parameter. The plotting       |

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:                              | VLT-MAN-ESO-19500-3016 |            |
|-----|--------------------------------------|-----------------------------------|------------------------|------------|
| ESO |                                      | FI AMES-UVES Pipeline User Manual |                        | Issue 15.0 |
| LOU |                                      | Date:                             | Date 2013-05-06        |            |
|     |                                      | Page:                             | 54 of 104              |            |

command must contain the substring 'gnuplot' and must be able to parse gnuplot syntax on its standard input. Valid examples of such a command may include 'gnuplot -persist' and 'cat > mygnuplot\$\$.gp'. A finer control of the plotting options can be obtained by writing an executable script, e.g. my\_gnuplot.pl, that executes gnuplot after setting the desired gnuplot options (e.g. set terminal pslatex color). To turn off plotting, set this parameter to 'no'. [no] --process\_chip : For RED arm data proces the redl, redu, or both chip(s). <both | redl | redu | REDL | REDU> [both]

A full description of each parameter is obtained by running the command **esorex - -parameters**, or **esorex - -help** or **esorex - -man-page**, or by looking at the Recipe Input Parameters section of the dedicated Gasgano window. Also, the role of the most important parameters is described in section 11.

Also quality control parameters are computed. They are written to the header of corresponding pipeline products. More and up-to-date information on instrument quality control can be found on www.eso.org/qc.

### 10.1 uves\_cal\_mbias

The recipe uves\_cal\_mbias creates a master bias frame.

#### 10.1.1 Input

| frame tag/category | nr | filename example                        |
|--------------------|----|-----------------------------------------|
| BIAS_ARM           | +  | <pre>/path_raw/uves_bias_arm.fits</pre> |

#### 10.1.2 Output

| default recipe file name format |       | PRO.CATG         | short description |  |
|---------------------------------|-------|------------------|-------------------|--|
| masterbias_chip.fits            | image | MASTER_BIAS_CHIP | master bias frame |  |

#### **10.1.3 Quality control**

The recipe computes the following QC parameters:

| QC.DUTYCYCL        | Time to store a frame [s]             |
|--------------------|---------------------------------------|
| QC.OUT1.RON.RAW    | Read noise on raw images [ADU]        |
| QC.OUT1.RON.MASTER | Read noise on master bias frame [ADU] |
| QC.OUT1.STRUCTY    | Structure noise in Y [ADU]            |
| QC.OUT1.STRUCTX    | Structure noise in X [ADU]            |

|     |                                       | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual      | Issue: | Issue 15.0             |
| LOU | ESO I LAWLS-0 VEST ipenne Oser Wandar | Date:  | Date 2013-05-06        |
|     |                                       | Page:  | 55 of 104              |

# 10.1.4 Parameters

| parameter                   | alias        | default | min | max  |
|-----------------------------|--------------|---------|-----|------|
| uves_cal_mbias.clean_traps  | clean_traps  | TRUE    |     |      |
| uves_cal_mbias.stack_method | stack_method | median  |     |      |
| uves_cal_mbias.klow         | klow         | 5.      | 0.  | 100. |
| uves_cal_mbias.khigh        | khigh        | 5.      | 0.  | 100. |
| uves_cal_mbias.niter        | niter        | 5       | 0   | 100  |

Note that the default parameters are robust.

# 10.2 uves\_cal\_mdark

The recipe uves\_cal\_mdark creates a master dark frame.

# 10.2.1 Input

| frame tag/category | nr | filename example                    |
|--------------------|----|-------------------------------------|
| DARK_ARM           | +  | /path_raw/uves_dark_arm.fits        |
| MASTER_BIAS_CHIP   | ?  | /path_raw/masterbias_chip_chip.fits |

# 10.2.2 Output

| default recipe file name | format | PRO.CATG         | short description |
|--------------------------|--------|------------------|-------------------|
| masterdark_chip.fits     | image  | MASTER_DARK_CHIP | master dark frame |

# 10.2.3 Quality control

The recipe computes the following QC parameters:

| QC.DATANCOM    | Number of coadded frames                                                |
|----------------|-------------------------------------------------------------------------|
| PRO.DATAMED    | Median frame level [ADU]                                                |
| QC.REGij.MIN   | Min of region i j of size <b>box_sx</b> $\times$ <b>box_sy</b> [ADU]    |
| QC.REGij.MAX   | Max of region i j of size <b>box_sx</b> $\times$ <b>box_sy</b> [ADU]    |
| QC.REGij.AVG   | Mean of region i j of size <b>box_sx</b> $\times$ <b>box_sy</b> [ADU]   |
| QC.REGij.MED   | Median of region i j of size <b>box_sx</b> $\times$ <b>box_sy</b> [ADU] |
| QC.REGij.RMS   | Rms of region i j of size <b>box_sx</b> $\times$ <b>box_sy</b> [ADU]    |
| QC.REG.MIN.MIN | Min of all region Mins [ADU]                                            |
| QC.REG.MIN.MAX | Max of all region Mins [ADU]                                            |
| QC.REG.MIN.AVG | Mean of all region Mins [ADU]                                           |
| QC.REG.MIN.MED | Median of all region Mins [ADU]                                         |
| QC.REG.MIN.RMS | Rms of all region Mins [ADU]                                            |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU | FLAWLS-OVESTIPEITIC OSCI Wandar  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 56 of 104              |

| QC.REG.MAX.MIN | Min of all region Maxs [ADU]       |
|----------------|------------------------------------|
| QC.REG.MAX.MAX | Max of all region Maxs [ADU]       |
| QC.REG.MAX.AVG | Mean of all region Maxs [ADU]      |
| QC.REG.MAX.MED | Median of all region Maxs [ADU]    |
| QC.REG.MAX.RMS | Rms of all region Maxs [ADU]       |
| QC.REG.AVG.MIN | Min of all region Means [ADU]      |
| QC.REG.AVG.MAX | Max of all region Means [ADU]      |
| QC.REG.AVG.AVG | Mean of all region Means [ADU]     |
| QC.REG.AVG.MED | Median of all region Means [ADU]   |
| QC.REG.AVG.RMS | Rms of all region Means [ADU]      |
| QC.REG.MED.MIN | Min of all region Medians [ADU]    |
| QC.REG.MED.MAX | Max of all region Medians [ADU]    |
| QC.REG.MED.AVG | Mean of all region Medians [ADU]   |
| QC.REG.MED.MED | Median of all region Medians [ADU] |
| QC.REG.MED.RMS | Rms of all region Medians [ADU]    |
| QC.REG.RMS.MIN | Min of all region Rms [ADU]        |
| QC.REG.RMS.MAX | Max of all region Rms [ADU]        |
| QC.REG.RMS.AVG | Mean of all region Rms [ADU]       |
| QC.REG.RMS.MED | Median of all region Rms [ADU]     |
| QC.REG.RMS.RMS | Rms of all region Rms [ADU]        |

## 10.2.4 Parameters

| parameter                           | alias                | default | min | max  |
|-------------------------------------|----------------------|---------|-----|------|
| uves_cal_mdark.stack_method         | stack_method         | median  |     |      |
| uves_cal_mdark.klow                 | klow                 | 5.      | 0.  | 100. |
| uves_cal_mdark.khigh                | khigh                | 5.      | 0.  | 100. |
| uves_cal_mdark.niter                | niter                | 5       | 0   | 100  |
| uves_cal_mdark.qc_dark.reg.num_x    | qc_dark.reg.num_x    | 4       | 0   |      |
| uves_cal_mdark.qc_dark.reg.num_y    | qc_dark.reg.num_y    | 4       | 0   |      |
| uves_cal_mdark.qc_dark.reg.box_sx   | qc_dark.reg.box_sx   | 100     | 0   |      |
| uves_cal_mdark.qc_dark.reg.box_sy   | qc_dark.reg.box_sy   | 100     | 0   |      |
| uves_cal_mdark.qc_dark.reg.border_x | qc_dark.reg.border_x | 100     | 0   |      |
| uves_cal_mdark.qc_dark.reg.border_y | qc_dark.reg.border_y | 100     | 0   |      |
| uves_cal_mdark.qc_dark.reg.when     | qc_dark.reg.when     | 0       | 0   | 1    |

Note that the default parameters are robust.

# 10.3 flames\_cal\_mkmaster

The recipe flames\_cal\_mkmaster computes the master slit flat frames.

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual     | Issue: | Issue 15.0             |
| LOU | I LAWLS-0 VLS I Ipenne Oser Wandar - | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 57 of 104              |

# 10.3.1 Input

| frame tag/category | nr | filename example                  |
|--------------------|----|-----------------------------------|
| SFLAT_RED          | +  | /path_raw/uves_flat_set1_red.fits |
| SFLAT_RED          | +  | /path_raw/uves_flat_set2_red.fits |
| SFLAT_RED          | +  | /path_raw/uves_flat_set3_red.fits |
| FIB_ORD_TAB_REDL   |    | /path_pro/ordertable_redl.fits    |
| FIB_ORD_TAB_REDU   |    | /path_pro/ordertable_redu.fits    |
| MASTER_BIAS_REDL   | ?! | /path_pro/masterbias_redl.fits    |
| MASTER_BIAS_REDU   | ?! | /path_pro/masterbias_redu.fits    |

## 10.3.2 Output

| default recipe file name  | format             | PRO.CATG          | short description |
|---------------------------|--------------------|-------------------|-------------------|
| set1_masterflat_redl.fits | 2d (pix-pix) image | MASTER_SFLAT_REDL | master flat frame |
| set1_masterflat_redu.fits | 2d (pix-pix) image | MASTER_SFLAT_REDU | master flat frame |
| set2_masterflat_redl.fits | 2d (pix-pix) image | MASTER_SFLAT_REDL | master flat frame |
| set2_masterflat_redu.fits | 2d (pix-pix) image | MASTER_SFLAT_REDU | master flat frame |
| set3_masterflat_redl.fits | 2d (pix-pix) image | MASTER_SFLAT_REDL | master flat frame |
| set3_masterflat_redu.fits | 2d (pix-pix) image | MASTER_SFLAT_REDU | master flat frame |

### 10.3.3 Quality control

The pipeline monitors the number of coadded frames (PRO.DATANCOM). Additional quality control information is monitored by DFO and can be found at www.eso.org/qc.

#### 10.3.4 Parameters

| backsub.mmethod | : Background measuring method. If equal to 'median' the<br>background is sampled using the median of a<br>subwindow. If 'minimum', the subwindow minimum value<br>is used. If 'no', no background subtraction is done.<br><median minimum="" no=""  =""> [median]</median>                                                                                                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| backsub.npoints | : This is the number of columns in interorder space used to sample the background. [82]                                                                                                                                                                                                                                                                                                                                                       |
| backsub.radiusy | : The height (in pixels) of the background sampling<br>window is (2*radiusy + 1). This parameter is not<br>corrected for binning. [2]                                                                                                                                                                                                                                                                                                         |
| backsub.sdegree | : Degree of interpolating splines. Currently only degree<br>= 1 is supported. [1]                                                                                                                                                                                                                                                                                                                                                             |
| backsub.smoothx | <pre>: If spline interpolation is used to measure the<br/>background, the x-radius of the post-smoothing window<br/>is (smoothx * image_width). Here, 'image_width' is<br/>the image width after binning. If negative, the<br/>default values are used: (25.0/4096) for blue<br/>flat-field frames, (50.0/4096) for red flat-field<br/>frames, (300.0/4096) for blue science frames and<br/>(300.0/4096) for red science frames. [-1.0]</pre> |
| backsub.smoothy | : If spline interpolation is used to measure the<br>background, the y-radius of the post-smoothing window<br>is (smoothy * image_height). Here, 'image_height' is                                                                                                                                                                                                                                                                             |

|     |                                       | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual      | Issue: | Issue 15.0             |
| LOU | ZAMILS-O V LS I Ipenne O ser Mandar - | Date:  | Date 2013-05-06        |
|     |                                       | Page:  | 58 of 104              |

the image height after binning. If negative, the default values are used: (100.0/2048) for blue flat-field frames, (300.0/2048) for red flat-field frames, (200.0/2048) for blue science frames and (500.0/2048) for red science frames. [-1.0]

## 10.4 flames\_cal\_predict

The recipe flames\_cal\_predict computes the line and order guess tables using a model of UVES and the atmospheric pressure information written in the header of the frame, the known offset between the UVES slit's center position and the one of the simultaneous calibration fibre, temperature and the instrument setting provided by the FITS header of the raw formatcheck frame which is acquired by illuminating the simultaneous fibre with a line emission lamp.

### 10.4.1 Input

| frame tag/category    | nr | filename example                             |
|-----------------------|----|----------------------------------------------|
| FIB_ARC_LAMP_FORM_RED | 1  | /path_raw/flames_uves_arc_lamp_form_red.fits |
| LINE_REFER_TABLE      | 1  | /path_ref/thargood_3.fits                    |
| MASTER_BIAS_REDL      | ?  | /path_pro/masterbias_redl.fits               |
| MASTER_BIAS_REDU      | ?  | /path_pro/masterbias_redu.fits               |

#### 10.4.2 Output

| default recipe file name  | format | PRO.CATG         | short description |
|---------------------------|--------|------------------|-------------------|
| lineguesstable_redl.fits  | table  | FIB_LIN_GUE_REDL | Guess line table  |
| lineguesstable_redu.fits  | table  | FIB_LIN_GUE_REDU | Guess line table  |
| orderguesstable_redl.fits | table  | FIB_ORD_GUE_REDL | Guess order table |
| orderguesstable_redu.fits | table  | FIB_ORD_GUE_REDU | Guess order table |

The guess line table contains the following columns:

| X     | Position along x                                    |
|-------|-----------------------------------------------------|
| Y     | Position along y                                    |
| PEAK  | line peak                                           |
| Ident | line catalog wavelength                             |
| YNEW  | Computed predicted line y position                  |
| Order | Relative order number                               |
| WAVEC | Predicted line wavelength of line peak              |
| Aux   | Product of wavelength and order number              |
| XREG  | Result of the polynomial regression XREG=Aux(X)     |
| Pixel | Local dispersion                                    |
| RORD  | Order loaction (ouble precision to use it in a fit) |
| XPRED | Predicted X line position                           |

|     | 1.                               | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 59 of 104              |

| YPRED   | Predicted Y line position                                 |
|---------|-----------------------------------------------------------|
| XDIF    | Difference between measured and predicted X line position |
| YDIF    | Difference between measured and predicted Y line position |
| SELPLOT | selection column                                          |

The guess order table contains the following columns:

| ABS_ORDER | Absolute order number               |
|-----------|-------------------------------------|
| ORDER     | Relative order number               |
| X         | Position along x                    |
| Y         | Position along y                    |
| YFIT      | Computed predicted order y position |
| RESIDUAL  | Residual (Y-YFIT)                   |

# 10.4.3 Quality control

The pipeline generates the following QC parameters:

| QC.MODEL.NLINALL  | Total number of detected lines                                 |
|-------------------|----------------------------------------------------------------|
| QC.MODEL.NLINSEL  | Number of selected lines                                       |
| QC.MODEL.DIFFXRMS | RMS difference of predicted and measured line x positions      |
| QC.MODEL.DIFFXAVG | Mean difference of predicted and measured line x positions     |
| QC.MODEL.DIFFXMED | Median difference of predicted and measured line x positions   |
| QC.MODEL.DIFFYRMS | RMS difference of predicted and measured line y positions      |
| QC.MODEL.DIFFYAVG | Mean difference of predicted and measured line y positions     |
| QC.MODEL.DIFFYMED | Median difference of predicted and measured line y positions   |
| QC.MODEL.RESXRMS  | Std dev of X difference to physical model                      |
| QC.MODEL.RESXAVG  | Average of X difference to physical model                      |
| QC.MODEL.RESXMED  | Median of X difference to physical model                       |
| QC.MODEL.RESYRMS  | Std dev of Y difference to physical model                      |
| QC.MODEL.RESYAVG  | Average of Y difference to physical model                      |
| QC.MODEL.RESYMED  | Median of Y difference to physical model                       |
| QC.MODEL.WLENMIN  | Minimum predicted lines wavelength                             |
| QC.MODEL.WLENMAX  | Maximum predicted lines wavelength                             |
| QC.MODEL.ORDMIN   | Minimum predicted absolute order                               |
| QC.MODEL.ORDMAX   | Maximum predicted absolute order                               |
| QC.WLENMIN        | Minimum wavelength of spectral format                          |
| QC.WLENMAX        | Maximum wavelength of spectral format                          |
| QC.ORDMIN         | Minimum relative order                                         |
| QC.ORDMAX         | Maximum relative order                                         |
| QC.FIB1.ABSTRANS  | Average transmission countrate measured on the fibre           |
| QC.FIB1.NHOTPIX   | Number of found hot pixels and hot columns.                    |
| QC.FIB1.PLATENO   | This is the Id of the plate to which the fibres were connected |

|     |                                           | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|-------------------------------------------|--------|------------------------|
| ESO | <b>O</b> FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
|     |                                           | Date:  | Date 2013-05-06        |
|     |                                           |        | 60 of 104              |

## 10.4.4 Parameters

| mbox_x                       | :  | Match box X size. [40]                                |
|------------------------------|----|-------------------------------------------------------|
| mbox_y                       | :  | Match box Y size. [40]                                |
| trans_x                      | :  | Detector translation along X. [0.0]                   |
| trans_y                      | :  | Detector translation along Y. [0.0]                   |
| ech_angle_off                | :  | Offset on echelle angle. [0.0]                        |
| cd_angle_off                 | :  | Offset on cross disperser angle. [0.0]                |
| <pre>ccd_rot_angle_off</pre> | :  | Offset on CCD rotation angle. [0.0]                   |
| compute_regression_s         | SW | : Compute regression?. [TRUE]                         |
| x_axis_scale                 | :  | Scale X axis. [0.0]                                   |
| y_axis_scale                 | :  | Scale Y axis. [0.0]                                   |
| def_pol1                     | :  | Polynomial X deg. [4]                                 |
| def_pol2                     | :  | Polynomial Y deg. [5]                                 |
| kappa                        | :  | Kappa value in kappa sigma clipping on RESIDUAL       |
|                              |    | between YFIT and Y columns. [4.5]                     |
| tol                          | :  | Tolerance in kappa sigma clipping on RESIDUAL between |
|                              |    | YFIT and Y columns. [2.0]                             |

Pls note that to reduce 520 data (usually obtained with plate 1) taken after June 2012, in order to improve quality of the guess line table, the user should set **mbox\_x** to 15.

### 10.5 flames\_cal\_orderpos

The recipe flames\_cal\_orderpos generates an order table from a raw frame taken with the calibration fibre illuminated by a continuum lamp. This order table is more accurate than the order guess table previously generated. Additional product of this step is an order fibre flat frame, that covers the simultaneous calibration fibre, to be added to the pool of odd-even order flat frame to build a complete base of uncontaminate fibres frame to extract science data.

#### 10.5.1 Input

| frame tag/category | nr | filename example                          |
|--------------------|----|-------------------------------------------|
| FIB_ORDEF_RED      | 1  | /path_raw/flames_uves_order_flat_red.fits |
| FIB_ORD_GUE_REDL   | ?! | /path_pro/orderguesstable_redl.fits       |
| FIB_ORD_GUE_REDU   | ?! | /path_pro/orderguesstable_redu.fits       |
| MASTER_BIAS_REDL   | ?  | /path_pro/masterbias_redl.fits            |
| MASTER_BIAS_REDU   | ?  | /path_pro/masterbias_redu.fits            |

### 10.5.2 Output

| default recipe file name | format | PRO.CATG         | short description             |
|--------------------------|--------|------------------|-------------------------------|
| ordertable_redl.fits     | table  | FIB_ORD_TAB_REDL | order table                   |
| ordertable_redu.fits     | table  | FIB_ORD_TAB_REDU | order table                   |
| order_def_redl.fits      | table  | FIB_ORDEF_REDL   | fiber order def rotated frame |
| order_def_redu.fits      | table  | FIB_ORDEF_REDU   | fiber order def rotated frame |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 61 of 104              |

The output table contains the columns

| Order           | Relative order number                 |
|-----------------|---------------------------------------|
| Х               | Position along x                      |
| Y               | Order line centroid location          |
| dY              | Uncertainty of Y                      |
| Residual_Square | Squared residual                      |
| OrderRMS        | Root mean squared residual of initial |
|                 | one-dimensional linear fit of order   |
| OrderSlope      | Slope of order                        |
| Yfit            | The fitted order location             |
| dYfit_Square    | Variance of Yfit                      |
| Residual        | (Y - Yfit)                            |

# 10.5.3 Quality control

| QC.ORD.RESIDMIN | Min residuals in order table   |
|-----------------|--------------------------------|
| QC.ORD.RESIDMAX | Max residuals in order table   |
| QC.ORD.RESIDAVG | Mean residuals in order table  |
| QC.ORD.RESIDRMS | RMS residuals in order table   |
| QC.ORD.NPRED    | Predicted number of orders     |
| QC.ORD.NDET     | Detected number of orders      |
| QC.ORD.NPOSALL  | Number of positions found      |
| QC.ORD.NPOSSEL  | Number of positions selected   |
| QC.ORDMIN       | Minimum (relative) order value |
| QC.ORDMAX       | Maximum (relative) order value |

Where the residuals measure the difference between the order solution obtained by applying the polynomial model and the corresponding order location measurements on the frame.

### 10.5.4 Parameters

| use_guess_tab  | : If a Guess order table is provided this parameter<br>defines how it is used:0: No usage, 1: use it to set<br>lower/upper Y rows where order are searched 2: the<br>order table tries to fully match the guess. [1]                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| radx           | : X-radius of median filtering window. [2]                                                                                                                                                                                                                                     |
| rady           | : Y-radius of median filtering window. [1]                                                                                                                                                                                                                                     |
| mmethod        | : Background subtraction method. If equal to 'median'<br>the background is sampled using the median of a<br>sub-window. If 'minimum', the minimum sub-window<br>value is used. If 'no', no background subtraction is<br>done. <median minimum="" no=""  =""> [median]</median> |
| backsubgrid    | : Number of grid points (in x- and y-direction) used to estimate the background (mode=poly). [50]                                                                                                                                                                              |
| backsubradiusy | : The height (in pixels) of the background sampling<br>window is (2*radiusy + 1). This parameter is not<br>corrected for binning. [2]                                                                                                                                          |

|     |                                    | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|------------------------------------|--------|------------------------|
| ESO | O FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                    | Date:  | Date 2013-05-06        |
|     |                                    | Page:  | 62 of 104              |

| backsubkappa | : The value of kappa in the one-sided kappa-sigma clipping used to estimate the background (mode=poly). [4.0]                                                                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| backsubdegx  | : Degree (in x) of polynomial used to estimate the background (mode=poly). [2]                                                                                                                                                                             |
| backsubdegy  | : Degree (in y) of polynomial used to estimate the background (mode=poly). [2]                                                                                                                                                                             |
| samplewidth  | : Separation of sample traces (used by Hough transform) in input image. [50]                                                                                                                                                                               |
| minslope     | : Minimum possible line slope. This should be the<br>'physical' slope on the chip, i.e. not taking binning<br>factors into account, which is handled by the recipe.<br>[0.0]                                                                               |
| maxslope     | : Maximum possible line slope. [0.2]                                                                                                                                                                                                                       |
| sloperes     | : Resolution (width in pixels) of Hough space. [120]                                                                                                                                                                                                       |
| pthres       | : In automatic mode, or if the number of orders to<br>detect is read from a guess table, the detection of<br>new lines stops when the intensity of a candidate<br>line drops to less than 'pthres' times the intensity<br>of the previous detection. [0.2] |
| tracestep    | : The step size used when tracing the orders. [10]                                                                                                                                                                                                         |
| minthresh    | : The minimum threshold value is (min + minthres*(max - min)). Here 'min' and 'max' are the lowest and highest pixel values in the central bin of the order. [0.01]                                                                                        |
| maxgap       | : If the order line drops below detection threshold, the<br>order tracing algorithm will try to jump a gap of<br>maximum size 'maxgap' multiplied by the image width.<br>[0.2]                                                                             |
| maxrms       | : When fitting the orders with straight lines, this is<br>the maximum allowed RMS relative to the median RMS of<br>all orders. [100.0]                                                                                                                     |
| defpoll      | : The degree of the bivarite fit (cross dispersion<br>direction). If negative, the degree is optimized to<br>give the best fit. [-1]                                                                                                                       |
| defpol2      | : The degree of the bivarite fit (order number). If<br>negative, the degree is optimized to give the best<br>fit. [-1]                                                                                                                                     |
| kappa        | : Used for kappa-sigma clipping of the final polynomial fit. If negative, no clipping is done. [6.0]                                                                                                                                                       |

# 10.6 flames\_cal\_prep\_sff\_ofpos

The recipe uves\_cal\_prep\_sff\_ofpos is used to determine the fibre order table and construct several frames needed to extract a science fibre frame using tree input fibre frames obtained by illumination with a continuum source first the odd fibres, then the even fibres and, finally all the fibres.

### 10.6.1 Input

| frame tag/category | nr | filename example                               |
|--------------------|----|------------------------------------------------|
| FIB_FF_ODD_RED     | 1  | <pre>/path_raw/flames_uves_odd_red.fits</pre>  |
| FIB_FF_EVEN_RED    | 1  | <pre>/path_raw/flames_uves_even_red.fits</pre> |
| FIB_FF_ALL_RED     | 1  | <pre>/path_raw/flames_uves_all_red.fits</pre>  |
| MASTER_BIAS_REDL   | ?  | <pre>/path_pro/masterbias_redl.fits</pre>      |
| MASTER_BIAS_REDU   | ?  | <pre>/path_pro/masterbias_redu.fits</pre>      |
| FIB_ORD_TAB_REDL   | 1  | <pre>/path_pro/ordertable_redl.fits</pre>      |

|     | <b>50</b> FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------------|--------|------------------------|
| ESO |                                            | Issue: | Issue 15.0             |
| LOU |                                            | Date:  | Date 2013-05-06        |
|     |                                            | Page:  | 63 of 104              |

| FIB_ORD_TAB_REDU  | 1 | /path_pro/ordertable_redu.fits                 |
|-------------------|---|------------------------------------------------|
| MASTER_SFLAT_REDL | 1 | <pre>/path_pro/masterflat_set1_redl.fits</pre> |
| MASTER_SFLAT_REDL | 1 | /path_pro/masterflat_set2_redl.fits            |
| MASTER_SFLAT_REDL | 1 | <pre>/path_pro/masterflat_set3_redl.fits</pre> |
| MASTER_SFLAT_REDU | 1 | <pre>/path_pro/masterflat_set1_redu.fits</pre> |
| MASTER_SFLAT_REDU | 1 | <pre>/path_pro/masterflat_set2_redu.fits</pre> |
| MASTER_SFLAT_REDU | 1 | <pre>/path_pro/masterflat_set3_redu.fits</pre> |

Note: Simultaneous fibre order table frames used to be classified as FIB\_ORD\_GUE\_REDL/REDU. This tag is the same adopted for guess order tables generated by the uves\_cal\_predict and flames\_cal\_predict recipes. In order to remove this product classification name clash, and for backward compatibility (in order to support data reduction of input data generated by the MIDAS based pipeline) both tags are supported. The user is advised to use the new tag (FIB\_ORD\_TAB\_REDL/REDU), in case of data reduced with the CPL based pipeline. Pls note that to reduce 520 data to improve reduction quality, the user should set **save\_flat\_size** to 1.

#### 10.6.2 Output

| default recipe filename | format    | PRO.CATG             | short description                 |
|-------------------------|-----------|----------------------|-----------------------------------|
| xt_odd_1                | table     | FIB_FF_ODD_INFO_TAB  | info table                        |
| xt_even_1               | table     | FIB_FF_EVEN_INFO_TAB | info table                        |
| xt_all_1                | table     | FIB_FF_ODD_INFO_TAB  | info table                        |
| slitff_common_redl      | imagelist | SLIT_FF_COM_REDL     | slitff common frame               |
| slitff_norm_redl        | image     | SLIT_FF_NOR_REDL     | slitff common frame               |
| slitff_dtc_redl         | imagelist | SLIT_FF_DTC_REDL     | slitff data frame                 |
| slitff_sgc_redl         | imagelist | SLIT_FF_SGC_REDL     | slitff sigma frame                |
| slitff_bpc_redl         | imagelist | SLIT_FF_BPC_REDL     | slitff badpixel frame             |
| slitff_bnc_redl         | imagelist | SLIT_FF_BNC_REDL     | slitff frames boundaries          |
| orfl                    | table     | FIB_ORDEF_TABLE_REDL | fibre order table                 |
| fibreff_common_redl     | imagelist | FIB_FF_COM_REDL      | fibff common frame                |
| fibreff_norm_redl       | imagelist | FIB_FF_NOR_REDL      | fibff common frame                |
| fibreff_nsigma_redl     | imagelist | FIB_FF_NSG_REDL      | Normalisation sigmas for fibre FF |
| fibreff_dtc_redl        | imagelist | FIB_FF_DTC_REDL      | fibff data frame                  |
| fibreff_sgc_redl        | imagelist | FIB_FF_SGC_REDL      | fibff sigma frame                 |
| fibreff_bpc_redl        | imagelist | FIB_FF_BPC_REDL      | fibff badpixel frame              |
| slitff_common_redu      | imagelist | SLIT_FF_COM_REDU     | slitff common frame               |
| slitff_norm_redu        | image     | SLIT_FF_NOR_REDU     | slitff common frame               |
| slitff_dtc_redu         | imagelist | SLIT_FF_DTC_REDU     | slitff data frame                 |
| slitff_sgc_redu         | imagelist | SLIT_FF_SGC_REDU     | slitff sigma frame                |
| slitff_bpc_redu         | imagelist | SLIT_FF_BPC_REDU     | slitff badpixel frame             |
| slitff_bnc_redu         | imagelist | SLIT_FF_BNC_REDU     | slitff frames boundaries          |
| orfu                    | table     | FIB_ORDEF_TABLE_REDU | fibre order table                 |
| fibreff_common_redu     | imagelist | FIB_FF_COM_REDU      | fibff common frame                |
| fibreff_norm_redu       | imagelist | FIB_FF_NOR_REDU      | fibff common frame                |
| fibreff_nsigma_redu     | imagelist | FIB_FF_NSG_REDU      | Normalisation sigmas for fibre FF |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 64 of 104              |

| fibreff_dtc_redu | imagelist | FIB_FF_DTC_REDU | fibff data frame     |
|------------------|-----------|-----------------|----------------------|
| fibreff_sgc_redu | imagelist | FIB_FF_SGC_REDU | fibff sigma frame    |
| fibreff_bpc_redu | imagelist | FIB_FF_BPC_REDU | fibff badpixel frame |

# 10.6.3 Quality control

### 10.6.4 Parameters

| ext_method     | : Extraction method. <std fop="" fst="" opt="" qop="" qst=""  =""><br/>[opt]</std>                                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bias_method    | : Bias subtraction method, M for master bias frame, N<br>for no bias subtraction, V to subtract a constant<br>bias level defined by the parameter bias_value. <m  <br="">V   N&gt; [M]</m> |
| bias_value     | : Bias value (only if bias_method = V). [200]                                                                                                                                              |
| filter_switch  | : Filter switch. <none median=""  =""> [none]</none>                                                                                                                                       |
| sat_thr        | : Saturation threshold. [55000]                                                                                                                                                            |
| fileprep       | : Slitff* and Fibreff* file preparation. If fast<br>extraction method is used it should be set to FALSE.<br>[TRUE]                                                                         |
| cubify         | : Cubify switch. [TRUE]                                                                                                                                                                    |
| save_flat_size | : To be sure to use the flat part of a slit flatsone may need to subtract this bit. [-2]                                                                                                   |

# 10.7 flames\_cal\_wavecal

The recipe flames\_cal\_wavecal is used to determine the wavelength dispersion coefficients and construct a wavelength calibration table from a frame were all the fibres are illuminated from a arc line calibration lamp.

### 10.7.1 Input

| frame tag/category   | nr | filename example                                   |
|----------------------|----|----------------------------------------------------|
| FIB_ARC_LAMP_RED     | 1  | <pre>/path_raw/flames_uves_arc_lamp_red.fits</pre> |
| MASTER_BIAS_REDL     | ?  | <pre>/path_pro/masterbias_redl.fits</pre>          |
| MASTER_BIAS_REDU     | ?  | <pre>/path_pro/masterbias_redu.fits</pre>          |
| MASTER_FLAT_REDL     | ?! | <pre>/path_pro/masterflat_redl.fits</pre>          |
| MASTER_FLAT_REDU     | ?! | <pre>/path_pro/masterflat_redu.fits</pre>          |
| FIB_ORDEF_TABLE_REDL | 1  | /path_pro/orfl.fits                                |
| FIB_ORDEF_TABLE_REDU | 1  | /path_pro/orfu.fits                                |
| FIB_LIN_GUE_REDL     | 1  | <pre>/path_pro/lineguesstable_redl.fits</pre>      |
| FIB_LIN_GUE_REDU     | 1  | <pre>/path_pro/lineguesstable_redu.fits</pre>      |
| LINE_REFER_TABLE     | 1  | <pre>/path_ref/thargood_3.fits</pre>               |

## 10.7.2 Output

| default recipe file name | format | PRO.CATG            | short description |
|--------------------------|--------|---------------------|-------------------|
| linetable_redl.fits      | table  | FIB_LINE_TABLE_REDL | line table        |

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 65 of 104              |

linetable\_redu.fits | table | FIB\_LINE\_TABLE\_REDU | line table

The output line table(s), LINE\_TABLE\_REDL, LINE\_TABLE\_REDU contains three extensions per fibre (i.e. 6x3=18 or 8x3=24 extensions). The first extensions contain a table with the columns described below

| X                |                                                           |
|------------------|-----------------------------------------------------------|
| X                | Horizontal position (from Gaussian fit) of detected line  |
| dX               | Uncertainty (one sigma) of X                              |
| XWidth           | Width (in pixels) of detected line (from Gaussian fit)    |
| Y                | Relative order number of detected line                    |
| Peak             | Intensity of detected line                                |
| Background       | Fitted background (ADU) of detected line                  |
| Slope            | Linear background slope (ADU/pixel) of detected line      |
| Order            | Relative order number of detected line                    |
| AbsOrder         | Absolute order number of detected line                    |
| Ynew             | Vertical position of detected line                        |
| WaveC            | Wavelength of this line (computed using the resulting     |
|                  | dispersion relation)                                      |
| dLambdaC         | Uncertainty (one sigma) of 'WaveC'.                       |
| Pixel            | The local dispersion in A/pixel.                          |
| Residual         | Residual (in A) of this line                              |
| Residual_pix     | Residual (in pixels) of this line                         |
| Lambda_candidate | Nearest line in catalogue                                 |
| dLambda_cat_sq   | Squared distance to nearest catalogue line                |
| dLambda_nn_sq    | Squared distance to nearest neighbour multiplied by ALPHA |
| Ident            | The wavelength associated with this emission line,        |
|                  | or NULL if this line was not identified.                  |
| dIdent           | Uncertainty of catalogue wavelength                       |
| Select           | 1 if the line was identified, 0 otherwise                 |
| NLinSol          | 1 if the line was identified and accepted for the         |
|                  | polynomial fit, 0 otherwise                               |
| Intensity        | Intensity of detected line scaled to unit exposure        |
|                  | time. (This column is present only if a LINE_INTMON_TABLE |
|                  | is provided.)                                             |
| L                | <b>r</b>                                                  |

The 2nd table extension contains the dispersion relation on the form  $p(x, m) = \lambda \cdot m$ , where m is the order number. The 3rd table extension contains the map from (pixel, pixel)-space to physical order numbers (used internally by the calibration recipe, a 2d polynomial on the form p(x, y) = m).

If there is more than one extraction window (default is 3), the results of each calibration is stored in subsequent table extensions of the same FITS file. For example, extensions 4, 5 and 6 would contain the resulting line table (and its two associated polynomials) for the second extraction window. The results for the calibration of the n'th extraction window is stored in extensions (3\*n - 2) to 3\*n.

The offset of the extraction window is stored in the FITS keyword like "HISTORY OFFSET -7.5". The corresponding window number (counting from 1) is stored in keywords like "HISTORY WINDOW 3"

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | ESO FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 66 of 104              |

The polynomials are stored in table extensions as in the example

| Order1 | Order2 | Coeff |
|--------|--------|-------|
| -1     | -1     | a0    |
| -1     | -1     | a1    |
| -1     | -1     | a2    |
| -1     | -1     | b0    |
| -1     | -1     | b1    |
| -1     | -1     | b2    |
| 0      | 0      | c00   |
| 0      | 1      | c01   |
| 0      | 2      | c02   |
| 1      | 0      | c10   |
| 1      | 1      | c11   |
| 1      | 2      | c12   |
| 2      | 0      | c20   |
| 22     | 1      | c21   |
| 2      | 2      | c22   |

The third column contains the polynomial coefficients corresponding to the degree defined by the two first columns. The six first table rows defines a linear transformation of the dependent and independent variables. For example the table shown represents the polynomial p defined by

$$(p(x,y) - a_0)/b_0 = q((x - a_1)/b_1, (y - a_2)/b_2)$$

and

$$q(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} c_{ij} x^{i} y^{j}$$

The linear transformation of the three variables was introduced in order to ensure numerical stability in the polynomial fitting routine.

### 10.7.3 Quality control

The recipe computes the following quality control parameters:

| QC.FWHMAVG       | Average FWHM of lines selected                              |
|------------------|-------------------------------------------------------------|
| QC.FWHMRMS       | Standard deviation of FWHM of selected lines                |
| QC.FWHMMED       | Median FWHM of selected lines                               |
| QC.RESOLAVG      | Average resolving power of selected lines                   |
| QC.RESOLRMS      | Standard deviation of the resolving power of selected lines |
| QC.RESOLMED      | Median resolving power of selected lines                    |
| QC.LINE.RESIDAVG | Mean of residuals of line positions to fit                  |

|     |                                        | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual       | Issue: | Issue 15.0             |
| LOU | ESO I EXAMES O VEST ipenne Oser Mandar | Date:  | Date 2013-05-06        |
|     |                                        | Page:  | 67 of 104              |

| QC.LINE.RESIDRMS      | Sigma of residuals of line positions to fit                                |
|-----------------------|----------------------------------------------------------------------------|
| QC.WLENMIN            | Minimum wavelength of detected order                                       |
| QC.WLENMAX            | Maximum wavelength of detected order                                       |
| QC.ORDMIN             | Minimum order number detected                                              |
| QC.ORDMAX             | Maximum order number detected                                              |
| QC.NLINTOT            | Total number of lines found on the frame                                   |
| QC.NLINSEL            | Number of selected lines                                                   |
| QC.NLINRES1           | Number of lines with residuals $< 0.1$ nm                                  |
| INS.SLIT3.WID         | Slit width                                                                 |
| INS.GRAT2.WLEN        | Grating central wavelength [nm].                                           |
| INS.TEMP2.MEAN        | Average temperature [C].                                                   |
| QC.NHOTPIX            | Number of pixelsoutside the range [-20,55000]                              |
| QC.PLATENO            | Plate setting value                                                        |
| QC.FIB8.DRSNO         | Sequential number of detected fibre                                        |
| QC.FIB8.SEQ           | Sequential number of detected fibre                                        |
| QC.FIB8.POS           | Detected fibre Y position relative to order slit center                    |
| QC.FIB8.MSK           | Detected fibre mask value (1 if the fibre was recognised as lit)           |
| QC.FIB8.FWHMAVG       | Average FWHM of lines detected for the given fibre                         |
| QC.FIB8.FWHMRMS       | RMS of lines detected for the given fibre                                  |
| QC.FIB8.FWHMMED       | Median FWHM of lines detected for the given fibre                          |
| QC.FIB8.RESOLAVG      | Average instrumental resolution for the given fibre                        |
| QC.FIB8.RESOLRMS      | RMS of instrumental resolution for the given fibre                         |
| QC.FIB8.RESOLMED      | Median instrumental resolution for the given fibre                         |
| QC.FIB8.LINE.RESIDAVG | Average line residuals to reference values for the given fibre             |
| QC.FIB8.LINE.RESIDRMS | RMS of line residuals to reference values for the given fibre              |
| QC.FIB8.WLENMIN       | Minimum wavelength [nm] of detected lines for the given fibre              |
| QC.FIB8.WLENMAX       | Maximum wavelength [nm] of detected lines for the given fibre              |
| QC.FIB8.ORDMIN        | Minimum order value for the given fibre                                    |
| QC.FIB8.ORDMAX        | Maximum order value for the given fibre                                    |
| QC.FIB8.NLINTOT       | Total number of detected lines for the given fibre                         |
| QC.FIB8.NLINSEL       | Number of selected lines for the given fibre                               |
| QC.FIB8.NLINSOL       | Number of lines used for the final wavelength solution for the given fibre |
| QC.FIB8.NLINRES1      | Number of lines with residuals less than 1 Åfor the given fibre            |

The line FWHMs and the corresponding resolving power are measured along the dispersion direction (see also Figure 11.2). The residuals measures the differences between the solution from the polynomial fit model and the corresponding line positions found on the arc lamp frame (see also Figure 11.1).

#### 10.7.4 Parameters

| nwindows | : Number of extraction windows per trace. The windows |
|----------|-------------------------------------------------------|
|          | will be aligned (i.e. no overlap and no spacing       |
|          | between adjacent windows). Unless an offset is        |
|          | specified, the middle window(s) is centered on the    |
|          | trace. [1]                                            |
| length   | : Length (in pixels) of each extraction window. This  |

|   |                                             | Doc:   | VLT-MAN-ESO-19500-3016 |           |
|---|---------------------------------------------|--------|------------------------|-----------|
| I | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |           |
| 1 |                                             | Date:  | Date 2013-05-06        |           |
|   |                                             |        | Page:                  | 68 of 104 |

|                    | parameter is also equal to the seperation of adjacent<br>window centers, causing the extraction windows to<br>always be aligned. The parameter is automatically<br>adjusted according to the binning of the input raw<br>frame. If negative, the extraction window length is<br>determined automatically to cover the full slit.<br>[7.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| offset             | A global offset (in pixels) of all extraction windows.<br>[0.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| extract.method     | : Extraction method. <average 2d="" linear="" optimal="" weighted=""  =""> [average]</average>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| extract.kappa      | : In optimal extraction mode, this is the threshold for<br>bad (i.e. hot/cold) pixel rejection. If a pixel<br>deviates more than kappa*sigma (where sigma is the<br>uncertainty of the pixel flux) from the inferred<br>spatial profile, its weight is set to zero. If this<br>parameter is negative, no rejection is performed.<br>[10.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| extract.chunk      | : In optimal extraction mode, the chunk size (in pixels)<br>used for fitting the analytical profile (a fit of the<br>analytical profile to single bins would suffer from<br>low statistics). [32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| extract.profile    | : In optimal extraction mode, the kind of profile to<br>use. 'gauss' gives a Gaussian profile, 'moffat' gives<br>a Moffat profile with beta=4 and a possible linear<br>sky contribution. 'virtual' uses a virtual resampling<br>algorithm (i.e. measures and uses the actual object<br>profile). 'constant' assumes a constant spatial<br>profile and allows optimal extraction of wavelength<br>calibration frames. 'auto' will automatically select<br>the best method based on the estimated S/N of the<br>object. For low S/N, 'moffat' or 'gauss' are<br>recommended (for robustness). For high S/N, 'virtual'<br>is recommended (for accuracy). In the case of virtual<br>resampling, a precise determination of the order<br>positions is required; therefore the order-definition<br>is repeated using the (assumed non-low S/N) science<br>frame. <constant auto="" gauss="" moffat="" virtual=""  =""><br/>[auto]</constant> |
| extract.skymethod  | <pre>: In optimal extraction mode, the sky subtraction method<br/>to use. 'median' estimates the sky as the median of<br/>pixels along the slit (ignoring pixels close to the<br/>object), whereas 'optimal' does a chi square<br/>minimization along the slit to obtain the best<br/>combined object and sky levels. The optimal method<br/>gives the most accurate sky determination but is also<br/>a bit slower than the median method. <median  <br="">optimal&gt; [optimal]</median></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| extract.oversample | : The oversampling factor used for the virtual resampling algorithm. If negative, the value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is > 200. [-1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| extract.best       | : (optimal extraction only) If false (fastest), the<br>spectrum is extracted only once. If true (best), the<br>spectrum is extracted twice, the second time using<br>improved variance estimates based on the first<br>iteration. Better variance estimates slightly improve<br>the obtained signal to noise but at the cost of<br>increased execution time. [TRUE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| range              | : Width (in pixels) of search window is 2*range + 1.<br>This parameter is automatically adjusted according to<br>binning. [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| minlines           | : Minimum number of lines to detect. If zero, the default value (2000 for BLUE/REDL chips; 1000 for REDU chip) is used. [0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|     | Doc:                                    | VLT-MAN-ESO-19500-3016 |                 |
|-----|-----------------------------------------|------------------------|-----------------|
| ESO | FLAMES-UVES Pipeline User Manual        | Issue:                 | Issue 15.0      |
| LOU | ESO I L'ANIES O VEST ipenne Oser Mandar | Date:                  | Date 2013-05-06 |
|     |                                         | Page:                  | 69 of 104       |

| maxlines       | : Maximum number of lines to detect. If zero, the default value (2400 for BLUE/REDL chip; 1400 for REDU chip) is used. [0]                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| shiftmax       | <ul> <li>The maximum shift (in pixels) compared to guess<br/>solution. This parameter is automatically corrected<br/>for binning. [10.0]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
| shiftstep      | : The step size (in pixels) used when searching for the optimum shift. This parameter is automatically corrected for binning. [0.1]                                                                                                                                                                                                                                                                                                                                                                                                         |
| shifttoler     | : Tolerance (in pixels) when matching shifted lines.<br>This parameter is not adjusted according to binning.<br>[0.05]                                                                                                                                                                                                                                                                                                                                                                                                                      |
| alpha          | : The parameter that controls the distance to the nearest neighbours. [0.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| maxerror       | : This parameter controls the graceful exit of the<br>identification loop. If the RMS of the global fit<br>exceeds this value (in pixels) the iteration stops.<br>[20.0]                                                                                                                                                                                                                                                                                                                                                                    |
| degree         | : Degrees of the global 2d dispersion polynomial. If a<br>negative number is specified, the polynomial degrees<br>are automatically selected by starting from (1, 1)<br>and inreasing the degrees as long as the RMS residual<br>decreases significantly. [5]                                                                                                                                                                                                                                                                               |
| tolerance      | : Tolerance of fit. If positive, the tolerance is in<br>pixel units. If negative, abs(tolerance) is in<br>wavelength units. Lines with residuals worse than the<br>tolerance are excluded from the final fit. Unlike in<br>previous versions, this parameter is not corrected<br>for CCD binning. This rejection based on the absolute<br>residual in pixel can be effectively disabled by<br>setting the tolerance to a very large number (e.g.<br>9999). In that case outliers will be rejected using<br>only kappa sigma clipping. [0.6] |
| kappa          | : Lines with residuals more then kappa stdev are rejected from the final fit. [4.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rebin.wavestep | : The bin size (in w.l.u.) in wavelength space. If<br>negative, a step size of 2/3 * ( average pixel size )<br>is used. [-1.0]                                                                                                                                                                                                                                                                                                                                                                                                              |
| rebin.scale    | : Whether or not to multiply by the factor dx/dlambda<br>(pixels per wavelength) during the rebinning. This<br>option is disabled as default in concordance with the<br>method used in the MIDAS pipeline. This option should<br>be set to true to convert the observed flux (in<br>pixel-space) to a flux per wavelength (in<br>wavelength-space). [FALSE]                                                                                                                                                                                 |

Pls note that to reduce 520 data (usually obtained with plate 1) taken after June 2012, in order to improve robustness of this step, the user should increase **tolerance** to 1.4 and efventually also decrease **minlines** to 800.

## 10.8 flames\_obs\_scired

This recipe reduces a science fiber frame.

#### 10.8.1 Input

| frame tag/category nr filename example |
|----------------------------------------|
|----------------------------------------|

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 70 of 104              |

| FIB_SCL_RED1/path_ant/fames_uves_science_red.fitsSLIT_FF_COM_REDL1/path_pro/slitff_com_redl.fitsSLIT_FF_NOR_REDU1/path_pro/slitff_nor_redl.fitsSLIT_FF_NOR_REDU1/path_pro/slitff_nor_redl.fitsSLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redl.fitsSLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_om_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_om_redl.fitsSLIT_FF_BNC_REDL1/path_pro/fibreff_com_redl.fitsSLIT_FF_BNC_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_otc_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_bc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/pa                                                                              |                      |   |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|----------------------------------------|
| SLIT_FF_COM_REDU1/path_pro/slitff_com_redu.fitsSLIT_FF_NOR_REDL1/path_pro/slitff_nor_redu.fitsSLIT_FF_NOR_REDU1/path_pro/slitff_nor_redu.fitsSLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redu.fitsSLIT_FF_DTC_REDU1/path_pro/slitff_btc_redu.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_btc_redu.fitsSLIT_FF_BPC_REDU1/path_pro/slitff_btc_redu.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redu.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redu.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_btc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_btc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/fibreff_com_redu.fitsSLIT_FF_SGC_REDU1/path_pro/fibreff_com_redu.fitsFIB_FF_OMR_REDL1/path_pro/fibreff_com_redu.fitsFIB_FF_ONG_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/p                                                                              | FIB_SCI_RED          | 1 | /path_raw/flames_uves_science_red.fits |
| SLIT_FF_NOR_REDL1/path_pro/slitff_nor_redl.fitsSLIT_FF_NOR_REDU1/path_pro/slitff_nor_redu.fitsSLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redl.fitsSLIT_FF_DTC_REDU1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_brc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_brc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_OR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_brc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SG_REDL1/path_pro/                                                                              |                      |   |                                        |
| SLIT_FF_NOR_REDU1/path_pro/slitff_nor_redu.fitsSLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redl.fitsSLIT_FF_DTC_REDU1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDU1/path_pro/slitff_bpc_redl.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_brc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_OR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_OR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_FF_SG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SNG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SNC_REDL1/path_pr                                                                              |                      |   | · ·                                    |
| SLIT_FF_DTC_REDL1/path_pro/slitff_dtc_redl.fitsSLIT_FF_DTC_REDU1/path_pro/slitff_dtc_redu.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDU1/path_pro/slitff_bpc_redu.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_bpc_redu.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_bpc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redu.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_red.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_LINE_TA                                                                                                                                                                                                                                                                           | SLIT_FF_NOR_REDL     |   | · ·                                    |
| SLIT_FF_DTC_REDU1/path_pro/slitff_dtc_redu.fitsSLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDU1/path_pro/slitff_bc_redu.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_ORDEF_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_UNE_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_LINE_TABLE_REDL                                                            | SLIT_FF_NOR_REDU     | 1 | · ·                                    |
| SLIT_FF_BPC_REDL1/path_pro/slitff_bpc_redl.fitsSLIT_FF_BPC_REDU1/path_pro/slitff_bpc_redu.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_sgc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SNG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_LINE_TABLE_R                                                            |                      | 1 | · ·                                    |
| SLIT_FF_BPC_REDU1/path_pro/slitff_bpc_redu.fitsSLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_SNG_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfi.fitsFIB_LINE_TABLE_REDL1/path_pro/finetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/finetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/finetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/finetable_redl.fitsFIB_LINE_TABLE_REDL1 <td< td=""><td></td><td>1</td><td>/path_pro/slitff_dtc_redu.fits</td></td<> |                      | 1 | /path_pro/slitff_dtc_redu.fits         |
| SLIT_FF_SGC_REDL1/path_pro/slitff_sgc_redl.fitsSLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redl.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDU1/path_pro/slitff_bnc_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfi.fitsFIB_UINE_TABLE_REDL1/path_pro/orfi.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/in                                                                              | SLIT_FF_BPC_REDL     | 1 | /path_pro/slitff_bpc_redl.fits         |
| SLIT_FF_SGC_REDU1/path_pro/slitff_sgc_redu.fitsSLIT_FF_BNC_REDL1/path_pro/slitff_bnc_redu.fitsSLIT_FF_BNC_REDU1/path_pro/slitff_bnc_redu.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redu.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_bgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_SNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/off.fitsFIB_ORDEF_TABLE_REDL1/path_pro/off.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/inetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/ine                                                                              | SLIT_FF_BPC_REDU     | 1 | /path_pro/slitff_bpc_redu.fits         |
| SLIT_FF_BNC_REDL1/ path_pro/slitff_bnc_redl.fitsSLIT_FF_BNC_REDU1/ path_pro/slitff_bnc_redu.fitsFIB_FF_COM_REDL1/ path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDU1/ path_pro/fibreff_com_redu.fitsFIB_FF_NOR_REDL1/ path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDU1/ path_pro/fibreff_nor_redu.fitsFIB_FF_DOR_REDU1/ path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/ path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/ path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/ path_pro/fibreff_bpc_redl.fitsFIB_FF_SGC_REDL1/ path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/ path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/ path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/ path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/ path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/ path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/ path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/ path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/ path_pro/orfi.fitsFIB_LINE_TABLE_REDL1/ path_pro/fibreff_sgc_redu.fitsFIB_LINE_TABLE_REDL1/ path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/ path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/ path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/ path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL                                                                 | SLIT_FF_SGC_REDL     | 1 | /path_pro/slitff_sgc_redl.fits         |
| SLIT_FF_BNC_REDU1/path_pro/slitff_bnc_redu.fitsFIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDU1/path_pro/fibreff_com_redl.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_nor_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redl.fits                                                                                                                                                               | SLIT_FF_SGC_REDU     | 1 | /path_pro/slitff_sgc_redu.fits         |
| FIB_FF_COM_REDL1/path_pro/fibreff_com_redl.fitsFIB_FF_COM_REDU1/path_pro/fibreff_com_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/                                                                              | SLIT_FF_BNC_REDL     | 1 | /path_pro/slitff_bnc_redl.fits         |
| FIB_FF_COM_REDU1/path_pro/fibreff_com_redu.fitsFIB_FF_NOR_REDL1/path_pro/fibreff_nor_redu.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redu.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_unsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_unsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfi.fitsFIB_UINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/                                                                              | SLIT_FF_BNC_REDU     | 1 | /path_pro/slitff_bnc_redu.fits         |
| FIB_FF_NOR_REDL1/path_pro/fibreff_nor_redl.fitsFIB_FF_NOR_REDU1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redu.fitsFIB_FF_DTC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                      | FIB_FF_COM_REDL      | 1 | /path_pro/fibreff_com_redl.fits        |
| FIB_FF_NOR_REDU1/path_pro/fibreff_nor_redu.fitsFIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL2/path_pro/linetable_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIB_FF_COM_REDU      | 1 | /path_pro/fibreff_com_redu.fits        |
| FIB_FF_DTC_REDL1/path_pro/fibreff_dtc_redl.fitsFIB_FF_DTC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIB_FF_NOR_REDL      | 1 | /path_pro/fibreff_nor_redl.fits        |
| FIB_FF_DTC_REDU1/path_pro/fibreff_dtc_redu.fitsFIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                   | FIB_FF_NOR_REDU      | 1 | /path_pro/fibreff_nor_redu.fits        |
| FIB_FF_BPC_REDL1/path_pro/fibreff_bpc_redl.fitsFIB_FF_BPC_REDU1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                           | FIB_FF_DTC_REDL      | 1 | /path_pro/fibreff_dtc_redl.fits        |
| FIB_FF_BPC_REDU1/path_pro/fibreff_bpc_redu.fitsFIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_l_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                     | FIB_FF_DTC_REDU      | 1 | /path_pro/fibreff_dtc_redu.fits        |
| FIB_FF_SGC_REDL1/path_pro/fibreff_sgc_redl.fitsFIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDU1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                      | FIB_FF_BPC_REDL      | 1 | /path_pro/fibreff_bpc_redl.fits        |
| FIB_FF_SGC_REDU1/path_pro/fibreff_sgc_redu.fitsFIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIB_FF_BPC_REDU      | 1 | /path_pro/fibreff_bpc_redu.fits        |
| FIB_FF_NSG_REDL1/path_pro/fibreff_l_nsigma.fitsFIB_FF_NSG_REDU1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FIB_FF_SGC_REDL      | 1 | /path_pro/fibreff_sgc_redl.fits        |
| FIB_FF_NSG_REDU1/path_pro/fibreff_u_nsigma.fitsFIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDU1/path_pro/orfl.fitsFIB_LINE_TABLE_REDL1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL2/path_pro/linetable_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIB_FF_SGC_REDU      | 1 | /path_pro/fibreff_sgc_redu.fits        |
| FIB_FF_BNC_REDL1/path_pro/fibreff_bnc_redl.fitsFIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDU1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIB_FF_NSG_REDL      | 1 | /path_pro/fibreff_l_nsigma.fits        |
| FIB_FF_BNC_REDU1/path_pro/fibreff_bnc_redu.fitsFIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDU1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIB_FF_NSG_REDU      | 1 | /path_pro/fibreff_u_nsigma.fits        |
| FIB_ORDEF_TABLE_REDL1/path_pro/orfl.fitsFIB_ORDEF_TABLE_REDU1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIB_FF_BNC_REDL      | 1 | /path_pro/fibreff_bnc_redl.fits        |
| FIB_ORDEF_TABLE_REDU1/path_pro/orfu.fitsFIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FIB_FF_BNC_REDU      | 1 | /path_pro/fibreff_bnc_redu.fits        |
| FIB_LINE_TABLE_REDL1/path_pro/linetable_redl.fitsFIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIB_ORDEF_TABLE_REDL | 1 | /path_pro/orfl.fits                    |
| FIB_LINE_TABLE_REDU1/path_pro/linetable_redu.fitsMASTER_BIAS_REDL?/path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIB_ORDEF_TABLE_REDU | 1 | /path_pro/orfu.fits                    |
| MASTER_BIAS_REDL ? /path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIB_LINE_TABLE_REDL  | 1 | /path_pro/linetable_redl.fits          |
| MASTER_BIAS_REDL ? /path_pro/masterbias_redl.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIB_LINE_TABLE_REDU  | 1 | /path_pro/linetable_redu.fits          |
| MASTER_BIAS_REDU ? /path_pro/masterbias_redu.fits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MASTER_BIAS_REDL     | ? |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MASTER_BIAS_REDU     | ? | /path_pro/masterbias_redu.fits         |

# 10.8.2 Output

| default recipe file name | format             | PRO.CATG              | short description                                   |
|--------------------------|--------------------|-----------------------|-----------------------------------------------------|
| bin_table_info_redl      | table              | FIB_SCI_INFO_TAB_REDL | table with information on fibres setup              |
| fxb_l_raw000i            | 2d (pix-ord) image | XB_SCI_RAW_REDL       | extracted, flatfielded raw frame                    |
| wfxb_l_raw000i           | 2d (wav-ord) image | WXB_SCI_RAW_REDL      | rebinned, extracted, flatfielded raw frame          |
| mwfxb_l_raw000i          | 1d (wav) image     | MWXB_SCI_RAW_REDL     | merged, rebinned, extracted, flatfielded raw frame, |
|                          |                    |                       | uncorrected for fibre throughput                    |
| fxb_l_rawsig000i         | 2d (pix-ord) image | ERR_XB_SCI_RAW_REDL   | error frame for XB_SCI_RAW_REDL                     |
| wfxb_l_rawsig000i        | 2d (wav-ord) image | ERR_WXB_SCI_RAW_REDL  | error frame for WXB_SCI_RAW_REDL                    |
| mwfxb_l_raw000i_sigma    | 1d (wav) image     | ERR_MWXB_SCI_RAW_REDL | error for MWXB_SCI_RAW_REDL                         |
| fxb_l_000i               | 2d (pix-ord) image | XB_SCI_REDL           | extracted, flatfielded raw frame                    |
| wfxb_l_000i              | 2d (wav-ord) image | WXB_SCI_REDL          | rebinned, extracted, flatfielded, fibre throughput  |
|                          | -                  |                       | corrected raw frame                                 |

|     | FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO |                                  | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 71 of 104              |

| mwfxb_l_000i          | 1d (wav) image     | MWXB_SCI_REDL         | merged, rebinned, extracted, flatfielded, fibre throughput |
|-----------------------|--------------------|-----------------------|------------------------------------------------------------|
|                       |                    |                       | corrected raw frame                                        |
| fxb_l_sig000i         | 2d (pix-ord) image | ERR_XB_SCI_REDL       | error frame for XB_SCI_REDL                                |
| wfxb_l_sig000i        | 2d (wav-ord) image | ERR_WXB_SCI_REDL      | error frame for WXB_SCI_REDL                               |
| mwfxb_l_000i_sigma    | 1d (wav) image     | ERR_MWXB_SCI_REDL     | error frame for MWXB_SCI_REDL                              |
| fxb_u_raw000i         | 2d (pix-ord) image | XB_SCI_RAW_REDU       | extracted, flatfielded raw frame                           |
| wfxb_u_raw000i        | 2d (wav-ord) image | WXB_SCI_RAW_REDU      | rebinned, extracted, flatfielded raw frame                 |
| mwfxb_u_raw000i       | 1d (wav) image     | MWXB_SCI_RAW_REDU     | merged, rebinned, extracted, flatfielded raw frame         |
|                       |                    |                       | uncorrected for fibre throughput                           |
| fxb_u_rawsig000i      | 2d (pix-ord) image | ERR_XB_SCI_RAW_REDU   | error frame for XB_SCI_RAW_REDU                            |
| wfxb_u_rawsig000i     | 2d (wav-ord) image | ERR_WXB_SCI_RAW_REDU  | error frame for WXB_SCI_RAW_REDU                           |
| mwfxb_u_raw000i_sigma | 1d (wav) image     | ERR_MWXB_SCI_RAW_REDU | error frame for MWXB_SCI_RAW_REDU                          |
| fxb_u_000i            | 2d (pix-ord) image | XB_SCI_REDU           | extracted, flatfielded raw frame                           |
| wfxb_u_000i           | 2d (wav-ord) image | WXB_SCI_REDU          | rebinned, extracted, flatfielded raw frame                 |
| mwfxb_u_000i          | 1d (wav) image     | MWXB_SCI_REDU         | merged, rebinned, extracted, flatfielded raw frame         |
| fxb_u_sig000i         | 2d (pix-ord) image | ERR_XB_SCI_REDU       | error frame for XB_SCI_REDU                                |
| wfxb_u_sig000i        | 2d (wav-ord) image | ERR_WXB_SCI_REDU      | error frame for WXB_SCI_REDU                               |
| mwfxb_u_000i_sigma    | 1d (wav) image     | ERR_MWXB_SCI_REDU     | error frame for MWXB_SCI_REDU                              |

Pls note that the recipes extract only the fibers that have been allocated to an object (or to the sky).

# 10.8.3 Quality control

The recipe computes the following quality control parameters in the FITS header of the reduced frame.

QC.FWHMAVG Average FWHM of lines selected

#### 10.8.4 Parameters

| xtraction method. <std fop="" fst="" opt="" qop="" qst=""  =""></std> |
|-----------------------------------------------------------------------|
| ind correlation maximum?. <n y=""  =""> [Y]</n>                       |
| orrelation range size?. [6.0]                                         |
| orrelation sampling points?. [25]                                     |
| orrelation center offset?. [0.0]                                      |
| ias subtraction method. <m n="" v=""  =""> [M]</m>                    |
| ias value (only if bias method = V). [200]                            |
| ubify switch. <y n=""  =""> [N]</y>                                   |
| ilter switch. <none median=""  =""> [none]</none>                     |
| ackground window number in each full inter order.                     |
| 500]                                                                  |
| maximum size of each background window:. [6]                          |
| maximum size of each background window:. [2]                          |
| ixel saturation threshold max. [55000]                                |
| ixel saturation threshold min. [-20]                                  |
| appa sigma threshold. [10.0]                                          |
| ase name for science products. [fxb]                                  |
| alf width of the interval to scan for correlation,                    |
| hen determining y shift. [3.0]                                        |
| ntegration window size good: 10 (if fibre                             |
| econvolution works fine). [10.0]                                      |
| he bin size (in w.l.u.) in wavelength space. If                       |
| egative, a step size of 2/3 * ( average pixel size )                  |
| s used. [-1.0]                                                        |
| hether or not to multiply by the factor dx/dlambda                    |
| pixels per wavelength) during the rebinning. This                     |
| ption is disabled as default in concordance with the                  |
|                                                                       |

|     |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|----------------------------------|--------|------------------------|
| ESO | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                  | Date:  | Date 2013-05-06        |
|     |                                  | Page:  | 72 of 104              |

--merge

method used in the MIDAS pipeline. This option should be set to true to convert the observed flux (in pixel-space) to a flux per wavelength (in wavelength-space). [FALSE] : Order merging method. If 'optimal', the flux in the overlapping region is set to the (optimally computed, using the uncertainties) average of single order spectra. If 'sum', the flux in the overlapping region is computed as the sum of the single order spectra. If flat-fielding is done, method 'optimal' is recommended, otherwise 'sum'. <optimal | sum> [optimal]

#### 10.9 flames\_obs\_redchain

#### 10.9.1 Input

| frame tag/category | nr | filename example                                   |
|--------------------|----|----------------------------------------------------|
| BIAS_RED           | +  | <pre>/path_raw/uves_bias_red.fits</pre>            |
| DARK_RED           | +  | <pre>/path_raw/uves_dark_red.fits</pre>            |
| MASTER_SFLAT_CHIP  | 1  | <pre>/path_pro/set1_master_flat_chip.fits</pre>    |
| MASTER_SFLAT_CHIP  | 1  | <pre>/path_pro/set2_master_flat_chip.fits</pre>    |
| MASTER_SFLAT_CHIP  | 1  | <pre>/path_pro/set3_master_flat_chip.fits</pre>    |
| FIB_ARC_FORM_RED   | 1  | <pre>/path_raw/flames_uves_arc_form_red.fits</pre> |
| FIB_ORDER_FLAT_RED | 1  | <pre>/path_raw/flames_uves_oflat_red.fits</pre>    |
| FIB_FF_ODD_RED     | 1  | <pre>/path_raw/flames_uves_odd_red.fits</pre>      |
| FIB_FF_EVEN_RED    | 1  | <pre>/path_raw/flames_uves_even_red.fits</pre>     |
| FIB_FF_ALL_RED     | 1  | <pre>/path_raw/flames_uves_all_red.fits</pre>      |
| FIB_ARC_LAMP_RED   | 1  | <pre>/path_raw/flames_uves_arc_lamp_red.fits</pre> |
| FIB_SCI_RED        | 1  | <pre>/path_raw/flames_uves_science_red.fits</pre>  |
| LINE_REFER_TABLE   | 1  | <pre>/path_ref/thargood_3.fits</pre>               |

Note: in present release flames\_obs\_redchain cannot directly handle raw SFLAT frames.

#### 10.9.2 Output

This recipe generates all the products described for the previous recipes.

#### **10.9.3** Quality control

This recipe generates all the quality control parameters described for the previous recipes.

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 73 of 104                     |

#### 10.9.4 Parameters

This recipe accepts all the same parameters as the individual recipes except with the recipe name prefixing the parameter command line option, e.g. - uves\_cal\_mbias.clean\_traps to set the clean\_traps parameter for the mbias part of the recipe. The additional parameter **scired** (default value is TRUE) switches on/off the execution of the last step (science data reduction).

--scired : Whether or not to do science reduction. If false, only master calibration frames are created. If false, either zero or all necessary calibration frames must be provided for each arm. [TRUE] --uves\_cal\_mbias.clean\_traps : Detector traps clean. If TRUE detector traps are corrected. The bad pixels are replaced by the average of nearest good pixels in the same column, or simply marked as bad. The positions of bad pixels are hard-coded (as function of UVES chip). [TRUE] --uves cal mdark.gc dark.reg.num x : Number of regions on X direction (where mean/med/rms are computed). [4] --uves\_cal\_mdark.qc\_dark.reg.num\_y Number of regions on Y direction(where mean/med/rms are computed). [4] --uves\_cal\_mdark.qc\_dark.reg.box\_sx : Region X size. [100] --uves\_cal\_mdark.qc\_dark.reg.box\_sy : Region Y size. [100] --uves\_cal\_mdark.qc\_dark.reg.border\_x : X distance from the left hand side detector's border and the left hand side regin's bottom corner. [100] --uves\_cal\_mdark.qc\_dark.reg.border\_y : Y distance from the left hand side detector's border and the left hand side regin's bottom corner. [100] --uves\_cal\_mdark.qc\_dark.reg.when : When QC analysis is performed. 0: on each raw frame or 1: on the master frame. [0] --flames\_cal\_predict.mbox\_x : Match box X size. [40] --flames\_cal\_predict.mbox\_y : Match box Y size. [40] --flames\_cal\_predict.trans\_x : Detector translation along X. [0.0] --flames\_cal\_predict.trans\_y : Detector translation along Y. [0.0] --flames\_cal\_predict.ech\_angle\_off : Offset on echelle angle. [0.0] --flames\_cal\_predict.cd\_angle\_off : Offset on cross disperser angle. [0.0] --flames\_cal\_predict.ccd\_rot\_angle\_off • Offset on CCD rotation angle. [0.0] --flames\_cal\_predict.compute\_regression\_sw : Compute regression?. [TRUE] --flames\_cal\_predict.x\_axis\_scale : Scale X axis. [0.0] --flames\_cal\_predict.y\_axis\_scale : Scale Y axis. [0.0] --flames\_cal\_predict.def\_pol1 : Polynomial X deg. [4] --flames\_cal\_predict.def\_pol2 : Polynomial Y deg. [5] --flames\_cal\_predict.kappa : Kappa value in kappa sigma clipping on RESIDUAL between YFIT and Y columns. [4.5] --flames\_cal\_predict.tol : Tolerance in kappa sigma clipping on RESIDUAL between YFIT and Y columns. [2.0] --flames\_cal\_orderpos.use\_guess\_tab : If a Guess order table is provided this parameter defines how it is used:0: No usage, 1: use it to set lower/upper Y rows where order are searched 2: the order table tries to fully match the guess. [1] --flames\_cal\_orderpos.radx : X-radius of median filtering window. [2] --flames\_cal\_orderpos.rady : Y-radius of median filtering window. [1] --flames\_cal\_orderpos.mmethod : Background subtraction method. If equal to

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016      |
|-----|----------------------------------|--------|-----------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.<br>Date 2013-05-0 |
| LOU |                                  | Date:  |                             |
|     |                                  | Page:  | 74 of 104                   |

```
'median' the background is sampled using the
                                 median of a sub-window. If 'minimum', the
                                 minimum sub-window value is used. If 'no',
                                 no background subtraction is done. <median |
                                 minimum | no> [median]
--flames_cal_orderpos.backsubgrid : Number of grid points (in x- and
                                     y-direction) used to estimate the
                                     background (mode=poly). [50]
--flames_cal_orderpos.backsubradiusy :
                        The height (in pixels) of the background sampling
                        window is (2*radiusy + 1). This parameter is not
                        corrected for binning. [2]
--flames_cal_orderpos.backsubkappa :
                        The value of kappa in the one-sided kappa-sigma
                        clipping used to estimate the background (mode=poly).
                        [4.0]
--flames_cal_orderpos.backsubdegx
                                  : Degree (in x) of polynomial used to
                                     estimate the background (mode=poly). [2]
                                  : Degree (in y) of polynomial used to
--flames_cal_orderpos.backsubdegy
                                     estimate the background (mode=poly). [2]
--flames_cal_orderpos.samplewidth
                                  : Separation of sample traces (used by
                                     Hough transform) in input image. [50]
--flames_cal_orderpos.minslope : Minimum possible line slope. This should be
                                  the 'physical' slope on the chip, i.e. not
                                  taking binning factors into account, which
                                  is handled by the recipe. [0.0]
                               : Maximum possible line slope. [0.2]
--flames_cal_orderpos.maxslope
--flames cal orderpos.sloperes
                               : Resolution (width in pixels) of Hough space.
                                  [120]
--flames_cal_orderpos.pthres : In automatic mode, or if the number of orders
                                to detect is read from a quess table, the
                                detection of new lines stops when the
                                intensity of a candidate line drops to less
                                than 'pthres' times the intensity of the
                                previous detection. [0.2]
--flames_cal_orderpos.tracestep : The step size used when tracing the orders.
                                   [10]
--flames_cal_orderpos.minthresh : The minimum threshold value is (min +
                                   minthres*(max - min)). Here 'min' and
                                   'max' are the lowest and highest pixel
                                   values in the central bin of the order.
                                   [0.2]
--flames_cal_orderpos.maxgap
                             : If the order line drops below detection
                                threshold, the order tracing algorithm will
                                try to jump a gap of maximum size 'maxgap'
                                multiplied by the image width. [0.2]
--flames_cal_orderpos.maxrms
                            : When fitting the orders with straight lines,
                                this is the maximum allowed RMS relative to
                                the median RMS of all orders. [100.0]
--flames_cal_orderpos.defpol1 : The degree of the bivarite fit (cross
                                 dispersion direction). If negative, the
                                 degree is optimized to give the best fit.
                                 [-1]
--flames_cal_orderpos.defpol2 : The degree of the bivarite fit (order
                                 number). If negative, the degree is
                                 optimized to give the best fit. [-1]
--flames_cal_orderpos.kappa
                            : Used for kappa-sigma clipping of the final
                               polynomial fit. If negative, no clipping is
                               done. [6.0]
--uves_cal_mflat.backsub.mmethod : Background measuring method. If equal to
                                    'median' the background is sampled using
                                    the median of a subwindow. If 'minimum',
                                    the subwindow minimum value is used. If
                                    'no', no background subtraction is done.
                                    <median | minimum | no> [median]
```

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016      |
|-----|----------------------------------|--------|-----------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.<br>Date 2013-05-0 |
|     |                                  | Date:  |                             |
|     |                                  | Page:  | 75 of 104                   |

| uves_cal_mflat.backsub.npoint            | s : This is the number of columns in interorder space used to sample the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| uves_cal_mflat.backsub.radius            | <pre>background. [82]<br/>y : The height (in pixels) of the background<br/>sampling window is (2*radiusy + 1). This<br/>parameter is not corrected for binning.<br/>[2]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| uves_cal_mflat.backsub.sdegre            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| uves_cal_mflat.backsub.smooth            | <pre>x : If spline interpolation is used to measure<br/>the background, the x-radius of the<br/>post-smoothing window is (smoothx *<br/>image_width). Here, 'image_width' is the<br/>image width after binning. If negative,<br/>the default values are used: (25.0/4096)<br/>for blue flat-field frames, (50.0/4096)<br/>for red flat-field frames, (300.0/4096)<br/>for blue science frames and (300.0/4096)<br/>for red science frames. [-1.0]</pre>                                                                                                                                                    |
| uves_cal_mflat.backsub.smooth            | <pre>the background, the y-radius of the<br/>post-smoothing window is (smoothy *<br/>image_height). Here, 'image_height' is<br/>the image height after binning. If<br/>negative, the default values are used:<br/>(100.0/2048) for blue flat-field frames,<br/>(300.0/2048) for red flat-field frames,<br/>(200.0/2048) for blue science frames and<br/>(500.0/2048) for red science frames.<br/>[-1.0]</pre>                                                                                                                                                                                              |
| flames_cal_wavecal.nwindows              | : Number of extraction windows per trace. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | <pre>windows will be aligned (i.e. no overlap and<br/>no spacing between adjacent windows). Unless<br/>an offset is specified, the middle window(s)<br/>is centered on the trace. [1]<br/>Length (in pixels) of each extraction window.<br/>This parameter is also equal to the seperation<br/>of adjacent window centers, causing the<br/>extraction windows to always be aligned. The<br/>parameter is automatically adjusted according<br/>to the binning of the input raw frame. If<br/>negative, the extraction window length is<br/>determined automatically to cover the full<br/>slit. [7.0]</pre> |
|                                          | A global offset (in pixels) of all extraction<br>windows. [0.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                          | thod :<br>ion method. <average 2d="" linear="" weighted=""  =""  <br="">&gt; [average]</average>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| flames_cal_wavecal.extract.ka            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| bad (i.<br>deviate<br>uncerta<br>spatial | mal extraction mode, this is the threshold for<br>e. hot/cold) pixel rejection. If a pixel<br>s more than kappa*sigma (where sigma is the<br>inty of the pixel flux) from the inferred<br>profile, its weight is set to zero. If this<br>er is negative, no rejection is performed.                                                                                                                                                                                                                                                                                                                        |
| flames_cal_wavecal.extract.ch            | unk :<br>mal extraction mode, the chunk size (in pixels)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| used fo<br>analyti                       | r fitting the analytical profile (a fit of the<br>cal profile to single bins would suffer from<br>tistics). [32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| flames_cal_wavecal.extract.pr            | ofile :<br>mal extraction mode, the kind of profile to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | auss' gives a Gaussian profile, 'moffat' gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 76 of 104                     |

a Moffat profile with beta=4 and a possible linear sky contribution. 'virtual' uses a virtual resampling algorithm (i.e. measures and uses the actual object profile). 'constant' assumes a constant spatial profile and allows optimal extraction of wavelength calibration frames. 'auto' will automatically select the best method based on the estimated  $\ensuremath{\mathsf{S/N}}$  of the object. For low S/N, 'moffat' or 'gauss' are recommended (for robustness). For high S/N, 'virtual' is recommended (for accuracy). In the case of virtual resampling, a precise determination of the order positions is required; therefore the order-definition is repeated using the (assumed non-low S/N) science frame. <constant | gauss | moffat | virtual | auto> [auto] --flames\_cal\_wavecal.extract.skymethod : In optimal extraction mode, the sky subtraction method to use. 'median' estimates the sky as the median of pixels along the slit (ignoring pixels close to the object), whereas 'optimal' does a chi square minimization along the slit to obtain the best combined object and sky levels. The optimal method gives the most accurate sky determination but is also a bit slower than the median method. <median | optimal> [optimal] --flames\_cal\_wavecal.extract.oversample : The oversampling factor used for the virtual resampling algorithm. If negative, the value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is > 200. [-1]--flames\_cal\_wavecal.extract.best : (optimal extraction only) If false (fastest), the spectrum is extracted only once. If true (best), the spectrum is extracted twice, the second time using improved variance estimates based on the first iteration. Better variance estimates slightly improve the obtained signal to noise but at the cost of increased execution time. [TRUE] --flames\_cal\_wavecal.range : Width (in pixels) of search window is 2\*range + 1. This parameter is automatically adjusted according to binning. [8] --flames\_cal\_wavecal.minlines : Minimum number of lines to detect. If zero, the default value (2000 for BLUE/REDL chips; 1000 for REDU chip) is used. [0] --flames\_cal\_wavecal.maxlines : Maximum number of lines to detect. If zero, the default value (2400 for BLUE/REDL chip; 1400 for REDU chip) is used. [0] --flames\_cal\_wavecal.shiftmax : The maximum shift (in pixels) compared to guess solution. This parameter is automatically corrected for binning. [10.0] --flames\_cal\_wavecal.shiftstep : The step size (in pixels) used when searching for the optimum shift. This parameter is automatically corrected for binning. [0.1] --flames\_cal\_wavecal.shifttoler : Tolerance (in pixels) when matching shifted lines. This parameter is not adjusted according to binning. [0.05] --flames\_cal\_wavecal.alpha : The parameter that controls the distance to the nearest neighbours. [0.1] --flames\_cal\_wavecal.maxerror : This parameter controls the graceful exit of the identification loop. If the RMS of the global fit exceeds this value (in pixels) the iteration stops. [20.0] --flames\_cal\_wavecal.degree : Degrees of the global 2d dispersion polynomial.

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 77 of 104                     |

```
If a negative number is specified, the
                               polynomial degrees are automatically selected
                               by starting from (1, 1) and inreasing the
                               degrees as long as the RMS residual decreases
                               significantly. [4]
                               : Tolerance of fit. If positive, the tolerance
--flames cal wavecal.tolerance
                                  is in pixel units. If negative,
                                  abs(tolerance) is in wavelength units.
                                  Lines with residuals worse than the
                                  tolerance are excluded from the final fit.
                                  Unlike in previous versions, this parameter
                                  is not corrected for CCD binning. This
                                  rejection based on the absolute residual in
                                  pixel can be effectively disabled by
                                  setting the tolerance to a very large
                                  number (e.g. 9999). In that case outliers
                                  will be rejected using only kappa sigma
                                  clipping. [0.6]
--flames_cal_wavecal.kappa
                           : Lines with residuals more then kappa stdev are
                              rejected from the final fit. [4.0]
--flames_cal_wavecal.rebin.wavestep
                        The bin size (in w.l.u.) in wavelength space. If
                        negative, a step size of 2/3 \star ( average pixel size )
                        is used. [-1.0]
--flames_cal_wavecal.rebin.scale : Whether or not to multiply by the factor
                                    dx/dlambda (pixels per wavelength) during
                                    the rebinning. This option is disabled as
                                    default in concordance with the method
                                    used in the MIDAS pipeline. This option
                                    should be set to true to convert the
                                    observed flux (in pixel-space) to a flux
                                    per wavelength (in wavelength-space).
                                    [FALSE]
--flames_cal_prep_sff_ofpos.ext_method :
                        Extraction method. <std | opt | fst | fop | qst | qop>
                        [opt]
--flames_cal_prep_sff_ofpos.bias_method :
                        Bias subtraction method, M for master bias frame, N
                        for no bias subtraction, V to subtract a constant
                        bias level defined by the parameter bias_value. <M |
                        V | N> [M]
--flames_cal_prep_sff_ofpos.bias_value
                                       :
                        Bias value (only if bias_method = V). [200]
--flames_cal_prep_sff_ofpos.filter_switch :
                        Filter switch. <none | median> [none]
--flames_cal_prep_sff_ofpos.sat_thr :
                        Saturation threshold. [55000]
--flames_cal_prep_sff_ofpos.fileprep :
                        Slitff* and Fibreff* file preparation. If fast
                        extraction method is used it should be set to FALSE.
                        [TRUE]
--flames_cal_prep_sff_ofpos.cubify :
                        Cubify switch. [TRUE]
--flames_cal_prep_sff_ofpos.save_flat_size :
                        To be sure to use the flat part of a slit flatsone may
                        need to subtract this bit. [-2]
--flames_obs_scired.ext_method : Extraction method. <std | opt | fst | fop |
                                 qst | qop> [opt]
--flames_obs_scired.cor_max_fnd : Find correlation maximum?. <N | Y> [Y]
--flames_obs_scired.cor_def_rng : Correlation range size?. [6.0]
--flames_obs_scired.cor_def_pnt : Correlation sampling points?. [25]
--flames_obs_scired.cor_def_off
                                : Correlation center offset?. [0.0]
--flames_obs_scired.bias_method : Bias subtraction method. <M | V | N> [M]
--flames_obs_scired.bias_value : Bias value (only if bias_method = V). [200]
--flames_obs_scired.cubify_sw : Cubify switch. <Y | N> [N]
```

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 78 of 104                     |

```
--flames_obs_scired.filt_sw : Filter switch. <none | median> [none]
--flames_obs_scired.bkg_max_io_win :
                         Background window number in each full inter order.
                         [500]
--flames_obs_scired.bkg_xy_win_sz_x :
                         x maximum size of each background window:. [6]
--flames_obs_scired.bkg_xy_win_sz_y :
                         y maximum size of each background window:. [2]
--flames_obs_scired.pixel_thresh_max :
                         Pixel saturation threshold max. [55000]
--flames_obs_scired.pixel_thresh_min :
                         Pixel saturation threshold min. [-20]
--flames_obs_scired.drs_k_s_thre : Kappa sigma threshold. [10.0]
--flames_obs_scired.drs_base_name : Base name for science products. [fxb] --flames_obs_scired.drs_maxyshift : Half width of the interval to scan for
                                       correlation, when determining y shift.
                                       [3.0]
--flames_obs_scired.drs_ext_w_siz : Integration window size good: 10 (if
                                      fibre deconvolution works fine). [10.0]
--flames_obs_scired.rebin.wavestep :
                         The bin size (in w.l.u.) in wavelength space. If
                         negative, a step size of 2/3 \star ( average pixel size )
                         is used. [-1.0]
--flames_obs_scired.rebin.scale : Whether or not to multiply by the factor
                                     dx/dlambda (pixels per wavelength) during
                                     the rebinning. This option is disabled as
                                     default in concordance with the method
                                     used in the MIDAS pipeline. This option
                                     should be set to true to convert the
                                     observed flux (in pixel-space) to a flux
                                     per wavelength (in wavelength-space).
                                     [FALSE]
--flames_obs_scired.merge : Order merging method. If 'optimal', the flux in
                              the overlapping region is set to the (optimally
                              computed, using the uncertainties) average of
                              single order spectra. If '\,{\mbox{sum}}'\,, the flux in the
                              overlapping region is computed as the sum of the
                              single order spectra. If flat-fielding is done,
                              method 'optimal' is recommended, otherwise
                              'sum'. <optimal | sum> [optimal]
```

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 79 of 104                     |

### 11 Algorithms and recipe details

In this section we describe the main algorithms implemented in the FLAMES-UVES pipeline recipes. Relevant data reduction parameters are typed in **bold** face. Parameters that are meant to be critical for data reduction quality and recommended not to be changed unless the user really knows what is the correspondent effect, are in upper case. They are also written in the FITS header of relevant products as FITS keywords. In this release they are hardcoded. This was also true in the MIDAS based release. The chosen values demonstrated in years of operations to provide a good accuracy and robustness. They are defined in flames\_def\_drs\_par.c module and the user may change them at own risk. Those are listed in Appendix B.

#### 11.1 Algorithms

#### 11.1.1 Error model

The pipeline does full error propagation using the error propagation formula and making the usual assumption about Gaussian error bars. The error of the i'th pixel of any input raw frame is defined as

$$\sigma_i = \sqrt{g(C_{i,ADU} - b_i) + ron^2 + (g^2 - 1)/12},$$
(1)

where  $C_{i,ADU}$  is the flux in analog-to-digital units,  $b_i$  is the master bias level and g and ron are the detector gain and read-out noise as defined in the FITS header.

#### 11.1.2 Physical model offset setting

On the basis of the plate number, wavelength setting, CCD chip, appropriate values are set to describe the physical model offsets between the simultaneous calibration fibre and the UVES slit center. This allows to use the same physical model implementation as the one describing the echelle mode spectral format.

#### **11.1.3** Fibre frames preparation

To each input fibre frame are associated an error and a bad pixel frame. The descriptor indicating the maximum number of fibres and which fibre is on/off are set.

This function takes as input the same odd/even fibre flat-field frames which are used for the fibre-order tracing (see 11.2.6), normalizes them (each fibre is normalized to 1 integrated flux at each x position), and selects only fibres falling within the region illuminated in the slit flat-field frames, to create a new set of odd/even fibre flat-field frames plus other auxilliary frames (normalizzation, fibre boundaries) used by subsequent DRS commands. Any bad pixels in the input fibre flat-fields are filled with interpolated values, if possible. Each fibre is then correlated with a Gaussian centered at the position traced by the order-fibre table, with a variable offset.

The variable y offset is allowed to span the intervall between -MAXYSHIFT and +MAXYSHIFT. The half width at half maximum of the Gaussian pseudo-fibres is read from the GUASSFIBRESIGMA keyword, and their total half width is read from the GAUSSHALFWIDTH keyword. The offset corresponding to the maximum correlation is saved in a keyword (YOFFSET), to be used as a "zero-point" correction for fibre asymmetry

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
|     |                                  | Date:  |                               |
|     |                                  | Page:  | 80 of 104                     |

when measuring actual fibre offsets on the frames. For this correction to be effective, subsequent correlations are forced to use the same Gaussian parameters (i.e. **GAUSSFIBRESIGMA** and **GAUSSHALFWIDTH**) which were used here.

#### **11.1.4** Slit frames preparation

To each input slit frame are associated an error and a bad pixel map frames.

This function also orders the set of input slit flats by Y position and rescale them in intensity so that each frame intensity is the same as the one of the previous adjacent one where the two overlap, and creates a new, minimal set of slit flat-field frames plus other auxiliary frames (normalization, boundary data) used by subsequent data reduction commands. On each input slit flat frame, the **HALFWIDTH** and **YSHIFT** FITS keywords are set, defining respectively the half width size of the flat part of the orders and the offset between the order centres in this frame and the order centres as traced by the order-fibre table. See also 11.1.13. Of course, for relative equalisation to be possible, each frame *must* have some overlap with the neighbouring ones in the set.

#### 11.1.5 Lit fibres flag setting

This algorithm fills the **MAXFIBRES**, **FIBREMASK** descriptors in the input frame, describing how many fibres are illuminated, and their fibre numbers. This step is executed as soon as the input fibre frames are reoriented. The descriptors values are assigned according to which fibre is actually used as indicated by the OzPoz extention table. Only illuminated fibres are used for data reduction.

#### 11.1.6 Inter-order background determination

This command takes as input the order table to create a table of positions where the scattered-light background may be computed, in regions not illuminated by any fibre. The number of windows in each inter-order space is set by keyword **BKG\_MAX\_IO\_WIND** (set by default to 500). The x,y widths of each window are set by keyword **BKG\_XY\_WIN\_SZ** (6 pixels in x, and 2 pixels in y).

- First, the order centres in the input frame are computed as the middle point between the first and last lit fibres (as read from the **FIBREMASK** FITS keyword). If this is offset with respect to the order positions mapped by the order table, the positions of the windows in the background table are corrected accordingly. Then, all the windows in the background table are trimmed to exclude any position in the input frame where light from the fibres is expected to be present. Windows which happen to be trimmed to zero size are obviously discarded at this stage.
- Step two: if the **BKGBADSCAN** keyword is set to "fraction" or "absolute", a neighbourhood of size determined by the **BKGBADWIN** keyword of each pixel in each window left from the previous step is checked for bad pixels. Bad pixels in each neighbourhood are counted, and if they exceed the fraction set in **BKGBADMAXFRAC** (if **BKGBADSCAN=**"fraction") or the total number set in **BKGBADMAX-TOT** (if **BKGBADSCAN=**"absolute"), that pixel is removed from the window. Windows which turn out to be empty after this additional trimming are discarded. This second trimming step is skipped if **BKGBADSCAN** is set to "none".

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 81 of 104                     |

• Step three: a list of points to be fit is built from the input frame and the remaining windows from the steps above, in one out of four possible ways, selected by the value of the **BKGFITMETHOD** keyword. If **BKGFITMETHOD=**"all", the list consists simply of all the pixels contained in the windows. If **BKGFITMETHOD=**"median", for each window the pixel with the median value is found and added to the list. If **BKGFITMETHOD=**"minimum", for each window the pixel with the minimum value is found and added to the list. Finally, if **BKGFITMETHOD=**"average", for each window the median value is found first, all pixels in the window differing from it more than kappa\_sigma\_threshold times their standard deviation are discarded, and the weighted average of the remaining pixels in the window is added to the list.

This data reduction step generates the fitted background image.

- As a fourth step, a bivariate polynomial is actually fit to the list of pixels.
- Then, the values in the list are compared to the fitted values: if any pixel in the list deviates from the fitted values more than kappa\_sigma\_threshold (**DRS\_K\_S\_THRE**) times the standard deviation, at most **MAXDISCARDFRACT** times the number of pixels in the list are discarded in one pass, in order of worst fit, and the fit repeated on the remaining ones. This loop is repeated until no more pixels are rejected from the list, or until it has been repeated **MAXBACKITERS** times, whichever comes first.

The scattered light background is estimated in a FLAMES-UVES frame, fitting a bivariate polynomial on the regions of the input frame listed in the background table. The degrees of the polynomial are read from the **BKGPOL** keyword.

• The resulting bivariate polynomial is then evaluated over the full input frame, and saved.

#### 11.1.7 Fibre shift determination

This algorithm measures the shift of each fibre of an input frame with respect to the corresponding fibre of the odd-even base, using a set of normalised fibre flat-field frames, as produced by the fibre frame preparation (11.1.3) and updated by fibre frames normalization, (11.1.16), and using a set of equalised slit flat-field frames, as produced by the slit frames preparation (11.1.4) and an order-fibre table, as produced by flames\_cal\_prep\_ofpos (11.2.6) and updated by the fibre frame normalization 11.1.16). The **MAXYSHIFT** keyword sets the value of the maximum y shift (in world coordinates) to be searched between the input frame and the flat-field frames. The default value of the maximum allowed yshift is set by the keyword **MAXYSHIFT**.

The measured **YSHIFT** is written into the input frame's FITS header, and measures the y shift values of each fibre of the input frame with respect to the fibres in each normalised flat-field frame.

The descriptor **NFLATS** written into the input frame containing the size of the **YSHIFT** descriptor.

The y-axis shift of the orders/fibres in the input frame is found by correlating the frame with a synthetic one composed of Gaussian-shaped pseudo-fibres centred on the positions traced by the order-fibre table, with a variable offset in the direction perpendicular to dispersion.

The size of the Gaussian shapes is forced to be the same as the one which was used to measure the "zero-point" shift measured at the fibre frames preparation (11.1.3) stage.

The correlation is computed using one pixel every **CORRELXSTEP**; thus **CORRELXSTEP**=1 means that all pixels are used, **CORRELXSTEP**=2 means that every other pixels is used and so on. The safest bet (and

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 82 of 104                     |

the default) is **CORRELXSTEP=1**. Increasing **CORRELXSTEP** cuts the correlation times significantly, but **CORRELXSTEP** values larger than the size of the resolution element are risky: on a line emission spectrum it may happen that only the dark parts of the frame are used for the correlation, resulting in numerical instability and useless results.

The variable y offset is allowed to span the interval between -**MAXYSHIFT** and +**MAXYSHIFT**, and is referred to the fibre positions as measured on an all fibres flat-field frame by the Fiber frames normalization (see 11.1.16 command), and stored in the order table.

Note that during the science data reduction, due to the fibre illumination pattern peculiar to the given observation, the cross correlation step may not lead to a single maximum. At this purpose we allow the user to control manually that step, through parameters **cor\_max\_fnd cor\_def\_rng**, **cor\_def\_pnt**, **cor\_def\_off**. The user should check the cross correlation profile in the file cor\_shape\_suffix.fits (where suffix='1' or 'u'), and then set proper values of **cor\_def\_off** (centered to the expected correlation maximum) and **cor\_def\_rng** (allowing to scan correlation values near the expected maximum) and **cor\_def\_pnt** (this set the accuracy in the determination of the correlation maximum position).

The maximum of the correlation is determined using a Brent search with accuracy better than **CORRELTOL** and the corresponding y offset corrected for the "zero-point" shift measured at the fibre frames preparation (see 11.1.3) stage.

This final y offset is saved as a descriptor called **YSHIFT** in the input frame. Since it is referred to a unique reference position, it is duplicated as many times as the number of normalised fibre flat-field frames.

#### **11.1.8** Generation of UVES related fibre information

This algorithm extracts from the table extension of an input raw frame the fibre information corresponding to the UVES fibre link.

This auxiliary command is used to extract important information relative to FLAMES-UVES observations contained in the binary table extensions of the input raw data.

#### **11.1.9** Frames preparation

This data reduction step prepares frames read from disk for usage by the following steps. Its input may be a single frame or a set of frames. For each indicated frame, two new frames are created, a variance frame and a bad-pixel mask frame, respectively with suffixes \_sigma.fits and \_mask.fits. Their names are written into the FITS keywords **SIGMAFRAME** and **BADPXFRAME** of the input frame.

The variance and bad pixel frames are updated during the following data reduction steps.

Moreover, two additional methods to detect and flag bad pixels are provided: recursive median filtering and clipping of values out of a given validity interval.

**Recursive median filtering** If recursive median filtering is enabled setting the parameter **filter\_switch** (of the recipe flames\_cal\_prep\_sff\_ofpos) to median, for each pixel the median of the good pixels in a neighbourhood defined by the **DRS\_FILT\_HW\_X** and **DRS\_FILT\_HW\_Y** keywords is computed and if the pixel value differs

| ESO |                                  | Doc:   | VLT-MAN-ESO-19500-3016        |
|-----|----------------------------------|--------|-------------------------------|
|     | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0<br>Date 2013-05-06 |
| LOU |                                  | Date:  |                               |
|     |                                  | Page:  | 83 of 104                     |

by more than **DRS\_K\_S\_THRE** times the computed sigma, the pixel is flagged as bad. This procedure is iterated until no new bad pixels are detected. While this procedure is very effective at pinpointing bad pixels, it is also computationally intensive, and thus very time consuming. For this reason it is disabled by default (**filter\_switch=**none).

**Threshold filtering** If the **DRS\_FILT\_SAT\_SW** is set to YES, each pixel is compared with the validity interval provided by the **DRS\_PTHRE\_MIN** and **DRS\_PTHRE\_MAX** parameters and any pixels outside this interval are flagged as bad. This is meant to quickly catch saturated pixels and/or bad values due to electronics. The cuts must be chosen keeping in mind whether the input frame was already bias-subtracted or not, and allows for normal noise, in order not to cause a spurious mass rejection of pixels.

The final bad pixel mask will thus be the merged set of all bad pixels detected by any means, or previously marked as such in a user-defined bad pixel frame whose name(s) was (were) set in the **BADPXFRAME** keyword (in a FITS file called like '\*\_mask.fits', for example b\_sci\_prefix\_mask.fits, or b\_odd\_prefix\_mask.fits, or b\_even\_prefix\_mask.fits, or b\_all\_prefix\_mask.fits etc..., where prefix='1' or 'u' for the lower or upper detector chip).

#### 11.1.10 Bad pixel map preparation

The location of the traps and dead columns on the CCD image are mapped according to the instrument setting (wavelength, bin, CCD chip), as determined by examining some reference image. Those positions are hardwired in the code. In addition, all pixels above the saturation threshold set by the keyword **SAT\_THRESHOLD** are marked as bad. The user may change this value modifying the parameter **sat\_thr** of flames\_cal\_prep\_sff\_ofpos, and **pixel\_thresh\_max** in flames\_obs\_scired. With this information a bad-pixel image is created, that will be used in the following data reduction to mask appropriately the bad pixels.

#### 11.1.11 Fibre order tracing

This data reduction step finds all "traces" in a set of fibre flat-field frames, in which lit fibres do not overlap, typically an even and an odd fibres frame. The **NBTRACES** keyword, if set to a value different from 0, defines the number of fibres to be detected.

The traces are found using the Hough transform technique. To improve robustness of the wavelength calibration and of the extraction the user may set with the FITS keywords **DRS\_SCAN\_MIN** and **DRS\_SCAN\_MAX**. Those keywords are defined by three values, **DRS\_SCAN\_MIN=55**,73,73 and **DRS\_SCAN\_MAX=1993**,1975,1975, respectively for the 520, 580 and 860 wavelength setting, and are used to specify the y extension of detector region where the fibre traces are searched.

These traces are then correlated with the order positions from the first guess order table, and labelled according to order and fibre number as deduced from the **FIBREMASK** keyword in the fibre flat field frames.

The orders are then fit with a polynomial of degrees as defined in the **DEFPOL** keyword, whose component are defined, during the single fibre order tracing, assuming constant relative positions of the fibres. The polynomial coefficients are stored in the **COEFFD** FITS keyword of the output order-fibre table, while the relative position of the fibres are stored in each component of the **FIBREPOS** FITS keyword of the same table.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 84 of 104              |

#### 11.1.12 Iter order background determination

To determine the interorder background the information about the fibre location contained in the input order table is used to create a table of positions where the scattered-light background may be computed, in regions not illuminated by any fibre.

#### 11.1.13 Measure of flat part size of Slit frames

The pipeline finds the **FWHM** across y of the illuminated part of a slit flat-field frame near frame center, finds the offset (y shift) of the order centres in this frame with respect to order positions as traced by the order table, and writes these data as keywords **YSHIFT** and **HALFWIDTH** of the input slit flat-field frame.

A cross-order trace cut is determined at the image X center. This profile is smoothed (radius=5pix) and normalized to its maximum. Then the average master flat size is determined. To this value is subtracted the value **save\_flat\_size**. This value is critical to the final accuracy. We set this parameter to -2 (thus we actually slightly increase the size of the flat as computed on the frame). The user may use also values in the range [-3,+1] in case of not satysfying quality. The value of **HALFWIDTH** is equal to half of the computed flat width. Then is determined the flat offset with respect to ther order table trace. To obtain this value we build a synthetic flat frame of flat size equal to the one previously computed and centered on the order trace. Then cross correlating the synthetic frame and each slit flat frame we determine the corresponding shift to the order trace and store it in the **YSHIFT** keyword.

#### 11.1.14 Slit frames preparation

This algorithm uses a set of calibration slit flat-field frames (at least 2 frames), orders them by Y shift and rescales them in intensity so that each frame intensity is the same as the one of the previous adjacent frame where the two overlap, and creates a new, minimal set of slit flat-field frames plus other auxiliary frames (containing information related to frame normalization, and slit flats boundaries) that is later on used during data reduction. On each input slit flat field frame, the **HALFWIDTH** and **YSHIFT** FITS keyword should be set as described in 11.1.13. Those define respectively the half width of the flat part of the orders and the offset between the order centres of the corresponding frame and the order centres as traced by the order-fibre table (see 11.1.13).

Of course, for relative equalisation to be possible, each frame *must* have some overlap with the neighbouring ones in the set.

#### 11.1.15 Fiber frames preparation

The input odd/even fibre flat-field frames are normalized (each fibre is normalised to 1 integrated flux at each x position), the fibres falling within the region illuminated in the slit flat-field frames are selected, and a new set of odd/even fibre flat-field frames and other auxiliary frames (normalization, fibre boundaries) used by subsequent data reduction commands are created. Any bad pixel in the input fibre flat-fields is filled with interpolated values, if possible. Each fibre is then correlated with a syntetic Gaussian profile which peaks at the position traced by the order-fibre table plus a variable offset.

The variable y offset is allowed to span the interval between **-MAXYSHIFT** and **+MAXYSHIFT**.

|     | <b>ESO</b> FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|---------------------------------------------|--------|------------------------|
| ESO |                                             | Issue: | Issue 15.0             |
| LOU |                                             | Date:  | Date 2013-05-06        |
|     |                                             | Page:  | 85 of 104              |

The half width at half maximum of the syntetic Gaussian pseudo-fibres is read from the **GAUSSFIBRESIGMA** keyword, and their total half width is read from the **GAUSSHALFWIDTH** keyword.

The offset corresponding to the maximum correlation is saved in FITS keywords, to be used as a "zero-point" correction for fibre asymmetry when measuring actual fibre offsets on other frames. For this correction to be effective, subsequent correlations are forced to use the same Gaussian parameters (i. e. **GAUSSFIBRESIGMA** and **GAUSSHALFWIDTH**) which were used here.

#### 11.1.16 Fiber frames normalization

The all-fibre flat-field is (according to the value chosen for the parameter **method**) optimally or standard extracted.

**Background determination** First, if the **BKGFITINLINE** keyword is set to "yes" (as it is by default), a polynomial background is fit to the positions in the background table bkg\_prefix.fits (prefix='l' or 'u'), and subtracted from the all-fibre flat frame (see 11.1.6 for details).

Setting **BKGFITINLINE** to "no" disables inline background fit and subtraction.

**Y shift determination** Then the y-axis shift of the orders/fibres in the all fibre flat-field frame is found by correlating the frame with a synthetic one composed of Gaussian-shaped pseudo-fibres centred on the positions traced by the order-fibre table, with a variable offset in the direction perpendicular to dispersion. The maximum of this correlation is found, and the corresponding offset is corrected for the "zero-point" shift computed by the fibre preparation (see 11.1.3) algorithm.

For robustness, this step perform a preliminar correlation function shape determination and a rough search for its maximum. This feature can be controlled by the keyword(s) **DRS\_COR\_MAX\_FND**, **DRS\_COR\_DEF\_RNG**, **DRS\_COR\_DEF\_PNT** that are set by the corresponding flames\_obs\_scired parameters cor\_max\_fnd, cor\_def\_rng, and cor\_def\_pnt.

The *y* offsets of each fibre are saved as a FITS keyword called **YSHIFT** in the science frame. The correlation step can be disabled by setting the **max\_shift** parameter to zero or, equivalently, setting to zero the **MAXYSHIFT** keyword and leaving the **max\_shift** parameter blank. In this case, the values already contained in the **YSHIFT** descriptor are used.

**Y shift correction** The normalised fibre flat-field frames are then shifted to bring them to coincidence with the above offset and are multiplied by the slit flat-field frames to approximate fibre flat-field frames exactly matching the all-fibre flat-field frame. These frames are used to perform an optimal or standard extraction on the science frame, including a deconvolution of adjacent fibres (the deconvolution coefficients are computed directly from the odd/even fibre flat-fields).

**Fibre spectra saving** The extracted "spectra" are saved to be later used as relative normalisation factors between fibres in the subsequent extraction of science frames.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 86 of 104              |

#### **11.1.17** Fiber frames extraction

This data reduction step performs an optimal or a standard spectrum extraction. Three are the supported modes: "normal" (**extract**=opt/sta), the one suggested to the user; "fast" (**extract**=fop/fst), which uses input slit flat fields to clean the fibre PSFs but skips the steps of Y-shift determination and compensation (see below), a bit faster than "normal".

Then are determined the backgound and the Y shift of each fibre of the science frame to the odd-even base, and each fibre position is corrected as described in the fibre frames normalization algorithm (see 11.1.16) for the all flat frame.

**Extraction.** The frames determined as explained above are then used to perform an optimal extraction on the science frame, including a deconvolution of adjacent fibres (the deconvolution coefficients are computed directly from the odd/even fibre flat-fields).

Notes:

- Should the correlation step fail to detect a reasonable *y* shift, or if speed is of utmost importance, it is advisable to use standard extraction, disabling the correlation and reducing the integration window to the core of the fibres only, rather than optimal extraction, to minimise fibre to fibre contamination, at the price of losing a considerable fraction of the signal.
- In cases of well-behaved set of frames, however, optimal extraction gives the best signal/noise ratio, especially for faint objects. The calculated spectra are finally written on the disk on one set of files for each illuminated fibre.
- The standard extraction includes the deconvolution of adjacent fibres, being them neighbouring fibres of the same order or the first and last fibres of adjacent orders. The deconvolution coefficients are computed directly from the shifted fibre flat-field frames.
- Since in the case of fast optimal extraction no attempt at all is made to compensate for any y offset of the science frame with respect to the normalised fibre flat-field frames, this method should be selected with some caution.
- In cases in which the y offset determination is a problem, the fast extraction should be used instead, limiting the integration window to the cores of the fibres to minimize ill effects at the cost of losing a considerable fraction of the signal.

#### **11.1.18** Fiber frames merging

First the extracted spectrum, its variance and its bad-pixel mask are rebinned.

Then the orders are optimally merged, computing every pixel in the merged spectrum as a weighted average of all good pixels available covering its wavelength bin, with weights equal to the inverse of the respective variances.

Important information is contained in the binary table extensions.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 87 of 104              |

#### 11.1.19 Interorder background subtraction

Two different methods are used to subtract the scattered light background:

• Spline method. The input image is sampled at half-integer order locations at **backsub.npoints** equally spaced sample points. According to the user defined value of the parameter **backsub.mmethod**, the median or the minimum values computed in a subwindow of height (2 \* **backsub.radiusy**/biny\_size + 1). The window width is given by the distance between the sample positions.

After the spline interpolation, the interorder background image is filtered using an average filter with radius (backsub.smoothx, backsub.smoothy).

The spline degree is set by using **backsub.sdegree**. Currently, only splines of degree 1 are supported (i.e. linear interpolation). If the **backsub.mmethod** parameter is set to 'no', no background subtraction is done.

• Polynomial method. The polynomial method is used in the order definition recipe because the order locations, required for the spline method, are not known at this initial stage.

A low degree 2d polynomial is fit to a subset of the image pixels and outlier points (such as the orders themselves) that have large positive residuals are continuously rejected (one-sided kappa-sigma clipping).

The input image is sampled on a regular grid with mask size (**image\_width / backsub.npoints , im-age\_height / backsub.npoints**).

After the initial order line detection, the interorder background is sampled (at locations separated by **image\_width / backsub.npoints**) between the order lines.

#### 11.1.20 Hough transform

The Hough transform is computed by sampling the input image at every column seperated by samplewidth.

Each echelle order maps to a peak in the Hough image. After detecting a peak, the peak itself and the area around it are deleted to avoid redetecting the same feature.

The accurate peak locations are calculated as the centroid of the area around the local maximum in the Hough space.

The function detects orders until the intensity of the next candidate drops to below a fraction **pthres** of the dimmest line.

An important parameter for the peak removal to work is the (approximate) interorder spacing.

It is estimated as the first minimum of the auto-correlation function along the column in the Hough image which contains the global maximum. This fully automatic way of detecting the orders assumes only that the interorder spacing does not vary too much as function of order number.

Possible order line slopes range from **minslope** to **maxslope** The resolution of the slope-axis in Hough space is defined by **sloperes**.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 88 of 104              |

#### 11.1.21 Order tracing

This algorithm, shared with the echelle-slit mode order tracing, is applied on fibre mode to trace the simultaneous calibration fibre order flat.

The parameter **use\_guess\_tab** value, defaulted to 1, allow the user to benefit of the information contained in the guess order table in a different way:

- 0: No usage.
- 1: Use the guess order table to set the lower/upper Y raws where order are searched.
- 2: The order table try to fully match the guess one.

The order tracing is performed as follows:

• First, all orders are traced in both directions starting from the center which is inferred from the solution of the Hough detection (if **use\_guess\_tab** is set to 0), or from the "guess" order table (if **use\_guess\_tab** is set to 1 or 2).

A Gaussian is fit to the order line at x-positions seperated by the parameter **tracestep**. The trace stops if the intensity of the order line drops below the threshold defined by the **minthresh** value in an x-range determined by the parameter **maxgap**.

- Then each order is fit with a straight line, and the entire order is rejected if the RMS is large compared with the average RMS.
- A global polynomial of automatic degree is fit to all orders, and individual points are rejected using kappasigma clipping. Alternatively, the user can define polynomial degrees using the parameters (**defpol1**, **defpol2**).

#### 11.1.22 Line Search

In fiber mode is used the same algorithm as in echelle-slit mode.

A number of emission lines defined by the range **minlines-maxlines** (both inclusive) is searched for in the extracted arc lamp spectrum. This is achieved by adjusting the detection threshold level until an appropriate number of lines is detected.

A 5-parameters Gaussian fit, including the continuum slope, is made if the line peak is above the treshold with respect to the local interorder background level, which is defined as the median of a window of width (2 \* range + 1) centered on the current position. Finally, doublets (defined as lines with positions within 2.0 pixels) are removed from the set of detected lines.

#### 11.1.23 Wavelength calibration first solution determination

In fiber mode is used the same algorithm as in echelle-slit mode.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
|     |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 89 of 104              |

An initial dispersion relation is obtained by fitting the relation

$$\lambda * m = f(x, m),$$

to a guess line table containing associations from (x, m) = (pixel, order) to wavelengths. Here f is a 2d polynomial.

A systematic x-shift up to **shiftmax** pixels is recovered by finding the maximum position of the cross-correlation function and applying this shift to the initial dispersion solution. The resolution of the cross-correlation function is defined by **shiftstep**. The parameter **shifttoler** defines the tolerance in pixels for the line match. The default polynomial **degree** is 5.

#### 11.1.24 Line identification

In fiber mode is used the same algorithm as in echelle-slit mode.

The wavelength calibration starts from a first guess dispersion solution.

Lines are iteratively identified and a dispersion solution is fit, until no new identifications can be made. After the first convergence, all identifications are cleared (to remove possible false identifications), and the loop repeats, but this time ignoring lines with residuals worse than **tolerance** and lines with residuals worse than **kappa** sigma. If set to a negative value, the polynomial degree is automatically adjusted based on the line residuals.

Identifications are made based on a match between the detected line predicted wavelength,  $\lambda_{com}$  and a catalogue wavelength,  $\lambda_{cat}$ . An identification is made if

- The nearest catalogue wavelength is within two linewidths of the predicted wavelength:  $|\lambda_cat \lambda_com| < 2 * \sigma$ , where  $\sigma$  is the detected line width,
- The distance to the 2nd nearest neighbours (in the spectrum as well as in the catalogue) is much larger than the residual of the match |λ\_cat λ\_nn| \* ALPHA > |λ\_cat λ\_com|, (where ALPHA is a "safety parameter" less than one.)
- The nearest neighbour (in the spectrum and in the catalogue) is farther away than the average tolerance distance, which measures the precision of the identifications: tolerance < ALPHA \* |λ\_cat λ\_nn|. Refer to the source code for the exact definition of the tolerance.</li>

The purpose of the first criterion is to make the correct identifications. The purpose of the latter two criterions is to avoid making incorrect identifications.

#### 11.2 Recipes

In the following sections we are going to describe the recipes provided by the FLAMES-UVES pipeline. Recipe common parameters are: **debug**, to activate the debug mode which saves intermediate results to disk and **plotter** to activate the plotting facility (gnuplot). Additionally each recipe can be customized by modifying specific data reduction parameters which are described in the following section or in the referred algorithm description.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 90 of 104              |

#### **11.2.1** Master bias generation

We refer the reader to the UVES context documentation for the recipe uves\_cal\_mbias. In fact FLAMES data reduction uses that command (see [14]).

#### **11.2.2** Master dark generation

We refer the reader to the UVES context documentation for the recipe uves\_cal\_mdark. In fact FLAMES data reduction uses that command (see [14]).

#### **11.2.3** Spectral format guess

The recipe flames\_cal\_predict expects as input a fibre formatcheck frame which is obtained by illuminating the calibration fibre with a ThAr lamp, and a reference ThAr lines table. Optional input is a reference formatcheck frame.

This recipe runs the UVES physical model as for ECHELLE data. For details we remind the user to [14]. The only difference is that in case of FIBER mode data, to take into account of the offset between the calibration fiber and the central position of the order, X and Y offsets are set depending on the given instrument setting (wavelength, plate number).

#### **11.2.4** Single fibre order table generation

To get an order table from a simultaneous calibration (single) fibre flat field one can use the recipe flames\_cal\_orderpos providing in input a guess order table the one generated by flames\_cal\_predict.

#### **11.2.5** Master slit flat field generation

The recipe flames\_cal\_mkmaster generates a master flat frame from a set of slit flats.

To have full coverage of all 9 fibres and wide enough windows to determine the inter order background are taken three sets of three slit flats each, each set taken at different Y positions. From each set it is computed a master flat field as for echelle mode data. The recipe divides the raw slit flat fields in groups each having the same Y position (having values of the FITS keyword ESO.INS.SLIT3.X1ENC and ESO.INS.SLIT3.X2ENC within 5 encoder steps) and next on each group applies a standard master flat field generation (without inter-order background subtyraction as this operation is performed later in the data reduction). The output are a set of (usually three) master slit flat fields each corresponding to a given Y position.

# **11.2.6** Slit flats preparation, odd-even-all fibre flats preparation, normalization and fibre-order table determination

The recipe flames\_cal\_prep\_sff\_ofpos prepares the input slit flat-field and fibre flat-field frames for inclusion in the calibration database. First are processed the lower-chip data and next the upper-chip data. The slit FF frames

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 91 of 104              |

are normalised to be equal where they overlap, then a minimal set of frames covering the largest y interval is produced.

This recipe executes the following algorithm in sequence:

- A bad pixel map is generated (see 11.1.10),
- A variance and a bad pixel map are associated to the input frames (see 11.1.9),
- All fibres are located and an order position table is determined (see 11.2.6),
- Suitable positions for background-light extraction are determined (see 11.1.12),
- Input slit flats are prepared (see 11.1.4),
- Input fibre flats are prepared (see 11.1.3),
- Fibre to fibre normalizations are computed (see 11.1.16).
- All output products are classified.

To improve robustness (of this command and flames\_cal\_wavecal, flames\_obs\_scired commands) this step checks that for each detected order all the fibres are traced and if not a fibre tracing is forced. Moreover the recipe flames\_cal\_prep\_sff\_ofpos, to prevent problems in the wavelength calibrations, excludes from the order tracing the bottom right and upper left hand side corners. This is done setting appropriate values of keywords **DRS\_SCAN\_MIN** and **DRS\_SCAN\_MAX**.

#### 11.2.7 Wavelength Calibration

The recipe flames\_cal\_wavecal performs the wavelength calibration using previously determined solutions for the first guess line table and the order table. This recipe is a modification of the **uves\_cal\_wavecal** recipe to reduce UVES echelle data, in the sense that instead of determining the solution corresponding to tree order traces, one at the center and the other two at 15 pixels up and down, now are determined the solutions corresponding to each of the fiber traces as indicated by the **FIBREMASK** FITS keyword. For details we remind the user to [14].

#### 11.2.8 Science data reduction

This recipe performs the actual spectrum extraction, either optimal or standard. The normalized odd/even fibre flat-field frames output of previous commands are compared to the science frame, any y-axis shift between them is computed and compensated by shifting the odd/even fibre flat-fields; an optimal/standard extraction is performed on the science frame, and the resulting spectra are created, one set of files for each illuminated fibre. Next, using the line table created by **flames\_cal\_wavecal**, the extracted spectra are rebinned and merged. Finally, the products are classified. This commands supports different extraction modes. The normal extraction mode (the one just described, using optimal or standard extraction, setting the parameter **extract** to "opt" or "sta") is the one we suggest to the user. Fast extraction mode (**extract** set to "fop" of "fst") is faster as skip the correlation step (but as such it may have also lower quality). Quick extraction mode, which does

| <b>ESO</b> FLAMES-UVES Pipeline User Ma |                                  | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----------------------------------------|----------------------------------|--------|------------------------|
|                                         | FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
|                                         |                                  | Date:  | Date 2013-05-06        |
|                                         |                                  | Page:  | 92 of 104              |

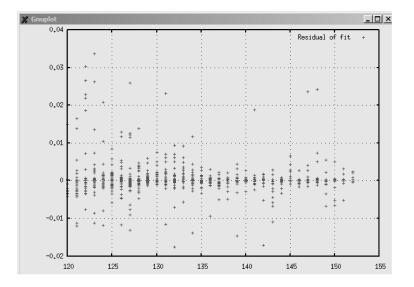



Figure 11.1: Wavelength calibration residuals (A) as function of order number.

not use at all the slit flat fields in the data reduction chain, and does not do any correlation step, was implemented in answer to a Paranal Operation request, and if used, requires that the complete data reduction (recipes **flames\_cal\_prep\_sff\_ofpos** is performed in a coherent way (using quick data reduction mode).

In case the correlation step fails (usually due to a large Y shift between the observation and the calibrations) we suggest the user to do the following. The shape of the correlation function is contained in tables cor\_shape\_x.fits (x=l or x=u respectively for EEV or MIT chips). From this table one can get the Y offset at which the correlation function has a maximum.

Next repeat the extraction appropriately setting the correlation function parameters (through parameter extract). In this case usually **drs\_cor\_def\_rng** can be decreased to 2 or even 1.

For example to do optimal extraction with correlation (OPT) function search (Y) in the range [-2,2], using 2\*25+1 pixels and having measured a -4.5 pixel shift, one may give the command:

esorex flames\_obs\_reduce --cor\_pnt=25 --cor\_rng=2 --cor\_off=4.5 flames\_obs\_reduce.sof

#### 11.2.9 Full UVES-FIBRE data reduction

The recipe flames\_obs\_redchain runs the full FLAMES-UVES reduction chain. It runs in a cascade the following recipes:

- uves\_cal\_mbias (if no master bias is provided)
- uves\_cal\_mdark (if darks are provided)
- flames\_cal\_predict (if no guess order and line tables are provided)
- flames\_cal\_orderpos (if no order table is provided)

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 93 of 104              |

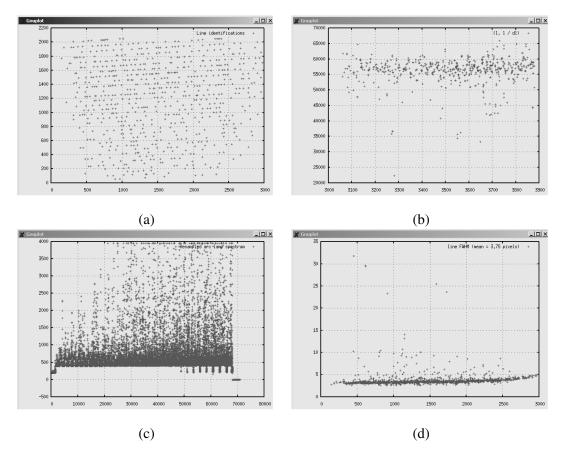



Figure 11.2: These plots display: (a) the distribution of identified lines across the detector, (b) the resolving power as a function of wavelength, (c) the resampled ThAr spectrum, (d) the line FWHM as a function of wavelength.

- flames\_cal\_mflat (if no master slit flat is provided)
- flames\_cal\_prep\_sff\_ofpos (if no slitff\* and fibreff\* are provided)
- flames\_cal\_wavecal (if no dispersion solution line table is provided)
- flames\_obs\_scired (unless the option scired is set to FALSE)

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 94 of 104              |

## A Installation

This chapter gives instructions on how to obtain, build and install the UVES pipeline (ECHELLE and FIBRE modes). Even if this chapter is kept as up-to-date as possible, it may not be fully applicable to a particular release. This might especially happen for patch releases. One is therefore advised to read the installation instructions delivered with the UVES pipeline distribution kit. These release-specific instructions can be found in the file README located in the top-level directory of the unpacked UVES pipeline source tree. The supported platforms are listed in Section A.1. It is recommended reading through Section A.3 before starting the installation.

A bundled version of the UVES pipeline with all the required tools and an installer script is available from www.eso.org/pipelines.

#### A.1 Supported platforms

The UVES pipeline has been verified to install and execute correctly with EsoRex on the VLT target platforms:

• Linux (tested Fedora core 11 and Scientific Linux 5.5)

and on

• Mac Darwin 12.2.0 (compiling with CC=gcc)

using the GNU C compiler (version 4.4 or newer). Correct execution using Gasgano has been verified on

- Linux Fedora core 11 (with gcc4.4.1),15 (with gcc 4.6.3), 16 (with gcc4.6.3), 17 (with gcc4.7.2),
- Scientific Linux 5.5,
- Ubuntu 10.04.4
- Mac Darwin 12.2.0 (compiling with CC=gcc)

#### A.2 Requirements

To compile and install the UVES pipeline one needs:

- the GNU C compiler (version 4.4 or later),
- the GNU gzip data compression program,
- a version of the tar file-archiving program and
- the GNU make utility.

For Gasgano support one needs in addition

• the Java Development Kit (version 1.6)

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 95 of 104              |

#### A.3 Building the UVES pipeline

The UVES pipeline distribution kit contains:

| uves-manual-15.0.pdf    | The UVES pipeline manual            |
|-------------------------|-------------------------------------|
| install_pipeline        | Install script                      |
| cfitsio-3310.tar.gz     | CFITSIO 3310                        |
| cpl-6.3.tar.gz          | CPL 6.3                             |
| esorex-3.10.tar.gz      | esorex 3.10                         |
| gasgano-2.4.3.tar.gz    | GASGANO 2.4.3                       |
| uves-5.2.0.tar.gz       | UVES 5.2.0                          |
| uves-calib-5.2.0.tar.gz | UVES static calibration files 5.2.0 |

Here is a description of the installation procedure:

1. Change directory to where you want to retrieve the UVES pipeline 5.2.0 package. It can be any directory of your choice but not:

\$HOME/gasgano \$HOME/.esorex

- 2. Download from the ESO ftp server, www.eso.org/pipelines, the latest release of the UVES pipeline distribution.
- 3. Verify the checksum value of the tar file with the cksum command. cksum uves-kit-5.2.0.tar.gz
- 4. Unpack using the following commands: gunzip uves-kit-5.2.0.tar.gz tar -xvf uves-kit-5.2.0.tar

Note that the size of the installed software (including *Gasgano*) together with the static calibration data is about 27Mb.

- 5. Set the environment variable JAVA\_HOME to the directory where you have the JDK 1.6 installed. If this value is not set, the installation script will try to guess it, but if no JDK is found, the gasgano distribution will not be installed; CPL, EsoRex and the pipeline will be installed anyway.
- 6. Install: after moving to the top installation directory, cd uves-kit-5.2.0

it is possible to perform a simple installation using the available installer script (*recommended*): ./install\_pipeline

Note: on recent Mac OS in order to properly install the kit it may be useful to set the following environment variable:

export JAVA\_HOME=/System/Library/Frameworks/JavaVM.framework/

| <b>ESO</b> FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|---------------------------------------------|--------|------------|------------------------|
|                                             | Issue: | Issue 15.0 |                        |
| LOU                                         |        | Date:      | Date 2013-05-06        |
|                                             |        | Page:      | 96 of 104              |

7. Check the installation log: probably this will suggest you to set the environment variable CPLDIR and to extend your PATH.

By default the script will install the UVES recipes, *Gasgano*, *EsoRex*, all the necessary libraries, and the static calibration tables, into a directory tree rooted at \$HOME. A different path may be specified as soon as the script is run.

The only exception to all this is the *Gasgano* tool, that, if you have the required proper installation of the JDK (version 1.6), will always be installed under the directory \$HOME/gasgano. Note that the installer will move an existing \$HOME/gasgano directory to \$HOME/gasgano.old before the new *Gasgano* version is installed.

Important: the installation script would ensure that any existing *Gasgano* and *EsoRex* setup would be inherited into the newly installed configuration files (avoiding in this way any conflict with other installed instrument pipelines).

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 97 of 104              |

## **B** FLAMES-UVES pipeline data reduction parameters

The FLAMES-UVES pipeline gives the user the possibility to customize the data reduction. This can be done modifying the settings in the file {{PIPE\_HOME}/flames/pipe/proc/flames\_def\_drs\_par.prg

We suggest to do it with care, being sure of what one does and at his own risk. Here we describe the tuning parameters, and suggest also whether each MIDAS keyword (data reduction parameter) should or should not be changed.

- NICE\_CREA: this keyword affect the display (Y) or not (N) of some frames. Default is N. Can be modified. If set to Y the data reduction is slightly slowed.
- DECENTSNR: How large should the SNR on a fibre be in a calibration frame, at a given order and x, for that slice to be considered "good"? Default: 10. Suggested to not change it. Since it is used while preprocessing the flat field calibration data, for changes to take effect one ought to rerun some or all of the relevant steps (e. g. PREPSLIT/FLAMES, PREPFIBRE/FLAMES, PRENOR/FLAMES...).
- MATCHTHRESH: How close should a detected fibre be to the position predicted by the zero order approximation, so that it is recognized and labeled by the matchorder step. Default 4. Suggested to not change it. Setting it too low will cause orders/fibres to be skipped, setting it too large will cause traces to be assigned to the wrong order/fibre. Only used in OFPOS/FLAMES.
- HALFIBREWIDTH: Half size of each fibre on the detector measured so that the entire size contains 100% of the flux. Default: 7.5. This parameter is only read in OFPOS/FLAMES, and its value hence stored in a descriptor and used throughout data reduction, for consistency. If one wants to change it, he should probably repeat the whole data reduction procedure for the new value to take effect (don't do it).
- MAXFIBRES: Maximum number of fibres. Default: 9. Keep it. If decreased the DRS will probably crash.
- SAV\_BORD\_SZ: Amount of pixels from the 50% intensity threshold of the SlitFF size which is discarded on both sides of the slitFF to be sure to be in its flat part. A large value (~5) makes you sure that only the flat part of the slitFF is used, and probably the final quality will be better; on the other hand, this will shrink the effective usable size of the used slitFF so that you need to have enough overlapping between them and enough slitFF to cover all the fibres you like to extract. A small value (2) may introduce some quality defect if the flat part of the slitFFs is not really flat. Default: 3. It may be changed if really necessary with the given advices. Only used in MSFFSZ/FLAMES. If you *really* want to tune the YSHIFT and HALFWIDTH descriptors of the slitFFs, measure them with GET/GCURSOR on a cross-dispersion cut of the frames and set the desired values manually.
- X\_WIND\_SIZE. Half X window size for median filter used in determining the half size of each slitFF and its offset. Default: 3. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- Y\_WIND\_SIZE. Half Y window size for median filter used in determining the half size of each slitFF and its offset. Default: 5. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.

| <b>ESO</b> FLAMES-UVES Pipeline User Manu |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|-------------------------------------------|--------|------------|------------------------|
|                                           | Issue: | Issue 15.0 |                        |
| LOU                                       |        | Date:      | Date 2013-05-06        |
|                                           |        | Page:      | 98 of 104              |

- Y\_SEARCH\_WIND. Search window size to filter image used in determining the half size of each slitFF and its offset. Default: 100. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- ORD\_TRESH. Number of orders cut either on max and min detected orders. Used in determining the half size of each slitFF and its offset. We cut some orders to be sure to get Y intercepts on the cross-order cut at the detector center within the detector. Default: 2. It may be slightly increased, but it is preferable to leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- N\_CLIP\_MED. K-S clipping iterations over median. Used in determining the half size of each slitFF and its offset. Default: 4. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- N\_CLIP\_AVG. K-S clipping iterations over average. Used in determining the half size of each slitFF and its offset. Default: 2. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- INT\_TRESH. Signal fraction of the slitFF top value used to define the borders of the flat part of the slitFF. A value as small as 0.5 is good to be sure to detect slitFF borders. Default: 0.5. Leave it as it is. Only used in MSFFSZ/FLAMES. See the comments for SAV\_BORD\_SZ.
- MAXYSHIFT. This is the halfwidth of the interval of y shifts which are sampled when searching the local maximum of the correlation. Default: 3. Making it smaller may make the search for the maximum slightly faster, but it *will* cause it to fail if the actual y shift is outside this interval. Making it larger may bracket more than one maximum and cause a spurious y shift determination. Don't touch this if you don't need to.
- NBTRACES. 0. Number of traces (order times fibres). Default 0.
- MINFIBREFRAC. Minimum fibre fraction coverage for extraction. Default: 0.3. Leave it as it is.
- BKGFITNLINE. Inline background fitting. Default yes. Keep it.
- BKGFITMETHOD. Background fitting method. Possible values are ALL, MEDIAN, MINIMUM, AV-ERAGE. Default: AVERAGE.
- BKGBADSCAN. Background table bad pixel frame scanning switch. Possible values are FRACTION, ABSOLUTE and NONE. Default: NONE.
- BKGBADWIN. Background table bad pixel frame scanning window size. Default: 50,50
- BKGBADMAXFRAC. Background table bad pixel frame scanning threshold fraction. Default: 0.02
- BKGBADMAXTOT. Background table bad pixel scanning threshold number. Default: 200.
- BKG\_MAX\_IO\_WIN. Number of background windows in each full inter order. Default: 500.
- DRS\_BKG\_FIT\_POL. Polynomial degree used for BKG fit order. Default 2,2
- BKG\_XY\_WIN\_SZ. x,y maximum size of each background window. Default 6,2.
- DRS\_FILT\_HW\_XY. Size of X half window and Y half window. Default 2,1.

| <b>ESO</b> FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|---------------------------------------------|--------|------------|------------------------|
|                                             | Issue: | Issue 15.0 |                        |
| LOU                                         |        | Date:      | Date 2013-05-06        |
|                                             |        | Page:      | 99 of 104              |

- DRS\_FILT\_IMAX. Maximum filtering iterations in frame preparation. Default 300.
- DRS\_FILT\_KS. Threshold above which pixel are flagged as bad in filtering in frame preparation. Default 10.
- DRS\_FILT\_SAT\_SW. Do you want mask saturated pixels in frame preparation ([yes]/No)?. Default is YES.
- DRS\_FILT\_MASK. Do you want a filter/generated bad pixel mask: ([NONE]/MEDIAN)?. Default is NONE.
- MAXYSHIFT. Half width of the interval to scan for correlation, when determining y shift. Deafult is 3.
- GAUSSFIBRESIGMA. Gaussian pseudofibre total halfwidth for correlation. Default: 1.5. Only read in PREPFIBRE/FLAMES, then the value is stored in a table descriptor and used throughout, for consistency. Don't make it much smaller or it will make the correlation numerically fragile due to increased pixelisation effects. Don't make it too large or signals outside the fibres will spuriously affect the correlation. As a rule of the thumb, 3. GAUSSFIBRESIGMA <sup>≤</sup> GAUSSHALFWIDTH <sup>≤</sup> HALFIBREWIDTH.
- GAUSSHALFWIDTH Gaussian pseudofibre total halfwidth for correlation. Default: 6. Only read in PREPFIBRE/FLAMES, then the value is stored in a table descriptor and used throughout, for consistency. See comments above for GAUSSFIBRESIGMA.
- MAXBACKITERS This is the maximum number of kappa-sigma clipping iterations which we are willing to perform in background fitting. Default 20.
- MAXDISCARDFRACT This is the maximum fraction of windows/pixels which we are willing to discard by kappa-sigma clipping in each iteration of the background fitting loop. Default: 0.1. Making it larger will cause the background fitting to converge in less iterations, but can make it more fragile. Making it smaller will render the kappa-sigma clipping more cautious, hence it will require more iterations for all bad pixels to be discarded and convergence reached. The default chosen works well in most situations, leave it as it is.
- MAXCORRITERS. This is the maximum number of iterations which we are willing to perform in correlation. Default: 30.
- CORRELTOL. This is the absolute accuracy with which the maximum in the correlation function must be determined. Default 0.005. Leave it as it is.
- CORRELXSTEP. This is the X step to use while computing the correlation: it must be a positive integer, 1 means "use all pixels" 2 means "use every other pixel:, 3 means "use one every three" etc.. Default: 1. A larger value can make the correlation much faster, but it will also make it more fragile in case of spectra dominated by strong and narrow emission lines.
- GAUSSCORRELSCL. Obsolete (to be removed in future releases).
- GAUSSCORRELWND. Obsolete (to be removed in future releases).
- MAXCLEANITERS This is the maximum number of cleaning iterations to be tried on a given slice in flames\_prep\_fibre, before giving up on its normalisability and falling back to the second cleaning strategy. Default 10. Only used in PREPFIBRE/FLAMES.

| ESO FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|--------------------------------------|--------|------------|------------------------|
|                                      | Issue: | Issue 15.0 |                        |
| LOU                                  |        | Date:      | Date 2013-05-06        |
|                                      |        | Page:      | 100 of 104             |

- MAXSINGLEPXFRC This is the maximum acceptable fraction of the flux in a given slice in one single pixel; a higher fraction than this means that there was some numerical instability and/or unmasked bad pixel, and that it must be discarded. Default: .3. Only used in PREPFIBRE/FLAMES. Leave it as it is.
- MAXOPTITERSINT This is the maximum number of iterations which we are willing to perform in optimal extraction. Default: 25.
- MINOPTITERSINT This is the minimum number of iterations we are willing to perform in optimal extraction. Default: 2.
- XKILLSIZE
- YKILLSIZE When performing sigma-clipping in the optimal extraction, how many other adjacent pixels in the x and/or y direction(s) should be discarded along with the one exceeding threshold? A cosmic or cosmetic problem is likely to affect a spot larger than 1 pixel. Default: XKILLSIZE=1, YKILLSIZE=1. Larger values will cause a slightly faster convergence of optimal extractions, as clusters of bad pixels are removed in one go. However, some good pixels may get thrown away along with the bad ones. The default is the safe (and slow) choice.
- MAXORDER. In flames\_tracing, a few arrays are statically defined, and need to be large enough to contain all the orders which could be possibly found. We defined it to a hefty one thousend. Default 1000. You will hardly ever want to touch this.
- DYRANGE Width of the y half window to be used when performing order/fibre labeling. Default: 300. It works well, leave it as it is.
- DYSTEP Step of the scan in y while performing order/fibre labelling. Default 0.1. It works well, leave it as it is.
- MASKTHRES Defines the minimum value a rebinned mask must have in order to consider the corresponding pixel of the rebinned spectrum "good". Since a pixel in the rebinned frame may be computed using also bad pixels, we want to throw out pixels which contain even a very small fraction of "badness". Default: 0.99. It must be a number close enough to 1 to ensure that only good pixels were used to derive a rebinned value, but not too close, to avoid throwing away good pixels just due to numerical rounding errors. The default works well, leave it as it is or, at most, tune it slightly. Used only in MERGE/FLAMES
- FRACSLICESTHRES Defines the minimum fraction of slices that must be good, for a fibre to be considered covered enough at the end of fillholes, in flames\_prep\_fibreff, to avoid numerical instabilities in gausselfcorrel if a fibre is only very barely covered by the slitFF frames. Default 0.3. Leave it as it is.
- MAXROWS The maximum permitted sizes for the order tables created by the DRS: Default 300000. You will hardly ever want to touch this.
- MAXCOLS The maximum permitted sizes for the order tables created by the DRS: Default 10. You will hardly ever want to touch this.
- DRS\_PTHRE\_MAX Maximum threshold for pixel saturation detection: Default 6\*10<sup>4</sup>. Good 5-6\*10<sup>4</sup>
- DRS\_PTHRE\_MIN Minimum threshold for pixel saturation detection: Default -20. Good -20

| <b>ESO</b> FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|---------------------------------------------|--------|------------|------------------------|
|                                             | Issue: | Issue 15.0 |                        |
| LOU                                         |        | Date:      | Date 2013-05-06        |
|                                             |        | Page:      | 101 of 104             |

- DRS\_EXT\_MTD Extraction method. Default opt. Possible values opt: optimal; sta: standard; fop: fast-optimal; fst: fast-standard; qop: quick-optimal; qst: quick-standard.
- DRS\_K\_S\_THRE Kappa-sigma Threshold used in extraction. Default 10.
- DRS\_KSIGMA\_THRE Kappa sigma Threshold. Default 10.
- DRS\_EXT\_W\_SIZ Integration window size. Default 10. 10 is a good value if fibre deconvolution works fine.
- DRS\_MIDAS2FITS MIDAS to FITS conversion switch. At the end of a procedure it allow MIDAS to FITS format conversion. Default N. Possible value Y/N.
- DRS\_BIAS\_MTD Bias subtraction Method: M: Master Bias subtraction; <num> constant value subtraction; N: no bias subtraction.
- DRS\_FILT\_SW Filter switch. Default none. Possible values: none/average
- DRS\_SFF\_FIBFF Slitff\*-Fibreff frames preparation. Y: yes, slower, for DFO N: no, faster, for PSO once CDB is ready. Default Y
- DRS\_CREA\_BP\_TAB Switch to create (Y) or not (N) a bad pixels table. Default N
- DRS\_PHYSMOD\_REC Physical model auto recover switch: Y: yes the physical model autorecovers N: No the physical model does not autorecover. Default Y.
- DRS\_USE\_ORDEF Use (Y) or not (N) of the ORDERDEF as part of the odd/even fibre FF Keep it at Y to support SimCal mode. Default is N.
- DRS\_MER\_MTD What merging method are we using: FLAMES or ECHELLE. If ECHELLE metod REDUCE/FLAMES uses REBIN/ECHELLE and MERGE/ECHELLE comands. If FLAMES method REDUCE/FLAMES uses MERGE/FLAMES. ECHELLE method is more robust. Default is ECHELLE.
- DRS\_SCI\_RAW Produce or not raw science data. Default is Y.
- DRS\_VERBOSITY DRS MIDAS C Library verbosity level. Default LOW.
- DRS\_MES\_LEV MIDAS procedure main messaging level. Default is 4
- DRS\_CUBIFY Switch to activate creation and usage of slitff\* and fibreff\* cubes. Default is N.
- DRS\_COR\_MAX\_FND DRS strengthened correlation shape definition and pre search of maximum switch: Y do pre search of correlation's maximum. N don't do it (do only search of max with modified Brent method starting from points -3,0,+3). Default is Y.
- DRS\_COR\_DEF\_RNG DRS Correlation function's range: [-DRS\_COR\_DEF\_RNG,+DRS\_COR\_DEF\_RNG] pix 6.
- DRS\_COR\_DEF\_PNT DRS Correlation function's number of definition points. Effective number of points is 2\*DRS\_COR\_DEF\_PNT+1. Default is 25.

| <b>ESO</b> FLAMES-UVES Pipeline User Manual |        | Doc:       | VLT-MAN-ESO-19500-3016 |
|---------------------------------------------|--------|------------|------------------------|
|                                             | Issue: | Issue 15.0 |                        |
| LOU                                         |        | Date:      | Date 2013-05-06        |
|                                             |        | Page:      | 102 of 104             |

- DRS\_COR\_DEF\_OFF DRS Correlation function's center of definition. Default is 0.
- DRS\_WCAL\_MODE. Wavecal mode. Default is Auto.
- DRS\_WCAL\_RPLT. Default for wavecal resolution plots creations. Y.
- DRS\_WCAL\_FITS. Defaults for FITS table production in wavecal. Default N.
- DRS\_BASE\_NAME. Default base name for extracted science file prefix. Default is science.
- DRS\_SCI\_CUBE. For packing science products on planes and cubes. Default is N.
- DRS\_WCAL\_DC. Default for wavecal solution polynomial degree. Originally was 5, more precise, next to have better robustness we switched to 4.
- DRS\_WCAL\_TOL. Default for wavelength calibration polynomial solution parameter TOL. This sets a threshold. Points which discard by the found solution more than TOL pix are outlayers. Current defaults is 0.6. A user willing to achieve a very accurate wavelength calibration solution, using the improved ThAr table (thargood\_3.tfits), may decide (at the risk of a decreased wavecal recipe robustness), to decrease this value down to 0.07.
- DRS\_WCAL\_PAR. DRS\_WCAL\_PAR=DRS\_WCAL\_MODE, DRS\_WCAL\_RPLT, DRS\_WCAL\_FITS, DRS\_WCAL\_DC, DRS\_WCAL\_TOL
- DRS\_SCI\_PAR1=DRS\_EXT\_MTD, DRS\_COR\_MAX\_FND, DRS\_COR\_DEF\_RNG, DRS\_COR\_DEF\_PNT, DRS\_COR\_DEF\_OFF
- DRS\_SCI\_PAR2=DRS\_BIAS\_MTD,DRS\_FILT\_SW,DRS\_PTHRE\_MAX
- DRS\_P8\_OFPOS Parameter P8 of hogh/echelle. Default ".10,-.1,.1,.005,1.". Reasonable balues are:
  - 520 ".05,-.1,.1,.005,1."
  - 580 ".10,-.1,.1,.005,1."
  - 860 ".10,-.1,.1,.005,1."
  - DRS\_P8\_OFPOS\_S1 First component of parameter P8 used in hogh/echelle. Default 0.05, 10, 10.
  - DRS\_SCAN\_MIN
  - DRS\_SCAN\_MAX This MIDAS keyword set the parameter SCAN(1) and SCAN(2) respectively used by the command hough/echelle. The chosen values, allow to skip a CCD portion approximatively equal to the Y span covered by eight fibres, in the prliminary determination of fibre traces done by the command OFPOS/FLAMES. This to prevent detection of very small portion of orders in the lower right hand side and upper left hand side part of a splitted frame. This help to make wavelength calibration and science extraction more robust for 860 setting. For other settings possible values are also 1,2048 which allows to cover the entire detector. We suggest the user to keep the chosen defaults: DRS\_SCAL\_MIN= 55,73,73 and DRS\_SCAL\_MAX= 1993,1975,1975 respectively for settings 520, 580, 860.
  - DRS\_MER\_DELTA Cutting values using in merging frames. Default 5,5.
  - DRS\_DEL\_SW Choice switch to set DRS\_MER\_DELTA values. Used in UVES echelle extraction.
     Possible values are D (Default: no setting), A (Automatic setting), and U (User defined setting).
     Default A.

|     |                                      | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO | ESO FLAMES-UVES Pipeline User Manual | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 103 of 104             |

- DRS\_SCI\_SIM Switch to activate use of SimCal setting.
- DRS\_SFF\_HW\_MIN Threshold to minimum value accepted in Slit Flat Width Half Width. Default is 10.

|     | ESO FLAMES-UVES Pipeline User Manual | Doc:   | VLT-MAN-ESO-19500-3016 |
|-----|--------------------------------------|--------|------------------------|
| ESO |                                      | Issue: | Issue 15.0             |
| LOU |                                      | Date:  | Date 2013-05-06        |
|     |                                      | Page:  | 104 of 104             |

## **C** Abbreviations and acronyms

| ANSI    | American National Standards Institute              |
|---------|----------------------------------------------------|
| ASCII   | American Standard Code for Information Interchange |
| CalibDB | Calibration Database                               |
| CPL     | Common Pipeline Library                            |
| DFO     | Data Flow Operations department                    |
| DFS     | Data Flow System department                        |
| DMD     | Data Management and Operations Division            |
| DRS     | Data Reduction System                              |
| ESO     | European Southern Observatory                      |
| EsoRex  | ESO-Recipe Execution tool                          |
| FITS    | Flexible Image Transport System                    |
| FOV     | Field Of View                                      |
| FPN     | Fixed Patter Noise                                 |
| GUI     | Graphical User Interface                           |
| OB      | Observation Block                                  |
| PSO     | Paranal Science Operations                         |
| QC      | Quality Control                                    |
| RON     | Read Out Noise                                     |
| UVES    | Ultraviolet Visual Echelle Spectrograph            |
| SOF     | Set Of Frames                                      |
| UT      | Unit Telescope                                     |
| VLT     | Very Large Telescope                               |
|         |                                                    |