
	
	
ESO	-	EUROPEAN	SOUTHERN	OBSERVATORY	

	

	
	

E U R O P E A N 	 S O U T H E R N 	 O B S E R V A T ORY	
Organisation	Européenne	pour	des	Recherches	Astronomiques	dans	l'Hémisphère	Austral	

Europäische	Organisation	für	astronomische	Forschung	in	der	südlichen	Hemisphäre	

	
	
	
	
	
	
	

Reflex	User	Manual	
	

VLT-MAN-ESO-19000-5037	
	

Issue	3.9	
20/04/2018	
38	pages	

	
	
	
	
	

Prepared:	 V.	Forchì	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 Name	 	 	 	 Date	 	 	 	 Signature	
	
	 Approved:	 T.	Bierwirth	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 Name	 	 	 	 Date	 	 	 	 Signature	
	
	 Released:	 M.	Péron	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 Name	 	 	 	 Date	 	 	 	 Signature	
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 2	of	38	

		
	

CHANGE	RECORD	
	

Issue	 Date	 Affected	Paragraphs(s)	 Reason/Initiation/Remarks	 Author(s)	
0.1	 18/01/10	 All	 First	version	 V.	Forchì	
0.2	 28/01/10	 All	 Added	installation	and	troubleshooting	sections	 V.	Forchì	
0.3	 16/03/10	 All	 Many	corrections	 V.	Forchì	
0.4	 07/04/10	 4,	5	 Added	Iteration	 V.	Forchì	
0.5	 28/05/10	 All	 Updated	to	beta2	 V.	Forchì	
0.6	 14/06/10	 All	 Added	ProductRenamer	chapter,	minor	fixes	 V.	Forchì,	

C.	Garcia	
0.7	 29/06/10	 All	 Minor	fixes,	preparing	for	first	public	release.	 V.	Forchì	
1.0	 27/07/10	 Error!	Reference	

source	not	found.,	
Error!	Reference	
source	not	found.	

Parameter	order,	actor	description	 V.	Forchì	

2.0	 16/12/10	 Error!	Reference	
source	not	found.,	
APPENDIX	B:	

Updated	to	Reflex	1.1	and	some	minor	fixes	 V.	Forchì	

3.0	 05/04/12	 All	 Updated	to	Reflex	2.0	 V.	Forchì	
3.1	 16/05/12	 All	 Updated	to	Reflex	2.1	 V.	Forchì	
3.2	 12/11/12	 3.2,	3.3,	Error!	

Reference	source	not	
found.	

Updated	to	Reflex	2.2	 V.	Forchì	

3.3	 15/01/13	 APPENDIX	B:	 Updated	to	Reflex	2.3	 V.	Forchì	
3.4	 11/04/13	 3,	4	 Updated	to	Reflex	2.4	 V.	Forchì	
3.5	 12/11/13	 All	 Updated	to	Reflex	2.5	 V.	Forchì	
3.8	 07/08/15	 All	 Updated	to	Reflex	2.8	 V.	Forchì,	

A.Szostak	
3.9	 20/04/18	 All	 Updated	to	Reflex	2.9	 V.	Forchì,	

A.	Szostak,	
L.	Coccato	

	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 3	of	38	

		
TABLE	OF	CONTENTS	

	
1.	 INTRODUCTION	..	5	
2.	 INSTALLATION	..	6	
2.1	 Reflex	installation	...	6	
2.2	 Execute	Reflex	...	6	
2.3	 Upgrading	from	previous	Reflex	versions	...	6	

3.	 REFLEX	OVERVIEW	..	7	
3.1	 General	concepts	..	7	
3.2	 Reflex	specific	actors	..	7	
3.3	 Data	types	...	9	
3.4	 General	workflow	structure	..	10	
3.5	 File	purpose	..	11	
3.6	 General	features	...	11	

4.	 ACTOR	DOCUMENTATION	..	12	
5.	 RECIPE	ITERATION	..	13	
6.	 PYTHON	BASED	RECIPES	...	14	
6.1	 Configuring	EsoRex	...	14	
6.2	 Writing	Python	Recipes	...	15	
6.2.1	 Python	Imports	..	15	
6.2.2	 Recipe	Declaration	...	15	
6.2.3	 Recipe	Parameters	...	16	
6.2.4	 Recipe	Configuration	...	17	
6.2.5	 Grouping	Input	Frames	..	18	
6.2.6	 Processing	Frames	...	19	
6.2.7	 Raising	Errors	...	20	
6.2.8	 Online	Documentation	..	20	

6.3	 Example	Code	...	20	
6.4	 Using	Python	Recipes	..	21	
6.5	 Debugging	...	21	

7.	 EXECUTING	IDL	SCRIPTS	...	23	
8.	 ESOREFLEX	STARTUP	SCRIPT	..	25	
8.1	 Command	line	options	..	25	
8.1.1	 -h	|	-help	..	25	
8.1.2	 -v	|	-version	...	25	
8.1.3	 -l	|	-list-workflows	...	25	
8.1.4	 -n	|	-non-interactive	..	25	
8.1.5	 -config	<file>	..	25	
8.1.6	 -create-config	<file>	...	26	
8.1.7	 -debug	..	26	

8.2	 The	esoreflex.rc	file	...	26	
8.3	 Creating	a	configuration	file	...	27	
8.4	 Configuration	file	format	..	27	
8.4.1	 esoreflex.inherit-environment	..	27	
8.4.2	 esoreflex.java-command	...	27	
8.4.3	 esoreflex.workflow-path	...	29	
8.4.4	 esoreflex.esorex-command	...	29	
8.4.5	 esoreflex.esorex-config	...	29	
8.4.6	 esoreflex.esorex-recipe-config	..	29	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 4	of	38	

		
8.4.7	 esoreflex.python-command	..	29	
8.4.8	 esoreflex.python-path	...	30	
8.4.9	 esoreflex.path	..	30	
8.4.10	 esoreflex.library-path	..	30	

8.5	 Environment	variables	..	31	
8.5.1	 ESOREFLEX_CLEAN_ENVIRONMENT	..	31	

8.6	 Custom	esoreflex.rc	file	use	cases	..	31	
8.7	 Using	a	private	installation	of	esorex	..	31	
8.8	 Using	a	private	installation	of	python	...	32	
8.9	 Using	the	user's	environment	...	33	
8.10	 Customising	the	esorex	command	used	by	esoreflex	...	33	

9.	 TROUBLESHOOTING	...	35	
9.1	 Debug	mode	...	35	
9.1.1	 Logging	to	file	..	35	

9.2	 Reflex	hangs	..	35	
9.3	 SQL	error	messages	..	35	
9.4	 Strange	behavior	of	actor	String	Costant	..	35	

APPENDIX	A:	 SIMPLIFIED	SOP	FORMAT	...	36	
APPENDIX	B:	 EXAMPLE.PY	...	37	
APPENDIX	C:	 SOFTWARE	REQUIREMENTS	..	38	

	
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 5	of	38	

		

1. INTRODUCTION	
The	ESO	Recipe	Flexible	Execution	Workbench	(Reflex)	is	an	environment	which	allows	an	easy	and	flexible	
way	to	execute	VLT	pipelines.	It	is	built	using	the	Kepler	workflow	engine	(https://kepler-project.org),	which	
itself	makes	use	of	the	Ptolemy	II	framework	(http://ptolemy.eecs.berkeley.edu/ptolemyII).	
The	Kepler	project	has	 thorough	documentation	both	 for	 the	casual	and	experienced	user	 (https://kepler-
project.org/users/documentation).	
Reflex	allows	the	user	to	process	his	scientific	data	in	the	following	steps:	

- Associate	scientific	files	with	required	calibrations	
- Choose	datasets	to	be	processed	
- Execute	several	pipeline	recipes	

This	 process,	 also	 called	 a	 workflow	 in	 Kepler	 terminology,	 is	 visually	 represented	 as	 a	 sequence	 of	
interconnected	boxes	(actors)	that	process	data:	the	workflow	allows	the	user	to	follow	the	data	reduction	
process,	possibly	interacting	with	it.	The	user	can	visualize	the	data	association	and	the	input	files	and	decide	
what	 scientific	 data	 he	 wants	 to	 process.	 It	 is	 also	 possible	 to	 visualize	 intermediate	 products,	 using	
components	provided	by	Reflex,	or	modify	the	data	flow	with	custom	components.	
Reflex	 uses	 EsoRex	 (http://www.eso.org/sci/data-processing/software/pipelines)	 to	 execute	 the	 pipeline	
recipes,	but	this	is	not	exposed	to	the	user.		
This	document	 is	 intended	as	 a	 guide	 for	workflow	developers:	 if	 you	are	 interested	 in	 reducing	 scientific	
data,	please	refer	to	the	relative	instrument	workflow	tutorial.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 6	of	38	

		

2. INSTALLATION	
The	 prerequisite	 to	 run	 Reflex	 is	 the	 installation	 of	 EsoRex	 and	 the	 pipeline	 you	 are	 interested	 in	 (please	
refer	to	the	VLT	pipelines	webpage	for	more	detailed	information	http://www.eso.org/pipelines).	
The	preferred	installation	on	OS	X	is	using	MacPorts	
(http://www.eso.org/sci/software/pipelines/reflex_workflows/macports.html),	there	is	also	an	installation	
script,	that	works	on	OS	X	and	Linux,	please	refer	to	the	following	URL	for	more	detailed	instructions:	
https://www.eso.org/sci/software/pipelines/reflex_workflows/#installation_procedure		
	

2.1 Reflex	installation	
This	step	is	not	required	if	you	used	the	installation	script.	

- Download	 the	 latest	 version	 of	 reflex	 for	 your	 architecture	 from	 the	 ESO	 website	
(http://eso.org/sci/software/reflex)	or	FTP	server	(ftp://ftp.eso.org/pub/dfs/reflex):	

$ curl -O ftp://ftp.eso.org/pub/dfs/reflex/reflex-{version}-{linux|osx}.tar.gz
- Install	Reflex:	 	
$ cd /path/to/install/reflex
$ tar xzf /download/location/reflex-{version}-{linux|osx}.tar.gz

2.2 Execute	Reflex	
If	you	used	MacPorts	execute:	
 $ esoreflex
Otherwise	execute:	
 $ /path/to/install/bin/esoreflex

2.3 Upgrading	from	previous	Reflex	versions	
Reflex	2.9	changes	some	bookkeeping	procedures,	therefore	it	cannot	reuse	bookkeeping	directories	and	
databases	generated	from	previous	Reflex	versions.	It	is	therefore	recommended	to	clear	such	directories,	
please	refer	to	the	workflow	user	manual	for	more	information	about	the	location	of	the	bookkeeping	
directories.

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 7	of	38	

		

3. REFLEX	OVERVIEW	

3.1 General	concepts	
Kepler	visually	represents	a	workflow	as	a	sequence	of	actors	with	a	single	director:	the	latter	schedules	the		
execution	of	the	actors	and	the	former	manipulates	the	data.	
The	main	components	of	a	workflow	are:	

- Director:	determines	the	execution	order	of	the	actors	and	tells	them	when	they	can	act.	There	are	
several	director	types,	the	default	for	Reflex	is	the	Dynamic	Dataflow	(DDF)	director.	There	must	only	
be	one	director	per	workflow.	

- Actor:	 represents	 a	 single	 step	of	 execution.	 The	actor	 takes	data	 from	 the	 input	ports,	 processes	
them	and	sends	the	results	to	the	output	ports.	Each	actor	can	have	a	number	of	parameters	that	
control	its	execution:	to	edit	the	parameters	double	click	on	the	actor.	

- Port:	each	actor	can	possess	one	or	more	ports,	which	allow	it	to	exchange	data	with	other	actors.	
Ports	can	be	input-only	(a	triangle	pointing	into	the	actor),	output	only	(a	triangle	pointing	out	from	
the	actor),	or	bidirectional	(a	circle).	A	port	can	be	singular	or	multiple:	the	former	can	be	connected	
to	only	one	port,	 the	 latter	can	be	connected	to	many.	Singular	ports	are	black,	multiple	ports	are	
white.	

- Token:	an	object	that	encapsulates	data.	Actors	exchange	data	in	the	form	of	tokens	through	ports.	
A	token	can	contain	several	types	of	data:	integers,	strings,	floating	point,	etc.	

3.2 Reflex	specific	actors	
Reflex	is	composed	of	a	number	of	custom	actors	that	allow	the	workflow	to	interact	with	the	VLT	pipeline	
and	with	FITS	files,	namely:	

- CreateDirTree	
- CurrentDataSet	
- DataFilter	
- DataOrganizer	
- DataSetChooser	
- FitsRouter	
- IsSofEmpty	
- ModifyPurpose	
- ObjectToText	
- ProductExplorer	
- ProductRenamer	
- PythonActor	
- RecipeExecuter	
- SetInitialLoopParam	
- SofAccumulator		
- SofCombiner		
- SofCreator		
- SofSplitter		
- SopCreator		

All	these	actors,	except	for	the	RecipeExecuter,	can	be	inserted	into	the	workflow	from	the	component	tree	
on	the	left	hand	side	of	the	Reflex	window,	in	the	Esoreflex	sub-menu	(Figure	1).		
The	RecipeExecuter	is	not	present	in	the	menu	and	must	be	instantiated	from	the	menu	bar:	click	on	Tools	->	
Instantiate	Component,	 change	 the	Class	name	to	org.eso.RecipeExecuter	and	click	OK	 (Figure	2).	You	will	
then	be	presented	with	a	 combobox	containing	all	 the	available	CPL	 recipes	 (the	 list	 is	obtained	 from	 the	
output	of	the	command	“esorex --recipes”,	as	configured	by	the	esoreflex	startup	script):	select	the	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 8	of	38	

		
desired	one	and	click	OK	(Figure	3).	Once	a	particular	recipe	has	been	chosen	 it	cannot	be	changed:	 if	you	
chose	the	wrong	one	then	you	have	to	remove	the	actor	and	instantiate	a	new	one.	
In	the	same	component	tree	that	contains	Reflex	actors	you	can	find	many	other	actors,	which	are	part	of	
the	 standard	Kepler	distribution;	 a	detailed	description	 can	be	 found	 in	 the	Kepler	User	Manual,	but	 they	
mostly	solve	general	needs,	such	as:	

- Mathematical	operations	(arithmetic,	statistical,	logic...)	
- File	manipulation	(open,	read,	write...)	
- File	system	interaction	(list	directory	content,	remove	directory...)	
- Command	execution	(shell,	ssh,	condor...)	
- Workflow	control	(switch,	pause,	stop...)	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 9	of	38	

		
	

	
Figure	1:	ESO	specific	actors	

	
Figure	2:	How	to	instantiate	the	RecipeExecuter	

	
Figure	3:	Recipe	selection	

3.3 Data	types	
Reflex	specific	actors	exchange	data	in	the	form	of	Datasets,	Set	of	Files	(SoF)	and	Set	of	Parameters	(SoP):	
they	are	all	represented	as	a	JSON	structure	and	are	not	meant	to	be	read	by	a	human.	Use	the	dedicated	
actor	ObjectToText	to	visualize	them.	

- Dataset:	 contains	 some	 general	 information	 and	 a	 tree	 structure	 that	 describes	 the	 calibration	
cascade.	

- SoF:	contains	a	set	of	science	frames	and	associated	calibration	files	which	are	required	to	process	
them	

- SoP:	contains	the	values	of	the	parameters	for	the	execution	of	the	pipeline	recipes.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 10	of	38	

	
3.4 General	workflow	structure	
The	 general	 structure	 of	 a	 Reflex	 workflow	 is	 depicted	 in	 Figure	 4.	 On	 the	 top	 there	 are	 a	 number	 of	
parameters	required	for	the	workflow	execution:	

- RAWDATA_DIR:	 a	 directory	 containing	 all	 the	 raw	 data	 to	 be	 processed	 (Note:	 subdirectories	 are	
recursively	scanned)	

- BOOKKEEPING_DIR:	 a	directory	where	each	pipeline	 recipe	execution	will	 create	a	 subdirectory	 to	
use	as	a	working	directory	

- BOOKKEEPING_DB:	 a	 file	 containing	 a	 SQLite	 database	 that	 stores	 information	 about	 the	 actor	
executions	

- LOGS_DIR:	a	directory	where	the	recipe	logs	will	be	saved	
- TMP_PRODUCTS_DIR:	a	directory	where	the	workflow	intermediate	products	will	be	saved	
- END_PRODUCTS_DIR:	a	directory	where	the	workflow	final	products	will	be	saved	
- FITS_VIEWER:	executable	used	to	visually	inspect	FITS	files	
- ESORexArgs:	additional	parameters	passed	to	esorex	by	the	RecipeExecuter	

Note:	 all	 the	 aforementioned	 parameters	 cannot	 contain	 spaces	 in	 the	 directory	 names,	 otherwise	 the	
workflow	will	fail.	
The	data	under	each	directory,	except	the	one	containing	the	final	products,	are	organized	in	the	following	
way:	
BASE_DIR/ActorName/ExecutionTime	
e.g.	/home/reflex/reflex_tmp_products/Uves_Blue/uves_cal_mbias_1/2010-01-01T12:23:12.123	contains	
the	products	of	the	execution	of	the	actor	named	uves_cal_mbias_1	at	the	timestamp	“2010-01-
01T12:23:12.123”.	
If	you	double	click	one	of	these	parameters	you	will	be	presented	with	a	configuration	window,	where	you	
can	select	the	value	of	the	parameter,	either	by	typing	it	or	browsing	the	filesystem	(do	not	forget	to	save	
your	 modifications,	 workflows	 contain	 hardcoded	 paths	 and	 in	 general	 don’t	 work	 if	 the	 underlying	
filesystem	changes	–	e.g.	you	send	it	to	somebody).	

	
Figure	4	

The	 preferred	 director	 for	 Reflex	 workflows	 is	 the	 DDF	 director,	 but	 the	 PN	 director	 can	 also	 be	 used,	
although	 it	 is	 not	 officially	 tested.	 The	 first	 step	 of	 the	 workflow	 execution	 is	 the	 DataOrganizer,	 which	
organizes	a	set	of	files	and	groups	them	together	in	Datasets	according	to	some	classification	and	grouping	
rules,	written	with	the	OCA	language	(a	full	set	of	rules	is	provided	together	with	each	workflow):	the	output	
is	a	list	of	Datasets,	which	contain	science	frames	and	all	the	associated	raw	and	static	calibrations	required	
to	process	them.	

	
The	second	step	is	the	DataSetChooser,	which	displays	all	the	Datasets	provided	by	the	DataOrganizer,	and	
allows	the	user	to	view	their	contents	and	select	the	ones	that	are	to	be	processed.	The	output	of	this	actor	
is	 the	 serialized	 list	 of	 selected	 Datasets.	 The	 output	 of	 the	 DataSetChooser	 must	 be	 connected	 to	 a	
FitsRouter,	which	splits	the	Dataset	and	sends	the	files	to	different	output	ports	based	on	their	observation	
type:	these	ports	can	then	be	used	to	feed	the	various	pipeline	recipes	of	the	workflows.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 11	of	38	

	
3.5 File	purpose	
The	 file	 purpose	 is	 a	 new	 concept	 introduced	 in	 Reflex	 2	 that	 represents	 what	 a	 file	 is	 needed	 for;	 the	
purpose	of	a	 file	describes	 the	whole	reduction	cascade	that	will	make	use	of	 the	 file.	For	example,	a	 raw	
BIAS	might	have	the	purpose	MASTER_BIAS/SCIENCE	if	it’s	going	to	be	used	to	produce	the	master	bias	that	
will	be	used	to	reduce	the	science	frames,	or	MASTER_BIAS/MASTER_FLAT/SCIENCE,	 if	the	master	bias	will	
be	used	to	generate	a	master	flat,	which	in	turn	will	be	used	to	reduce	the	science	frames.	
This	 new	 concept	 allows	 Reflex	 to	 recreate	 the	 whole	 calibration	 cascade,	 for	 instance	 we	 might	 have	
different	master	biases	in	different	points	of	the	workflow,	produced	with	different	recipe	parameters.	
The	purpose	 is	used	 in	many	places	of	 the	workflow	 to	decide	 the	 routing	and	 the	 scheduling	of	 files,	 for	
example:	

- The	SofSplitter	groups	 the	 files	by	purpose	and	emits	a	number	of	 tokens	equal	 to	 the	number	of	
different	purposes	present	in	the	input	SoF;	

- The	 SofCombiner,	 and	 any	 input	multiport	 that	 accepts	 SoFs	 as	 an	 input,	 combine	 the	 input	 SoFs	
based	on	their	purpose,	collecting	only	those	files	whose	purpose	is	present	in	all	input	ports.	

In	order	to	help	the	users	in	the	process	of	customizing	the	workflow,	e.g.	by	plugging	in	their	own	reduction	
steps	or	precomputed	files,	a	special	purpose	has	been	defined,	named	UNIVERSAL,	that	matches	any	other	
purpose	when	it	comes	to	combining	or	splitting	SoFs.	
	

3.6 General	features	

• Workflow	execution:	you	can	start,	pause,	stop	and	resume	the	workflow	by	using	the	buttons	in	the	
toolbar.	The	highlighted	button	indicates	which	state	the	workflow	is	in.	Please	note	that	the	stop	
button	immediately	interrupts	any	running	pipeline	recipe,	while	the	pause	button	lets	the	current	
recipe	or	actor	finish	before	the	workflow	is	actually	paused.	After	pressing	the	pause	button,	it	is	
also	possible	that	more	than	one	actor	is	executed,	since	this	behaviour	depends	on	the	scheduling	
policy.	For	instance,	if	there	are	two	actors	in	parallel,	and	you	pause	the	workflow	while	one	is	
being	executed,	then	both	of	them	will	be	executed	before	the	workflow	is	actually	paused.	

• The	DDF	and	the	PN	directors	support	actor	highlighting;	this	feature	is	disabled	by	default:	if	you	
want	to	enable	it	click	on	Tools->Animate	at	Runtime,	select	an	interval	(e.g.	10ms)	and	click	ok.	
From	now	on	the	active	workflow	actor	will	be	highlighted	in	red.	Note:	if	you	pause	and	resume	a	
workflow	the	actor	is	not	highlighted	upon	resume.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 12	of	38	

	

4. ACTOR	DOCUMENTATION	
The	 documentation	 of	 the	 Reflex	 actors	 is	 available	 from	 the	workflow,	 by	 right	 clicking	 on	 an	 actor	 and	
selecting	Documentation->Display.	RecipeExecuter	instances	also	display	the	help	of	the	recipe	parameters.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 13	of	38	

	

5. RECIPE	ITERATION	
It	 is	 sometimes	 useful	 to	 be	 able	 to	 visualize	 the	 products	 of	 a	 recipe	 execution,	 tweak	 some	 recipe	
parameter	and	execute	the	recipe	again,	until	the	products	are	as	expected.	
This	can	be	easily	achieved	in	Reflex	by	means	of	the	RecipeLooper	and	the	PythonActor.	
A	 typical	 subworkflow	 that	 allows	 iteration	 is	 depicted	 in	 Figure	 5,	 and	 it	 is	 composed	 of	 the	 following	
elements:	

- Sof	coming	from	previous	actor	
- Sop	containing	recipe	parameters’	initial	values	
- A	RecipeLooper	
- A	RecipeExecuter	containing	the	pipeline	recipe	to	be	optimized	
- A	 PythonActor	 containing	 a	 custom	 python	 script	 that	 allows	 the	 user	 to	 view	 the	 results	 of	 the	

recipe	execution	and	decide	whether	he	wants	to	change	some	parameters	or	not.	The	script	should	
either	 generate	 a	 “true”	 token	 on	 the	 control	 port	 and	 a	 SoF	 to	 the	 next	 downstream	 actor	 or	 a	
“false”	token	on	the	control	port	and	a	SoF	and	a	SoP	to	the	RecipeLooper	loop	input	port.	

This	general	structure	must	be	customized	for	each	pipeline	recipe.	The	user	must:	
- Identify	sensible	recipe	parameters	he	wants	to	tweak	to	optimize	the	products	
- Define	 some	 initial	 conditions	 for	 these	 parameters	 and	 provide	 them	 to	 the	 sop_in	 port	 of	 the	

RecipeLooper.	The	simplest	way	to	do	this	is	to	define	a	string	in	the	format	described	in	APPENDIX	
A:	and	connect	it	to	a	SopCreator.	

- Configure	the	RecipeExecuter,	changing	the	value	of	the	recipe	parameters	you	want	to	optimize	to	
PORT	 (e.g.	 if	 you	want	 to	 optimize	 a	 recipe	 parameter	 called	par1	 look	 for	 a	 parameter	 in	 the	
RecipeExecuter	called	recipe_param_nn	whose	value	is	par1=some_value	and	change	it	to	
par1=PORT).	

- Write	a	python	script	that	allows	the	user	to	evaluate	the	product	quality,	change	the	value	of	the	
parameters	 and	 decide	 whether	 he	 wants	 to	 continue	 or	 not.	 The	 script	 does	 not	 have	 to	 be	
interactive,	it	can	implement	an	optimization	algorithm	defined	by	the	user.	

Sample	 implementations	 of	 this	 system	 are	 provided	 with	 the	 workflows	 included	 in	 the	 pipeline	
distribution.	
Note:	 it	 is	 possible	 to	 iterate	 over	 an	 arbitrary	 number	 of	 actors,	 you	 are	 not	 forced	 to	 iterate	 over	 one	
RecipeExecuter.	

	
Figure	5:	sample	looping	workflow	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 14	of	38	

	

6. PYTHON	BASED	RECIPES	
EsoReflex	is	now	able	to	support	Python	based	recipe	plugins	that	are	executed	through	the	normal	EsoRex	
interface.	To	take	advantage	of	this	feature,	you	need	to	have	EsoReflex	2.9.0	or	newer	installed,	together	
with	an	appropriate	version	of	EsoRex	(3.13	or	newer).	

EsoRex	must	however	have	been	built	with	Python	based	recipe	support	enabled,	i.e.	the	necessary	3rd	party	
dependencies	must	be	installed	(libffi	or	libavcall.a)	and	the	--enable-python-recipes	build	option	needs	to	be	
used	if	not	enabled	by	default.	Please	refer	to	the	EsoRex	software	documentation	for	further	compilation	
and	installation	details.	

RPM	and	MacPorts	based	packages	of	EsoRex	as	delivered	by	ESO	should	already	have	EsoRex	3.13	correctly	
built	with	Python	recipe	support	enabled.	You	can	simply	follow	the	normal	package	installation	procedure	
for	EsoRex,	if	installing	RPMs	or	MacPorts	packages.	

6.1 Configuring	EsoRex	
Python	enabled	EsoRex	will	search	for	Python	based	recipes	in	its	configured	recipe	plugin	directory	list.	The	
canonical	method	of	configuring	the	plugin	directories	is	to	modify	the	system	wide	esorex.rc	file1	and	add	
the	directory	where	the	new	Python	recipes	are	located	to	the	esorex.caller.recipe-dir	parameter.	This	
parameter	accepts	a	colon	separated	list	of	paths	to	search.	

It	is	also	possible	to	create	a	custom	configuration	file.	In	such	a	case,	both	a	custom	esorex.rc	file	needs	to	
be	created	for	customising	the	esorex.caller.recipe-dir	parameter	and	a	custom	esoreflex.rc	file	must	be	
created	to	tell	EsoReflex	to	use	the	updated	esorex.rc	file	for	EsoRex.	The	easiest	way	to	create	both	
configuration	files	is	to	run	the	following	commands:	

esorex	--create-config	
esoreflex	-create-config	
	
This	will	create	the	two	files	~/.esorex/esorex.rc	and	~/.esoreflex/esoreflex.rc	for	EsoRex	and	EsoReflex	
respectively.	The	configuration	file	for	EsoReflex	must	be	modified	by	changing	the	esoreflex.esorex-config	
parameter.	For	example,	the	updated	line	in	the	~/.esoreflex/esoreflex.rc	file	should	read:	

esoreflex.esorex-config=~/.esorex/esorex.rc	
	
In	the	~/.esorex/esorex.rc	file	the	line	containing	esorex.caller.recipe-dir	can	be	updated	as	follows:	

esorex.caller.recipe-dir=/usr/lib64/esopipes-plugins:~/myrecipes	
	
In	the	above	example	we	have	assumed	that	esorex.caller.recipe-dir	previously	contained	the	path	
/usr/lib64/esopipes-plugins	and	that	our	desired	location	for	Python	recipes	is	~/myrecipes.	

Note	that	if	the	default	paths	for	the	configuration	files	are	not	suitable,	then	different	paths	can	also	be	
used	with	the	configuration	creation	commands	as	follows:	

esorex	--create-config=myesorex.rc	
esoreflex	-create-config	myesoreflex.rc	
	
However,	in	this	case	the	esoreflex	command	will	have	to	be	explicitly	invoked	with	the	configuration	file’s	
path	as	follows:	

																																																													
1The esorex.rc configuration file’s path is <prefix>/etc/esorex.rc, which defaults to /etc/esorex.rc for typical system wide

installations, e.g. RPM installations.

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 15	of	38	

	
esoreflex	--config	myesoreflex.rc	
	
For	advanced	users,	if	the	esoreflex.inherit-environment=TRUE	option	is	used	in	the	EsoReflex	configuration,	
then	the	recipe	directory	can	also	be	controlled	with	the	ESOREX_PLUGIN_DIR	environment	variable.	

6.2 Writing	Python	Recipes	
Developing	a	Python	based	recipe	follows	the	conventional	methodology	as	you	would	expect	when	writing	
any	other	Python	code.	The	only	strict	requirements	are,	

• The	source	code	file	name	must	only	contain	characters	that	form	valid	symbol	names	in	Python	and	
end	with	the	.py	extension.	

• The	source	file	must	reside	in	one	of	the	recipe	plugin	directories	that	EsoRex	searches	in.	

• Each	plugin	must	be	a	class	derived	from	esorexplugin.RecipePlugin	and	implement	the	appropriate	
API	interface.	

6.2.1 Python	Imports	
Inside	the	Python	module	file	that	implements	the	recipe,	the	following	imports	must	be	used:	

import	esorexplugin	
from	esorexplugin	import	*	
	
This	will	make	the	esorexplugin.RecipePlugin	class	and	various	additional	helper	functions	available.	Of	
course,	any	needed	additional	imports	can	also	be	added.	

You	should	not	import	the	RecipePlugin	class	directly	into	your	own	Python	code,	since	this	will	cause	EsoRex	
to	mistaken	it	for	a	recipe	implementation,	i.e.	do	not	use	the	following	import	syntax	“from	esorexplugin	
import	RecipePlugin”.	

6.2.2 Recipe	Declaration	
The	actual	recipe	class	should	be	declared	as	follows:	

class	MyRecipe(esorexplugin.RecipePlugin):	
	
Note	that	the	name	of	the	new	class	does	not	matter.	In	addition,	if	an	__init__	constructor	is	required	then	
it	must	not	require	any	additional	mandatory	arguments,	except	for	self.	

The	recipe	class	needs	to	declare	a	number	of	class	level	attributes	to	configure	the	recipe	parameters	and	
various	other	properties.	These	include:	

• name	–	(string)	
The	name	of	the	recipe	as	will	be	used	in	EsoReflex	and	EsoRex.	If	not	provided	then	the	Python	class	
name	will	be	used	instead.	

• version	–	(integer)	
The	version	number	of	the	recipe.	This	is	best	configured	using	the	VersionNumber	helper	function,	
which	takes	three	numbers,	major,	minor	and	patch	numbers	to	construct	the	appropriately	encoded	
value.	If	this	is	not	provided	then	0	is	used	by	default	

• synopsis	–	(string)	
A	short	descriptive	text	for	the	recipe.	If	this	is	not	provided	then	the	first	line	from	the	class’s	
docstring	will	be	used	instead.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 16	of	38	

	
• description	–	(string)	

A	more	detailed	description	of	the	recipe	that	is	used	by	EsoRex	to	generate	the	man-page.	If	this	is	
not	provided	then	the	text	in	the	class’s	docstring	will	be	used	instead.	

• author	–	(string)	
The	name	of	the	recipe’s	author.	

• email	–	(string)	
The	author’s	email	address.	

• copyright	–	(string)	
An	appropriate	copyright	message	relevant	for	the	recipe’s	code.	A	default	GNU	version	2	license	text	
can	be	generated	with	the	EsoCopyright	helper	function.	

• parameters	–	(list)	
This	must	be	a	list	of	recipe	parameter	configurations,	one	for	each	recipe	parameter	that	the	recipe	
can	accept.	It	is	best	to	declare	each	entry	of	the	parameters	list	using	one	of	the	helper	functions	
ValueParameter,	RangeParameter	or	EnumParameter.	This	can	be	an	empty	list	if	the	recipe	should	
not	accept	any	parameters.	

• recipeconfig	–	(list)	
An	optional	list	of	frame	tags	indicating	the	minimum	and	maximum	number	of	expected	frames,	
including	the	input	and	output	inter-dependencies	with	other	frame	types.	Each	entry	should	be	
configured	with	the	FrameData	helper	function.	

It	is	also	possible	to	configure	and	assign	these	attributes	in	the	__init__	constructor	instead	of	declaring	
them	at	the	class	level.	Remember	that	the	RecipePlugin.__init__	constructor	should	be	invoked	in	any	
custom	recipe	constructor	as	follows:	

def	__init__(self):	
				super(MyClass,	self).__init__()	
				...	
	

6.2.3 Recipe	Parameters	
Any	input	parameters	that	the	recipe	should	accept	must	be	declared	in	or	appended	to	the	parameters	
attribute.	Each	entry	can	be	constructed	with	an	appropriate	helper	function.	Selecting	the	correct	helper	
function	to	use	depends	on	the	type	of	parameter	needed,	which	must	be	one	of	the	following:	

• ValueParameter(name,	default	...)	

This	is	used	for	a	parameter	that	accepts	any	value	that	is	only	constrained	by	a	type.	The	name	of	the	
parameter	must	be	given	as	a	string	in	the	first	argument	to	the	function.	A	default	value	must	also	be	given	
as	the	second	argument.	The	type	of	the	parameter	is	defined	by	the	type	of	the	default	value.	For	example,	
if	the	default	value	is	an	integer	then	the	recipe	parameter	will	be	of	type	integer;	for	a	string	default,	the	
recipe	parameter	becomes	a	string	also.	The	allowed	types	for	the	default	value	are:	boolean,	integer,	float	or	
string.	The	following	is	a	minimal	example	for	configuring	a	value	parameter:	

parameters	=	[ValueParameter('par1',	3)]	
	

• RangeParameter(name,	default,	min,	max	...)	

This	is	used	to	create	a	parameter	that	only	allows	a	value	within	a	certain	range.	It	takes	a	name	and	default	
argument	just	like	for	ValueParameter,	and	two	additional	arguments	to	specify	the	minimum	and	maximum	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 17	of	38	

	
allowed	value	of	the	range.	Only	integers	or	floats	are	allowed	for	range	parameters	and	both	min	and	max	
must	have	the	same	type	as	default.	The	following	is	a	minimal	example	for	configuring	a	range	parameter:	

parameters	=	[RangeParameter('par1',	3,	1,	5)]	
	

• EnumParameter(name,	default,	choices	...)	

This	allows	configuring	a	recipe	parameter	that	can	only	take	on	values	from	a	selected	set	of	predefined	
choices.	It	takes	a	name	an	default	argument	just	like	ValueParameter,	and	an	additional	list	of	values	that	
form	the	allowed	set	of	choices	as	the	third	argument.	The	default	value	must	also	be	within	the	choices	list.	
In	addition,	every	element	of	the	choices	list	must	have	the	same	type	as	default.	The	allowed	types	are:	
integer,	float	and	string.	The	following	is	a	minimal	example	for	configuring	an	enumeration	parameter:	

parameters	=	[EnumParameter('par1',	'A',	['A',	'B',	'C'])]	
	
Each	of	the	above	helper	functions	also	accepts	additional	optional	keyword	arguments.	For	a	detailed	
listing,	please	refer	to	the	online	python	documentation	for	these	functions.	However,	the	following	three	
will	be	mentioned	here,	since	they	are	recommended	to	be	used.	

• description	–	(string)	
Provides	a	textual	description	of	the	recipe	parameter	used	in	the	EsoRex	generated	man-page.	This	
will	also	be	forwarded	to	any	connected	PythonActors,	where	it	can	be	used	in	the	user	interface.	

• context	–	(string)	
Assigns	a	context	string	to	the	recipe	parameter	so	that	tools	invoking	the	recipe	can	better	organise	
the	parameters	from	many	different	recipes.	Typically	this	can	simply	be	set	to	the	recipe	name,	plus	
perhaps	a	dot	separated	sub-context.	

• displayName	–	(string)	
This	allows	to	set	an	automatic	short	name	associated	with	the	recipe	parameter,	which	will	be	used	
by	the	PythonActor	in	the	user	interface	by	default.	If	this	option	is	used	then	you	will	not	need	to	
use	the	corresponding	displayName	option	in	the	PythonActor	script,	when	configuring	recipe	
parameters	for	display	in	the	user	interface.	Although	one	can	still	nevertheless	use	displayName	
again	in	the	PythonActor	script	to	override	the	recipe’s	settings.	

Here	is	an	example	of	using	the	above	three	additional	arguments:	

ValueParameter('test.par1',	3,	description='my	integer	parameter	1',	
															context='test',	displayName='par1')	
	

6.2.4 Recipe	Configuration	
There	is	an	optional	feature	available	to	provide	additional	meta-data	with	regards	to	the	input	frames	that	a	
recipe	can	handle	and	the	inter-dependencies	between	these.	This	is	specified	as	a	list	of	meta-data	objects	
created	with	FrameData	in	the	recipeconfig	class	attribute.	The	FrameData	helper	function	accepts	the	
following	five	arguments:	

• tag	-	(string)	
A	tag	string	that	identifies	a	frame.	This	should	be	the	tag	associated	to	a	frame	as	is	normally	given	
in	the	Set-of-Frames.	

• min	-	(integer)	
The	minimum	number	of	frames	of	type	tag.	This	is	set	to	1	by	default.	It	is	also	possible	to	set	this	to	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 18	of	38	

	
None,	which	indicates	that	this	value	is	not	specified.	Alternatively,	use	0	to	indicate	that	the	frame	is	
optional.	

• max	-	(integer)	
The	maximum	number	of	frames	of	type	tag.	This	is	set	to	1	by	default.	If	you	want	to	mark	this	value	
as	unspecified	then	set	it	to	None.	

• inputs	-	(list)	
A	list	of	additional	input	frames	needed	for	processing	a	frame	indicated	by	tag.	The	entries	of	this	
list	must	also	be	constructed	with	the	FrameData	helper	function.	However,	only	the	tag,	min	and	
max	arguments	have	any	meaning	for	the	additional	input	frames.	Only	those	arguments	should	be	
used.	

• outputs	-	(list)	
This	must	be	a	list	of	tag	strings	of	the	corresponding	output	frames	produced	by	the	recipe.	

The	following	is	an	example	of	how	the	recipeconfig	attribute	can	be	constructed	with	FrameData:	

recipeconfig	=	[
								FrameData('RAW',	min	=	1,	max	=	None,	
																		inputs	=	[
																						FrameData('STATIC'),	
																						FrameData('CALIB',	min	=	0,	max	=	1)	
],	
																		outputs	=	['PROD'])	
]	
	
The	above	example	configuration	indicates	that	the	recipe	expects	at	least	one	(min	=	1)	or	more	(max	=	
None,	i.e.	upper	limit	unspecified)	“RAW”	frames	to	process.	“RAW”	would	be	the	tag	of	the	input	FITS	file	as	
encoded	in	the	Set-of-Frames.	Processing	a	“RAW”	frame	will	produce	output	frames	of	type	“PROD”.	“RAW”	
frames	also	require	an	additional	input	frame	called	“STATIC”	and	a	single	optional	“CALIB”	frame	(min	=	0	
and	max	=	1).	

The	configuration	structure	produced	by	the	FrameData	function	ultimately	corresponds	to	the	
cpl_recipeconfig	object.	The	purpose	of	this	structure	is	to	provide	information	about	the	frames	that	are	
required	by	the	recipe	to	the	higher	layers	of	the	overall	Data	Flow	System	(DFS).	You	can	refer	to	the	
cpl_recipeconfig	documentation	from	CPL	for	more	details	about	recipe	configurations.	

Note	that	EsoReflex	does	not	use	this	information	in	any	special	manner	at	the	moment.	However,	by	using	
the	recipeconfig	attribute,	the	recipe	itself	will	be	declared	as	a	version	2	CPL	recipe	plugin	to	EsoRex.	
Without	recipeconfig	present,	the	recipe	defaults	to	a	version	1	plugin.	

6.2.5 Grouping	Input	Frames	
Every	properly	written	recipe	needs	to	update	the	meta-data	for	the	input	frames	that	it	receives,	to	indicate	
what	type,	group	and	processing	level	they	belong	to.	This	information	is	then	propagated	back	to	EsoRex.	
The	updating	of	the	input	frames	should	be	coded	in	the	mandatory	set_frame_group	method,	which	takes	a	
single	argument,	the	frame	object.	Frame	objects	have	the	following	attributes:	filename,	tag,	type,	group	
and	level.	The	filename	will	contain	the	path	to	the	FITS	file	on	disk.	The	tag	will	be	the	tag	string	as	given	to	
the	recipe	in	the	input	Set-of-Frames.	All	other	attributes	will	be	set	to	default	“none”	values	and	should	be	
updated	by	set_frame_group	appropriately.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 19	of	38	

	
Currently	EsoRex	uses	the	level	value	to	manage	the	final	destination	of	files	produced	by	the	recipe	and	to	
update	symbolic	links	needed	by	the	DFS.	The	group	attribute	is	used	to	categorise	the	FITS	files	for	statistical	
information	and	also	to	control	which	FITS	files	have	their	PIPEFILE,	CHECKSUM,	DATASUM	and	DATAMD5	
keywords	updated.	However,	the	type	attribute	is	not	actually	used	in	any	special	way	by	EsoRex	at	the	
moment	and	could	be	set	to	the	default	value	Frame.TYPE_ANY.	

In	principle	EsoReflex	does	not	use	the	updated	frame	information	in	any	way.	It	is	meant	primarily	for	the	
DFS.	If	one	really	does	not	want	to	update	any	of	this	information	then	one	can	simply	write	the	
set_frame_group	method	as	follows:	

def	set_frame_group(self,	frame):	
				pass	
	
For	further	details	about	valid	values	that	can	be	assigned	to	the	attributes	see	the	online	Python	
documentation	for	the	Frame	class.	

6.2.6 Processing	Frames	
Actual	processing	of	data	should	be	implemented	in	the	mandatory	process	method.	It	must	take	as	
arguments	the	list	of	input	frames,	followed	by	arguments	for	each	input	recipe	parameter.	If	no	recipe	
parameters	have	been	configured	then	only	the	list	of	frames	needs	to	be	specified,	for	example:	

def	process(self,	frames):	
				...	
	
For	two	recipe	parameters	one	would	write	the	following	instead:	

def	process(self,	frames,	par1,	par2):	
				...	
	
The	names	of	the	arguments	for	the	recipe	parameters	can	be	anything,	and	need	not	correspond	to	the	
names	as	configured	in	the	parameters	class	attribute.	They	will	be	assigned	in	the	same	order	as	they	are	
declared	in	the	parameters	list,	i.e.	the	first	configured	parameter	will	be	assigned	to	the	first	argument	after	
frames,	the	second	entry	in	parameters	will	be	assigned	to	the	second	argument	after	frames	and	so	on.	
When	the	recipe	is	invoked	by	the	RecipeExecuter,	the	input	Set-of-Frames	will	be	represented	in	the	frames	
argument	as	a	list	of	Frame	objects,	while	the	values	for	the	recipe	parameters	will	be	passed	from	the	
RecipeExecuter	into	the	additional	arguments	of	the	process	method.	Detailed	meta-data	for	each	input	
recipe	parameter	can	also	be	accessed	from	the	self.input_parameters	attribute	if	needed.	This	will	be	a	list	
of	RecipeParameter	objects	sorted	in	the	same	order	as	the	recipe	parameters	were	configured	in	the	
parameters	attribute.	

Inside	the	process	method	you	can	open	the	associated	FITS	file	with	the	Frame	object’s	open	method	as	
follows:	

def	process(self,	frames,	...):	
				hdulist	=	frames[0].open()	
				...	
	
This	will	return	a	HDU	list	object	that	can	be	further	manipulated	with	the	Astropy	API2.	Any	new	output	
frames	must	be	created	as	Frame	objects	and	returned	by	the	process	method	as	a	list.	The	write	helper	

																																																													
2For old platforms this would be the Pyfits API instead.

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 20	of	38	

	
method	can	be	used	to	write	a	corresponding	HDU	list	to	the	output	FITS	file	associated	with	the	output	
frame.	For	example:	

def	process(self,	frames,	...):	
				...	
				outframe	=	Frame('output.fits',	'PROD',	type=Frame.TYPE_IMAGE)	
				outframe.write(hdulist)	
				return	[outframe]	
	
Note	that	the	write	method	is	a	wrapper	around	the	Astropy	API	writeto	method.	Thus,	both	methods	accept	
the	same	set	of	additional	arguments.	In	particular,	the	overwrite	option	may	be	useful,	since	the	FITS	files	
will	not	be	overwritten	by	default.	For	example:	

outframe.write(hdulist,	overwrite=True)	
	

6.2.7 Raising	Errors	
If	an	non	recoverable	error	occurs	in	the	recipe	that	must	cause	a	fatal	exception,	you	should	use	the	
raise_error	method.	This	will	raise	a	Python	exception	and	abort	further	processing	of	data.	An	error	message	
and	error	code	will	be	forwarded	back	to	EsoRex.	

The	raise_error	method	accepts	three	arguments,	the	error	message	to	send	(a	string),	the	corresponding	
error	code	(an	integer),	and	a	boolean	indicating	if	a	traceback	of	the	Python	stack	where	the	exception	was	
raised	should	be	printed	to	standard	error.	If	an	error	code	is	not	specified	then	a	value	of	1	is	used	by	
default.	Also	the	traceback	is	not	printed	by	default.	

The	following	are	examples	of	using	the	raise_error	method:	

def	process(self,	frames,	...):	
				...	
				self.raise_error('Something	went	wrong')	
				self.raise_error('Error	with	traceback',	123,	print_traceback=True)	
				...	
	
The	value	for	the	error	code	can	be	any	non-zero	integer.	However,	CPL	error	codes	are	typically	returned	by	
recipes.	Please	refer	to	the	CPL	documentation	for	a	listing	of	available	error	codes.	

6.2.8 Online	Documentation	
Additional	online	documentation	for	the	Python	recipe	API	can	be	viewed	in	the	Python	interpreter	shell	by	
running	the	following	commands:	

import	esorexplugin	
help(esorexplugin)	
help(esorexplugin.RecipePlugin)	
help(esorexplugin.RecipeParameter)	
	

6.3 Example	Code	
A	minimal	working	example	of	a	Python	based	recipe	can	be	found	in	the	EsoReflex	installation	directory,	
under	<prefix>/esoreflex/python/example_recipe.py.	For	example,	with	RPM	installations	this	should	be	
found	under	/usr/share/esoreflex-2.9.0/esoreflex/python/example_recipe.py.	The	recipe	takes	one	input	
frame	and	simply	copies	it	to	an	output	FITS	file	“output.fits”.	It	also	accepts	the	following	three	parameters:	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 21	of	38	

	
• test.par1	–	a	boolean	indicating	if	the	output	file	should	be	overwritten.	

• test.par2	–	a	dummy	integer	range	parameter,	who’s	value	will	be	printed	to	the	console.	

• test.par3	–	a	dummy	string	enumeration	parameter,	that	will	also	be	printed.	

To	try	the	recipe	example,	make	sure	that	Astropy	is	installed	and	that	it	can	be	imported	by	the	Python	
interpreter	used	by	EsoReflex	(i.e.	“import	astropy”	works	in	python).	Copy	the	example	file	to	a	recipe	
directory	that	EsoRex	will	search	in.	See	the	EsoRex	configuration	section	for	details	about	how	to	configure	
the	recipe	directory.	You	can	then	instantiate	a	RecipeExecuter	actor	and	the	example	recipe	called	“test”	
should	appear	in	the	drop	down	menu.	

Note	that	when	attempting	to	use	the	recipe	from	the	command	line	with	the	esorex	command,	the	Python	
interpreter	must	be	told	where	to	find	the	esorexplugin.py	module	by	setting	the	PYTHONPATH	environment	
variable	appropriately,	e.g.	PYTHONPATH=<prefix>/esoreflex/python.	When	working	within	EsoReflex,	this	is	
normally	already	taken	care	of	in	the	esoreflex.rc	file	with	the	esoreflex.python-path	parameter.	But	this	is	
not	the	case	when	using	the	esorex	command	directly.	

6.4 Using	Python	Recipes	
Once	a	Python	based	recipe	has	been	written,	it	behaves	exactly	the	same	way	as	a	compiled	recipe	plugin	
from	within	EsoReflex.	They	are	instantiated	in	the	same	manner.	Please	refer	to	the	section	about	
instantiating	the	RecipeExecuter	for	details.	

6.5 Debugging	
The	most	straight	forward	procedure	for	entering	a	debugging	session	when	trying	to	debug	a	Python	based	
recipe,	is	to	first	attempt	to	invoke	the	recipe	as	normal	within	EsoReflex.	This	will	leave	a	cmdline.sh	file	
under	the	bookkeeping	directory,	which	contains	everything	needed	to	run	the	recipe	from	the	command	
line	in	exactly	the	same	way	that	EsoReflex	ran	it.	Before	running	cmdline.sh,	you	should	add	the	following	
statement	to	the	Python	recipe	code:	

import	ipdb;	ipdb.set_trace()	
	
This	break	point	should	be	added	in	the	place	where	you	want	to	start	debugging,	i.e.	the	source	code	
location	where	the	program	should	stop	and	enter	the	debugger.	If	ipdb	is	not	available	on	your	system,	you	
can	fall	back	to	using	pdb	as	follows3:	

import	pdb;	pdb.set_trace()	
	
In	the	case	of	example_recipe.py	mentioned	in	section	6.3.,	the	break	point	statement	can	for	example	be	
added	to	line	114	in	that	file.	

With	the	break	point	set,	you	can	then	launch	the	cmdline.sh	script.	This	will	run	EsoRex,	launch	the	Python	
interpreter	and	stop	at	the	break	point	within	the	debugger’s	shell.	The	code	can	then	be	stepped	through,	
additional	break	points	set	and	the	variables	explored.	For	details	about	how	to	use	the	ipdb	or	pdb	shell	
commands,	you	can	type	the	“help”	command	in	the	shell	or	refer	to	the	relevant	documentation	for	those	
tools4.	

																																																													
3Note that the pdb debugger has a more primitive shell than ipdb. Thus, ipdb is usually preferred.
4For pdb refer to https://docs.python.org/2/library/pdb.html and ipdb to https://pypi.python.org/pypi/ipdb. The commands

and usage of ipdb is mostly the same as for pdb.

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 22	of	38	

	
In	some	cases,	it	may	be	useful	to	see	more	details	about	the	interaction	between	EsoRex	and	the	Python	
interpreter.	This	can	be	enabled	by	changing	the	esorex.caller.msg-level	parameter	in	the	EsoRex	
configuration	file.	For	example,	esorex.rc	should	have	the	following	line	changed	to:	

esorex.caller.msg-level=debug	
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 23	of	38	

	

7. EXECUTING	IDL	SCRIPTS	
IDL	scripts	can	easily	be	launched	by	esoreflex	trough	a	Python	Actor.	If	the	IDL	executable	or	the	needed	
scripts	are	not	in	the	system	path,	then	their	location	have	to	be	hardcoded	in	the	Python	script	associated	
to	the	Python	Actor.	The	IDL	script	has	to	accept	inputs	and	outputs	filenames	from	the	command	line.		
	
We	provide	below	an	example	of	a	Python	script	(python_script.py)	that	is	designed	to	launch	an	IDL	script,	
and	the	IDL	script	itself	(myidlscript.pro)	
	
#!/usr/bin/env python
import reflex
import sys
from astropy.io import fits
from optparse import OptionParser
import json
import os
if __name__ == '__main__':

 parser = reflex.ReflexIOParser()
 #Define inputs/outputs
 parser.add_option("-i", "--in_sof", dest="in_sof")
 parser.add_output("-o", "--out_sof", dest="out_sof")
 inputs = parser.get_inputs()
 outputs = parser.get_outputs()
 in_sof = inputs.in_sof
 files = in_sof.files

 #get the name of the output directory
 pattern = '--products-dir'
 infile=''
 for arg in sys.argv:
 if arg.split("=")[0] == pattern:
 output_dir = arg.split("=")[1]

 #Create a list of input files to pass to the IDL script
 for file in files:
 infile = infile + ' ' + file.name
 infile= '"'+infile+'"'

 #define the list of products and their categories
 # (2 files, as example)
 output_names=''
 output_filenames=list()
 output_catgs=list()
 for n in range(1,3):
 output_filenames.append(output_dir+'/output'+str(n)+'.fits')
 output_catgs.append('CATEGORY'+str(n))
 output_names=output_names+' '+output_dir+'/output'+str(n)+'.fits'
 out_str= '"'+output_names+'"'

 # If the idl script (myidlscript.pro) is not in the system library path,
 #I need to hardcode its location into the script
 os.environ["IDL_PATH"] = ":+/scisoft/share/idl/idl/lib/: /scratch/lcoccato/data/astron/"

 # If the IDL executable is not in the system path, I need to hardcode it in the script.
 os.system("bash -c '/scisoft/bin/idl -e myidlscript -args "+infile+" "+out_str+"'")

 # create output SOF:
 files = list()
 output_purpose=file.purposes
 output_datasetname=in_sof.datasetName
 #Outputs are 2

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 24	of	38	

	
 for i in range(2):
 hdu=fits.open(output_filenames[i])
 csum=hdu[0].header['CHECKSUM']
 hdu.close()

files.append(reflex.FitsFile(output_filenames[i],output_catgs[i],csum,output_purpose))
 newsof = reflex.SetOfFiles(output_datasetname,files)
 outputs.out_sof = newsof

broadcast output:
 parser.write_outputs()
 sys.exit()

We	provide	below	an	example	of	IDL	script	that	is	called	by	the	python	script.	In	the	example,	the	IDL	script	
accepts	a	list	of	input	files	and	generates	2	outputs.	The	names	of	the	inputs	and	outputs	are	determined	by	
the	python	script	and	passed	to	IDL	via	command	line.	

pro myidlscript
 n_outputs = 2
 args=command_line_args()

 ;GET names of inputs and outputs
 input_names = strsplit(args[0:n_elements(args)-n_outputs],' ',/extract)
 output_names= strsplit(args[n_elements(args)-(n_outputs+1)],' ',/extract)

 for i = 0, n_elements(input_names)-1 do print, input_names[i]
 for i = 0, n_elements(output_names)-1 do print, output_names[i]

 ;creation of first output (e.g., average of input files)
 average=0
 for i = 0, n_elements(input_names)-1 do begin
 average += readfits(strcompress(input_names[i],/remove_all),h,/silent)
 endfor
 average=average/n_elements(input_names)
 writefits,output_names[0],average,h,/CheckSum

 ;creation of second output (e.g., stddev of input files)
 rms=0
 for i = 0, n_elements(input_names)-1 do begin
 data = readfits(strcompress(input_names[i],/remove_all),h,/silent)
 rms += (average - data)^2
 endfor
 rms=sqrt(rms/(1.-n_elements(input_names)))
 writefits,output_names[1],rms,h,/CheckSum

 end

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 25	of	38	

	

8. ESOREFLEX	STARTUP	SCRIPT	
ESO-Reflex	is	executed	by	means	of	a	startup	script,	named	esoreflex,	that	help	the	user	in	setting	up	the	
proper	environment	for	the	execution	of	ESO	pipelines	and	python	scripts.	This	chapter	describes	all	its	
features	and	configuration	options.	

8.1 Command	line	options	
The	esoreflex	launch	command	can	be	customised	with	many	optional	command	line	arguments.	Many	of	
these	are	related	to	the	underlying	Kepler	framework	and	will	not	be	described	here.	Details	can	be	found	in	
Keplers	online	help.	Here	we	describe	the	most	important	command	line	arguments	introduced	specifically	
by	esoreflex.	

8.1.1 -h	|	-help	

This	prints	a	help/usage	message	and	stops.	The	message	will	contain	a	listing	of	command	line	options	that	
can	be	given	to	the	esoreflex	launch	command.	

8.1.2 -v	|	-version	

Prints	version	information	and	exits.	The	version	of	esoreflex	being	invoked	is	printed,	including	a	list	of	
pipelines	that	esoreflex	knows	about	and	each	pipeline's	version	number.	

8.1.3 -l	|	-list-workflows	

This	will	list	all	installed	workflow	XML	and	KAR	files	that	can	be	found	and	are	available	to	run	with	
esoreflex.	These	will	be	all	the	workflows	found	in	a	subdirectory	under	one	of	the	paths	set	in	the	
esoreflex.workflow-path	variable.	This	variable	can	be	configured	in	the	system	wide	esoreflex.rc	or	private	
(per	user)	configuration	file.	
The	format	of	the	output	will	be	a	table	with	a	short	format	name	for	each	workflow	and	the	full	path	to	the	
workflow	file.	If	multiple	files	have	the	same	name,	the	short	name	will	be	prefixed	with	a	part	of	the	path	to	
make	each	short	name	in	the	list	unique.	In	such	a	case,	the	short	names	may	not	always	point	to	the	same	
file	if	there	is	a	configuration	change	of	esoreflex,	the	system	or	a	filename	change.	It	is	best	not	to	rely	on	
the	short	name	to	uniquely	identify	the	workflow,	but	rather	the	full	path	to	the	file	should	be	used.	The	
short	names	are	only	for	convenience	when	working	with	esoreflex	interactively	on	the	command	line.	
Either	the	full	file	path	or	the	short	name	as	listed	with	the	-l	|	-list-workflows	option	can	be	used	in	the	
esoreflex	command	to	open	or	run	the	specified	workflow	directly.	For	example:	
	
		esoreflex fors_spec
	

8.1.4 -n	|	-non-interactive	

This	option	enables	non-interactive	features	of	esoreflex	to	be	used	for	batch	and	non-interactive	execution	
of	workflows.	When	used,	additional	options	are	passed	to	esoreflex	and	the	Kepler	framework	to	prevent	
the	graphical	user	interface	from	showing	and	to	automatically	execute	the	workflow.	You	will	need	to	pass	
the	path	to	the	workflow	XML/KAR	file	or	use	the	short	name	for	the	workflow	as	known	to	the	esoreflex	
launch	command	(listed	with	the	-l	|	-list-workflows	option).	For	example:	
	
		esoreflex -n fors_spec
	

8.1.5 -config	<file>	

Use	this	option	to	force	the	esoreflex	launch	command	to	use	a	custom	configuration	file,	rather	than	the	
system	one	or	~/.esoreflex/esoreflex.rc	if	that	exists.	The	option	takes	one	argument,	the	name	or	path	to	the	
configuration	file.	If	this	option	is	used	then	any	variables	in	either	the	system	wide	or	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 26	of	38	

	
~/.esoreflex/esoreflex.rc	files	will	be	completely	ignored.	Only	variables	defined	in	the	file	given	by	<file>	are	
used,	and	for	any	that	are	missing,	an	internal	default	value	is	used	instead.	
	

8.1.6 -create-config	<file>	

Generates	a	new	configuration	file	and	exits.	This	option	is	convenient	to	create	a	new	working	configuration	
file	that	can	subsequently	be	modified	by	the	user,	rather	than	creating	a	configuration	file	from	scratch.	The	
option	takes	one	argument,	<file>.	If	the	argument	is	set	to	the	special	value	TRUE	then	a	new	configuration	
file	is	created	in	the	user's	home	directory	under		~/.esoreflex/esoreflex.rc.	Otherwise	a	file	name	or	path	
must	be	given	for	<file>,	in	which	case	a	new	file	will	be	written	to	that	location.	Any	existing	file	is	backed	up	
to	a	file	with	a	.bak	extension,	or	.bakN	where	N	is	an	integer,	if	a	backup	copy	also	already	exists.	

8.1.7 -debug	

This	prints	additional	information	that	can	be	useful	for	debugging	problems	with	the	esoreflex	configuration.	
The	following	information	is	printed	before	invoking	the	actual	esoreflex	binary:	

• The	path	to	the	configuration	file	used	by	the	launch	command.	
• All	environment	variables	as	seen	by	the	esoreflex	binary	at	start	time.	
• The	full	paths	to	the	java,	esorex	and	python	binaries	if	found.	
• The	full	Java	command	used	to	actually	invoke	the	esoreflex	program.	

8.2 The	esoreflex.rc	file	

Reflex	primarily	relies	on	three	binary	programs	to	work:	java,	esorex	and	python.	To	function	properly,	Reflex	
must	know	where	these	programs	are	located	and	how	they	should	be	invoked.	This	can	be	configured	within	
a	configuration	file,	called	esoreflex.rc	by	default.	
Normally	when	using	the	Reflex	tarball	package	directly,	no	configuration	file	is	provided.	Reflex	will	simply	
use	some	internal	default	values	that	are	reasonable	guesses.	However,	system	installations	of	Reflex	will	
have	a	default	system	wide	esoreflex.rc	file	created.	Alternatively,	a	per	user	configuration	file	can	be	placed	
in	the	following	location	in	the	home	directory	~/.esoreflex/esoreflex.rc	or	a	file	path	can	be	passed	to	the	
esoreflex	command	with	the	-config	option,	e.g.	esoreflex	-config	myconfig.rc	
The	configuration	file	provided	in	-config	will	take	the	highest	precedence.	If	no	configuration	is	given	
explicitly	on	the	command	line	then	the	file	~/.esoreflex/esoreflex.rc	is	used	if	it	exists.	If	it	does	not	exist	
then	the	system	wide	configuration	is	used,	if	that	exists.	This	will	usually	be	/etc/esoreflex.rc,	but	might	be	
placed	in	a	different	location	depending	on	the	platform.	If	no	configuration	file	is	provided	anywhere	then	
the	internal	default	values	are	used.	To	summarise,	the	search	order	for	the	configuration		file/variables	is,	
starting	from	the	highest	precedence	to	lowest:	

1. File	given	by	the	command	line	-config	option.	
2. ~/.esoreflex/esoreflex.rc	
3. System	wide	esoreflex.rc,	usually	under	/etc/esoreflex.rc.	
4. Internal	default	values.	

Be	aware	that	any	variables	that	are	not	specified	in	your	custom	configuration	file	will	use	the	default	
internal	values	and	not	the	values	from	the	system	wide	configuration	file.	For	example,	if	there	exists	a	
system	/etc/esoreflex.rc	file	and	you	pass	myconfig.rc	to	esoreflex	that	does	not	contain	the	esoreflex.python-
path	variable,	the	internal	default	value	will	be	used,	rather	than	the	one	from	the	system	/etc/esoreflex.rc	
file.	Putting	this	another	way,	no	merging	is	performed	between	custom	configuration	files	and	the	system	
wide	one.	
Note:	using	a	custom	esoreflex.rc	together	with	a	system	wide	installation	is	meant	for	power	users	only.	
Furthermore,	users	should	consider	that	system	wide	upgrades	of	Reflex	might	break	the	custom	
configuration	defined	in	esoreflex.rc	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 27	of	38	

	
8.3 Creating	a	configuration	file	

The	configuration	file	for	esoreflex	is	just	a	text	file	that	can	be	created	or	modified	with	any	text	editor.	For	
convenience	however,	there	is	a	command	line	option	to	the	esoreflex	launch	command	called	-create-config	
that	can	be	used	to	generate	a	customised	configuration	file	filled	with	all	valid	variables.	This	can	then	be	
further	modified	as	needed.	The	option	takes	one	parameter,	either	TRUE,	or	the	name	of	the	file	to	which	
the	configuration	will	be	saved.	Existing	files	will	be	backed	up	to	a	file	with	the	'.bak'	extension,	or	'.bakN'	
where	N	is	an	integer	if	the	file	name	is	already	taken.	For	example,	the	following	command	will	create	a	new	
configuration	file	in	~/.esoreflex/esoreflex.rc:	
	
 esoreflex -create-config TRUE
	
Alternatively,	to	create	a	file	named	myconfig.rc	in	the	local	directory,	you	can	run	the	following	command:	
	
		esoreflex -create-config myconfig.rc

8.4 Configuration	file	format	

The	configuration	files	are	plain	text	files	that	contain	“name=value”	pairs	on	separate	lines.	There	should	be	
no	spaces	between	the	name	of	the	variable	and	the	equal	sign	'='.	Any	whitespace	in	the	value	is	used	as	is.	
Thus,	any	spaces	immediately	after	the	equal	sign	may	have	semantic	meaning	and	should	be	avoided	if	not	
necessary.	If	a	variable	name	is	given	more	than	once	in	the	same	file	the	value	from	the	last	declaration	is	
used	and	all	previous	declarations	are	ignored.	Comments	start	with	the	pound	sign	'#'	character.	All	text	
starting	from	this	character	(including	the	'#')	is	ignored	up	to	the	end	of	the	line.	
To	help	make	configuration	files	compatible	across	versions	of	esoreflex,	the	special	${esoreflex_base}	macro	
can	be	used	in	the	value	part	of	a	variable	declaration.	This	allows	you	to	avoid	hardcoding	the	base	
installation	path	of	the	esoreflex	package,	which	can	change	from	version	to	version	or	by	installation	
method.	The	following	shows	an	example	usage	for	encoding	the	python	path:	
	
	 esoreflex.python-path=${esoreflex_base}/esoreflex/python
	
The	tilde	character	'~'	can	also	be	used	as	usual	in	any	variable	expecting	a	path.	This	will	be	expanded	to	the	
user's	home	directory.	
All	variables	that	can	be	used	in	a	esoreflex	configuration	file	are	listed	and	described	in	the	following	sub-
sections.	None	of	the	variables	described	below	have	to	be	present	in	the	configuration	file.	For	any	variable	
that	is	not	present,	an	internal	default	value	will	be	used.	However,	it	is	possible	that	on	certain	platforms	the	
default	may	not	be	appropriate	and	lead	to	errors.	You	can	use	the	-create-config	option	to	make	sure	you	
start	from	a	working	version	of	the	configuration	file,	with	all	variables	properly	set.	

8.4.1 esoreflex.inherit-environment	

This	controls	if	the	user's	environment	variables	should	be	used	by	the	esoreflex	command	as	is,	i.e.	inherited	
or	not.	The	value	must	be	either	TRUE	or	FALSE.	If	set	to	TRUE	then	no	changes	are	made	to	the	user's	
environment	variables	when	invoking	the	esoreflex	binary	and	all	of	them	will	be	visible	to	the	binary.	In	
addition,	any	environment	variables	configured	by	the	user	will	take	precedence	over	values	set	by	the	
esoreflex	launch	command	as	derived	from	the	configuration	file.	In	contrast,	for	a	value	of	FALSE,	every	
environment	variable	will	be	unset	and	only	a	select	number	will	be	configured	when	invoking	esoreflex.	A	
listing	of	the	environment	variables	used	by	esoreflex	can	be	seen	by	adding	the	-debug	option	to	the	
command	line	call.	

8.4.2 esoreflex.java-command	

This	must	contain	the	Java	binary	or	command	that	must	be	used	to	start	a	Java	process.	In	the	simplest	case,	
it	can	just	contain	the	string	java.	Alternatively	this	can	be	a	full	path	to	a	specific	binary	to	use.	Extra	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 28	of	38	

	
command	line	options	can	also	be	given	if	necessary.	For	example:	
	
 esoreflex.java-command=/usr/bin/java -Xdiag

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 29	of	38	

	

8.4.3 esoreflex.workflow-path	

This	must	be	a	colon	separated	list	of	paths	in	which	to	search	for	workflow	XML	or	KAR	files.	The	tilde	
character	can	be	used	in	the	paths,	which	will	be	expanded	to	the	user's	home	directory.	As	an	example:	
	
		esoreflex.workflow-path=~/KeplerData/workflows/MyWorkflows

8.4.4 esoreflex.esorex-command	

This	variable	must	contain	the	required	command	to	invoke	the	esorex	binary.	By	default	it	is	set	to	the	string	
esorex.	This	variable	can	contain	the	full	path	to	the	binary	and	also	include	additional	command	line	options.	
An	example	where	this	can	be	handy	is	to	execute	esorex	with	changed	priorities	(using	nice)	or	to	pin	it	to	
particular	processors	as	shown	below:	
	
		esoreflex.esorex-command=likwid-pin -c N:0-3 esorex
	

8.4.5 esoreflex.esorex-config	

This	must	be	a	path	to	the	configuration	file	to	use	by	the	esorex	program.	With	a	normal	system	installation	
this	will	point	to	a	custom	configuration	file	prepared	by	esoreflex	itself.	To	use	a	different	file	change	or	set	
the	path	where	the	file	is	located.	For	example:	
	
 esoreflex.esorex-config=~/.esorex/esorex.rc
	

8.4.6 esoreflex.esorex-recipe-config	

Similarly	to	the	esoreflex.esorex-config	variable,	this	must	point	to	the	location	of	the	default	recipe	
configuration	file	to	use	when	invoking	esorex.	Normally	this	should	point	to	an	empty	dummy	file,	but	can	
be	adjusted	in	special	cases.	For	example:	
	
 esoreflex.esorex-recipe-config=~/.esorex/myrecipe.rc
	

8.4.7 esoreflex.python-command	

Similar	to	the	configuration	of	the	esorex	command,	this	variable	will	configure	the	command	that	must	be	
invoked	to	start	python.	By	default	this	is	simply	set	to	the	string	python.	You	can	use	the	full	path	to	the	
binary	and	include	extra	command	line	options	as	usual.	For	example:	
	
 esoreflex.python-command=/usr/bin/python27
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 30	of	38	

	

8.4.8 esoreflex.python-path	

This	must	contain	a	colon	separated	list	of	additional	paths	to	search	for	python	modules.	If	the	
esoreflex.inherit-environment	variable	is	TRUE	then	the	contents	of	esoreflex.python-path	will	be	appended	
to	the	PYTHONPATH	user's	environment	variable	if	it	exists,	otherwise	PYTHONPATH	will	be	set	to	the	
contents	of	esoreflex.python-path	as	is.	In	system	installations	of	esoreflex,	its	configuration	files	will	usually	
set	the	esoreflex.python-path	variable	to	contain	search	paths	to	internal	python	modules.	You	will	have	to	
be	careful	not	to	remove	these,	to	avoid	breaking	esoreflex.	For	example:	
	
		esoreflex.python-path=${esoreflex_base}/esoreflex/python:~/mymodules
	

8.4.9 esoreflex.path	

This	must	be	a	colon	separated	list	of	additional	binary	search	paths	that	will	be	added	to	the	PATH	
environment	variable.	This	is	particularly	useful	if	you	want	to	be	able	to	invoke	a	privately	installed	program	
or	script	from	a	system	installation	of	esoreflex.	If	the	esoreflex.inherit-environment	variable	is	TRUE	then	the	
contents	of	esoreflex.path	is	appended	to	the	user's	PATH	environment	variable.	Thus	the	user's	binaries	will	
take	precedence.	Otherwise	for	esoreflex.inherit-environment=FALSE	the	contents	of	esoreflex.path	is	
prepended	to	the	system	PATH	variable	as	returned	by	the	getconf	command.	In	which	case	the	binaries	
found	under	the	paths	in	esoreflex.path	will	take	precedence	over	the	user's	ones.	

8.4.10 esoreflex.library-path	

This	must	be	a	colon	separated	list	of	additional	search	paths	for	shared	libraries.	When	esoreflex.inherit-
environment	is	set	to	TRUE	then	the	contents	of	esoreflex.library-path	will	be	appended	to	the	
LD_LIBRARY_PATH	environment	variable	(DYLD_LIBRARY_PATH	for	BSD	derived	platforms,	such	as	Apple	OS	
X).	This	means	that	the	user's	shared	libraries	will	take	precedence	if	the		(DY)LD_LIBRARY_PATH	was	
configured	by	the	user.	Otherwise	when	
esoreflex.inherit-environment=FALSE	the	(DY)LD_LIBRARY_PATH	environment	variable	is	set	to	the	contents	
of	esoreflex.library-path	as	is,	completely	ignoring	any	value	set	in	the	user's	environment.	For	system	
installations	of	esoreflex,	the	configuration	files	may	have	this	variable	set	to	point	to	internal	shared	libraries	
for	certain	platforms.	Care	will	have	to	be	taken	not	to	remove	these	paths	so	as	to	avoid	breaking	esoreflex.	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 31	of	38	

	

8.5 Environment	variables	

The	behaviour	of	the	esoreflex	launch	command	can	be	modified	with	the	following	environment	variable.	

8.5.1 ESOREFLEX_CLEAN_ENVIRONMENT	

If	this	variable	is	set,	it's	value	must	be	either	TRUE	or	FALSE.	If	set	to	TRUE	then	all	environment	variables	
will	be	unset	before	invoking	the	esoreflex	binary.	Only	certain	environment	variables	are	set	within	the	clean	
environment	setting	before	the	invocation.	This	environment	variable	will	also	override	any	setting	of	
esoreflex.inherit-environment	provided	in	a	configuration	file	e.g.	the	system	wide	esoreflex.rc.	
The	following	command	can	be	used	to	see	exactly	which	environment	variables	are	used	and	configured	by	
the	launch	command:	
	
 esoreflex -debug
	
The	variables	will	be	listed	in	the	“Environment	used”	section.	

8.6 Custom	esoreflex.rc	file	use	cases	

Here	we	present	some	examples	to	show	how	to	setup	a	configuration	file	for	esoreflex	to	deal	with	certain	
common	use	cases.	These	will	all	assume	the	bash	or	similar	shell	is	used.	You	will	have	to	adjust	the	
examples	for	other	shell	types	appropriately.	

8.7 Using	a	private	installation	of	esorex	

In	certain	cases	you	may	want	to	use	a	private	installation	of	esorex,	for	debugging	for	example.	If	using	the	
esoreflex	tarball	package	rather	than	a	system	installation,	the	user's	environment	variables	will	be	inherited.	
In	this	case	all	you	need	to	do	is	make	sure	that	the	custom	esorex	binary	is	found	in	the	PATH	environment	
variable.	For	example,	if	you	have	a	custom	esorex	binary	installed	under	~/myesorex/bin/esorex,	you	should	
preprend	the	path	to	the	PATH	variable	as	indicated	below:	
	
 export PATH=”~/myesorex/bin:$PATH”
	
To	have	this	setting	persist	across	login	sessions	you	can	add	this	to	your	~/.profile	or	~/.bashrc	file	as	
appropriate.	You	may	also	need	to	similarly	deal	with	the	LD_LIBRARY_PATH	(DYLD_LIBRARY_PATH	on	BSD	
derived	platforms	like	Apple	OS	X)	if	you	have	shared	libraries	in	non-standard	locations.	
If	a	system	installation	of	esoreflex	was	performed	then	the	user's	environment	variables	will	not	be	inherited	
by	default.	Thus,	the	above	export	method	will	not	work.	Instead,	a	new	custom	configuration	file	should	be	
created	for	esoreflex.	Here	we	show	how	to	create	a	configuration	file	that	will	apply	to	all	your	login	sessions	
(not	to	all	users).	The	first	thing	to	do	is	create	a	working	template	configuration	with	the	following	
command:	
	
 esoreflex -create-config TRUE
	
This	will	create	a	new	file	in	~/.esoreflex/esoreflex.rc.	Any	existing	configuration	will	be	backed	up	to	a	file	
with	a	.bak	or	.bakN	(where	N	is	an	integer)	extension.	You	will	have	to	edit	this	new	file	in	a	text	editor	and	
change	the	variable	esoreflex.esorex-command	to	the	following	value:	
	
		esoreflex.esorex-command=~/myesorex/bin/esorex	
	
If	shared	libraries	have	been	installed	in	a	non-standard	location,	for	example	the	CPL	libraries	went	into	
~/mycpl/lib,	you	will	also	have	to	let	esoreflex	know	about	these	also.	Modify	the	esoreflex.library-path	
variable	by	appending	the	path	~/mycpl/lib	to	it:	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 32	of	38	

	
	
 esoreflex.library-path=~/mycpl/lib
	
If	there	was	already	a	value	set	for	esoreflex.library-path	then	you	likely	want	to	keep	that	and	simply	append	
the	new	path	to	the	end,	as	indicated	in	the	following	example:	
	
 esoreflex.library-path=/opt/local/lib:~/mycpl/lib
	
Once	done	modifying	the	configuration,	the	next	invocation	of	esoreflex	should	now	use	your	custom	esorex	
binary.	If	any	sessions	of	esoreflex	were	already	started	before	creating	the	custom	configuration,	you	will	
have	to	close	them	and	restart	esoreflex.	
As	an	alternative	to	creating	a	configuration	file	that	will	be	used	for	all	your	esoreflex	sessions,	you	may	
want	to	create	a	custom	configuration	file	to	use	just	for	a	particular	esoreflex	invocation.	In	this	case	you	
should	run	the	following	command	to	create	a	configuration	file	template	in	your	current	working	directory:	
	
		esoreflex -create-config mycfg.rc
	
You	can	of	course	use	a	different	path	or	even	a	full	path	for	the	file,	rather	than	mycfg.rc.	The	
esoreflex.esorex-command	and	esoreflex.library-path	variables	must	be	modified	in	the	mycfg.rc	file	as	
indicated	before.	But	you	will	now	have	to	remember	to	add	the	-config	option	to	the	esoreflex	launch	
command	whenever	you	want	to	use	this	configuration	file.	For	example:	
	
 esoreflex -config mycfg.rc
	

8.8 Using	a	private	installation	of	python	

When	you	want	to	use	a	private	or	different	installation	of	python,	rather	than	the	system	one,	you	can	do	so	
in	a	similar	manner	as	shown	previously	for	esorex.	If	using	the	esoreflex	tarball	directly,	the	python	that	is	
used	by	esoreflex	is	configured	in	the	user's	environment	variables.	Specifically	this	is	set	in	the	variables	
PATH	and	LD_LIBRARY_PATH	(DYLD_LIBRARY_PATH	on	BSD	derived	platforms	like	Apple	OS	X).	Details	are	
already	shown	in	the	esorex	section	above	and	not	repeated	here.	The	following	will	instead	show	how	to	
modify	the	python	that	will	be	used	by	a	system	installation	of	esoreflex,	which	is	the	more	common	end	user	
case.	
Let	us	assume	your	custom	python	installation	resides	in	~/mypython/bin	and	you	have	some	python	
modules	in	~/mypython/modules	that	you	would	like	to	use.	The	first	step	requires	creating	a	custom	
configuration	file	template	for	esoreflex.	This	can	be	done	with	the	following	command:	
	
		esoreflex -create-config TRUE
	
A	new	file	will	be	created	in	~/.esoreflex/esoreflex.rc.	Any	previous	copy	will	be	backed	up	to	a	file	with	a	.bak	
or	.bakN	(where	N	is	an	integer)	extension.	The	~/.esoreflex/esoreflex.rc	file	must	be	edited	in	a	text	editor	
and	the	following	variables	set:	
	
		esoreflex.python-command=~/mypython/bin/python
 esoreflex.python-path=${esoreflex_base}/esoreflex/python:~/mypython/modules

Take	note	that	any	value	that	was	already	set	in	the	esoreflex.python-path	variable	should	be	kept,	unless	you	
wanted	to	replace	the	internal	esoreflex	python	modules	and	you	know	what	you	are	doing.	You	should	just	
append	your	own	paths	to	the	esoreflex.python-path	varaible	with	a	colon	separating	all	paths.	
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 33	of	38	

	
One	the	modifications	are	complete	you	should	stop	any	esoreflex	sessions	that	are	already	running	and	
restart	esoreflex.	All	future	invocations	of	esoreflex	should	now	use	the	custom	python	installation	with	your	
own	modules.	
If	you	wanted	to	only	use	the	custom	python	only	for	certain	invocations	of	esoreflex,	you	will	want	to	create	
a	custom	configuration	file	other	than	in	~/.esoreflex/esoreflex.rc.	For	example,	mycfg.rc	in	the	current	
working	directory	as	follows:	
	
		esoreflex -create-config mycfg.rc
	
This	file	should	be	modified	as	indicated	before	and	esoreflex	must	be	invoked	with	the	-config	option	as	
follows:	
	
		esoreflex -config mycfg.rc
	
You	can	change	the	name	of	mycfg.rc	to	any	value	you	want,	so	long	as	it	is	not	~/.esoreflex/esoreflex.rc,	
which	would	be	automatically	read	by	every	esoreflex	invocation.	You	can	also	use	full	paths	to	the	
configuration	files	for	the	-config	and	-create-config	options.	
	

8.9 Using	the	user's	environment	

When	dealing	with	a	system	installation	of	esoreflex,	you	may	want	to	customise	various	aspects	of	how	
esorex	or	python	is	executed	using	your	user	environment	variables	that	you	have	set	up.	By	default	a	system	
installation	of	esoreflex	will	not	inherit	the	user's	environment	variables	i.e.	they	will	all	be	unset,	except	for	a	
select	few,	such	as	the	PATH,	HOME,	LANG,	LOGNAME,	HOSTNAME	and	DISPLAY	(Note:	this	list	may	not	be	
exhaustive.	Use	esoreflex	-debug	to	see	an	exact	listing).	To	force	esoreflex	you	use	the	environment	as	has	
been	set	by	you,	you	will	need	to	create	a	modified	configuration	file.	
Start	by	running	the	following	command	to	create	a	new	configuration	template	in	~/.esoreflex/esoreflex.rc:	
	
 esoreflex -create-config TRUE
	
Any	existing	~/.esoreflex/esoreflex.rc	file	will	be	backed	up	to	~/.esoreflex/esoreflex.rc.bak	with	a	possible	
integer	suffix.	
You	will	then	want	to	edit	the	new	file	in	a	text	editor.	Change	the	esoreflex.inherit-environment	variable	and	
set	it	to	TRUE,	as	shown	below:	
	
		esoreflex.inherit-environment=TRUE
	
When	done	you	should	stop	all	existing	esoreflex	sessions	and	restart	them.	All	environment	variables	that	
you	normally	see	in	your	terminal	session	should	now	also	be	used	by	future	invocations	of	esoreflex.	To	
confirm	this	you	can	start	esoreflex	with	the	following	command	and	inspect	the	“Environment	used”	
section:	
	
		esoreflex -debug
	

8.10 Customising	the	esorex	command	used	by	esoreflex	

To	customise	the	esorex	command	that	will	be	used	by	esoreflex,	you	will	need	to	create	a	new	configuration	
file.	As	indicated	in	previous	sections,	the	template	file	should	be	created	with	the	following	command:	
	
 esoreflex -create-config TRUE

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 34	of	38	

	
	
This	will	create	a	new	file	called	~/.esoreflex/esoreflex.rc	and	any	existing	file	in	that	location	will	be	backed	
up	to	~/.esoreflex/esoreflex.rc.bak	with	a	possible	integer	suffix.	The	~/.esoreflex/esoreflex.rc	file	will	be	used	
for	all	your	invocations	of	esoreflex,	unless	using	the	-config	option.	It	is	possible	to	create	a	configuration	file	
that	will	only	be	used	for	certain	invocations	of	esoreflex.	For	example,	if	you	want	a	custom	configuration	file	
called	~/my_esoreflex_cfg.rc	in	your	home	directory,	you	should	run	the	following	command:	
	
 esoreflex -create-config ~/my_esoreflex_cfg.rc

In	either	case,	the	new	file	must	be	modified	in	a	text	editor.	Assume	you	want	to	change	the	scheduling	
priority	of	esorex	with	the	nice	command	to	10,	you	need	to	set	the	esoreflex.esorex-command	variable	as	
follows:	
	
		esoreflex.esorex-command=nice -n 10 esorex
	
You	can	change	the	command	to	whatever	you	like.	As	another	example,	to	use	the	likwid	tool	to	force	
esorex	to	use	only	certain	processors,	you	may	want	to	set	the	esoreflex.esorex-command	variable	as	follows:	
	
		esoreflex.esorex-command=likwid-pin -c N:0-3 esorex
	
You	may	also	need	to	update	the	esoreflex.path	variable	in	the	new	configuration	file,	to	indicate	the	location	
of	the	likwid-pin	binary	as	follows:	
	
		esoreflex.path=/usr/local/bin
	
Adjust	the	path	appropriately	for	your	platform.	
Once	all	the	modifications	are	complete,	you	should	stop	any	running	esoreflex	sessions	and	restart	them.	In	
the	case	that	the	configuration	file	was	saved	to	~/my_esoreflex_cfg.rc,	you	should	start	esoreflex	as	follows:	
	
 esoreflex -config ~/my_esoreflex_cfg.rc

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 35	of	38	

	

9. TROUBLESHOOTING	

9.1 Debug	mode	
By	default,	Reflex	displays	some	information	on	the	console:	it	is	possible	to	change	the	level	of	logging	for	
debugging	purposes	by	editing	the	file	kepler-2.4/resources/log4j.properties	in	the	Reflex	
distribution.	
You	can	increase	the	logging	level	by	adding	new	lines	at	the	end	of	the	file	(the	default	logging	level	is	
WARN,	defined	at	the	beginning	of	the	file).	

Log4j,	the	logging	library	used	by	Reflex,	defines	the	following	logging	levels,	starting	from	the	most	verbose:	
TRACE,	DEBUG,	INFO,	WARN,	ERROR,	FATAL.	
	
If	you	want	to	put	all	Reflex	actors	in	debug	mode	change	the	first	line	as	follows:	
log4j.logger.org.eso=DEBUG, CONSOLE
	
If	you	want,	for	example,	to	raise	the	logging	level	of	the	RecipeExecuter	to	DEBUG,	then	you	have	to	add	the	
following	line:	
log4j.logger.org.eso.RecipeExecuter=DEBUG, CONSOLE
	
Note	that	the	most	restrictive	condition	is	applied.	

9.1.1 Logging	to	file	
By	default	Reflex	logs	only	to	the	console,	so	that	if	you	want	the	logs	to	be	saved	also	to	a	file,	then	you	
have	to	modify	the	first	line	of	the	configuration	file	(see	9.1)	from		
log4j.rootLogger=WARN, CONSOLE
to	
log4j.rootLogger=WARN, CONSOLE, R
The	log	filename	is	defined	in	the	section	LOGGING TO FILE of	the	same	configuration	file.	

9.2 Reflex	hangs	
In	 the	past	some	users	have	experienced	a	Reflex	hang	when	they	were	browsing	 the	ESO	workflows:	 the	
origin	of	this	issue	is	unclear,	but	it	can	be	solved	by	increasing	the	memory	assigned	to	Reflex.	
To	do	so,	open	the	menu	entry	“Tools->JVM	Memory	Settings”	and	increase	the	value	of	Max	Memory.	
The	installation	script	provides	a	simple	tool	(esoreflex_set_memory)	to	change	it	from	the	command	
line.	

9.3 SQL	error	messages	
If	you	run	into	error	messages	about	a	missing	table	or	column,	it’s	very	likely	that	you	are	using	a	
bookkeeping	directory	created	by	an	old	version	of	Reflex.	The	solution	is	to	remove	it	(or	move	it,	if	you	still	
need	to	run	said	old	version):	the	default	location	is	~/reflex_data/reflex_book_keeping.	

9.4 Strange	behavior	of	actor	String	Costant	
The	actor	String	Constant	comes	from	Kepler,	and	it	has	a	peculiar	behavior	when	it’s	value	is	set	to	a	
parameter	(i.e.	something	starting	with	a	$	sign):	if	you	close	the	window	using	the	Commit	button,	then	the	
value	is	stored	as	input.	If,	on	the	other	hand,	you	press	Enter,	then	Kepler	tries	to	resolve	the	value	of	the	
parameter	and	replaces	it	in	the	actor.	The	effect	is	that,	if	afterwards	you	change	the	value	of	the	
parameter,	the	actor	will	not	pick	it	up.		

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 36	of	38	

	

APPENDIX	A: SIMPLIFIED	SOP	FORMAT	
Some	actors	(i.e.	the	SopCreator)	use	a	simplified	version	of	the	SoP	format	in	order	to	ease	interaction	with	
the	user	and	with	custom	scripts.	These	formats	are	described	here.	

• SoP:	RECIPE1:PAR1=VAL1,RECIPE2:PAR2=VAL2…	
o Example:	uves_cal_mdark:process_chip=both,uves_cal_mflat:backsub.mmethod=median	

	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 37	of	38	

	

APPENDIX	B: example.py	
#!/usr/bin/env python

import reflex module
import reflex

import sys

if __name__ == '__main__':

 # create an option parser
 parser = reflex.ReflexIOParser()

 # define inputs (Note: you must define at least long option)
 parser.add_input("-i", "--input1")
 parser.add_input("-j", "--input2")

 # define outputs (Note: you must define at least long option)
 parser.add_output("-o", "--output1")
 parser.add_output("-p", "--output2")

 # get inputs from the command line
 inputs = parser.get_inputs()
 # get output variables
 outputs = parser.get_outputs()

 # read inputs and assign outputs
 if hasattr(inputs, "input1"):
 outputs.output1 = inputs.input1
 else:
 outputs.output1 = 'test1'

 if hasattr(inputs, "input2"):
 outputs.output2 = inputs.input2
 else:
 outputs.output2 = 'test2'

 # print outputs
 parser.write_outputs()

 sys.exit()
	

ESO	 Reflex	User	Manual	
Doc:	 VLT-MAN-ESO-19000-5037	
Issue:	 3.9	
Date:	 20/04/2018	
Page:	 38	of	38	

	

APPENDIX	C: SOFTWARE	REQUIREMENTS	
Reflex	requires	java	8,	update	121	is	recommended:	in	principle	every	recent	Linux	distribution	should	be	
compatible,	but	this	can	not	be	guaranteed.	
Workflows	may	have	specific	requirements	(e.g.	python,	astropy,	etc.):	please	refer	to	the	pipeline	manual	or	
to	the	workflow	tutorial	for	more	information.	
	
	

