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Abstract

This note describes a trilateration application, the applicable equations, and a Ptolemy simulation of
the application.

1 Trilateration Basics

Figure 1 illustrates an application for the detection and location of a signal source (T in the figure)
based on the differences in the time of receipt of a signal transmitted by the source at three detec-
tors (D1, D2, and D3) whose positions are known. Obviously to do this each detector must contain
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Figure 1. Trilateration Application.

a local clock accurately synchronized to its peers.
The timestamps generated upon receipt are then pro-
cessed using a trilateration computation (TRI) to ob-
tain the position of the target and the time of trans-
mission. This process is used in gunshot location by
local police and for detection of spurious or clandes-
tine rf transmitters, e.g. spy bugs, by civil and mil-
itary groups. The transmitted signals are sound and
electromagnetic, (EM), waves respectively. The de-
tectors typically communicate with each other and the
control center where the trilateration computation is
performed using a LAN.

The geometry of this application is illustrated in
Figure 2. The three detectors are at fixed locations on
the coordinate axes at coordinates (0, 0, τ1), (a, 0, τ2)
and (b, 0, τ3) for detectors 1, 2, and 3 respectively where τ0, τ1, τ2, and τ3 represent respectively the



time of signal transmission at target T and the times of reception at detectors D1, D2, and D3. From
this geometry the Equations 1, 2, and 3 can be derived where v is the velocity of propagation of the
transmitted signal. The unknowns are of course x,y, and τ0. The solution for these equations is derived
in Section 3.

r21 = [v(τ1 − τ0)]
2 = x2 + y2 (1)

r22 = [v(τ2 − τ0)]
2 = (x− a)2 + y2 (2)

r23 = [v(τ3 − τ0)]
2 = x2 + (y − b)2 (3)

T(x,y,τo)

D3(0,b,τ3)

D2(a,0,τ2)D1(0,0,τ1)

r23 = x2 + (y − b)2

r21 = x2 + y2

r22 = (x− a)2 + y2

Figure 2. Trilateration Geometry.

In the Ptolemy simulation of this application the velocities
are taken to be 300 m/s for sound and 3x108 m/s for elec-
tromagnetic radiation. This simulation is discussed further in
Section 2.

In practice things are considerably more complex. Most
fielded systems use more than three detectors to provide bet-
ter coverage. In general this means that rather than a closed
for solution to the trilateration equations, some sort of least
square fit of multiple measurement data is used. In addi-
tion information other than time of receipt, for example signal
strength or directional information is often used in the compu-
tations. The actual detection of the signals at the detectors is
also quite complicated. The received waveforms are far from
a clean step function. It is difficult to develop suitable algo-
rithms for determining the time of receipt that is consistent
across all detectors and in the face of signal degradation.

It is also critical that the system be robust with respect to timing constraints. For example in the
simulation of the geometry of Figure 2 the maximum differential time of signal propagation will occur
when the target is close to either detectors 2 or 3. In the simulation a = 3000m and b = 4000m so
with the target say at D2, r3 = 5000m and τ3 = 5000/(3 ∗ 108) ≈ 16.7µs for an EM signal and 16.7s
for sound. If the target signals are transmitted more frequently than every 16.7µs for EM or 16.7s for
sound, great care must be take to ensure that the trilateration computation uses receipt times for the same
transmission as, in this case for example, D2 will receive a second signal before the previous signal has
been received at D3.

If we assume that the desired position accuracy is approximately 10m then intuitively the clocks must
be synchronized and timestamps generated with an accuracy of 10/velocity or roughly 33ns for EM
signals and 33ms for sound signals.

2 Ptolemy Trilateration Simulation

This applications has been simulated using the Ptolemy system. The top level Ptolemy model is
illustrated in Figure 3. The blocks within the red rectangle represent the application system. The Target
Signal Generator block represents the target at the unknown location. This block periodically generates
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simulated target transmissions at time τ0i, a triplet of events with model times τ0 + r1/v, τ0 + r2/v, and
τ0 + r3/v with the delays ri/v representing the time of propagation to the three Target Signal Detectors.
Each event is processed by the appropriate detector block which generates a timestamp upon receipt
and forwards the timestamp to the Trilateration block. The remaining blocks generate statistics and
plots of the simulated performance of the system under different conditions specified by the user via the
parameters of the System Parameters block.

Figure 3. Trilateration Ptolemy Model

The adjustable parameters of the System Parameters block are:

• sound: When true, the signal is assumed to be sound and the velocity parameter is set to 300m/s.
When false, EM signals are assumed and the velocity is set to 3 ∗ 108m/s.

• MovingTarget: When true, the target transmits signals from pathPoints points along the parabola
y = (3.6b/a2) ∗ (x − a/2)2 with points equally distributed on the x axis such that 0 ≤ x ≤ a.
The path is shown in Figure 4. When false, pathPoints transmission all are sent from the point
(a, 0.9b). This point is circled on the path in Figure 4. In each case the time between transmission
is approximately sqrt(a2 + b2)/velocity + 2 seconds.

• Synchronized: When true, the clocks in the three detectors are synchronized with Detector 1
serving as the master (and itself free running) and with D2 slaved to D1 and D3 slaved to D2.
When false, all three clocks are free running.

• GoodClock: When true (and PerfectClock is false), the values for the free running drift rate is set to
0, 1PPM, and -1PPM for the clocks in detectors 1, 2, and 3 respectively. The 1PPM (0.000001s/s)
value is determined by the fixed parameter goodClockDrift. The one sigma value for the noise
in the time maintained by the clocks is set to 8ns for all clocks. This value is determined by the
fixed parameter goodClockOneSigmaSignalImpairment. When false (and PerfectClock is false),
the corresponding drift rates are 0, 10PPM, and -10PPM and the noise is set to 40ns.
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• PerfectClock: When true (irrespective of the value of GoodClock) the drifts and the noise are set
to zero for all clocks. When false the drift and noise parameters are set based on the value of the
GoodClock parameter.

In addition there is a set of fixed parameters visible from this block as follows:

• goodClockOneSigmaSignalImpairment: default value 8ns. This is the one sigma value of the
random distribution of timing impairments implemented in the Controller block internal to the
Target Signal Detector blocks. This controller in turn sets the rates of the actual clock of the DE
director to produce statistical variations in the timescale with a nominal normal distribution with
this value of standard deviation. See GoodClock parameter above. 8ns is achievable but typically
requires more expensive quartz crystals for the clock oscillator and careful attention to clock LSB
and servo characteristics. 40ns if readily achievable with care but does not require excessively
expensive components.

• goodClockDrift: default value 1PPM. The value for the rate at which a free running clock departs
from oracle time. See GoodClock parameter above. 1PPM typically requires better and more
expensive oscillators often oven controlled. 10PPM requires less care but still more than the
100PPM of cheap crystal oscillators.

• pathPoints: default value 15. This determines the number of signal transmissions generated.

• a: default value 3000m. Detector 2 is located at (a,0).

• b: default value 4000m. Detector 3 is located at (0,b).

• eventStartTime: default value 600s. This is the time the first signal is transmitted. See discussion
of Figure 6 below.

Next examine examples of the various outputs of the simulation. Unless otherwise indicated these
examples are taken with the follow parameter values: sound = false, MovingTarget = true, Synchronized
= true, GoodClock = true, PerfectClock = false.

10 m

Figure 4. Target Position Plot (moving)

Figure 4 shows the
computed and actual
positions of the target
as it moves along the 15
points on the parabola.
The actual positions are
shown in red and the
computed positions in
blue. The inset is an
enlargement of the area
around the third point
and reveals a computed
position error of about
10m. The locations of
the three detectors are
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shown as green dots in
the figure.
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Figure 5. Target Position Plot (fixed)

Figure 5 again shows
the actual and com-
puted positions but with
the parameter Moving-
Target set to false. In
this case the actual tar-
get position for all 15
points is at (a,0.9b),
i.e. the circled point
in Figure 4. Note
that the dimensions on
the axes cover approxi-
mately 16 and 7 meters
along x and y respec-
tively. The computed
points are concentrated
within this area. The
distribution of these points will be discussed later in this section.

620-630s

+2 to -2 ns

Figure 6. Clock Synchronization

Figure 6 illustrates
the synchronization per-
formance of the clocks
in the three detectors
during the course of the
roughly 950 seconds of
the simulation. The 3µs
transient starting at 0 is
due to the PID servos
in clocks 2 and 3 track-
ing their parent clocks.
While all clocks start at
the same time (0) recall
that the drift parameters
of clocks 2 and 3 are
+1PPM and -1PPM re-
spectively. The tran-
sient is a result of the
integral term in the PID
needing to accumulate
sufficient rate offset to
compensate for the free
running drifts of each
clock. The transient appears to be settled in about 3 minutes (a typical value for synchronization proto-
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cols) however it takes considerably longer to settle within the errors allowed which depend on the desired
positional accuracy and the velocity of propagation. Recall from the discussion at the end of Section 1
that a reasonable value for this error is on the order of 33ns. This transient behavior is why the fixed
parameter eventStartTime is set to 600s. If detection is started earlier then one or more of the clocks will
exhibit offsets due to this transient which will of course degrade the computed position accuracy. The
inset in Figure 6 shows the synchronization details for the period from 620 to 630 s. The simulated noise
characteristics during this interval span roughly ±2ns.

System Conditions:
{  = "Sensors at (0,0),(a,0),(0,b) where", a = 3000.0, b = 4000.0}
{  = "Target at X,Y.", Target emission = "electromagnetic", Target is = "moving"}
{  = "Clock", Quality = "good clock", Status = "Synchronized: 1(master,free run)=>2=>3"}

Computed vs Actual Position Error Statistics (meters)
{Mean = 2.870609109026, StdDev = 3.0494159691617}
  
Computed vs Actual Target Transmit Time Error Statistics (seconds)
{Mean = -1.334835057302068E-9, StdDev = 9.087714367996645E-9}
  
Clock2 and Clock3 Skew Statistics wrt Clock1 at Event Times (seconds)
{Clock2 Mean = -2.186660215860077E-9, StdDev = 9.538168767693523E-9}
{Clock3 Mean = 9.000132195069455E-10, StdDev = 9.364676247889561E-9}

Figure 7. Simulation Data

Finally Figure 7 shows
the display of the most
relevant system param-
eter values and com-
puted statistics. The
first paragraph ”Sys-
tem Conditions” lists
the system parameters
selected by the user.
The first line reminds
us of the locations of
the detectors. The sec-
ond line gives the char-
acteristics of the target–
in this case a moving
target emitting EM sig-
nals. The third line gives the characteristics of the clocks– in this case synchronized clocks with good
quality.

The second paragraph ”Computed vs Actual Position Error Statistics” gives the mean and standard
deviation of the difference in meters between the actual and computed location of the target. In this case
the values are each roughly 3 meters indicating that the transient discussed in connection with Figure 6
had settled sufficiently.

The third paragraph ”Computed vs Actual Target Transmit Time Error Statistics” gives the mean and
standard deviation of the difference in the computed and actual values of the times τ0i when the signals
were transmitted. While it is difficult to exactly state the sensitivity of computed position to errors in
the computed transmit time note that the standard deviation of the computed times multiplied by the
velocity is the same order as the computed deviations in position.

The final paragraph ”Clock2 and Clock3 Skew Statistics wrt Clock1 at Event Times” gives the mean
and standard deviation of the differences between the time or receipt of a signal on clocks 2 or 3 to the
time on clock 1 at this same instant. In other words a measure of the clock synchronization and noise
induced errors between the clocks at the times of measurement. Again these times are consistent with
the statistics of the computed time differences and position errors noted in Figure 5.

Figure 8 presents simulation data for the case where all clock drifts are zero. Not surprisingly the
Clock 2 and 3 skew statistics are both zero in this case since with zero drift the clocks synchronize
perfectly and no errors between the clocks is expected. However note that the statistics on the signal
transmit time and the position errors are not zero although considerably (five orders of magnitude) less
than the corresponding values given in Figure 7. The cause of these residual errors is due to arithmetic
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precision errors in the trilateration computations. These appear even in the case of a stationary target
where the target does not move but the times of transmission of course increase by roughly 2 seconds
between each transmission. As will be seen in Section 3, the solution to the equations involves, among
other things, differences between transmit times, differences between the squares of these times and can
therefore be expected to produce low level errors due to lack of precision, i.e. sufficient significant bits in
the representations, in these operations. Finally Figure 9 gives the results for conditions identical to those

System Conditions:
{  = "Sensors at (0,0),(a,0),(0,b) where", a = 3000.0, b = 4000.0}
{  = "Target at X,Y.", Target emission = "electromagnetic", Target is = "stationary"}
{  = "Clock", Quality = "perfect clock", Status = "Synchronized: 1(master,free run)=>2=>3"}

Computed vs Actual Position Error Statistics (meters)
{Mean = 6.938234835434112E-4, StdDev = 1.06935708801947E-5}
  
Computed vs Actual Target Transmit Time Error Statistics (seconds)
{Mean = -2.334369734550516E-12, StdDev = 5.870763055716148E-14}
  
Clock2 and Clock3 Skew Statistics wrt Clock1 at Event Times (seconds)
{Clock2 Mean = 0.0, StdDev = 0.0}
{Clock3 Mean = 0.0, StdDev = 0.0}

Figure 8. Simulation Data for Zero Drift

of Figure 7 except that
the signals are assumed
to be sound rather than
EM. The statistics on
the clock performances
for the two cases is
very similar. Like-
wise the computed val-
ues of signal transmis-
sion times have simi-
lar statistics for the two
cases. The statistics
for the position errors
for the sound case are
roughly six orders of
magnitude less than in
the EM case perhaps not a surprise since roughly speaking, a given time error is multiplied by the veloc-
ity to yield a position error and the velocity of sound and EM waves differ by six orders of magnitude.

System Conditions:
{  = "Sensors at (0,0),(a,0),(0,b) where", a = 3000.0, b = 4000.0}
{  = "Target at X,Y.", Target emission = "sound", Target is = "moving"}
{  = "Clock", Quality = "good clock", Status = "Synchronized: 1(master,free run)=>2=>3"}

Computed vs Actual Position Error Statistics (meters)
{Mean = 2.075760807623115E-6, StdDev = 1.533790742136426E-6}
  
Computed vs Actual Target Transmit Time Error Statistics (seconds)
{Mean = 5.994934326736256E-10, StdDev = 5.261402887803933E-9}
  
Clock2 and Clock3 Skew Statistics wrt Clock1 at Event Times (seconds)
{Clock2 Mean = -3.113329209251485E-9, StdDev = 6.757428396728438E-9}
{Clock3 Mean = 1.579996933287475E-9, StdDev = 8.011092656583759E-9}

Figure 9. Simulation Data for Sound Signals
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3 Trilateration Equations

The trilateration equations, Equations 1, 2, and 3 derived from Figure 2 are copied here as Equations
4, 5, and 6. The unknowns are τ0, x and y. Note that these equations are simpler than the general case
since two of the detectors are along the x axis (this can always be arranged by a variable transformation),
and that the third detector is on the y axis rather than at a general point in space.

r21 = [v(τ1 − τ0)]
2 = x2 + y2 (4)

r22 = [v(τ2 − τ0)]
2 = (x− a)2 + y2 (5)

r23 = [v(τ3 − τ0)]
2 = x2 + (y − b)2 (6)

The equations can be further simplified by a variable translation such that time is measured from τ1
by substituting for τ0 as follows:

τ0 = t0 + τ1 (7)

Then Equations 4, 5 and 6 then become:

r21 = [v(−t0)]2 = d20 = x2 + y2 (8)

r22 = [v(τ2 − τ1 − t0)]
2 = (d2 − d0)

2 = (x− a)2 + y2 (9)

r23 = [v(τ3 − τ1 − t0)]
2 = (d3 − d0)

2 = x2 + (y − b)2 (10)

where:

d0 =vt0

d2 =v(τ2 − τ1)

d3 =v(τ3 − τ1)

(11)

Next compute Equation 8 - Equation 9

d20 − (d2 − d0)
2 = x2 + y2 − [(x− a)2 + y2] = 2ax− a2 (12)

or
x = [d20 − (d2 − d0)

2 + a2]/2a (13)

Next substitute Equation 13 into Equation 8

y2 = d20 − [d20 − (d2 − d0)
2 + a2]2/4a2 (14)

Next compute Equation 8 - Equation 10

d20 − (d3 − d0)
2 = x2 + y2 − [x2 + (y − b)2] = 2by − b2 (15)
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or

y = [d20 − (d3 − d0)
2 + b2]/2b (16)

From Equations 14 and 16:

y2 = d20 − [d20 − (d2 − d0)
2 + a2]2/4a2 = [d20 − (d3 − d0)

2 + b2]2/4b2

d20 − [d20 − (d2 − d0)
2 + a2]2/4a2 − [d20 − (d3 − d0)

2 + b2]2/4b2 = 0
(17)

or
d20 − [−d22 + 2d2d0 + a2]2/4a2 − [−d23 + 2d3d0 + b2]2/4b2 = 0 (18)

or

d20[1−d22/a2−d23/b2]−d0[d2(a2−d22)/a2+d3(b2−d23)/b2]− [(a2−d22)2/4a2+(b2−d23)2/4b2] = 0 (19)

Equation 19 can be solved for d0 using the quadratic formula. x and y are then obtained by substituting
d0 into Equations 13 and 16 respectively. If desired τ0 can be computed by substitution of d0/v (from
Equation 11) into Equation 7.

It is Equations 19, 13, 16, 11 and 7 that are implemented in the Trilateration block of the simulation
model.

9


