

Kepler User Manual

	

	

	

	

	

	

Version 2.3
August, 2011

 2

1.	
 Introduction	
 to	
 Kepler	
 ...	
 6	

1.1 What is Kepler?	
 ...	
 6	

1.1.1 Features	
 ..	
 9	

1.1.2 Architecture	
 ...	
 11	

1.2 History of the Kepler Project	
 ..	
 13	

1.3 Kepler Code Contributors	
 ...	
 15	

1.4 Future Goals	
 ...	
 16	

1.5 Participating in Kepler Development	
 ..	
 18	

Using Eclipse	
 ...	
 20	

Contributing to Kepler	
 ..	
 21	

1.6 Reporting Bugs	
 ...	
 21	

1.7 Further Reading	
 ...	
 21	

2.	
 Installing	
 and	
 Running	
 Kepler	
 ...	
 23	

2.1	
 System	
 Requirements	
 ..	
 23	

2.2	
 Installing	
 Kepler	
 ..	
 23	

2.2.1 Installing on Windows	
 ...	
 23	

2.2.3 Installing on Macintosh	
 ...	
 24	

2.2.4 Installing on Linux	
 ..	
 25	

2.3	
 Starting	
 Kepler	
 ...	
 25	

2.4	
 The	
 User	
 Interface	
 ..	
 26	

2.4.1 Menu Bar	
 ..	
 27	

2.4.2 Toolbar	
 ..	
 31	

2.4.3 Components, Data Access, and Outline Areas	
 ..	
 33	

2.4.4 Workflow Canvas	
 ..	
 39	

2.4.5 Navigation Area	
 ...	
 41	

3.	
 Scientific	
 Workflows	
 ..	
 43	

3.1	
 What	
 is	
 a	
 Scientific	
 Workflow?	
 ...	
 44	

3.2	
 Components	
 of	
 a	
 Workflow	
 ..	
 45	

3.2.1 Directors	
 ...	
 46	

3.2.2 Actors	
 ..	
 48	

3.2.3 Composite Actors	
 ..	
 54	

3.2.4 Ports	
 ...	
 54	

3.2.5 Channels and Tokens	
 ...	
 59	

3.2.6 Data Types	
 ...	
 60	

3.2.7 Relations	
 ...	
 62	

3.2.8 Parameters	
 ..	
 63	

4.	
 Working	
 with	
 Existing	
 Scientific	
 Workflows	
 ...	
 67	

4.1	
 Opening	
 Workflows	
 ..	
 67	

4.1.1 Opening Local Workflows	
 ...	
 67	

4.2	
 Running	
 Workflows	
 ..	
 69	

4.2.1	
 Runtime	
 Window	
 ...	
 69	

4.2.2	
 Run	
 Button	
 ...	
 71	

4.2.3 Running Workflows with Adjusted Parameters	
 ..	
 72	

4.3	
 Modifying	
 Workflows	
 ...	
 76	

4.3.1 Substituting Data Sets	
 ..	
 77	

4.3.2 Substituting Analytical Components	
 ..	
 84	

4.4	
 Saving	
 Workflows	
 ...	
 87	

4.5	
 Searching	
 for	
 Data	
 and	
 Components	
 ..	
 87	

 3

4.5.1 Searching for Available Data	
 ..	
 87	

4.5.2 Searching for Standard Components	
 ..	
 90	

4.5.3 Searching for Components in the Kepler Repository	
 ..	
 91	

5.	
 Building	
 Workflows	
 with	
 Existing	
 Actors	
 ...	
 94	

5.1	
 Prototyping	
 Workflows	
 ...	
 95	

5.2.	
 Choosing	
 a	
 Director	
 ...	
 98	

5.2.1 Synchronous Dataflow (SDF)	
 ..	
 102	

5.2.2 Process Networks (PN)	
 ...	
 106	

5.2.3 Discrete Events (DE)	
 ...	
 108	

5.2.4 Continuous Time (CT)	
 ..	
 109	

5.2.5 Dynamic Dataflow (DDF)	
 ...	
 113	

5.3	
 Using	
 Existing	
 Actors	
 ...	
 118	

5.3.1 Using Actors from the Standard Component Library	
 ..	
 118	

5.3.2 Instantiating Actors Not Included in the Standard Library	
 ..	
 119	

5.3.3 Using the Kepler Analytical Component Repository	
 ...	
 122	

5.3.4 Saving Actors to Your Library	
 ..	
 124	

5.3.5 Importing Actors as KAR Files	
 ...	
 126	

5.3.6 Actor Icon Families	
 ...	
 126	

5.4	
 Using	
 Composite	
 Actors	
 ..	
 135	

5.4.1 Benefits of Composite Actors	
 ..	
 137	

5.4.2 Creating Composite Actors	
 ...	
 138	

5.4.3 Saving Composite Actors	
 ..	
 143	

5.4.4 Combining Models of Computation	
 ...	
 144	

5.5 Using the ExternalExecution Actor to Launch an External Application	
 	
 144	

5.6	
 	
 Iterating	
 and	
 Looping	
 Workflows	
 ...	
 155	

5.6.1 Iterating with the SDF Director	
 ...	
 156	

5.6.2 Using Ramp and Repeat Actors	
 ...	
 157	

5.6.3 Using Arrays Instead of Iterating	
 ..	
 160	

5.6.4 Iterating with Higher-Order Composites	
 ..	
 163	

5.6.5 Creating Feedback Loops	
 ..	
 164	

5.7	
 Documenting	
 Workflows	
 ..	
 166	

5.7.1 Annotation Actors	
 ..	
 166	

5.7.2 Documentation Menu	
 ..	
 166	

5.8	
 Debugging	
 Workflows	
 ...	
 167	

5.8.1 Animating Workflows	
 ..	
 167	

5.8.2 Exceptions	
 ...	
 168	

5.8.3 Checking System Settings	
 ...	
 169	

5.8.4 Listening to the Director	
 ..	
 170	

5.9	
 Saving	
 and	
 Sharing	
 Workflows	
 ...	
 171	

5.9.1 Saving and Sharing Your Workflows as KAR or XML Files	
 ...	
 171	

5.9.2 Opening and Running a Shared XML Workflow	
 ..	
 171	

6.	
 Working	
 with	
 Data	
 Sets	
 ..	
 174	

6.1	
 Data	
 Actors	
 ..	
 174	

6.2	
 Using	
 Tabular	
 Data	
 Sets	
 with	
 Metadata	
 ...	
 176	

6.2.1 Viewing Metadata	
 ..	
 185	

6.2.2 Outputting Data for Use in a Workflow	
 ...	
 185	

6.2.3 Querying Metadata	
 ...	
 188	

6.3	
 Using	
 Tabular	
 Data	
 without	
 Metadata	
 ...	
 190	

6.3.1 Comma- Tab-, Text-Delimited Files	
 ..	
 191	

 4

6.3.2 Accessing Data from a Website	
 ...	
 193	

6.4	
 Accessing	
 Data	
 Access	
 Protocol	
 (DAP)	
 Sources	
 ..	
 195	

6.5	
 Accessing	
 Data	
 from	
 DataTurbine	
 Servers	
 ...	
 196	

6.6	
 Using	
 FTP	
 ...	
 198	

6.7	
 Using	
 Data	
 Stored	
 in	
 Relational	
 Databases	
 ..	
 199	

6.8	
 Using	
 Spatial	
 and	
 Image	
 Data	
 ..	
 202	

6.8.1 Working with Images	
 ..	
 203	

6.8.2 Working with Spatial Data	
 ..	
 207	

6.9	
 Using	
 Gene	
 and	
 Protein	
 Sequence	
 Data	
 ...	
 210	

7.	
 Using	
 Remote	
 Computing	
 Resources:	
 The	
 Cluster,	
 Grid	
 and	
 Web	
 Services
	
 212	

7.1	
 Data	
 Movement	
 and	
 Management	
 ...	
 213	

7.1.1 Saving and Sharing Data on the EarthGrid	
 ..	
 213	

7.1.2. Secure Copy (scp)	
 ...	
 215	

7.1.3 GridFTP	
 ...	
 217	

7.1.4 Storage Resource Broker (SRB)	
 ..	
 220	

7.1.5 Integrated Rule-Oriented Data System (iRODS)	
 ...	
 225	

7.2	
 Remote	
 Service	
 Execution	
 ..	
 226	

7.2.1 Using Web Services	
 ...	
 226	

7.2.2 Using REST Services	
 ..	
 231	

7.2.2 Using Soaplab Services	
 ..	
 232	

7.2.3 Using Opal Services	
 ..	
 235	

7.3	
 Job	
 Submission	
 ...	
 237	

7.3.1 Cluster Job Submssion	
 ..	
 237	

7.3.2 Grid Job Submission	
 ...	
 239	

8	
 Mathematical,	
 Data	
 Analysis,	
 and	
 Visualization	
 Packages	
 	
 246	

8.1	
 Expressions	
 and	
 the	
 Expression	
 Actor	
 ...	
 246	

8.1.1 The Expressions Language	
 ..	
 247	

8.1.2 Expressions and Parameters	
 ..	
 260	

8.1.3 Expressions and Port Parameters	
 ..	
 260	

8.1.4 Expressions and String Parameters	
 ..	
 262	

8.1.5 The Expression Actor	
 ..	
 262	

8.2	
 Statistical	
 Computing:	
 Kepler	
 and	
 R	
 ...	
 266	

8.2.1 What is R?	
 ...	
 267	

8.2.2 Installing R	
 ...	
 267	

8.2.3 Useful R Actors	
 ...	
 268	

8.2.4 Working with R Actors	
 ..	
 269	

8.3	
 Statistical	
 Computing:	
 MATLAB	
 ..	
 282	

8.4	
 Image	
 Manipulation:	
 ImageJ	
 ..	
 284	

8.4.1 Intro to ImageJ and the ImageJ Actor	
 ..	
 285	

8.4.2 The IJMacro Actor	
 ...	
 292	

8.5	
 Spatial	
 Data:	
 Geographic	
 Information	
 Systems	
 (GIS)	
 ...	
 294	

8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors	
 	
 295	

8.5.2 Geospatial Data Abstraction Library (GDAL) Actors	
 ...	
 296	

9.	
 Domain	
 Specific	
 Workflows	
 ..	
 300	

9.1	
 Chemistry	
 ...	
 300	

9.2	
 Ecology	
 ..	
 301	

9.3	
 Geology	
 ...	
 303	

 5

9.4	
 Molecular	
 Biology	
 ...	
 305	

9.5	
 Oceanography	
 ...	
 306	

9.6	
 Phylogeny	
 ..	
 307	

Appendix	
 A:	
 Creating	
 New	
 Actors	
 ...	
 309	

A.1	
 Building	
 a	
 Custom	
 Actor	
 Based	
 on	
 an	
 Existing	
 Actor	
 ..	
 309	

A.2	
 Creating	
 a	
 New	
 Actor	
 by	
 Extending	
 a	
 Java	
 Class	
 ...	
 311	

A.2.1 Coding a New Actor	
 ...	
 312	

A.2.2 Compiling a New Actor	
 ..	
 323	

A.4	
 Sharing	
 an	
 Actor:	
 Creating	
 a	
 KAR	
 File	
 ..	
 323	

A.4.1 The Manifest File	
 ..	
 323	

A.4.2 The MOML File	
 ..	
 324	

Appendix	
 B:	
 Modules	
 ...	
 325	

B.1	
 The	
 Module	
 Manager	
 ...	
 325	

B.2	
 Developing	
 Modules	
 ...	
 327	

Appendix	
 C:	
 Using	
 R	
 in	
 Kepler	
 ..	
 328	

C.1 Installing R	
 ...	
 328	

C.2 A Brief Overview of R	
 ..	
 328	

C.2.1 Data Objects	
 ..	
 330	

C.2.2 Functions	
 ..	
 331	

C.2.3 Further Resources	
 ..	
 331	

C.3	
 The	
 RExpression	
 Actor	
 ..	
 332	

C.3.1 Inputs	
 ...	
 333	

C.3.2 Outputs	
 ..	
 335	

C.4	
 Handling	
 Data	
 ...	
 339	

C.4.1 Inputting Data	
 ...	
 339	

C.4.2 Outputting Data	
 ..	
 355	

C.5	
 Example	
 R	
 Scripts	
 and	
 Functions	
 ...	
 358	

C.5.1 Simple Linear Regression	
 ...	
 358	

C.5.2 Basic Plotting	
 ..	
 359	

C.5.3 Summary Statistics	
 ..	
 361	

C.5.4 3D Plotting	
 ...	
 362	

C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)	
 ..	
 363	

C.5.6 Random Sampling	
 ...	
 366	

C.5.7 Custom RExpression Actors	
 ..	
 367	

Appendix:	
 Glossary	
 ..	
 379	

Chapter 1

1. Introduction to Kepler

Scientists in a variety of disciplines (e.g., biology, ecology, astronomy) need access to
scientific data and flexible means for executing complex analyses on those data. Such
analyses can be captured as scientific workflows in which the flow of data from one
analytical step to another is captured in a formal workflow language. The Kepler project's
overall goal is to produce an open-source scientific workflow system that allows
scientists to design scientific workflows and execute them efficiently either locally or
through emerging Grid-based approaches to distributed computation.

1.1 What is Kepler?

Kepler is a software application for the analysis and modeling of scientific data. Using
Kepler's graphical interface and components, scientists with little background in
computer science can create executable scientific workflows, which are flexible tools for
accessing scientific data (streaming sensor data, medical and satellite images, simulation
output, observational data, etc.) and executing complex analysis on the retrieved data
(Figure 1.1).

 7

Figure 1.1 A scientific workflow (GARP_SingleSpecies_BestRuleSet-IV.xml) displayed in the Kepler
interface. This workflow processes species occurrence data to create an ecological niche model.

Kepler includes distributed computing technologies that allow scientists to share their
data and workflows with other scientists and to use data and analytical workflows from
others around the world. Kepler also provides access to a continually expanding,
geographically distributed set of data repositories, computing resources, and workflow
libraries (e.g., ecological data from field stations, specimen data from museum
collections, data from the geosciences, etc.) (Figure 1.2).

 8

Figure 1.2: A workflow (eml-simple-linearRegression-R.xml) that performs and plots a simple linear
regression on a meteorological data set stored remotely on the EarthGrid and accessed via a workflow
actor.

The Kepler system aims at supporting very different kinds of workflows, ranging from
low-level “plumbing” workflows of interest to Grid engineers, to analytical knowledge
discovery workflows for scientists (Figure 1.3), and conceptual-level design workflows
that might become executable only as a result of subsequent refinement steps.1

1 Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao.
2005. Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

 9

Figure 1.3: The Promoter Identification Workflow, a typical scientific knowledge discovery workflow that
links genomic biology techniques such as microarrays with bioinformatics tools such as BLAST to identify
and characterize eukaryotic promoters.
	

Kepler builds upon the mature Ptolemy II framework, developed at the University of
California, Berkeley. Other scientific workflow environments include academic systems
such as SCIRun, Triana, Taverna, and commercial systems (Scitegic/Pipeline-Pilot,
Inforsense/Accelrys).2 For a detailed discussion of these and other workflow systems,
please see http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf.

1.1.1 Features

Using Kepler, scientists can capture workflows in a format that can easily be exchanged,
archived, versioned, and executed. Both Kepler’s intuitive GUI (inherited from Ptolemy)

2 Altintas, I, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, S. Mock, Kepler: An Extensible System for
Design and Execution of Scientific Workflows, system demonstration, 16th Intl. Conf. on Scientific and
Statistical Database Management (SSDBM'04), 21-23 June 2004, Santorini Island, Greece.

 10

for design and execution, and its actor-oriented modeling paradigm make it a very
versatile tool for scientific workflow design, prototyping, execution, and reuse for both
workflow engineers and end users. Kepler workflows can be exchanged in XML using
Ptolemy’s own Modeling Markup Language (MoML). Kepler currently provides the
following features: 3
	

Access to Scientific Data: The Kepler component library contains an Ecological
Metadata Language (EML) ingestion actor (EML2Dataset) used to access, download, and
preview EML described data sources. The EML2Dataset actor allows Kepler to import a
multitude of heterogeneous data, making it a very flexible tool for scientists who often
deal with many data and file formats. A similar actor exists for Darwin Core-described
data sets (DarwinCoreDataSource). In addition, Kepler's ReadTable actor allows users to
access and incorporate data stored in Excel files.
	

Graphical User Interface: Users can build workflows via Kepler's intuitive graphical
interface. Components are dragged and dropped onto a Workflow canvas, where they can
be connected, customized, and then executed.

Distributed Execution (Web and Grid-Services): Kepler’s Web and Grid service actors
allow scientists to utilize computational resources on the net in a distributed scientific
workflow. Kepler’s generic WebService actor provides the user with an interface to
seamlessly plug in and execute any WSDL-defined Web service. In addition to generic
Web services, Kepler also includes specialized actors for executing jobs on the Grid, e.g.,
actors for certificate-based authentication (SProxy or GlobusProxy), Grid job submission
(GlobusJob), and Grid-based data access (GridFTP). Third-party data transfer on the
Grid can be established using GridFTP and SRB (Storage Resource Broker) actors.
	

Prototyping Workflows: Kepler allows scientists to prototype workflows before
implementing the actual code needed for execution. Kepler’s Composite actor can be
used as a “blank slate” that prompts the scientist for critical information about an actor,
e.g., the actor’s name and port information.

Searchable Libraries: Kepler has a searchable library of actors and data sources (found
under the Components and Data tabs of the application) with numerous reusable Kepler
components and an ever-growing collection of data sets.

Database Access and Querying: Kepler includes database actors, such as the
DBConnect actor, which emits a database connection token (after user login) to be used
by any downstream DBQuery actor that needs it.

Other Execution Environments: Supporting foreign language interfaces via the Java
Native Interface (JNI) gives the user flexibility to reuse existing analysis components and
to target appropriate computational tools. For example, Kepler (through Ptolemy) already
includes a Matlab actor. Actors that execute R code (RExpression, Correlation, RMean,
RMedian, and others) are also included in the standard actor library. Any application that

3 Ibid.

 11

can be executed on the command line can also be executed by the Kepler
CommandLineExec actor.

Data Transformation: Kepler includes a suite of data transformation actors (XSLT,
XQuery, Perl, etc.) for linking semantically compatible but syntactically incompatible
Web services together.

Flexible Execution: The BrowserUI actor is used for injecting user control and input, as
well as output of legacy applications anywhere in a workflow via the user’s Web
browser. Kepler workflows can also be run in batch mode using Ptolemy’s background
execution feature.

Configurable Libraries: Users can configure their own actor libraries via a semantic
type interface, or download (and upload) additional actors from the Kepler repository.
Actors can be created and added to the local library by semantically annotating them,
using a Seman

1.1.2 Architecture

Kepler builds upon the mature Ptolemy II framework, developed at the University of
California, Berkeley. Ptolemy II is a software framework developed as part of the
Ptolemy project, which studies modeling, simulation, and design of concurrent, real-time,
embedded systems. Kepler 2.0 is based on Ptolemy II 8.0.0

Kepler inherits from Ptolemy the actor-oriented modeling paradigm that separates
workflow components ("actors") from the overall workflow orchestration (conducted by
"directors"), making components more easily reusable. Through the actor-oriented and
hierarchical modeling features built into Ptolemy, Kepler scientific workflows can
operate at very different levels of granularity, from low-level "plumbing workflows" (that
explicitly move data around or start and monitor remote jobs, for example) to high-level
"conceptual workflows" that interlink complex, domain-specific data analysis steps.
Kepler also inherits modeling and design capabilities from Ptolemy, including the Vergil
graphical user interface and workflow scheduling and execution capabilities.

Kepler extensions to Ptolemy include an ever increasing number of components (called
"actors") aimed particularly at scientific applications: remote data and metadata access,
data transformations, data analysis, interfacing with legacy applications, Web service
invocation and deployment, and provenance tracking, among others. Target application
areas include bioinformatics, computational chemistry, ecoinformatics, and
geoinformatics.

 12

Ptolemy/Vergil (A Very Brief Overview)

Ptolemy II, developed at the University of California, Berkeley, is an open-source
software framework developed as part of the Ptolemy project. Ptolemy II is a Java-based
component assembly framework with a graphical user interface called Vergil.

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time,
embedded systems. The focus is on embedded systems, particularly those that mix
technologies including, for example, analog and digital electronics, hardware and
software, and electronics and mechanical devices. The focus is also on systems that are
complex in the sense that they mix widely different operations, such as networking,
signal processing, feedback control, mode changes, sequential decision making, and user
interfaces.4

Ptolemy II takes a component view of design, in that models are constructed as a set of
interacting components. A model of computation governs the semantics of the
interaction, and thus imposes a discipline on the interaction of components.5

Ptolemy II offers a unified infrastructure for implementations of a number of models of
computation. The overall architecture consists of a set of packages that provide generic
support for all models of computation and a set of packages that provide more specialized
support for particular models of computation. Examples of the former include packages
that contain math libraries, graph algorithms, an interpreted expression language, signal
plotters, and interfaces to media capabilities such as audio. Examples of the latter include
packages that support clustered graph representations of models, packages that support
executable models, and domains, which are packages that implement a particular model
of computation.6

The Vergil GUI is a visual editor written in Java. Using Vergil, users can graphically
construct and run scientific workflows. For more information about Vergil, see the
Ptolemy documentation.

Modeling Markup Language (MoML)

Modeling Markup Language (MoML), the primary persistent file format for Ptolemy II
models, is an Extensible Markup Language (XML) schema. It is intended
for specifying interconnections of parameterized components, and is the primary
mechanism for constructing models whose definition and execution is distributed over
the network.7

4 Hylands, Christopher, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer, Yuhong Xiong, Yang
Zhao, Haiyang Zheng, Ptolemy Overview,
http://www.ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf
5 Ibid.
6 Ibid.
7 Ptolemy User Manual, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

 13

The key features of MoML include:8

• Web integration. MoML is an XML schema intended for use on the Internet. File
references are via URIs (in practice, URLs), both relative and absolute, so MoML is
equally comfortable working in applets and applications.

• Implementation independence. MoML is designed to work with a variety of modeling
tools.

• Extensibility. Components can be parameterized in two ways. First, they can have
named properties with string values. Second, they can be associated with an external
configuration file that can be in any format understood by the component. Typically, the
configuration will be in some other XML schema, such as PlotML or SVG (scalable
vector graphics).

• Classes and inheritance. Components can be defined in MoML as classes which can
then be instantiated in a model. Components can extend other components through an
object-oriented inheritance mechanism.

• Semantics independence. MoML defines no semantics for an interconnection of
components. It represents only the hierarchical containment relationships between entities
with properties, their ports, and the connections between their ports. In Ptolemy II, the
meaning of a connection (the semantics of the model) is defined by the director for the
model, which is a property of the top level entity. The director defines the semantics of
the interconnection. MoML knows nothing about directors except that they are instances
of classes that can be loaded by the class loader and assigned as properties.

For detailed information about MOML and its syntax, please see the Ptolemy user
manual, Chapter 7.

1.2 History of the Kepler Project

Kepler was founded in 2002 by researchers at the National Center for Ecological
Analysis and Synthesis (NCEAS) at University of California Santa Barbara, the San
Diego Supercomputer Center (SDSC) at University of California San Diego, and the
University of California Davis as part of the Science Environment for Ecological
Knowledge (SEEK) and Scientific Data Management (SDM) projects. The Kepler
software extends the Ptolemy II system developed by researchers at the University of
California Berkeley. Although not originally intended for scientific workflows, Ptolemy
II provides a mature platform for building and executing workflows, and supports
multiple models of computation.

8 Ibid.

 14

An alpha version of the Kepler software was released in April of 2005. Three beta
versions followed: beta1, June 2006; beta2, July 2006; and beta3, January 2007. The first
official release, Version 1, was released on May 2, 2008. Version 2.0.0 was released in
June 2010 with major improvements to the GUI, modular design and KAR handling.
Version 2.1.0 was released Sep 30, 2010, and contained new features and bug-fixes.
Version 2.2.0 was released June 14, 2011, improving memory usage, and fixing many
bugs. Version 2.3.0 is slated for release in August 2011.

Kepler is an open collaboration with many contributors from diverse domains of science
and engineering, including ecology, evolutionary biology, molecular biology, geology,
chemistry, computer science, electrical engineering, oceanography, and others. Members
from the following projects are currently contributing to the Kepler project:

• SEEK: Science Environment for Ecological Knowledge
• SDM Center/SPA: SDM Center/Scientific Process Automation
• Ptolemy II: Heterogeneous Modeling and Design
• GEON: Cyberinfrastructure for the Geosciences
• ROADNet: Real-time Observatories, Applications, and Data Management

Network
• EOL: Encyclopedia of Life
• Resurgence
• CIPRes: CyberInfrastructure for Phylogenetic Research
• REAP: Realtime Environment for Analytical Processing
• Kepler/CORE: Development of a Comprehensive, Open, Reliable, and Extensible

Scientific Workflow Infrastructure

Contributing members jointly determine the goals for Kepler as well as contribute to the
design and implementation of the software system. We welcome contributions and
encourage other people and projects to join as contributing members. For more
information about contributing to Kepler, please see Section 1.5.

Some Kepler members receive support from various grants, including but not limited to:
the National Science Foundation under awards 0225676 for SEEK, 0225673
(AWSFL008-DS3) for GEON, 0619060 for REAP, and 0722079 for Kepler/CORE; by
the Department of Energy under Contract No. DE-FC02-01ER25486 for SciDAC/SDM;
and by DARPA under Contract No. F33615-00-C-1703 for Ptolemy.

Work was conducted with logistical support from the National Center for Ecological
Analysis and Synthesis, a Center funded by NSF (Grant #DEB-0553768), the University
of California, Santa Barbara, and the State of California.

Ptolemy receives support in part from the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF award #CCR-0225610), the State of California Micro Program, and the
following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon,
Microsoft, and Toyota.

 15

1.3 Kepler Code Contributors

The following people have made contributions to the Kepler code. Contributors are listed
in chronological order of commits to the SVN repository:

Matthew Jones
Chad Berkley
Ilkay Altintas
Zhengang Cheng
Efrat Frank
Bertram Ludaescher
Jing Tao
Steve Mock
Xiaowen Xin
Dan Higgins
Yang Zhao
Christopher Brooks
Tobin Fricke
Rod Spears
Werner Krebs
Shawn Bowers
Laura Downey
Wibke Sudholt
Timothy McPhillips
Bing Zhu
Nandita Mangal
Jagan Kommineni
Jenny Wang
John Harris
Kevin Ruland
Matthew Brooke
Oscar Barney
Vitaliy Zavesov
Zhije Guan
Norbert Podhorszki
Samantha Katz
Tristan King
Josh Madin
Kirsten Menger-Anderson
Edward Lee
Daniel Crawl
Derik Barseghian
Lucas Gilbert
Nathan Potter

 16

Ben Leinfelder
Carlos Rueda
Jim Regetz
Sean Riddle
Aaron Schultz
David Welker
Mark Schildhauer
Debi Staggs
Jianwu Wang
Sven Koehler
Faraaz Sareshwala
Daniel Zinn
Madhusudan
Chandrika Sivaramakrishnan
Lei Dou
Merve Ildeniz

Contributions to Kepler are welcome. Please see Section 1.5 for details on how to
contribute. Thanks.

1.4 Future Goals

The Kepler project is an ongoing collaboration, and we will continue to refine, release,
and support the Kepler software. Our aim is to improve and enhance the Kepler scientific
workflow system to yield a comprehensive, open, reliable, and extensible scientific
workflow infrastructure suitable for serving a wide variety of scientific communities.

The goal of future Kepler development is to (i) enable multiple groups in a number of
distinct disciplines to easily create, support, and make available domain-specific Kepler
extensions; (ii) better support those crucial features that are needed by all disciplines; and
(iii) provide for the wide range of deployment scenarios required by different disciplines
and distinct research settings.

More specifically, future goals include making Kepler:

Independently Extensible. Rather than enforcing conventions that might slow progress
in the various disciplines contributing to Kepler, we plan to further enable independent
extensibility of Kepler while making it easy to package domain-specific contributions in
a way that ensures both the stability of the overall system and clearly indicates what
components are expected to work well together.

With the 2.0 release of Kepler, we have created a module system that allows us to
separate Kepler base system functionality from domain-specific extensions. We have
divided Kepler into a set of mandatory modules (the kepler suite); a set of extension
modules that communicate with the kernel via well-defined and generic extension

 17

interfaces; and a number of actor modules for distinct disciplines. We developed a
configuration management system to support downloading, installing, and updating the
Kepler distribution and a Module Manager for discovering and installing standard and
3rd-party modules and specifying modules to be employed during execution. With this
architecture, third-parties can now develop alternative modules with additional
capabilities suitable for particular science domains.

Consistently Reliable: Reliability for developers and users alike ensures that Kepler can
be applied confidently as dependable cyberinfrastructure. We are working to ensure run-
time reliability (both for when Kepler is used as a desktop research application and as
middleware that other domain-specific applications can build upon). Our approach of
dividing Kepler into the Kepler kernel and extension set will enable other development
teams to freely develop new modules and actor packages as needed without endangering
the stability of the kernel, and even to replace standard extensions as needed.	

	

Open Architecture, Open Project. We will disseminate plans, designs, and system
documentation as we develop them and provide mechanisms for suggestions and
feedback throughout the course of the project. We will also actively engage the user
community and gather requirements, advice, and feedback on priorities, both from those
already committed to using Kepler (i.e., the Kepler “stakeholders”), and from scientists
who could benefit.

Comprehensive (End-to-End) System. We plan to widen the scope of Kepler by
providing new, fundamental enhancements that will benefit all user communities:
enhancing Kepler with new and improved generic capabilities for data, service, and
workflow management. More specifically, we are working on new and more
comprehensive systems for:

• Data Management. We plan to support data management tasks in a generic way
within the Kepler framework so that all data management tasks (e.g., controlling
and managing the flow of data into and out of workflows, comparing and
visualizing data and metadata, converting data formats, and managing data
references) are handled transparently by the workflow execution framework
rather than by special-purpose actors.

• External Service and Grid Management. Currently, Kepler workflows that make

extensive use of external services generally use actor-oriented approaches for
managing and accessing those services. We are working to better enable the
system to carry out computations on the optimal set of computing resources at run
time, based on resource availability and preferences; and to make it easier for
users to share and redeploy workflows in different environments. In addition, we
are working on integrated support for managing authentication and authorization
information.

• Workflow Management. Our goal is for Kepler to provide comprehensive support

for end-to-end workflow management—from initial prototyping to workflow

 18

execution. We are working to make the application aware of the scientific context
in which workflows are being run, the flow of data through and across successive
workflows (as is common in scientific research), and the origin of workflows. In
addition, we will continue to improve support for common workflow management
tasks such as designing, storing, and validating individual workflows; organizing
workflows, data, and results within the context of a particular project or research
study; and capturing and querying the provenance of workflows and data. The
Kepler workflow-run-manager and provenance modules will provide a whole new
suite of functionality for managing workflows.

Please see the Kepler/CORE Web page for detailed information about specific features
that are under development, and/or the Bug base for more features that we are adding and
improving in the coming months.

1.5 Participating in Kepler Development

Kepler is an open source cross-project collaboration, and we welcome contributions of all
types. Participants can get involved by joining a mailing list (either for developers or
users), participating in IRC chat, or getting a Kepler SVN account to view or contribute
to the Kepler source.

Individuals can join the kepler-dev mailing list to interact with the rest of the
development team or the kepler-users mailing list to request and/or exchange user
support. The current list of subscribers is available only to list members and can be
viewed (after subscription) at the mailing list info page.

Many of the Kepler developers use IRC to chat on a daily basis. We use the '#kepler'
channel on irc.ecoinformatics.org:6667 for our discussions. More details on how to use
IRC can be found on the SEEK IRC page.

The code for Kepler is managed in an SVN repository. Read-only access is open for all.
If you need to write to the SVN repository, please visit https://kepler-
project.org/developers for instructions. You can use any SVN client to access the Kepler
repository.

To check out and build the Kepler source code, you will need to be running Java 1.6 or
later, Ant 1.7.1, and have installed an SVN client, v1.5. For development with Eclipse
these have been tested with Eclipse Ganymede and SVN 1.5.5, with Subclipse 1.4.7.

Downloading the Build

To download the latest version of the build from the repository, you will want to create a
new directory and then execute the svn checkout (co) command as in the following
example.

 19

mkdir <modules.dir>
cd <modules.dir>
svn co https://code.kepler-project.org/kepler/trunk/modules/build-area
cd build-area

<modules.dir> is the name of the directory where the build will be stored, as well as the
modules you will be working on. A good name for this folder might be something like
kepler.modules.

Retrieving Kepler and Ptolemy

Now that the build system is downloaded you will use the build system to retrieve Kepler
and Ptolemy.

First, you need to decide whether you would like to work with the latest, likely unstable
development version of Kepler (referred to as the “trunk” of Kepler), or whether you
would like to work with an official stable release, such as 2.3.0.

To work from the trunk, issue the following command:

ant change-to –Dsuite=kepler

To retrieve Kepler version 2.3.0:

ant change-to –Dsuite=kepler-2.3.0

Some explanation of what the “ant change-to command is doing:

What is actually first retrieved is something known as a suite. This suite contains
information on where to retrieve the desired versions of Kepler and Ptolemy and that
information is used by the system to then retrieve the appropriate versions of Kepler and
Ptolemy. By default, when you type ant get -Dsuite=kepler, you are making a request
for a particular suite named kepler, which has information on how to download Kepler
and Ptolemy.

A final note, when you do get -Dsuite=<suite.name> you retrieve not only the suite, but
all the modules that are associated with the suite as well. If you want to retrieve a single
module instead of a suite of modules, you just type ant get -Dmodule=<module.name>
instead.

 20

Note:

If you are behind a firewall and do not have access to port 22 and you are working off the
trunk, then the download of ptolemy will fail when you execute the "ant change-to -
Dsuite=kepler" command. In this case, you must download ptolemy manually using the
following command:

svn co https://source.eecs.berkeley.edu/svn/chess/ptII/trunk <kepler.modules>/ptolemy

Running Kepler

Now that you have downloaded the Kepler Build System and have used it to retrieve the
Kepler version that interests you, you are ready to run. Just type:

ant run

Note that it would be possible for a new user to get started without having to enter a
command between get and run by chaining these commands in ant. So, for example, if
you wanted to download and run Kpler from the trunk all in one command, you could
type:

ant change-to –Dmodule=kepler run

Using Eclipse

See Kepler and Eclipse for more detailed instructions. However, in most cases, these
instructions should be adequate.

1. Type ant eclipse.
2. Open Eclipse in a new or existing workspace.
3. Choose File->Import... Under the General folder, choose Existing Projects into

Workspace. Click Next.
4. Click Browse right next to the Select root directory: field. Go to and select the

<module.dir> directory where you saved the build and downloaded your modules.
Click Choose.

5. The projects that were generated will be automatically detected by Eclipse. Click
on Finish.

6. KarDoclet.java uses doclet code from tools.jar. If you are using Java 1.6 on a
non-Mac OS X machine, you will need to add tools.jar to the list of external jars:
Windows -> Preferences -> Java -> Installed JREs
Select the default JRE -> Edit -> Add External Jars -> [Path to JDK]/lib/tools.jar

 21

If you have the Subversive Eclipse plugin installed you can select the newly generated
projects, right click on them and choose "Share Projects" and follow the instructions in
the wizard to set up the connection to the Kepler repository (https://code.kepler-
project.org/code/kepler/). Repeat the process for the ptolemy project using the Ptolemy
repository (svn://source.eecs.berkeley.edu/chess/ptII/).

If you have the Subversive plugin installed, see Updating the local copy of the Kepler
sources

To run kepler, create a new Java Application Run Configuration: with project: loader,
Main class: org.kepler.Kepler

These instructions and further reference detail, including how to run a workflow from the
command line, and setting system properties, and other details can be found at: Kepler
Build System Instructions and Overview.

Contributing to Kepler

In order to contribute directly to Kepler, one must use a named account to enable you to
make changes to the web site or the SVN repositories. In general, people with write
access should only make changes to modules with which they are directly involved or
that they have discussed with the relevant Infrastructure and Development Teams. Please
be sure you have contacted the appropriate Team(s) before you request an account.

To request a named account, send an email to pmc@ecoinformatics.org with your name,
association and a brief description of your project needs.

1.6 Reporting Bugs

The Kepler project uses Bugzilla for reporting bugs as well as for sharing future
development plans. Please register yourself by creating a new bugzilla account to
participate in future plans, bug reports, and updates. Note that you need to have an
ecoinformatics.org account to be able to register.

Bugzilla is one example of a class of programs called "Defect Tracking Systems", or,
more commonly, "Bug-Tracking Systems". Defect Tracking Systems allow individual or
groups of developers to keep track of outstanding bugs in their product effectively.

1.7 Further Reading

As part of the outreach effort for Kepler, we have produced a variety of documents and
publications. Publications of interest include:

 22

• Scientific Workflow Management and the Kepler System, B. Ludäscher, I.
Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y.
Zhao, Concurrency and Computation: Practice & Experience, 18(10), pp. 1039-
1065, 2006.

Additional publications are listed on the Kepler web site at http://kepler-project.org.

Independent publications of the collaborating projects can be reached at their main
websites: SEEK, SDMCenter-SPA, KBIS-SPA, Ptolemy, and GEON.

 Chapter 2

 23

2. Installing and Running Kepler
2.1 System Requirements

Recommended system requirements for Kepler:

• 300 MB of disk space
• 512 MB of RAM minimum, 1 GB or more recommended
• 2 GHz CPU minimum
• Java 1.6
• Network connection (optional). Although a connection is not required to run

Kepler, many workflows require a connection to access networked resources.
• R software (optional). R is a language and environment for statistical computing

and graphics, and it is required for some common Kepler functionality.

Java 1.6 is required and can be obtained online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html or from your
system administrator.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-
project.org/.

2.2 Installing Kepler

Kepler is an open-source, cross-platform software program that can run on Windows,
Macintosh, or Linux-based platforms. Instructions for each platform are contained in the
following sections.

2.2.1 Installing on Windows

Follow these steps to download and install Kepler for Windows.

Java 1.6 is required and can be obtained online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html or from your
system administrator.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-
project.org/.

 Chapter 2

 24

1. Click the following link: https://kepler-project.org/users/downloads and select the
Windows installer.

2. Save the install file to your computer.

3. Double-click the install file to open the install wizard (Figure 2.1). We
recommend that you quit all programs before continuing with the installation.
You can cancel the installation at any point via the Quit button in the lower right
corner of the installer. To proceed with the installation, click the Next button.

4. Click the Next button. An information screen containing notes about the

application appears. Click Next once you have read through the information to
select an installation path. By default, the software will be installed in C:\Program
Files\Kepler-x.y. The installer will create the target directory if it does not yet
exist. If the directory already exists, the installer will confirm the location before
possibly overwriting an existing version.

5. Choose the packs to install. Once you have selected an installation, click the Next

button.

6. The Kepler installer displays a status bar as the installation progresses. If Kepler
has previously been installed on the system, the installer will overwrite any
existing cache files.

Once the installation is complete, a confirmation screen
opens. An uninstaller program is also created in the
installation location. A Kepler shortcut icon will appear on
your desktop.

2.2.3 Installing on Macintosh

The Mac installer will install the Kepler application on your system. Java is included as
part of the Mac OSX operating system, so it need not be installed.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-
project.org/.

 Follow these steps to download and install Kepler for Macintosh systems:

1 Click the following link: https://kepler-project.org/users/downloads and select the
Mac install file. Save the install file to your computer.

2 Double-click the install icon that appears on your desktop when the extraction is
complete.

 Chapter 2

 25

3 Follow the steps presented in the install wizard to complete the Kepler installation
process.

A Kepler icon is created under /Applications/Kepler-x.y. The icon can be dragged and
dropped to the desktop or the dock if desired.

2.2.4 Installing on Linux

The Linux installer will install the Kepler application.

Java 1.6 is required and can be obtained online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html or from your
system administrator.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-
project.org/.

Follow these steps to download and install Kepler for Linux:

1. Click the following link: https://kepler-project.org/users/downloads and
 select the Linux install file.

2. Save the install file to your computer
3. Double-click the install file to open the install wizard. If double-clicking the

install file doesn’t work on your system, you may run the command java –jar
installer-file-name in a terminal to open the install wizard. We
recommend that you quit all programs before continuing with the installation.

4. The Kepler installer displays a status bar as the installation progresses. If Kepler
has previously been installed on the system, the installer will overwrite any
existing cache files.

2.3 Starting Kepler

To start Kepler on a PC, double-click the Kepler shortcut icon on the desktop. Kepler can
also be started from the Start menu. Navigate to Start menu > All Programs, and select
"Kepler" to start the application. On a Mac, the Kepler icon is created under
Applications/Kepler-x.y. The icon can be dragged and dropped to the desktop or the dock
if desired.

To start Kepler on a Linux machine, use the following steps:

 Chapter 2

 26

1. Open a shell window. On some Linux systems, a shell can be opened by right-
clicking anywhere on the desktop and selecting "Open Terminal". Speak to your
system administrator if you need information about your system.

2. Navigate to the directory in which Kepler is installed. To change the directory,
use the cd command (e.g., cd directory_name).

3. Type ./kepler.sh to run the application.

The main Kepler application window opens (Figure 2.3). From this window you can
access and run existing scientific workflows and/or create your own custom scientific
workflow. Each time you open an existing workflow or create a new workflow, a new
application window opens. Multiple windows allow you to work on several workflows
simultaneously and compare, copy, and paste components between workflows.

To start Kepler from the command line (optionally loading a workflow), use the
following command:

kepler [workflow.xml]

To run a workflow from the command line--with or without the Graphical User Interface
(GUI)--use the following command:

kepler -runwf [-gui|-nogui] [-cache|-nocache] workflow.xml

-gui run with GUI support (default).
-nogui run without GUI support.
-cache run with kepler cache (default).
-nocache run without kepler cache.

Running a workflow without the GUI is useful in environments with no
graphic support, such as from a web portal.

Additionally, you can specify the values of workflow parameters:

kepler -runwf workflow.xml -x 4 -y "foo"

The above command runs 'workflow.xml', setting the parameters x = 4 and
y = "foo".

2.4 The User Interface

Scientific workflows are edited and built in Kepler’s easily navigated, drag-and-drop
interface. The major sections of the Kepler application window (Figure 2.2) consist of
the following:

• Menu bar – provides access to all Kepler functions.
• Toolbar – provides access to the most commonly used Kepler functions.

 Chapter 2

 27

• Components, Data Access, and Outline area – consists of a Components tab. , a
Data tab, and an Outline tab. The Components tab, and the Data tab both contain
a search function and display the library of available components and/or search
results. The Outline tab displays an outline of components that are in your current
workflow.

• Workflow canvas – provides space for displaying and creating workflows.
• Navigation area – displays the full workflow. Click a section of the workflow

displayed in the Navigation area to select and display that section on the
Workflow canvas.

Each of these interface areas is described in more detail in the following sections.

Figure 2.1: Empty Kepler window with major sections annotated.

2.4.1 Menu Bar

Running horizontally across the top of the Kepler application, the Menu bar contains the
seven Kepler menus: File, Edit, View, Workflow, Tools, Window, and Help. Common
menu item functions, such as Copy, Paste and Delete, are assigned keyboard shortcuts,

 Chapter 2

 28

which can also be used to access the functionality. These shortcuts, when relevant, appear
to the right of each menu item.

The following sections describe each menu in greater detail.

2.4.1.1 File Menu

The File menu, which is the first menu in the Menu bar, contains commands for handling
files and for exiting the application: New Workflow, Open, Close, Save, Save As, Export
As, Print, and Exit.

New Workflow: open a new application window. Select Blank, FSM, or Modal Model.
For more information about FSM and Modal Models, please see the Ptolemy
documentation.

Open…: open a workflow saved in a KAR (Kepler Archive format) or xml (.xml or
.moml) onto the Workflow canvas. Text-based files—text (.txt) or html (.html), for
example—will be opened in a viewing window.

Save: save the workflow displayed on the Workflow canvas and any other related files
into a KAR (Kepler Archive format) file.

Save As: save the current workflow to a new KAR.

Export: save the current workflow as MOML (MOdeling Markup Language) XML, or to
a static image (GIF or PNG), or to an interactive HTML representation.

Print: print the graphical representation of the workflow. A page setup window is used to
set the paper size, source, margins, and orientation.

Close: close the current Workflow canvas.

Exit: exit the Kepler application. If a workflow is open, a dialog box will prompt a user
to save or discard changes. Users can also cancel and return to the main application
window.

2.4.1.2 Edit Menu

Edit menu items are primarily used to modify the Workflow canvas, allowing users to
cut, copy, and paste selected entities. In addition, Undo and Redo commands can be used
to modify the history of workflow changes.

 Chapter 2

 29

Undo: (Ctrl+Z) Undo the most recent change. The "Undo" command can be performed
multiple times to undo the history of workflow changes. The size of the history buffer
is limited only by available RAM.

Redo: (Ctrl+Y) Redo the most recent change. The "Redo" command can be performed
multiple times to redo the history of workflow changes.

Cut: (Ctrl+X) Cut the selected entities.

Copy: (Ctrl+C) Copy the selected entities to the clipboard.

Paste: (Ctrl+V) Paste the contents of the clipboard to the Workflow canvas.

Delete: (Ctrl+X or Delete key) Delete the selected entities.

2.4.1.3 View Menu

View menu items control how the workflow appears on the Workflow canvas. Zoom
items are also available via the Toolbar.

Zoom Reset (Ctrl+Equals): Reset the view of the Workflow canvas to the default
settings.

Zoom In (Ctrl+Shift+Equals): Magnify the Workflow canvas for a more close-up view.
Kepler provides fixed levels of zoom.

Zoom Out (Ctrl+Minus): Pull back for a more distant view of the Workflow canvas.
Kepler provides fixed levels of zoom.

Zoom Fit (Ctrl+Shift+Minus): Display the current workflow in its entirety on the
Workflow canvas.

Automate Layout (Ctrl+T): Make a workflow more readable by automatically
configuring actor locations.

XML View: View the current workflow in XML mode. The workflow MoML XML will
be displayed in a viewing window.

2.4.1.4 Workflow

Workflow menu items are used to run and modify open workflows.

 Chapter 2

 30

Runtime Window: The Runtime Window command opens a Run window, which allows
users to adjust workflow parameters and run, pause, resume, or stop workflow execution.
Workflow results are displayed in the window as well.

Add Relation: Add a Relation to the Workflow canvas. Relations, which might also be
called “connectors”, allow actors to "branch" output to multiple places. For more
information about Relations, see Section 3.2.7.

Add Port: Add a port to the Workflow canvas. Select Input, Output, Input/Output, Input
Multiport, Output Multiport, or Input/Output Multiport. For more information about
ports, see Section 3.2.4.

2.4.1.5 Tools

The Tools menu contains a number of useful tools that are used to build and troubleshoot
workflows.

Animate at Runtime: Select this menu item to highlight the actor that is currently
processing as the workflow is run. The active actors will be denoted with a red highlight.
Note: This command is only relevant when an SDF Director is used.

Listen to Director: Open a viewing window that displays the Director's activity, noting
when each actor is preinitialized, initialized, prefired, iterated, and wrapped up.

Create Composite Actor: Create a new composite actor on the Workflow canvas. For
more information about composite actors, please see Section 3.2.3.

Expression Evaluator: Open an Expression Evaluation window used to evaluate any
Kepler expression. For more information about the expression language, see the Ptolemy
documentation.

Instantiate Component: Open the designated component on the Workflow canvas.
Components can be identified via class name (e.g., ptolemy.actor.lib.Ramp) or via a
URL. Use this menu command to easily access components that are not included in the
Kepler component tree (e.g., the DDF Director or Ptolemy actors that are not included in
the default Kepler library).

Instantiate Attribute: Open the designated attribute on the Workflow canvas. Attributes
are identified by class name (e.g., ptolemy.vergil.kernel.attributes.EllipseAttribute).

Check System Settings: Open a window containing system settings.

Ecogrid Authentication: Provide log in credentials or log out after using
features in Kepler that require authentication (e.g., an authenticated data search for the
KNB (Earthgrid) or uploading actors to the Kepler actor library).

 Chapter 2

 31

Preferences: Set various Kepler preferences, including local and remote directories used
to find components for the component library and services used for data sources.

Text Editor: Open a simple text editor used to create, edit, and save text files.

Module Manager: View modules in the current suite, load and save module
configurations, view downloaded modules, and view available modules, and switch to a
different module configuration. For more information on the module manager, see
Chapter 12.

JVM Memory Settings: Adjust how much memory is allocated to Kepler. If your
computer has available RAM, you may want to allocate more memory to Kepler by
increasing the Max Memory setting. This may improve performance.

2.4.1.6 Window

Access the Runtime Window via the menu option.

2.4.1.7 Help

The Help menu contains information about the current version of Kepler as well as links
to useful help documentation.

About: Open a window containing the current Kepler version number.

Kepler Documentation: An index of useful Kepler documents.

Modules Documentation: An index of documentation for the installed modules.

2.4.2 Toolbar

The Kepler Toolbar contains the most commonly used Kepler functions (Figure 2.2). The
Toolbar can be dragged and dropped to a convenient screen location. Closing the Toolbar
returns it to the default position beneath the Menu bar and above the Workflow canvas.

The Toolbar consists of three main sections: View, Run, and Ports, discussed in more
detail below.

 Chapter 2

 32

Figure 2.2: The Kepler Toolbar.

2.4.2.1 View Tools

View tools (Table 2.1) are used to zoom in, reset, fit, and zoom out of the workflow on
the Workflow canvas:

Zoom In: Magnify the Workflow canvas for a more close-up view. Kepler
provides fixed levels of zoom.

Zoom Reset: Reset the view of the Workflow canvas to the default settings.

Zoom Fit: Display the current workflow in its entirety on the Workflow
canvas.

Zoom Out: Pull back for a more distant view of the Workflow canvas.
Kepler provides fixed levels of zoom.

Table 2.1 View tools

2.4.2.2 Run Tools

Run tools (Table 2.2) are used to run, pause, and stop the workflow.

Run: Run the workflow. The button will have an orange highlight when the
workflow is running.

Pause: Pause the workflow. The button will have an orange highlight when
the workflow is paused. To resume the workflow, click the Run button.

 Chapter 2

 33

Stop: Stops workflow execution. The button will have an orange highlight
when the workflow is stopped To restart the workflow, click the Run button.

Table 2.2: Run tools

2.4.2.3 Port Tools

Port tools (Table 2.3) are used to add Relations or Ports to workflows:

Input Port: Add a single input port. A single input port can be connected to
only a single channel of data. Single ports are designated with a dark triangle
on the Workflow canvas.

Output Port: Add a single output port. A single output port can emit only a
single channel of data. Single ports are designated with a dark triangle on the
Workflow canvas

Input/Output Port: Add a bi-directional port, which can receive or send a
single channel of data.

Multiple Input Port: Add a multiple input port. A multiple input port can be
connected to multiple channels of data. Multiple ports are designated with a
hollow triangle on the Workflow canvas.

Multiple Output Port: Add a multiple output port. A multiple output port
can emit multiple channels of data. Multiple ports are designated with a
hollow triangle on the Workflow canvas.

Multiple Input/Output Port: Add a multiple input/output port. A multiple
input/output port can receive or send multiple channels of data. Multiple
ports are designated with a hollow triangle on the Workflow canvas.

Relation: Add a Relation. Relations “branch” a data flow so that data can be
sent to multiple places in the workflow.

Table 2.3: Port tools

2.4.3 Components, Data Access, and Outline Areas

The Components and Data Access area contains a library of workflow components (e.g.,
directors and actors, under the Components tab) and a search mechanism for locating

 Chapter 2

 34

those components, as well as data sets (under the Data tab). The Outline area displays an
outline tree of the components that are being used in the current workflow. When the
application is first opened, the Components tab is displayed.

2.4.3.1 Components Tab

Kepler comes standard with over 350 components that are stored on the local machine
and can be used to create an innumerable number of workflows with a variety of analytic
functions. The default set of Kepler processing components is displayed under the
Components tab in the Components and Data Access area. Users can easily add new
components or modify existing components as well. See Chapter 5 for more information
about adding components to the local library.

Components in Kepler are arranged in three high-level categorizations: Components,
Projects, and Statistics (Table 2.4). Any given component can be classified in multiple
categories, appearing in multiple places in the component tree.

Category Description
Components Contains a standard library of all components,

arranged by function.
Projects Contains a library of project-specific components

(e.g., SEEK or CIPRes)
Statistics Contains a library of components for use with

statistical analysis.
Table 2.4: Component Categories in Kepler

Browse for components by clicking through the component trees, or use the search
function at the top of the Components tab to find a specific component.

To search for components:

1. In the Components and Data Access area to the left of the Workflow canvas,
select the Components tab.

2. Type in the desired search string (e.g., “File Reader”).
3. Click the Search button. The search results are displayed in the Components and

Data Access area, replacing the default list of components. You may notice
multiple instances of the same component. Because components are arranged by
category, the same component may appear in multiple places in the search results.

4. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas.

5. To clear the search results and re-display the complete component library, click
the Cancel button.

 Chapter 2

 35

NOTE: If you know the name of a component and its location in the Component library,
you can navigate to it directly, and then drag it to the Workflow canvas.

2.4.3.2 Data Tab

Via its search capabilities, Kepler provides access to data stored remotely on the
EarthGrid, which contains a wide collection of ecological and geographical resources.
Select the Data Tab (Figure 2.3) in the Components and Data Access area to find and
retrieve remote data sets.

Figure 2.3: The Data Tab. A search has been performed to locate "Datos Meteorologicos", a data set stored
on the EarthGrid.

To search for data on the EarthGrid through Kepler:

1. In the Components and Data Access area, select the Data tab.
2. Click the Sources button and select the services to search (deselecting

unnecessary sources decreases search time).
3. Type in the desired search string (e.g., Datos Meteorologicos). Make sure that the

search string is spelled correctly. (You can also enter just part of the entire string

 Chapter 2

 36

– e.g., ‘Datos’). If the search requires authentication (e.g., searches on the KNB
Authenticated Query source), use the Tools > Ecogrid Authentication menu
option to specify credentials.

4. Click the Search button. The search may take several moments. When the search
is complete, a list of search results (i.e., Data actors) will be displayed in the
Components and Data Access area.

5. To use one or more data actors in a workflow, simply drag the desired actors to
the Workflow canvas.

When a data set is dragged from the Data tab to the Workflow canvas, Kepler downloads
the data from the remote source and stores it in the Kepler cache where it can be accessed
by the workflow or easily previewed. The cache (i.e.., the '.kepler' directory) is in the
user's HOME directory, which is the default working directory whenever one first opens
a Command Window (on Windows platforms) or a terminal window (on Mac or Linux).
On Mac and Linux systems, the command 'cd ~' will change directories to the home
directory. Once data is stored in the cache, Kepler will automatically access the local
copy rather than re-download the data. If you would prefer to re-download the data, and
you are using an EML2Dataset actor, select the Check for latest version
parameter to override the default behavior. See Chapter 6 for more information.
.
Information about downloaded data can be revealed in three ways: (1) on the Workflow
canvas, roll over the Data actor’s output ports to reveal a tool tip containing the name and
type of data or (2) right-click the Data actor and select Get Metadata to open a window
that contains more information about the data set (Figure 2.4) or (3) preview the data set
by right-clicking the data actor and selecting Preview from the drop-down menu (Figure
2.6).

 Chapter 2

 37

Figure 2.4: Metadata for the Datos Meteorologicos data set.

 Chapter 2

 38

Figure 2.5: Previewing a data set.

Downloaded data can be output in a variety of formats. See Chapter 6 for more
information.

The EarthGrid currently interfaces with KNB Metacat database. The Knowledge
Network for Biocomplexity (KNB) is a national network intended to facilitate ecological
and environmental research on biocomplexity. It enables the efficient discovery, access,
interpretation, integration, and analysis of many kinds of ecological data from a highly
distributed set of field stations, laboratories, research sites, and individual researchers. 9

To configure a data search to search a subset of the EarthGrid, click the Sources button
from the Data tab. Select the sources to be searched and the type of documents to be
retrieved (Figure 2.6) Each service requires that at least one corresponding document
type is selected (e.g., the KNB Metacat EcoGrid QueryInterface service requires that
either Ecological Metadata Language 2.0.0, 2.0.1, or 2.1.0 is selected). If you try to
'deselect' all of the relevant document types, the service is automatically deselected as
well. The document types (e.g., Ecological Metadata Language 2.0.0) refer to the
metadata specification used by the data sets. For more information about metadata, please
see Chapter 6.

9 Knowledge Network for Biocomplexity (KNB) website, http://knb.ecoinformatics.org

 Chapter 2

 39

Figure 2.6: Configuring the data sources and types.

2.4.4 Workflow Canvas

Scientific workflows are opened, created, and modified on the Workflow canvas.
Components are easily dragged and dropped from the Component and Data Access area
to the desired canvas location, and can then be dragged around on the canvas. Each
component is represented by an icon, which makes identifying the components simple.
Connections between the components (i.e., channels) are also represented visually so that
the flow of data and processing is clear.

Each time you open an existing workflow or create a new workflow, a new application
window opens. Multiple windows allow you to work on several workflows
simultaneously and compare, copy, and paste components between Workflow canvases.

2.4.4.1 Director Right-Click Menu

 Chapter 2

 40

The director right-click menu contains several menu items that are specific to the
director: Configure Director and Documentation.

Configure Director: Configure the director parameters. This dialog can also be opened
by double-clicking the director on the Workflow canvas.

Documentation: Display, customize, or remove director documentation. Customized
documentation will replace existing documentation.

2.4.4.2 Actor Right-Click Menu

The actor right-click menu contains several menu items that are specific to that actor:
Configure Actor, Customize Name, Configure Ports, Configure Units, Open Actor, Get
Metadata, Documentation, Listen to Actor, Suggest, Semantic Type Annotation, Save in
Library…, Save Archive (KAR)…, and Upload to Repository.

Configure Actor: Configure the actor parameters. This dialog can also be opened by
double-clicking the actor on the Workflow canvas.

Customize Name: Customize the label that identifies the actor on the Workflow canvas.

Configure Ports: Add, remove, hide, show, rename, and customize input and output
ports.

Configure Units: Specify unit constraints for an actor (e.g., $plus=$minus, which
states that an actor's plus and minus ports must have the same units. For more
information, please see the Ptolemy documentation,
http://ptolemy.berkeley.edu/ptolemyii/ptIIlatest/ptII/ptolemy/data/unit/demo/StaticUnits/
NonAppletStaticUnits.htm

Open Actor: Display the actor's Java source code in a viewing window.

Get Metadata: Display a data set's metadata. (For data actors only.)

Documentation: Display, customize, or remove director documentation. Customized
documentation will replace existing documentation on the local copy of the actor in the
current Kepler version. Note that customized documentation will not be "transferred" if a
new version of Kepler is installed.

Listen to Actor: Open a window that displays various actor events during execution.

Suggest: Request that the semantic system suggest compatible input, output, or similar
components.

 Chapter 2

 41

Semantic Type Annotation: Semantic annotations conceptually describe an actor and/or
its "data schema." Annotations provide the means for ontology-based discovery and
integration. Annotations are stored within the component metadata. Each port can be
annotated with multiple classes from multiple ontologies. Annotations can be used to find
similar components, and to check that workflows are semantically and structurally well
typed.

Save Archive (KAR): Save an archived version of the selected component to a selected
location on the local machine.

Upload to Repository: Upload a component to the Kepler repository, which is a
centralized server where workflow components can be searched and re-used. Uploaded
components should have a unique name. To change the name of a component, right-click
it and select Customize Name from the drop-down menu. Users will be prompted for a
Knowledge Network for Biocomplexity (KNB) user name and password; if you do not
have a KNB user account, click the Login Anonymously button to upload components
without a user name or password. Alternatively, you can register for a KNB account on
the KNB homepage (knb.ecoinformatics.org).

View LSID: View the unique life sciences identifier for this actor.

Preview: Display a data table. This option is only used by data actors (e.g.,
EML2Dataset) to display data sets represented by Meta data. For more information about
using data sets in Kepler, please see Chapter 6 of the User Manual.

2.4.5 Navigation Area

The navigation area contains a view of the entire workflow (even if only a portion of the
workflow is displayed on the Workflow canvas). Use the red guidelines to navigate a
large workflow and select a portion of the workflow to display (Figure 2.7)

 Chapter 2

 42

Figure 2.7: The Navigation area

 Chapter 3

 43

3. Scientific Workflows

Kepler simplifies the effort required to analyze and model scientific data by using a
visual representation of these processes. These representations, or “scientific workflows,”
display the flow of data among discrete analysis and modeling components (Figure 3.1).

Figure 3.1: A simple scientific workflow developed in Kepler

Kepler allows scientists to create their own executable scientific workflows by simply
dragging and dropping components onto a workflow creation area and connecting the
components to construct a specific data flow, creating a visual model of the analytical
portion of their research. Kepler represents the overall workflow visually so that it is easy
to understand how data flow from one component to another. The resulting workflow can
be saved in a text format, emailed to colleagues, and/or published for sharing with
colleagues worldwide.

Kepler users with little background in computer science can create workflows with
standard components, or modify existing workflows to suit their needs. Quantitative
analysts can use the visual interface to create and share R and other statistical analyses.
Users need not know how to program in R in order to take advantage of its powerful
analytical features; pre-programmed Kepler components can simply be dragged into a
visually represented workflow. Even advanced users will find that Kepler offers many

 Chapter 3

 44

advantages, particularly when it comes to presenting complex programs and analyses in a
comprehensible and easily shared way.

Kepler includes distributed computing technologies that allow scientists to share their
data and workflows with other scientists and to use data and analytical workflows from
others around the world. Kepler also provides access to a continually expanding,
geographically distributed set of data repositories, computing resources, and workflow
libraries (e.g., ecological data from field stations, specimen data from museum
collections, data from the geosciences, etc.).

3.1 What is a Scientific Workflow?

Scientific workflows are a flexible tool for accessing scientific data (streaming sensor
data, medical and satellite images, simulation output, observational data, etc.) and
executing complex analysis on the retrieved data.

Each workflow consists of analytical steps that may involve database access and
querying, data analysis and mining, and intensive computations performed on high
performance cluster computers. Each workflow step is represented by an “actor,” a
processing component that can be dragged and dropped into a workflow via Kepler’s
visual interface. Connected actors (and a few other components that we’ll discuss in later
sections) form a workflow, allowing scientists to inspect and display data on the fly as it
is computed, make parameter changes as necessary, and re-run and reproduce
experimental results.10

Workflows can represent theoretical models or observational analyses; they can be
simple and linear, or complex and non-linear. One feature of some scientific workflow
systems is that they can be nested (i.e., hierarchical), meaning that a workflow can
contain “sub-workflows” that perform embedded tasks. A nested workflow (known in
Kepler as a composite actor) is a re-usable component that performs a potentially
complex task.

Scientific workflows in Kepler provide access to the benefits of today’s grid technologies
(providing access to distributed resources such as data and computational services), while
hiding the underlying complexity of these technologies. Kepler automates low-level data
processing tasks so that scientists can focus instead on the scientific questions of interest.

Workflows also provide the following:

• documentation of all aspects of an analysis
• visual representation of analytical steps
• ability to work across multiple operating systems

10 Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao.
2005. Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

 Chapter 3

 45

• reproducibility of a given project with little effort
• reuse of part or all of a workflow in a different project

To date, most scientific workflows have involved a variety of software programs and
sophisticated programming languages. Traditionally, scientists have used STELLA or
Simulink to model systems graphically, and R or MATLAB to perform statistical
analyses. Some users perform calculations in Excel, which is user-friendly, but offers no
record of what steps have been executed. Kepler combines the advantages of all of these
programs, permitting users to model, analyze, and display data in one easy-to-use
interface.

Kepler builds upon the open-source Ptolemy II visual modeling system
(http://ptolemy.eecs.berkeley.edu/ptolemyII/), creating a single work environment for
scientists. The result is a user-friendly program that allows scientists to create their own
scientific workflows without having to integrate several different software programs or
enlist the assistance of computer programmers.

A number of ready-to-use components come standard with Kepler, including generic
mathematical, statistical, and signal processing components and components for data
input, manipulation, and display. R- or MATLAB-based statistical analysis, image
processing, and GIS functionality are available through direct links to these external
packages. You can also create new components or wrap existing components from other
programs (e.g., C programs) for use within Kepler.

3.2 Components of a Workflow

Scientific workflows consist of customizable components—directors, actors, and
parameters—as well as relations and ports, which facilitate communication between the
components. Figure 3.2 displays a Kepler workflow with the main workflow components
identified.

The workflow in Figure 3.2, the LotkaVolterraPredatorPrey workflow, is used to model
the relative populations of a predator and its prey over time. For a more detailed look at
how it works, please see Section 4.2.3.

 Chapter 3

 46

Figure 3.2: Main window of Kepler with some of the major workflow components highlighted. The
windows on the bottom right are output windows, created by the workflow to display result graphs.

3.2.1 Directors

Kepler uses a director/actor metaphor to visually represent the various components of a
workflow. A director controls (or directs) the execution of a workflow, just as a film
director oversees a cast and crew. The actors take their execution instructions from the
director. In other words, actors specify what processing occurs while the director
specifies when it occurs.

Every workflow must have a director that controls the execution of the workflow using a
particular model of computation. For example, workflow execution can be synchronous,
with processing occurring one component at a time in a pre-calculated sequence (SDF

 Chapter 3

 47

Director). Alternatively, workflow components can execute in parallel, with one or more
components running simultaneously (which might be the case with a PN Director).

A small set of commonly used directors come packaged with Kepler (Table 3.1), but
more are available in the underlying Ptolemy II software that can be accessed as needed.
For a more detailed discussion of workflow models of computation, please see Section
5.2 Choosing a Director, or refer to the Ptolemy II documentation.

The SDF Director is often used to oversee fairly simple,
sequential workflows. Types of workflows that run well
under an SDF Director include processing and
reformatting data, converting one data type to another,
and reading and plotting a series of data points.

The PN Director is often used for managing workflows
that require parallel processing on distributed computing
systems.

The CT Director is designed to oversee workflows that
predict how systems evolve as a continuous function of
time (i.e., "dynamic systems").

The Continuous Director is for the “continuous time”
domain, a timed domain that supports continuous-time
signals, discrete-event signals, and mixtures of the two.
There is a global notion of time that all the actors are
aware of.

The DE Director is often used for modeling time-
oriented systems: queuing systems, communication
networks, and occurrence rates or wait times.

The DDF Director is often used for workflows that use
looping or branching or other control structures, but that
do not require parallel processing (in which case a PN
Director should be used).

Table 3.1: Directors that come in the standard Kepler component library.

 Chapter 3

 48

3.2.2 Actors

Actors are the basic building blocks of workflows. Kepler comes packaged with more
than 350 actors, each ready to be used in new and/or existing scientific workflows. Each
actor is designed to perform a specific task: from generating summary statistics, to
mapping data points to a projection of North America, to translating files from one
format to another. Each actor performs a "step" in a workflow. For example, one actor
might be used to read or import data for use in a workflow, another to transform that data
into a format that can be analyzed, another to analyze or graph the data, and another to
output the data to a file or the screen. Data passes between these actors via channels,
which are represented by solid lines on the Workflow canvas.

The actors are listed in the Components tab of the Kepler interface. Dragging and
dropping an actor will move it to the Workflow canvas, where it can be incorporated into
a workflow. However, simply dragging an actor onto the Workflow canvas will, by itself,
do nothing. Though each actor knows "what" processing should occur, it does not know
"when" to perform that process (or "iterate"). Actors need to be directed (i.e., they require
a Director component) in order to perform.

Separating the "what" from the "when" in actor performance allows actors to act and
interact in many ways. For example, an actor can be instructed to iterate once, or ten
times, or infinitely with a simple Director setting. Similarly, an actor can be instructed to
work in parallel with other actors—which is useful when workflows require parallel
processing on distributed computing systems—or at discrete times along a time line, or in
a number of other ways dictated by the Director. See Section 5.2 for more information
about each Director and how to choose the right director for each workflow.

New actors can be downloaded from the Kepler repository, or created by the user and
added to the Kepler application. User-created actors can also be uploaded to the Kepler
repository, where they can be shared with other workflow developers. The Kepler
repository is covered in more detail in Section 4.5.3. For more information about creating
and using new actors, see the appendix on Creating New Actors.

Kepler actors come in two forms: "individual" actors and "composite" ones. Composite
actors are collections or sets of individual actors bundled together to perform more
complex operations. Composite actors can be used in workflows, essentially acting as a
nested or sub-workflow (Figure 3.3). An entire workflow can be represented as a
composite actor and included as a component within an encapsulating workflow.
Composite actors are designated with a double rectangle actor icon.

 Chapter 3

 49

Figure 3.3: Representation of a nested workflow. "B" is an example of a composite actor, which contains
three nested actors (D, E, and F).

Both individual and composite actors are identified by an icon and a label, which are
rendered on the Workflow canvas. In addition, most actors have one or more ports, which
are used either to input values (a dataset to analyze, for example) or to output results.
Most actors have parameters, as well, which are customizable settings. To view and/or
edit an actor's parameters, double-click the actor icon on the Workflow canvas.

Figure 3.4 shows a Round actor as it appears on the Workflow canvas. The Round actor
has two ports, an input and an output port, as well as one parameter (function).
Double-click the actor to view and/or edit the function parameter.

Figure 3.4: The Round actor as it appears on the Workflow canvas

Actor Name: The actor name can be customized to specifically identify an actor's
function in a workflow. For example, a Display actor can be renamed "Display Statistics"
or "Display Errors" to better identify its purpose in a specific workflow. To edit an actor
name, right-click the actor icon from the Workflow canvas and select Customize Name
from the menu. The actor name is displayed above the actor icon unless the "Show name"
option in the Customize Name menu is deselected.

 Chapter 3

 50

Icon: Each actor is identified by an icon that describes the actor on the Workflow canvas.
Icons help identify the function of each actor. For a complete list of actor icons and a
description of Kepler actor symbology, see Section 5.3.1 Actor Icon Families.

Ports: Most actors have one or more ports, depicted with either a white (multiport) or
black (single port) triangle at the perimeter of the actor icon. Data flows into and out of
the actor via these ports. To add, remove, or rename actor ports, right-click the actor icon
and select Configure Ports from the menu. Checking "Show Name" displays the port
name on the Workflow canvas.

Data is passed to actor ports in the form of tokens. A token can be thought of as a
container of some kind of data. Each token has a type ("integer" or "matrix," for
example), and this type is usually declared by the port that accepts or broadcasts the data.
Mouse over an actor port on the Workflow canvas to display a tooltip that contains the
port name as well as the type of data it produces or accepts. If the actor does not receive
data tokens of the specified type, an error will be generated.

Parameters: Double-click an actor icon on the Workflow canvas to reveal the actor's
parameters, or settings. Parameters are used to give actors context-specific instructions,
such as the location of a source file to read, a particular algorithm to perform, and the
format in which to output results.

Each time an actor is dragged onto the Workflow canvas from the Components tab, a new
"instance" of that actor is created. Dragging and dropping an ImageJ actor onto the
canvas three times will produce three instances of the ImageJ actor, named ImageJ,
ImageJ2, and ImageJ3. Editing the parameters of any one of these instances does not
affect the values of the other instances, nor does it affect the original actor stored in
Kepler. In other words, every time an actor is instantiated, it will have the same settings
as the original actor (or "class", in Java). The name of each actor class can be viewed by
right-clicking an actor and selecting Documentation from the drop-down menu. The class
name is displayed in parenthesis beside the actor name, e.g., ImageJActor (Instance of
util.ImageJActor).

Documentation: All Kepler actors have documentation, which can be opened via the
actor's right-click menu. To read the actor documentation, drag an actor onto the
Workflow canvas, right-click the actor icon, and select Documentation > Display from
the pop-up menu (Figure 3.5). Documentation can also be accessed from the Components
tab: simply right click an actor and select View Documentation. The documentation
describes each actor and its function, the type of values the actor inputs and outputs, and
the purpose of each actor parameter.

 Chapter 3

 51

Figure 3.5: Actor documentation

The actor documentation can also be customized by right-clicking the actor and selecting
Documentation > Customize from the drop-down menu. An editing window opens
(Figure 3.6).

 Chapter 3

 52

Figure 3.6 Editing actor documentation.
Documentation content can include links to external web pages (which will open in a
Kepler viewing window) and HTML formatting (, <tt>, , etc). XML-reserved
characters (e.g., '>', '&', '"', etc) must be escaped. The most common reserved characters
and their entity replacement are listed in Table 3.2

XML-reserved Character Replace with:
& &
< <
 > >
" "
' '
Table 3.2: Common XML-reserved characters.

To delete the content of a documentation screen, select Documentation > Remove
Customization. Note that this action cannot be undone with the "Undo" Menu bar item.

Actors make it easy to "read" the architecture of a workflow. When an existing workflow
is opened (or a new workflow is created), each actor appears on the Workflow canvas,
allowing users to easily follow the workings of the process that the workflow performs.
Users can delve even deeper into the details of workflow processing by opening the
actors. To open an actor, right-click the actor icon from the Workflow canvas and select
Open Actor. For most individual actors, Kepler will display the Java source code (Figure
3.7). The Java source is the code that creates the actor; some actors, such as the
RExpression actor, contain code (e.g., R-scripts), but this type of code is accessed via
actor parameters. In some cases, like the EML2Dataset actor, a customized display of
information about the actor appears when the actor is opened. If the actor is a composite
actor, a new application window opens to display the sub-workflow (Figure 3.8).

 Chapter 3

 53

Figure 3.7: Viewing the source code for an individual actor. To open the source code in a viewing window,
right-click an actor and select Open Actor from the drop-down menu.

Figure 3.8: Opening a composite actor. To view the nested (i.e., "sub-workflow") contained in a composite
actor, right-click the actor and select Open Actor from the drop-down menu.

 Chapter 3

 54

Actors are written in Java, which is an object-oriented programming language created by
Sun Microsystems. (Note that existing code written in languages other than Java can be
included in Kepler by writing a Java "wrapper" around the code). A technical
specification of actor structure is beyond the scope of this manual, which instead focuses
on how actors are used and appear in the user interface. For more technical information
about actor code and coding practices, please see the Ptolemy documentation as well as
the Kepler developer documentation.

3.2.3 Composite Actors

Composite actors are collections or sets of actors bundled together to perform more
complex operations. Composite actors can be used in workflows, essentially acting as a
nested or sub-workflow. An entire workflow can be represented as a composite actor and
included as a component within an encapsulating workflow. In more complex workflows,
it is possible to have different directors at different levels. A sub-workflow that contains
its own director is called an opaque composite. Transparent composites "inherit" their
director from the containing workflow (i.e., the sub-workflow does not contain its own
director).

Opaque Composite actors are sub-workflows that contain their own director. Opaque
composite actors can be nested inside workflows that use a different type of director,
thereby combining different models of computation in one workflow; however, not all
directors are compatible. An opaque composite actor that uses a PN director cannot be
nested inside a workflow governed by an SDF director, for example. For an in-depth
discussion of directors that can be compatibly nested, see Composing Models of
Computation in Kepler/Ptolemy.

3.2.4 Ports

Each actor in a workflow can contain one or more ports used to consume or produce data
and communicate with other actors in the workflow. Actors are connected in a workflow
via their ports. The link that represents data flow between one actor port and another
actor port is called a channel. Ports are categorized into three types:

• input port – for data consumed by the actor;
• output port – for data produced by the actor; and
• input/output port – for data both consumed and produced by the actor.

Each port is configured to be either a “singular” or “multiple” port. A single input port
can be connected to only a single channel, whereas a multiple input port can be connected
to multiple channels. The "width" of the port describes how many channels of data it
accepts; the width of a single port can be 0 (unconnected) or 1, while the width of a

 Chapter 3

 55

multiple port can be greater than 1. For multiple ports, the first channel is number 0, the
second 1, etc. See Section 3.2.5 for more information about channels.

Several different kinds of ports appear in Kepler: actor ports, external ports, and port-
parameters. Each is discussed in more detail in the following sections.

3.2.4.1 Actor Ports

Actor ports, also called coupled ports, are coupled with an actor. Actor ports appear as
light or dark triangles on the actor icons when actors are displayed on the Workflow
canvas (Figure 3.9), and can be customized by right-clicking an actor and selecting
Customize Ports from the drop-down menu.

Figure 3.9: Single and multiple ports of the Bernoulli actor. A single port can be connected to a single
channel of data, while a multiple port can be connected to multiple channels.

To customize an actor's ports—either by changing the existing ports or adding new ones--
right-click the actor and select Configure Ports from the drop-down menu (Figure 3.10)

Figure 3.10: Configuring the ports of the ConvertURLTo Image actor. Fields that cannot be edited are
noted with a pink highlight.

To add a new port, click the Add button and then customize the new port. Every port
must have a name, which can be customized by double-clicking the field in the Name
column and typing a name. In addition to selecting the kind of port (input, output or

 Chapter 3

 56

input/output), users can assign a data type by clicking the Type field and selecting a type
from the drop-down menu. The port Direction field determines how the port will be
displayed on the Workflow canvas ("North" places the port at the top of the actor,
"South" on the bottom, etc). Kepler will display the port name on the Workflow canvas if
"Show Name" is selected, and will hide the port (i.e., not show it on the Workflow
canvas) if "Hide" is selected. Adding ports is essential to some actors (like the Expression
actor). In other cases, adding ports is relatively meaningless since the actor is not
designed to use any information on the added port.

Units (seconds, meters, etc) can be selected by clicking the Units field and selecting a
measurement from the drop-down menu. Assigning units helps insure the integrity of
workflow processing (e.g., that meters are not added to miles per second, etc). If units are
assigned, the Unit Constraints Solver (accessed by right-clicking the Workflow canvas
and selecting Unit Constraints Solver from the drop-down menu) can be used to discover,
analyze, and, in some cases, fix, unit inconsistencies that exist in a model.

Each port can also be assigned a data type (e.g., double or array; See Section 3.2.6 for
more information about data types). The type of the port restricts the type of the token
that can pass through it. These types can be declared via the Type drop-down menu, or
left undeclared, in which case the application will resolve the type when the workflow is
executed. In many cases there is no need to enter port type information.

3.2.4.1 External Port

An external port is often used to pass data from a sub-workflow to a containing workflow
(Figure 3.11). External ports can be connected by channels to other external ports or to
ports of individual actors.

 Chapter 3

 57

Figure 3.11: Example of an external output port ("trigger") and an input port-parameter ("DirName"). This
simple workflow is a sub-workflow of the GARP_SingleSpecies_BestRuleSet-IV.xml workflow. The sub-
workflow passes a trigger to the containing workflow via its external trigger port. The DirName port-
parameter is discussed in greater detail in Section 3.2.4.3.

Like actor ports, external ports can be singular or multiple. They can be added to a
workflow with the Toolbar buttons. The ports are represented on the Workflow canvas
with the same icon that appears on the Toolbar buttons (Table 3.3)

Icons for external ports

Single input port.

Multiple Input Port

Single output port.

Multiple Output Port

Single Input/Output Port

Multiple Input/Output
Port

Table 3.3: Icons that represent the various types of external ports on the Workflow canvas

 Chapter 3

 58

3.2.4.3 Port-Parameter

A port-parameter functions as both a port and a parameter that is used to configure the
operation of an actor (for more information about parameters, see Section 3.2.8). Port-
parameters allow users to specify a "default" value for a parameter (e.g., iterations=4 or
name="mouse"). If the actor receives a value via the coupled port, that value will replace
the value specified by the parameter component of the port-parameter.

Port-parameters can be added to workflows from the Components tab by searching for
"PortParameter" and dragging the component onto the Workflow canvas.

To customize a port-parameter on the Workflow canvas, right-click the port-parameter
and select Customize Name from the drop-down menu. A dialog window provides a field
for specifying a name (Figure 3.12). Choose a descriptive name and click Commit.

Figure 3.12: Customizing the name of the port-parameter used in the GARP_SingleSpecies_BestRuleSet-
IV.xml workflow displayed in Figure 3.11.

Once the port-parameter has been named, specify a parameter value by double-clicking
the port-parameter (Figure 3.13).

Figure 3.13: Customizing the parameter value of a port-parameter.

Note: The parameter value in Figure 3.13, DataDirectory+"/mephitis", in an
example of an expression, which is written in the Kepler expression language, and is the
value of the port-parameter used in the sub-workflow displayed in Figure 3.11.
DataDirectory is a parameter defined by the containing workflow, and
"/mephitis" is a string that will be concatenated to form the name of the new
directory created by the DirectoryMaker actor. Parameter values can also be constant
values, such as integers or strings.

 Chapter 3

 59

Once the port-parameter has been defined, actors can reference it. Figure 3.14 displays
the DirectoryMaker actor's parameters. Note that the value of the "Directory name"
parameter is set to $DirName. The "$" syntax is used to tell Kepler to substitute the value
of a string parameter for the parameter name (i.e., DirName is the parameter name in
this example, NOT the name of a directory). The value of DirName is:
DataDirectory+”/mephitis”. The actor will use this value unless the port-
parameter receives an alternate string from the containing workflow. In the GARP
workflow, the port-parameter is configured to receive
DataDirectory+"/"+SpeciesName (where SpeciesName is defined elsewhere
in the containing workflow), and this value would replace the default Directory
name parameter.

Figure 3.14: Referencing a port-parameter. The $DirName syntax is used to refer to the value of the
DirName port-parameter defined on the Workflow canvas.

3.2.5 Channels and Tokens

Channels are used to pass data from one port to another. Each channel can transport a
single stream of data. Data in Kepler is encapsulated and passed between workflow
components as tokens. Each token has an assigned data type (int, object, or matrix, for
example).

Channels are represented as solid lines that "connect" the actors on the Workflow canvas.
To create a channel, left-click an actor's input or output port and drag the cursor to the
destination actor's input/output port. Until the channel is properly connected to both the
source and destination ports, the channel will appear as a thin black line. Once the
channel is connected, it will become a thick black line (Figure 3.15). To disconnect or
re-route one end of a channel, first select the channel by left-clicking somewhere along
the black line, then click-and-drag the appropriate end point to the desired location on the
Workflow canvas.

The simple addition/subtraction workflow displayed in Figure 3.15 contains two
channels of data that are input to an Add or Subtract actor via its multiport. The first
channel is number 0, the second number 1 (a third would be number 2, etc.).

 Chapter 3

 60

Figure 3.15: Channels on the workflow canvas. When a channel is properly connected, it will be
represented by a thick black line. Channels that are not properly connected appear as thin black lines.

	

3.2.6 Data Types

Data tokens each have a structural type. "Hello", a string of alpha-numeric characters, is
encapsulated as a string token, while 3, an integer, is encapsulated as an integer token.
String and integer are both structural types.

A data token can only be passed to a port that accepts its structural type. An array of
strings cannot be passed to a port that accepts only integers, and attempting to do so will
generate a type error. Port data types are defined by the actor, and can be configured by
right-clicking an actor and selecting Configure Ports from the drop-down menu. That
menu contains common Kepler data types, defined in Table 3.4. Note that this list is not
exhaustive. For example, users can edit the results from the drop-down type menu to
convert ‘ArrayType[int]’ to ‘ArrayType[double]’

Structural Data Types
Boolean The Boolean token can have one of two values: true or

false (represented by 1 or 0, respectively).
Complex A complex number consists of a real and imaginary part.

In Kepler, the imaginary component of a complex number
is designated with an i or j (e.g., 6+7i).

Double A double represents a floating point number (e.g., 1.345)
with "double precision". This data type can accurately
represent about twice as many significant digits as a single
precision type, but also requires more memory.

Fixed point A fixed-point number is a number in which the position of
the decimal point is constant. U.S. currency can be
represented by a fixed-point number that has two digits to
the right of the decimal point, for example. Fixed point
numbers in Kepler are represented in the following way:
fix(value, integerBits, fractionBits).

General The general data type is the most inclusive of the types. A

 Chapter 3

 61

port assigned type "general" can accept data of all types
(array, string, matrix, etc.).

Int The integer token ("int") represents numerical values that
have no decimal points (e.g., 11 or -17)

Long Integers followed by an "l" or "L" are of type long. The
long data type can represent large integers. Float and
double data types can also be used: these data types have
greater storage capacity than long data types, but less
precision/significant digits.

Matrix A matrix contains boolean, complex, double, fixedpoint,
int, or long data that can be referenced by row and
column. Matrices in Kepler are specified with brackets.
Commas separate row elements and semicolons separate
rows. For example, a 1x3 matrix would be represented as
[1,2,3]. A 2x2 matrix would be represented by [1,2;3,4].
To create multidimensional matrices, use arrays of arrays
of arrays.

Object An object token is a data container for an arbitrary Java
object (most complex 'things' in Java are objects). These
tokens can be used to pass complex Java objects around a
Kepler workflow. Object tokens are primarily used for
custom workflows with custom actors. Non-programmers
will probably not find them very useful.

Scalar The term scalar designates a value that consists only of
magnitude (as opposed to a vector, which consists of both
a magnitude and direction). In Kepler, scalar values may
have any scalar data type: double, int, long, etc.

String A sequence of characters specified within quotation
marks. Anything between "" is interpreted as a string.

Unknown An unknown data type places no additional type
constraints on the port. All the structured types are less
than the type "general" and greater than "unknown."

Unsigned byte An unsigned byte represents an integer that does not
include data to specify whether it is positive or negative.

xml token Extensible Markup Language (XML) tokens use markup
language to describe the structure of the data. For more
information about XML, see the World Wide Web
Consortium.

arrayType(int) An array is a data structure consisting of elements that can
be identified by a key (or index). The first item in an array
has a key of 0, the second 1, etc. Arrays in Kepler are
denoted with curly braces, e.g. {1,2,3,4,5}
arrayType(int) specifies an array of integers. Note
that any type in the drop-down menu can be edited so that
different array types can be specified.

arrayType(int,5) An array is a data structure consisting of elements that can

 Chapter 3

 62

be identified by a key (or index). arrayType(int,5)
specifies an array of integers with 5 elements in the array
(i.e., the length of the array is specified as part of the type.
Note that any type in the drop-down menu can be edited
so that different array types and lengths can be specified.

[Double] A matrix with elements of type double.
{x=double, y=double}

A record token consists of named elements and their
values. In Kepler, records are specified between curly
braces. For example, {a=1, b=2} is a record with two
elements, named a and b, with values 1 and 2,
respectively. In this case, both values are of type double.

Table 3.4: Common data types in Kepler

Kepler will attempt to automatically convert data into the appropriate structure. For
example, if an integer and a double are added, Kepler will determine that the result will
be type double (which is the "greater" of the two data types). For a detailed discussion
about type conversion and resolution see the Ptolemy documentation.

3.2.7 Relations

Relations allow workflows to “branch” a data flow. Branched data can be sent to
multiple places in the workflow. For example, a user might wish to direct the output of an
operational actor to another operational actor for further processing, and to a display actor
to display the data at that specific reference point. By placing a Relation in the output
data channel (Figure 3.16), the user can direct the information to both places
simultaneously.

 Chapter 3

 63

Figure 3.16: A relation is used to branch the Result output of the WebService actor to an XML Entry
Display actor and two additional processing components: Sequence Getter Using XPath and HTML
Generator Using XSLT.

To add a relation to a workflow, use the Add Relation button on the Toolbar ().
The relation will be placed in the center of the Workflow canvas. Drag and drop it to the
required location. When connecting a relation to actors, it is often easiest to begin
drawing the channel at the input or output port of the actor and connecting the channel to
the relation.

3.2.8 Parameters

Parameters are configurable values that can be attached to a workflow (model
parameters) or to individual directors or actors (coupled parameters). Actor parameters
specify everything from the directory into which the actor should save its output, to the
name applied to the output file, to the number of items the actor should process. Director
parameters control the number of workflow iterations and the relevant criteria for each
iteration. Model parameters define values that can be adjusted in the Runtime window.
More information about each type of parameter is contained in the following sections.

3.2.8.1 Actor Parameters

Actor parameters (or "coupled parameters") are parameters that belong to an actor or
director. To view or edit these parameters, right-click the actor or director on the
Workflow canvas and select Configure Actor from the drop-down menu, or simply

 Chapter 3

 64

double-click the component. This opens dialog box containing all of the relevant
parameters. Figure 3.17 shows a dialog box that contains the parameters of the Display
actor.

Figure 3.17: Parameters of the Display actor.

To edit the parameter values, simply change the fields and click the Commit button. In
most cases, values must be modified before the workflow begins running; in other words,
changes to parameter values will not go into effect if the workflow is already running.

Parameters can be added, removed, or restored to their default values via the
corresponding buttons. Click Preferences to customize the type of field used to edit the
parameters: text, fixed, line, or check box (Figure 3.18).

Figure 3.18: The Preferences button is used to manage the types of fields used to edit parameter values.
The pictured parameters are for the Bernoulli actor, which is used to generate and output a sequence of
random Boolean values.

 Chapter 3

 65

3.2.8.2 Model Parameters

Model parameters appear directly on the workflow canvas and are used to specify values
for anything from a color, to a file name, to a required version number (Figure 3.19).
Model parameters can be added to a workflow from the Components tab.

To customize the value of a model parameter, double-click the parameter on the
Workflow canvas, type a value into the editable field, and click OK. Alternatively, model
parameters can be adjusted in the Runtime window, which is accessed via the Workflow
menu.

Figure 3.19: Model parameters, which is set on the Workflow canvas. Model parameters can be referenced
by any actor in the workflow and its sub-workflows.

Parameter values can be referenced by any actor in the workflow or its sub-workflows.
Actors reference model parameters by name. For example, the ClimateFileProcessor
actor in Figure 3.20 references the OutputDir model parameter in its
baseOutputFileName parameter.

 Chapter 3

 66

Figure 3.20: Referencing a model parameter.

3.2.8.3 Port-Parameters

A port-parameter functions as both a port and a parameter that is used to configure the
operation of an actor. For more information about Port-Parameters, see Section 3.2.4.3.

 Chapter 4

 67

4. Working with Existing Scientific Workflows

Kepler comes with a set of documented workflows contained in the "demos" directory
and its subdirectories. The workflows in the "demos/getting-started" directory are useful
examples that can help users familiarize themselves with the application, and many of the
workflows contained in that directory are described in more detail later in this chapter.

In this chapter, we also cover how to open workflows created and shared by colleagues,
and how to modify and save existing workflows.

4.1 Opening Workflows

Kepler can open both local workflows and workflows stored on a remote Web server. In
both cases, the open workflow will display on the Workflow canvas, where it can be run
and/or modified.

4.1.1 Opening Local Workflows

The workflows shipped with Kepler are installed into the
"KeplerData/workflows/module/outreach-2.X.Y/demos/getting-started/" directory (where
X.Y is the current version of Kepler, and KeplerData/ is inside your Documents and
Settings directory on Windows, and you home directory on linux and Mac), though
workflows can be stored and opened from any local directory.

To open an existing local XML (MoML) workflow:

1. From the Menu bar, select File, then Open… . A standard file dialog box will
appear.

2. If the file dialog box does not open to the “KeplerData” directory (the place where
user workflows and data are stored), then navigate to the “KeplerData” directory
(in your home directory).

3. Double-click a workflow file to open it (or single-click to select the file and then
click the Open button). The workflow will appear on the Workflow canvas.

For example, to open the Lotka-Volterra workflow, the classic predator-prey model that
is shipped with the Kepler application:

1. From the Menu bar, select File, then Open… .
2. Navigate to the “KeplerData/workflows/module/outreach-2.X.Y/demos/getting-

started/" directory and locate the file named “02-LotkaVolterraPredatorPrey.xml”
(Figure 4.1).

 Chapter 4

 68

Figure 4.1: Navigating to the Lotka-Volterra workflow. The workflow is in the “demos/getting-started"
directory.

3. Double-click the “02-LotkaVolterraPredatorPrey.xml” file. The Lotka-Volterra

workflow appears on the Workflow canvas (Figure 4.2).

 Chapter 4

 69

Figure 4.2: The Lotka-Volterra workflow in the Kepler interface.

4.2 Running Workflows

Workflows can be run in one of two ways: via the Run button in the Toolbar, or via the
Workflow menu's Runtime Window menu item.

4.2.1 Runtime Window

Selecting the Runtime Window menu item (Figure 4.4) opens a handy window that can
be used to start, pause, resume, and stop workflow execution. The window also displays
all workflow and director parameters so that they can be viewed and/or edited. Workflow
output is displayed in the window once the workflow has executed.

To run a workflow using the Runtime Window:

1. Open the desired workflow.
2. From the Menu bar, select Workflow, then Runtime Window. A Runtime

window opens. Workflow and director parameters are displayed on the left side of
the window, where they can be adjusted as needed.

3. Click the Go button to start running the workflow.
4. The workflow will execute. During workflow execution, you may select the

Pause, Resume, or Stop buttons.

 Chapter 4

 70

Figure 4.3: Opening the Runtime Window to run a workflow and/or adjust workflow parameters. In this
example, the Runtime window is displaying the Lotka-Volterra workflow.

To run the Lotka-Volterra workflow via the Runtime Window:

1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“demos/getting-started/” directory.

2. From the Menu bar, select Runtime Window from the Workflow menu. A
Runtime Window opens.

3. Click the Go button in the Runtime Window.
4. The Lotka-Volterra workflow will execute with the default parameters and

produce two graphs, which are displayed in the window. The graph labeled
TimedPlotter depicts the interaction of predator and prey over time (i.e., the
cyclical changes of the predator and prey populations over time predicted by the
model). The graph labeled XYPlotter depicts a phase portrait of the population
cycle (i.e., the predator population against the prey population). Together these
graphs show how the predator and prey populations are linked: as prey increases,
the number of predators increase. (Figure 4.5)

 Chapter 4

 71

Figure 4.4: The Runtime Window displaying the results output by the Lotka-Volterra workflow.

4.2.2 Run Button

The Run button in the Toolbar runs a workflow with a single button click. Workflow and
director parameters are not exposed for editing as they are in the Runtime Window.

To run a workflow using the Run Toolbar button:

1. Open the desired workflow.

2. From the Toolbar, select the Run button. ()
3. The workflow will execute and produce the specified output.

To run the Lotka-Volterra workflow via the Run button

5. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“demos/getting-started/” directory.

6. On the Toolbar, click the Run button.
7. The Lotka-Volterra workflow will execute with the default parameters and

produce two graphs. The graph labeled TimedPlotter depicts the interaction of
predator and prey over time (i.e., the cyclical changes of the predator and prey
populations over time predicted by the model). The graph labeled XYPlotter
depicts a phase portrait of the population cycle (i.e., the predator population
against the prey population). Together these graphs show how the predator and

 Chapter 4

 72

prey populations are linked: as prey increases, the number of predators increase.
(Figure 4.6)

Figure 4.5: Graphs output by the Lotka-Volterra workflow run via the Run button on the Toolbar.

4.2.3 Running Workflows with Adjusted Parameters

Workflow parameters are used to specify anything from the name of a data directory used
by a workflow, to the relationship between items processed by the workflow, to the name
applied to a workflow's output file. Adjusting these parameters can have a significant
effect on the output.

Parameters can be adjusted in one of several ways. Double-click any workflow
parameters that appear on the Workflow canvas (e.g., r, a, b, or d in Figure 4.7) to edit
the parameter value. Director and actor parameters can be modified by double-clicking

 Chapter 4

 73

the component and editing the values in the dialog window. If the workflow is run via the
Workflow menu's Runtime Window menu item, both workflow and director parameters
are exposed and can be edited in the Runtime Window interface before the workflow is
run.

In this section, we will step through the process of adjusting the parameters of the Lotka-
Volterra workflow to show how adjusting parameters affects workflow output.

Figure 4.6: The Lotka-Volterra workflow.

The Lotka-Volterra model was developed independently by Lotka (1925)11 and Volterra
(1926)12 and is made up of two differential equations. One equation describes how the
prey population changes (dn1/dt = r*n1 - a*n1*n2), and the other describes how the
predator population changes (dn2/dt = -d*n2 + b*n1*n2).

11 Lotka, Alfred J (1925). Elements of physical biology. Baltimore: Williams & Williams Co.

12 Volterra, Vito (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118.
558-560.

 Chapter 4

 74

The Lotka-Volterra model is based on certain assumptions:
• the prey has unlimited resources;
• the prey's only threat is the predator;
• the predator is a specialist (i.e., the predator's only food supply is the prey); and
• the predator's growth depends on the prey it catches

The Lotka-Volterra model is represented in Kepler as a scientific workflow that contains:
• six actors - two plotters, two equations, and two integral functions;
• one director; and
• four workflow parameters (Table 4.1).

NOTE: The director of the Lotka-Volterra model has several configurable parameters as
do the two plotter actors.

The critical assumptions above provide the basis for the workflow parameters. The
workflow parameters and their defaults are as follows:

Parameter Default
Value

Description

r 2 the intrinsic rate of growth of prey in the absence
of predation

a 0.1 capture efficiency of a predator or death rate of
prey due to predation

b 0.1 proportion of consumed prey biomass converted
into predator biomass (i.e., efficiency of turning
prey into new predators)

d 0.1 death rate of the predator
Table 4.1: Description of the default parameters for the Lotka-Volterra workflow

In the differential equations used in the workflow, (dn1/dt = r*n1 - a*n1*n2) and (dn2/dt
= -d*n2 + b*n1*n2), the variable n1 represents prey density, and the variable n2
represents predator density.

When changing parameters in a workflow, the assumptions of the model must be kept in
mind. For example, if creating a Lotka-Volterra model with rabbits as prey and foxes as
predators, the following assumptions can be made with regard to how the rabbit
population changes in response to fox population behavior:

• the rabbit population grows exponentially unless it is controlled by a predator;
• rabbit mortality is determined by fox predation;
• foxes eat rabbits at a rate proportional to the number of encounters;
• the fox population growth rate is determined by the number of rabbits they eat and

their efficiency of converting the eaten rabbits into new baby foxes; and
• fox mortality is determined by natural processes.

 Chapter 4

 75

If you think of each run of the model in terms of the rates at which these processes would
occur, then you can think of changing the parameters in terms of percent of change over
time.

To run the Lotka-Volterra workflow with adjusted parameters:

1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the
“demos/getting-started” directory

2. From the Menu bar, select Runtime Window from the Workflow menu. The
Runtime window opens. Notice there are two sets of parameters – one for the
workflow and one for the director. For more detail about the director parameters,
right-click the director and select Documentation > Display from the drop-down
menu. In this example, you will make adjustments to both workflow and director
parameters.

3. Adjust the workflow parameters as suggested in Table 4.2.

Parameter New value Description
r 0.04 the intrinsic rate of growth of prey in the

absence of predation
a 0.0005 capture efficiency of a predator or death rate

of prey due to predation
b 0.1 proportion of consumed prey biomass

converted into predator biomass (i.e.,
efficiency of turning prey into new
predators)

d 0.2 death rate of the predator
Table 4.2: Description of the suggested parameters for the Lotka-Volterra workflow taken from
http://www.stolaf.edu/people/mckelvey/envision.dir/lotka-volt.html

4. Adjust the value of the stopTime director parameter to 300.
5. In the Runtime window, click the Go button.

The Lotka-Volterra workflow will execute with the adjusted parameters and produce two
graphs: 1) the TimedPlotter graph and 2) the XYPlotter graph. Note that with the
changes in the parameters, the relationship between the predator and prey populations are
still linked but the relationship has changed (Figure 4.8).

 Chapter 4

 76

Figure 4.7: Graphs output by the Lotka-Volterra model with adjusted parameters

4.3 Modifying Workflows

There are two basic ways to modify an existing scientific workflow:

• substitute a different data set for the current data set;
• substitute one or more analytical processes in the workflow with other analytical

processes (e.g., substitute a neural network model actor for a probabilistic model
actor).

In order to be substituted, data sets and processing components must be compatible with
the workflow. Workflow documentation should contain information about the type of
data and processing that occur in the workflow; if not, you may need to do some
investigative research: roll over actor ports to see the name of the port and the type of
data it accepts or broadcasts; right-click individual actors and select Documentation to
read more about the type of processing it does; or open existing data files used by the
workflow to see how they are formatted.

The basic steps involved in modifying a workflow are:

1. Open the desired workflow.

 Chapter 4

 77

2. Identify which workflow component is the target for substitution.
3. Select the target component (data actor or processing actor) by clicking it. The

selected component will be highlighted in a thick yellow border.
4. Press the Delete key on your keyboard. The highlighted component will

disappear from the Workflow canvas.
5. From the Components and Data Access area, drag an appropriate data or

processing actor to the Workflow canvas.
6. Connect the appropriate input and output ports and customize the actor

parameters
7. Run the workflow.

4.3.1 Substituting Data Sets

Substituting data sets involves "pointing" the workflow to a new set of data. For local
data, a data set is often specified by an Expression or a StringConstant actor, which use
an expression to generate the location of the data file (see Chapter 8 for more information
about the Expression actor). Other times, the location of the data set is specified as a
workflow or actor parameter. Remote data is often accessed via Kepler data actors that
handle all of the mechanical issues associated with parsing the Ecological Metadata
Language (EML) that describes the data, downloading the data from remote servers if
applicable, understanding the logical structure of the data, and emitting the data for
downstream actors to use when required.

In this section, we'll look at how to substitute a local data set into a workflow as well as
how to substitute remotely stored data sets that use EML. Before substituting data sets
into a workflow, you must ensure that the data are formatted as required by the workflow
(e.g., a tab-separated list or a table with metadata) and that the units and data types are
compatible.

Substituting a Local Data Set

Kepler can read data in many ways and from many formats. For example, the workflow
in Figure 4.9 uses a FileReader actor to access the contents of a data table saved in a text
format. A Display actor then displays the data in a text window.

 Chapter 4

 78

Figure 4.8: Using and displaying local data in a workflow.

The FileReader actor opens the local data file specified by the actor's parameters. To
substitute another file, simply double-click the FileReader actor to expose its parameters,
click the Browse button to the right of the actor's fileOrURL parameter, and navigate
to the desired file (Figure 4.10). Select a file and click the Commit button. The actor is
now configured to read the specified file.

Figure 4.9: Configuring the FileReader actor to use data from your local machine.

 Chapter 4

 79

NOTE: When creating a workflow, remember that the limitations of the data determine
which processing components are appropriate.

The ReadTable.xml workflow (Figure 4.11), which is included in the
KeplerData/workflows/module/r-2.X.Y/demos/R/ directory, is an example of a workflow
that reads a local text-based data file containing species occurrence data
("mollusc_abundance.txt"). The workflow extracts the species names from the data set as
well as the species count and creates a plot of the data (Figure 4.12). See Chapter 8 for
more information about R and how this workflow operates. For now, we are only
concerned with how the workflow accesses data, and how users can substitute a new data
set.

Figure 4.10: The ReadTable.xml workflow.

 Chapter 4

 80

Figure 4.11: Output of the ReadTable.xml workflow. The workflow extracts each species name and
occurrence information from the mollusc_abundance.txt data file, and creates a plot of the data.

The workflow uses an Expression actor labeled Data File Name to reference the data set.
The value,
property("r.workflowdir")+"demos/R/mollusc_abundance.txt",
is an expression written in the Kepler expression language. The expression
'property(“r.workflowdir”)' returns the path to the R module’s workflow
directory in KeplerData. "demos/R/mollusc_abundance.txt" is the rest of the
path to this data file.

In this workflow, the input file is a text file containing data in a 'spreadsheet-like' tabular
format. Each line of the file contains one row of values, separated by a 'separator'
delimiter—a tab ("\t"), as specified by the workflow's Separator actor. By default, the
first row of the data file is assumed to contain the column names. (Setting the value of the
header actor to FALSE will change this default). Saving an Excel spreadsheet as a text
file creates such a data file with a tab separator (Figure 4.13).

 Chapter 4

 81

Figure 4.12: The mollusc_abundance.txt data set used by the ReadTable.xml workflow. Data is contained
in columns separated by a tab delimiter.

To use another set of data, simply ensure that the data are formatted correctly, and
substitute the name of the new data set into the Data File Name actor.

Substituting Remote Datasets Via the EarthGrid

Substituting data sets that are stored remotely on the EarthGrid is another simple way to
edit a workflow. For example, the workflow displayed in Figure 4.14 reads an
Intergovernmental Panel on Climate Change (IPCC) data set containing cloud cover data
that are stored on the EarthGrid. This dataset uses EML metadata to describe the data,
and can therefore be downloaded and accessed with the EML2Dataset actor (named
IPCC Climate Change Data: 1961-1990, Cloud Cover in the example workflow).

The workflow converts the data to a new format (see the documentation for the
ClimateFileProcessor actor for more information) and saves it.

 Chapter 4

 82

Figure 4.13: The example workflow processes an IPCC data set stored and accessed from the EarthGrid.
The data are described using Ecological Metadata Language (EML).

To use the workflow to convert other data (rainfall, wind, temperature, etc), simply
navigate to Kepler's Data tab and search for IPCC (Figure 4.15). Kepler will locate other
IPCC data sets, which will be displayed in the Data tab. Dragging and dropping any EML
data set onto the Workflow canvas instantiates an EML2Dataset actor, which downloads
the data so that it can be used by the workflow. The EML2Dataset actor will
automatically configure itself to provide one port for each attribute described by the EML
description. For example, if the data consist of four columns, the ports might be "Site",
"Date", "Plot", and "Rainfall."

 Chapter 4

 83

Figure 4.14: Searching for IPCC climate data sets stored on the EarthGrid.

The example workflow can be used to convert any historical IPCC data set. Future
climate change data require a ClimateChangeFileProcessor actor instead of the
ClimateFileProcessor actor.

Note that the EML2Dataset actor can be configured to output the data in one of a variety
of different formats. In the example, the EML2Dataset actor has been configured to
output data "As Cache File Name." To configure a data actor, double-click it and select
the appropriate data output format (Figure 4.16).

 Chapter 4

 84

Figure 4.15: Customizing the data output format of the data actor.

For more information about data output formats, please see Chapter 6.

4.3.2 Substituting Analytical Components
Kepler comes with hundreds of ready-to-use components that can be plugged into
existing workflows to customize the workflow processing. Data can be converted into a
variety of different formats or displayed in different ways. In this section, we will look at
how to change the way a workflow displays its output by substituting one kind of display
actor for another.

The Image Display workflow found under “demos/getting-started/03-ImageDisplay.xml”
(Figure 4.17) converts an image--a bitmapped image representing the species distribution
of the species Mephitis, a skunk, throughout North and South America—and then
displays the image using an ImageJ actor, which uses the ImageJ application to open and
work with a wide variety of images (tiffs, gifs, jpegs, etc.) For more information about
ImageJ, see Chapter 8.

Figure 4.16: The Image Display workflow. The ImageJ actor is highlighted.

 Chapter 4

 85

The Image Display workflow converts the specified image, a jpeg file, to a png format
and then displays it (Figure 4.18). The actor also opens the ImageJ application, which
can be used to modify the image via a handy toolbar (Figure 4.19).

Figure 4.17: The output of the ImageJ actor. The image was originally created by GARP, a genetic
algorithm that creates an ecological niche model for a species that represents the environmental conditions
where that species would be able to maintain populations. GARP was originally developed by David
Stockwell, at the San Diego Supercomputer Center. For more information on GARP, see
http://www.lifemapper.org/desktopgarp/.

Figure 4.18: The ImageJ toolbar that permits users to modify the image.

Rather than using ImageJ to display the workflow output, you may wish to use a simple
browser interface. To do so requires a single actor substitution—swapping a
BrowserDisplay actor for the ImageJ one. To make the substitution:

1. Open the 03-Image-Display.xml workflow from the “demos/getting-started/”
directory.

2. Select the target component, the ImageJ actor in this case. The ImageJ actor will
be highlighted in a thick yellow border, indicating that it is selected.

3. Press the Delete key on your keyboard. The ImageJ actor will disappear from the
Workflow canvas.

 Chapter 4

 86

4. From the Components and Data Access area, drag the Browser Display actor to
the Workflow canvas. You can find the Browser Display actor in the Components
tab under “Components > Data Output > Workflow Output > Textual Output.”

5. Connect the output port of the ImageConverter actor to the input port of the
Browser Display actor. To connect the ports, left-click and hold the output port
(black triangle) on the right side of the Image Converter actor, drag the pointer to
the upper input port on the left side of the Browser Display actor, and then release
the mouse. If the connection is made, you will see a thick black line (Figure
4.20). If the connection is not completely made, the line will be thin.

6. Run the workflow. Note that the image is now displayed in a browser window
(Figure 4.21).

Figure 4.19: The Image Display workflow with the Browser Display actor substituted for the ImageJ actor.

NOTE: Sometimes the easiest way to connect actors is to go from the output port of the
source to the input port of the destination.

Figure 4.20: The image displayed by the Browser Display actor.

 Chapter 4

 87

4.4 Saving Workflows

Workflows are saved in KAR or XML format, which can be easily stored and shared. To
save a workflow, select the Save, Save As, or Export As… menu item from the File
menu, then name the file and select a save location.

For instructions on saving a workflow and sharing it with others, see Section 5.9 Saving
and Sharing Workflows.

4.5 Searching for Data and Components

Kepler provides a searching mechanism to locate data (on the EarthGrid) and analytical
processing components (on the local system as well as the remote Kepler repository).

4.5.1 Searching for Available Data
Via its search capabilities, Kepler provides access to data that is stored on the EarthGrid.
EarthGrid resources are stored in the KNB Metacat and the KU Digir databases. For
more information about the EarthGrid, see Chapter 2.

To search for data on the EarthGrid:

6. In the Components and Data Access area, select the Data tab (Figure 4.22).
7. Type in the desired search string (e.g., Datos Meteorologicos). Make sure that the

search string is spelled correctly. You can also enter just part of the entire string –
e.g. ‘Datos’.

8. To configure the search, click the Sources button (make sure the Data tab is
selected). Selecting the sources to be searched and the type of documents to be
retrieved can help streamline the search and reduce the amount of time required to
return results. For example, because Datos Meteorologicos is stored in the KNB
Metacat database, the data source for the search can be limited to just that node on
the grid. In the Source dialog window, uncheck “KNB Metacat Authenticated
Query Interface" and click OK.

9. Click the Search button. Results may take 20 seconds to return. A status bar at the
bottom of the Data tab scrolls until the search is complete. When the search is
complete, a list of search results will be displayed in the Components and Data
Access area. The number of returned results is displayed in the status area.

10. To use one or more data actors in a workflow, simply drag the desired data set to
the Workflow canvas.

 Chapter 4

 88

Figure 4.21: Searching for and locating Datos Meteorologicos, a data set that is stored on the EarthGrid

For more information about the data set, right-click Datos Meteorologicos in the
Components and Data Access area or on the Workflow canvas and select Get Metadata
(Figure 4.23). Depending upon the amount of information entered by the provider, much
valuable metadata can be obtained. For example, the type of value and measurement type
of each attribute help you decide which statistical models are appropriate to run.

 Chapter 4

 89

Figure 4.22: Viewing Metadata

The data actor will automatically configure its output ports to match the data. Mouse over
the data ports to reveal a port tooltip (Figure 4.24). The tooltip contains the name of the
port/data field as well as the data type.

Figure 4.23: Identifying data ports. Mouse-over each output port to reveal the port tooltip.

You can also preview the data set by right-clicking the actor and selecting Preview from
the drop-down menu (Figure 4.25).

 Chapter 4

 90

Figure 4.24: Previewing the Datos Meteorologicos data set.

4.5.2 Searching for Standard Components

Kepler comes standard with over 350 workflow components and the ability to modify
and create your own. Users can create an innumerable number of workflows with a
variety of analytic functions. The default set of Kepler processing components is
displayed under the Components tab in the Components and Data Access area.
Components are organized by function (e.g., “Director” or “Filter”). To search for
processing components:

6. In the Components and Data Access area to the left of the Workflow canvas,
select the Components tab.

7. Type in the desired search string (e.g., “File Reader”).

 Chapter 4

 91

8. Click the Search button. When the search is complete, the search results are
displayed in the Components and Data Access area. The search results replace the
default list of components. You may notice multiple instances of the same
component; this is because the same component may appear in multiple
categories in the search results.

9. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas.

10. To clear the search results and re-display the list of default components, click the
Cancel button.

NOTE: If you know which component you want to use and its location in the
Component library, you can navigate to it directly, and then drag it to the Workflow
canvas.

4.5.3 Searching for Components in the Kepler Repository

The Kepler Repository allows users to upload and download workflow components to
and from a centralized server. Users can search for available components via the Kepler
interface. To search for components that are stored remotely in the Kepler repository in
addition to the components contained in the local library:

1. Select the Components tab.
2. Click the Sources button
3. Check the Search checkbox on any remote repositories you wish to search and

click Ok
4. Type in the desired search string (e.g., “ActorDesignedForWorkflow”).

 Chapter 4

 92

Figure 4.25: Searching the Kepler repository for components.

5. Click the Search button. When the search is complete, the search results replace

the default list of components. You may notice multiple instances of the same
component; this is because the same component may appear in multiple
categories in the search results.

6. To use one or more components in a workflow, simply drag the desired
components to the Workflow canvas, or right-click on a KAR result and select
Download. The downloaded KAR will be placed into your local repository (by
default, KeplerData/workflows/MyWorkflows/). If the component requires
modules you do not have installed, Kepler will offer to download those modules.
If this is required, you will probably have to restart Kepler afterwards to restore
full functionality.

7. To clear the search results and re-display the list of default components, click the
Cancel button.

 Chapter 4

 93

NOTE: You can also search the Kepler Repository directly by going to
http://library.kepler-project.org/kepler/. Actors and Workflows can be downloaded from
this website and manually imported into Kepler.

 Chapter 5

 94

	

5. Building Workflows with Existing Actors

Building workflows with existing actors is a relatively simple process that can be
accomplished entirely on the Workflow canvas. Components need only be dragged and
dropped onto the canvas, customized, connected, and run!

For example, the “Hello World” workflow is a very simple workflow that outputs the
famous line "Hello World" until the workflow is paused or stopped (Figure 5.1). The
workflow requires a Constant actor, a Display actor, and an SDF Director.

Figure 5.1: “Hello World” workflow and output.

To create the Hello World workflow:

1. Open Kepler. A blank Workflow canvas will open.
2. In the Components and Data Access area, select the Components tab, then

navigate to the “Components/Director” directory.
3. Drag the SDF Director to the top of the Workflow canvas.
4. To run the workflow a limited number of times, right-click the SDF Director and

select “Configure Director” from the menu. Type the desired number of iterations
into the iterations field of the “Edit parameters for SDF Director” dialog
window and click the Commit button to save your changes.

5. In the Components tab, search for “Constant” and select the Constant actor.
6. Drag the Constant actor onto the Workflow canvas and place it a little below the

SDF Director.
7. Configure the Constant actor by right-clicking the actor and selecting Configure

Actor from the menu. (Figure 5.2)

 Chapter 5

 95

Figure 5.2: Configuring the Constant actor.

8. Type “Hello World” (including the quotes) in the value field of the “Edit
parameters for Constant” dialog window and click Commit to save your changes.
“Hello World” is a string value. In Kepler, all string values must be surrounded by
quotes.

9. In the Components and Data Access area, search for “Display” and select the
Display actor found under “Textual Output.”

10. Drag the Display actor to the Workflow canvas.
11. Connect the output port of the Constant actor to the input port of the Display

actor.

You are now ready to run the workflow.

NOTE: By default, the SDF Director will continuously run a workflow, creating a loop.
For more information about SDF, see Section 5.2.1.

5.1 Prototyping Workflows

Before building a workflow in Kepler, the workflow must be prototyped. Much like a
vacation plan—which might involve booking a flight and hotel room, checking the
weather forecast, packing a suitcase, and catching a cab to the airport--scientific
workflows also break down into a series of steps that often depend on the outcome of
previous steps. Identifying the steps of your workflow, from reading data, to transforming
and processing it, to outputting results in a desired format, is the bulk of the prototyping
work. Once the functions of the workflow have been defined, you can focus on selecting
the appropriate components from the Kepler library (and/or designing new components
as necessary).

Kepler allows users to quickly prototype workflows. Scientists don't have to write an
application, they just have to "draw" it, deciding what steps must be performed, what
type of data the workflow will process, and what the output will be. Each step is

 Chapter 5

 96

ultimately represented by an actor, which uses ports to pass the required data. Figure 5.3
and Figure 5.4 display examples of conceptual workflows used to create Kepler
workflows.

Figure 5.3: A conceptual prototype for a Kepler ecological niche modeling workflow13

13 See Pennington, Deana. July, 2005.The EcoGrid and the Kepler Workflow System: a New Platform for
Conducting Ecological Analyses, Bulletin of the Ecological Society of America.

 Chapter 5

 97

Figure 5.4: A conceptual prototype of the Promoter Identification workflow. 14

Complex workflows can easily be prototyped in Kepler using the CompositeActor actor.
Simply drag as many CompositeActors as needed to the Workflow canvas, add the
number of input/output ports determined necessary, connect the components, and change
the CompositeActor names to appropriately identify the function of the actor (Figure 5.5).

14 See Altintas, Iklay, Coleman, Matthew, Critchlow, Terence, Gupta, Amarnath, Ludaescher, Bertram,
Peterson, Leif. Promoter Identification Workflow Specification. http://kbi.sdsc.edu/SciDAC-SDM/piw-
specification.ppt#256,1, Promoter Identification Workflow Specification.

 Chapter 5

 98

Figure 5.5: Using composite actors to prototype a workflow in Kepler.

In Figure 5.5, each CompositeActor represents a high level logical function in a
workflow designed to prepare and run a GAMESS (General Atomic and Molecular
Electronic Structure System) experiment and display the results. In the prototype stage,
the actors don't need to do anything; later, as the workflow is developed, each of the
composite actors can be opened, and detailed sub-workflows can be constructed inside
(either with existing actors or new ones) to perform its task. For more information about
composite actors, see Section 5.4.

5.2. Choosing a Director

Every workflow requires a director, but which one? Each of the directors packaged with
Kepler—Synchronous Dataflow (SDF), Process Networks (PN), Dynamic Dataflow
(DDF), Continuous (ContinuousDirector), Continuous Time (CT) and Discrete Events
(DE)—has a unique way of instructing the actors in a workflow. Just as one would not
hire David Lynch to direct a romantic comedy, or Steven Spielberg for a high school
reunion flick, one would not, in general, use the SDF director for a workflow that

 Chapter 5

 99

involves integrals, or the CT director for simple data transformation. But why? And how
does one choose an appropriate director to use?

Which director to use under what circumstances is a question that should be answered
during the initial stages of workflow design. As you sketch out the workflow steps and
think about the types of processes the workflow will perform, keep the following
questions in mind: Does the workflow depend on time? Does the workflow require
multiple threads or distributed execution? Does it perform a simple data transformation
with constant data production and consumption rates? Is the model described by
differential equations? The answer to these questions will often indicate the best director
to use.

In the next section, we will take a closer look at the above questions and how each can
help in the director selection process.

Question 1: Does the workflow explicitly depend on time?

Though every task we perform—from balancing a checkbook to integrating polynomials
and trigonometric functions by hand-- requires time, not every Kepler workflow needs to
understand that time passes. A workflow that reformats one type of static data file into
another type needs to be able to read the input format and know how to translate it, but
does not need to know that three seconds has passed between the time the workflow
began and the time it finished. A workflow that examines a series of molecules and
compares (or models or displays, etc) their structures is another example of a workflow
that has no need for a concept of time. The director of these workflows must know how
to order the events—at what point in the workflow each actor must perform—but it does
not need to schedule the actors' actions at specific times.

Some workflows require a notion of time. A workflow that describes resource-limited
population growth—where population is a function of time and the rate of population
change (i.e., a simple linear extrapolation)—must incorporate time in order to calculate
predicted growth. A workflow that models events that occur at discrete times—the times
at which lightning strikes a particular point and the best way to minimize one's chance of
being struck, for example—also requires a notion of time. Note that "model" time and
"real" time can differ. For example, an analysis may take only seconds of "real" time to
perform, but the "model" time may have advanced by several hours or more.

Some Kepler directors are best suited for time-dependent workflows and others for time-
independent workflows. In general, if a workflow requires a notion of time, you should
use a Continuous, CT or DE director. If a workflow does not require a notion of time, use
an SDF, PN or DDF director. We'll talk more about each of these directors and how they
work later in this chapter.

 Chapter 5

 100

Question 2: Does the workflow require independent threads and/or distributed
execution?

If the answer to Question 1 is no, skip to Question 4. If you determine that a workflow
does not require a notion of time, the next question to ask is whether or not the workflow
requires multiple threads (i.e., independent workflow processes that run in parallel)
and/or distributed execution (i.e., remote data processing or access). If so, the workflow
should most likely use a PN Director.

In a PN workflow, each actor has its own Java thread, permitting the workflow to
perform multiple tasks simultaneously. A workflow can query a remote database, for
example, and simultaneously process other calculations, even if the query results are
delayed. The PN Director is also well suited for overseeing workflows that require
complex logic.

In DDF and SDF workflows, actors are executed one at a time with a single thread of
execution for the workflow.

Question 3: Does the model perform a simple data transformation with constant
data production and consumption rates?

If you determine that a workflow does not require a notion of time nor multiple threads
and/or distributed execution, the next question to ask is: Does the model perform a simple
data transformation with constant data production and consumption rates?

A simple data transformation is one that does not involve deeply hierarchical or recursive
structures. Examples of simple data transformations include converting one type of token
to another (a series of items to an array, for example), translating one file format to
another (an XML file to an HTML Web page, for example), calculating the average of a
series of values, or reading a file and outputting a specific line or value.

A "constant data rate" means that all actors in the workflow consume and produce a
consistent, pre-determined number of data tokens every time the workflow iterates. A
token can be thought of as a container used to hold data of various types (strings,
integers, objects, arrays, etc.). Note that even though an array may consist of multiple
items, it is represented by a single token that is passed from the output port of one actor
to the input port of another via channels.

In the simplest constant rate workflow, actors consume one data token on each input port
and produce one token on each output port whenever the workflow executes ('fires'). An
example is a workflow that simulates a coin toss by using the Bernoulli and Display
actors to generate and display a series of random true and false values. This
workflow has a constant data rate because each time it is run, the Bernoulli actor
generates and outputs one token of data, and the Display actor receives and displays

 Chapter 5

 101

exactly one token as well. Workflows may still have a constant data rate even if they
contain actors that consume and/or produce more than one token each time they execute.
For example, a workflow that uses the TokenDuplicator actor to receive a single token
and output three duplicated tokens has a constant data rate (i.e., the actor consumes one
token and produces three each time it executes) even though the number of tokens
consumed and produced is not equivalent. However, actors that consume and produce a
different number of tokens each time they execute (e.g., a BooleanSwitch actor that
outputs a true value if the input value is true, and produces no output otherwise) do
not have a constant data rate.

If you determine that your workflow performs a simple data transformation and has a
constant data rate, you will most likely use an SDF Director to oversee the workflow.
Because data rates are constant, the SDF Director can pre-calculate a workflow execution
schedule, making the director very efficient. Under a DDF Director, data consumption
and production rates do not have to be constant, allowing for more dynamic execution.
DDF Directors are well suited for control structures (e.g., if/then/else) using
BooleanSwitch and DDFBooleanSelect actors, which consume or produce tokens on
different channels based on the token received from the control port.

Question 4: Is the model described by differential equations?

If you have determined that your workflow depends on time (i.e., the answer to Question
1 is "yes"), the next question you should ask is: Is the model described by differential
equations?

Differential equations are most often used by workflows that describe dynamic systems
(systems that depend upon a continuously varying time parameter, such as the population
growth of a predator and/or its prey over time) or workflows that are used to perform
numerical integration. These workflows should use a Continuous or CT Director, which
are designed to work with ordinary differential equations.

Time-oriented workflows that do not involve differential equations will likely use a DE
Director to execute events at specified times (e.g., to process information--sensor data,
for example--that has a time stamp) or for scheduling simulations (a queuing system, for
example).

 Chapter 5

 102

Figure 5.6: Choosing a director.

In most cases, you can determine the appropriate director to use for a workflow just by
answering a handful of questions. Figure 5.6 provides a useful quick-reference.

The six directors included in the default Kepler suite: SDF, PN, DDF,
ContinuousDirector, CT, and DE, are the most commonly used directors, and each is
described in the following sections. However, Kepler software supports the full range of
directors used by Ptolemy. For more information about additional directors, please see
the Ptolemy documentation.

5.2.1 Synchronous Dataflow (SDF)

The SDF Director is very efficient and will not tax system resources with overhead. It
achieves this efficiency by precalculating the schedule for actor execution. However, this

 Chapter 5

 103

efficiency requires that certain conditions be met, namely that the data consumption and
production rate of each actor in an SDF workflow be constant and declared. If an actor
reads one piece of data and calculates and outputs a single result, it must always read and
output a single token of data. This data rate cannot change during workflow execution
and, in general, workflows that require dynamic scheduling and/or flow control cannot
use this director. Additionally, the SDF Director has no understanding of passing time (at
least by default), and actors that depend on a notion of time may not work as expected.
For example, a TimedPlotter actor will plot all values at time zero when used in SDF.

The SDF Director is often used to oversee fairly simple, sequential workflows in which
the director can determine the order of actor invocation from the workflow. Types of
workflows that would run well under an SDF Director include processing and
reformatting tabular data, converting one data type to another, and reading and plotting a
series of data points. A workflow in which an image is read, processed (rotated, scaled,
clipped, filtered, etc.), and then displayed, is also an example of a sequential workflow
that requires a director simply to ensure that each actor fires in the proper order (i.e., that
each actor executes only after it receives its required inputs). In Figure 5.7, the SDF
Director ensures that the image is not displayed until it is processed, and that the image is
not processed until it is read.

By default, the SDF Director requires that all actors in its workflow be connected.
Otherwise, the director cannot account for concurrency between disconnected workflow
parts. Usually, a PN Director should be used for workflows that contain disconnected
actors; however, the SDF Director's allowDisconnectedGraphs parameter can be
set to true. The SDF Director will then schedule each disconnected ‘island’
independently. The director cannot infer the sequential relationship between disconnected
actors--nothing “forces” the director to finish executing all actors on one island before
firing actors on another. However, the order of execution within each island should be
correct. Usually, disconnected graphs in an SDF model indicate an error.

Figure 5.7: A simple SDF workflow used to read, process, and display an image. Note that all actors are
connected and that the workflow does not depend on the passage of time.

Workflows that require loops (feeding an actor's output back into its input port for further
processing) can cause "deadlock" errors under an SDF Director (or any director, for that
matter). The deadlock errors occur because the actor depends on its own output value as

 Chapter 5

 104

an initial input. To fix this problem, use a SampleDelay actor to generate and inject an
initial input value into the workflow. The workflow in Figure 5.8 uses a SampleDelay
actor to set an initial population value (n) of 1 that is used when the workflow first
iterates.

Figure 5.8: Using a SampleDelay actor to prevent deadlock errors. The above workflow can be found
under $kepler/demos/SEEK/DiscreteLogistic_SDF_Director.xml.

SDF Directors control how many times a workflow is iterated. Most often, a workflow
need be run only once, but there are instances in which a workflow should iterate more
than once: if a workflow contains a loop that should be executed several times, for
example, as in Figure 5.8.

In Figure 5.8, a workflow loop is used to feed the output of an Expression actor called
Discrete Logistic back into its input (as well as into a SequencePlotter, which plots the
data) so that a new result can be calculated using the previous result. The SDF Director
specifies that the loop iterate 100 times before stopping. Note that a SampleDelay actor is
used to generate an initial population value, which is used the first time the workflow
runs.

The number of times a workflow is iterated is controlled by the director's iterations
parameter. By default, this parameter is set to "0". Note that "0" does not mean "no
iterations." Rather, "0" means that the workflow will iterate forever. Values greater than
zero specify the actual number of times the director should execute the entire workflow.
A value of 1, meaning that the director will run the workflow once, is often the best
setting when building an SDF workflow.

 Chapter 5

 105

The SDF Director also determines the order in which actors execute and how many times
each actor needs to be fired to complete a single iteration of the workflow. This schedule
is calculated BEFORE the director begins to iterate the workflow. Because the SDF
Director calculates a schedule in advance, it is quite efficient. However, SDF workflows
must be static. In other words, the same number of tokens must be consumed/produced at
every iteration of the workflow. Workflows that require dynamic control structures, such
as a BooleanSwitch actor that sends output on one of two ports depending on the value of
a 'control', cannot be used with an SDF Director because the number of tokens on each
output can change for each execution.

Unless otherwise specified, the SDF Director assumes that each actor consumes and
produces exactly one token per channel on each firing. Actors that do not follow the one-
token-per-channel firing convention (e.g., Repeat or Ramp) must declare the number of
tokens they produce or consume via the appropriate parameters. In Figure 5.9, a Ramp
actor is used to generate five tokens, which are passed to a SequenceToArray actor. The
number of tokens the Ramp actor generates is specified with the actor's
firingCountLimit parameter. The SequenceToArray actor must be told to expect
five tokens, not one. The workflow uses a Constant actor that contains a variable called
FiringCountLimit to tell the SequenceToArray actor to expect five tokens. The
SequenceToArray actor reads the input tokens, generates a single array from them, and
outputs a single token containing a five element array. Because the output of the
SequenceToArray actor as well as the input of the Display actor conform to the one-
token-per-channel firing convention, there is no need to specify a data
consumption/production rate.

Figure 5.9: An example of an SDF workflow. Note that the data consumption rate for the
SequenceToArray actor must be specified before the workflow is run.

The amount of data processed by an SDF workflow is a function of both the number of
times the workflow iterates and the value of the director's vectorizationFactor
parameter. The vectorizationFactor is used to increase the efficiency of a
workflow by increasing the number of times actors fire each time the workflow iterates.

 Chapter 5

 106

If the parameter is set to a positive integer (other than 1), the director will fire each actor
the specified number of times more than normal. The default is 1, indicating that no
vectorization should be performed. Customizing the vectorizationFactor
parameter can be useful when modeling block data processing. For example, a signal
processing system that filters blocks of 40 samples at a time using a finite-impulse
response (FIR) filter can be built using a single sample filter, provided the
vectorizationFactor parameter of the SDF Director is set to 40. Here, each firing
of the SDF model corresponds to 40 firings of the single sample FIR filter.15 Keep in
mind that changing the vectorizationFactor parameter changes the meaning of a
nested SDF workflow and may cause deadlock in a workflow that uses it.

The SDF Director has several advanced parameters that are generally only relevant when
an SDF workflow contains composite components. In most cases the period,
timeResolution, synchronizeToRealTime, allowRateChanges,
timeResolution, and constrainBufferSizes parameters can be left at
their default values.

For more information about the SDF Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

5.2.2 Process Networks (PN)

The Process Network (PN) Director, unlike the SDF Director, does not statically
calculate firing schedules. Instead, in a PN workflow each actor has an independent Java
thread and the workflow is driven by data availability: tokens are created on output ports
whenever input tokens are available and output can be calculated. Output tokens are
passed to connected actors, where they are held in a buffer until that next actor collects
all required inputs and can fire. The PN Director finishes executing a workflow only
when there are no new data token sources anywhere in the workflow.

Because PN workflows are very loosely coupled, they are natural candidates for
managing workflows that require parallel processing on distributed computing systems.
PN workflows are powerful because they have few restrictions. On the other hand, they
can be very inefficient because the director must keep looking for actors that have
sufficient data to fire. (Remember that for SDF, the execution schedule is determined
once, before the workflow starts to execute.)

The same execution process that gives the PN Director its flexibility can also lead to
some unexpected results: workflows may refuse to automatically terminate because
tokens are always generated and available to downstream actors, for example. If one
actor fires at a much higher rate than another, a downstream actor's memory buffer may
overflow, causing workflow execution to fail.

15 Please see the Ptolemy documentation for more information

 Chapter 5

 107

The workflow in Figure 5.10 appears to generate a constant and display it. However, this
workflow may not work correctly due to the interaction between the Constant actor,
which, by default, always produces an output when "asked" by the director, and the PN
Director, which always asks for an actor's output unless the actor indicates that it is
finished. Because the Constant actor is never "finished", the PN Director will continue to
ask for output, and the workflow will iterate forever--or at least until the input buffer of
the Display actor overflows. One can correct the problem by changing the
firingCountLimit parameter of the Constant actor to some finite value (Figure
5.11).

Figure 5.10: This workflow will not work under the PN Director unless the Constant actor's
firingCountLimit parameter is set to a finite value.

Figure 5.11: Set the firingCountLimit parameter to an integer to use the Constant actor under a PN
director.

The PN Director has several advanced parameters (initialQueueCapacity and
maximumQueueCapacity) that are only relevant for performance tuning in special
cases. For most workflows, leave these parameters at their default values.

For more information about the PN Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

 Chapter 5

 108

5.2.3 Discrete Events (DE)

The Discrete Event (DE) Director, which oversees workflows where events occur at
discrete times along a time line, is well suited for modeling time-oriented systems, such
as queuing systems, communication networks, and occurrence rates or wait times. One
classic problem that a DE Director can manage well is the bus station/bus rider problem,
where buses and riders arrive at a bus station at random or fixed rates and the public
transit director wishes to calculate (or minimize) the amount of time that riders must wait.

In DE workflows, actors send "event tokens," which consist of a data token and a time
stamp. The director reads these tokens, and places each on a global, workflow timeline.
Large event queues or queues that change often are “expensive” in terms of system
resources and may have performance issues.

All actors in a DE workflow must receive input tokens, even if the tokens are solely used
as triggers. Once active, an actor will fire until it has no more tokens in its input ports, or
until it returns false.

Because DE actors only fire only after they receive their inputs, workflows that require
loops (feeding an actor's output back into its input port for further processing) can cause
"deadlock" errors. The deadlock errors occur because the actor depends on its own output
value as an initial input. To fix this problem, use a TimedDelay actor to generate and
inject an initial input token.

The DE Director and each event in its workflow contain a tag that consists of a
timestamp and additional information that helps the director determine when to process
each event. On each iteration, the director will process all events with tags that are equal
to its tag (the “model tag”), and then advance its model tag and perform a new set of
matching events. Note that “model time” is not “real time.” Model time starts from the
time specified by startTime parameter, which has a default value of 0.0. The stop
time is specified by the stopTime parameter, which has a default value of Infinity,
meaning that the execution will run forever.

Execution of a DE model ends when the timestamp of the earliest event exceeds the stop
time. By default, execution also ends when the global event queue becomes empty. To
prevent ending the execution when there are no more events (if your workflow relies on
user interaction, for example), set the stopWhenQueueIsEmpty parameter to
false.

If the parameter synchronizeToRealTime is set to true, then the director will not
process events until the real time elapsed since the model started matches the timestamp
of the event. Synchronizing ensures that the director does not get ahead of real time;
however, synchronizing does not ensure that the director keeps up with real time.

 Chapter 5

 109

The DE Director's timeResolution parameter is an advanced parameter that is only
useful when the DE workflow contains composite components. In general, leave the
parameter set to its default value ("1E-10")

For more information about the DE Director, see the Ptolemy Documentation. The
Ptolemy site also has a number of useful examples.

5.2.4 Continuous Time (CT)

The Continuous Time (CT) Director is designed to oversee workflows that predict how
systems evolve as a function of time (i.e., "dynamic systems"). In CT workflows, the
rates of change of parameters are related to the current value or rates of change of other
parameters, often in complex and coupled ways that are described by differential
equations. For example, the change in the population of a predator and its prey over time
(described by the Lotka-Volterra equations), can be calculated using a CT workflow (see
Section 4.2.3). In general, CT workflows function much like STELLA, a common
commercial software package that calculates dynamic (or continuous time) responses.

The CT Director keeps track of the "time" of each iteration as well as the time between
each iteration (the "time step"). By insuring that the time step is small enough, the
director can use simple extrapolations to estimate new values. The CT Director then
iterates the workflow enough times to reach the desired stop time. The entire process is
thus just numerical integration.

Figure 5.12 shows a simple workflow that uses the CT Director to calculate resource-
limited population growth. The integrand of the logistic equation that is commonly used
to describe resource-constrained population growth is entered into an Expression actor.
The output of the Expression actor (labeled Logistic Model) is connected to the input of
an Integrator actor, which calculates the population growth rate at a future time (derived
from the current time plus the time step specified by the director) given the current rate of
growth (output by the Expression actor). The output of the Integrator is then connected
back to the input of the Expression actor. This loop is then iterated a number of times by
the CT Director, numerically integrating the differential equation.

 Chapter 5

 110

Figure 5.12: A workflow using a CT Director.

The CT Director in the above example is set to integrate for 100 seconds. Using the
initial values for growth (r) and carrying capacity (k), the workflow calculates the
growth rate at later times and outputs a graph representing the results. The curve rises at a
rate determined by the growth rate, and then levels off at the carrying capacity (Figure
5.13).

Figure 5.13: Output of the resource-limited population growth workflow

 Chapter 5

 111

The CT Director calculates the size of integration steps in the numerical integration and
can be configured to use different extrapolation algorithms. How the director performs
the integration depends on the ordinary differential equation (ODE) solver algorithm
selected with the ODESolver parameter. By default, the CT Director uses the
ExplicitRK23Solver algorithm. Each of the four available ODE solver algorithms:
ExplicitRK23Solver, ExplicitRK45Solver, BackwardEulerSolver, and
ForwardEulerSolver have different performance and accuracy characteristics depending
on the function being integrated. Some of the algorithms (ForwardEulerSolver and
BackwardEulerSolver) are "fixed step" algorithms, meaning that users specify a constant
integration step size to be used throughout the integration. Others are "variable-step-size"
algorithms (ExplicitRK23Solver and ExplicitRK45Solver), meaning that the director will
change step sizes according to error estimation. For a detailed discussion of these
algorithms, see the Ptolemy documentation (Volume 3, Chapter 2).

In general, the relevance of the director's parameters varies depending on the type of
ODE solver algorithm selected. If the algorithm is fixed-step (ForwardEulerSolver and
BackwardEulerSolver), the director will use the value specified by the initStepSize
as the step size. The specified value is a 'guess' at an initial integration step size. If the
integral does not look right, changing the initStepSize might provide a better
result. For variable-step-size algorithms (ExplicitRK23Solver and ExplicitRK45Solver),
step-size will change based on the rate of change of the original function's values (i.e.,
derivative values). In other words, time-steps within an integration will change
throughout the calculation, and the initStepSize is used only as an initial
suggestion.

Directors with variable-step-size algorithms use the maxStepSize and
minStepSize parameters to set upper and lower bounds for estimated step sizes. These
parameters are used for adjusting tradeoffs between accuracy and performance. For
simple dynamic systems, setting an upper bound with the maxStepSize parameter
helps ensure that the algorithm will use an adequate number of time points. For more
complex systems, the minStepSize ensures that the algorithm will not gobble too
many system resources by using increasingly minute step sizes. The minStepSize is
also used for the first step after breakpoints.

The timeResolution parameter is also used to adjust the tradeoff between accuracy
and speed. In general, one would not change this parameter unless a function is known to
change substantially in times of less than the parameter's default value, 1E-10 sec. The
parameter helps ensure that variable-step-size algorithms do not use unnecessarily small
time steps that would result is long execution times. Reducing the parameter's value
might produce more accurate results, but at a performance cost.

The errorTolerance parameter is only relevant to directors that use variable-step-
size algorithms. Workflow actors that perform integration error control (e.g., the
Integrator actor) will compare their estimated error to the value specified by the
errorTolerance parameter. If the estimated error is greater than the
errorTolerance, the director will decide that the step size is inaccurate and will

 Chapter 5

 112

decrease it. In most cases, the default value of the errorTolerance parameter (1e-4)
does not require change

The startTime and stopTime parameters specify the initial and final time for the
integration. By default, the time starts at 0 and runs to infinity. Note: the startTime
and stopTime parameters are only applicable when the CT Director is at the top level.
If a CT workflow is contained in another workflow, the CT Director will use the time of
its executive director.

The maxIterations parameter specifies the number of times the director will iterate
to determine a "fixed point." A fixed point is reached if two successive iteration steps
produce the "same" result. How close values must be to be considered fixed is specified
with the valueResolution parameter, which defaults to 1e-6.

The synchronizeToRealTime and runAheadLength parameters are advanced
parameters that are generally only used when a CT workflow is nested in another
workflow. For example, if the CT Director is embedded in an event-based workflow
(e.g., a workflow that uses a DE Director), the CT Director will “run ahead” of the global
time by the amount specified by the runAheadLength parameter, and prepare to roll
back if necessary. The local current time in the sub-workflow is compared with the
current time of the executive director. If the local time is later than the global time, then
the directed system will rollback to a "known good" state. The "known good" state is the
state of the system at the time when local time is equal to the current time of the
executive director. In general, the synchronizeToRealTime and
runAheadLength parameters should be left at their default values (Figure 5.14).

Figure 5.14: The CT Director parameters.

 Chapter 5

 113

For more information about the CT Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

5.2.5 Dynamic Dataflow (DDF)

A DDF Director, like the SDF Director, executes a workflow in a single execution
thread, meaning that tasks cannot be performed in parallel as they can be under a PN
Director. Unlike the SDF Director, however, the DDF Director makes no attempt to pre-
schedule workflow execution, and data production and consumption rates can change as a
workflow executes. This flexibility permits very dynamic workflow execution, and you
will likely use this director for workflows that use BooleanSwitch and DDFBooleanSelect
actors to create control structures, but that do not require parallel processing (in which
case a PN Director should be used). In general, the DDF Director is a good choice to use
for managing workflows that use Boolean switches for an if-then-else type constructs
(Figure 5.15) and branching, or that require data-dependent iteration (e.g., multiplying an
input integer until the product is greater than a set threshold—i.e., a "do while" loop).

Figure 5.15: Using the DDF Director with a workflow that uses if-then-else type structure.

The workflow in Figure 5.15 uses a BooleanSwitch actor to direct its input to either an
"If" or an "Else" output, depending on the value of a token passed to the actor's
control port. Because the output of the BooleanSwitch ports is not constant
(sometimes the port will have output, sometimes not) the workflow cannot be run under
an SDF Director, which requires constant data rates. Either a DDF or PN Director can

 Chapter 5

 114

handle variable data rates, and because the workflow does not require parallel processing,
the DDF Director is the better choice for this workflow.

Note that the workflow uses a DDFBooleanSelect actor specifically designed for DDF
workflows. This actor should be used under DDF Directors instead of the BooleanSelect
actor. Additional actors designed to work under DDF Directors, such as DDFSelect and
DDFOrderedMerge, can be instantiated using the Tools > Instantiate Component menu
option.

In Figure 5.15, the director's parameters are left at their default settings (Figure 5.16)

Figure 5.16: The default parameters of the DDF Director.

The iterations parameter is used to specify the number of times the workflow is iterated.
By default, this parameter is set to "0". Note that "0" does not mean "no iterations."
Rather, "0" means that the workflow will iterate forever. Values greater than zero specify
the actual number of times the director should execute the entire workflow.

By default, the value of the maximumReceiverCapacity parameter is 0, which
means that the queue in each receiver is unbounded. To specify bounded queues, set this
parameter to a positive integer. The DDF Director's third parameter,
runUntilDeadlockInOneIteration,can only be selected if the DDF Director is
running a sub-workflow (i.e., you cannot turn this parameter on if the DDF director is the
workflow's top-level director). In general, when using DDF in composite actors, it is
useful to select this parameter to ensure that the subworkflow sends out one token each
iteration. When	
 runUntilDeadlockInOneIteration is selected, the director
will repeat the basic iteration until deadlock is reached. Deadlock occurs when no active
actors are able to fire because their firing rules are not satisfied.

By default, the DDF Director uses a set of firing rules that determine how to execute
actors in a "basic iteration." Unlike the SDF Director, which calculates the order in which
actors execute and how many times each actor needs to be fired BEFORE the director
begins to iterate the workflow, the DDF Director determines how to fire actors at
runtime, and the number of tokens produced and output by each actor can vary in each
basic iteration. Users can ensure that a specified number of tokens are consumed or
produced by either (1) setting a parameter named
requiredFiringsPerIteration in workflow actors so that they are fired the
specified number of times in each iteration (e.g., a Display actor that should display one
token in each workflow iteration, or an actor that must output a single token to a

 Chapter 5

 115

containing workflow on each iteration) or (2) by selecting the director's
runUntilDeadlockInOneIteration parameter, in which case, in each iteration,
the director will repeat the basic iteration until deadlock is reached. Deadlock occurs
when no active actors are able to fire because their firing rules are not satisfied.

A simple example of a DDF sub-workflow contained by a PN workflow can be used to
illustrate the usefulness of user-defined requiredFiringsPerIteration
parameters and the DDF Director's runUntilDeadlockInOneIteration
parameter. In the example in Figure 5.17, a Ramp actor outputs the integers from 1 to 8
to a composite DDFActor. Opening the DDFActor reveals a simple DDF sub-workflow
that uses a relation to branch the input to two Expression actors: one which simply passes
the value true to a BooleanSwitch, the other which outputs a string such as "This is
string no 1" or "This is string no 2", etc. The output of the DDFActor is then passed to a
Display actor.

Figure 5.17: A DDF sub-workflow contained in a PN workflow.

The expected output of the workflow in Figure 5.17 is a "list" of all eight strings
generated by the DDFActor ("This is string 1", etc). However, when the workflow is run
using the default actor and director settings, the following output is produced (Figure
5.18)

 Chapter 5

 116

Figure 5.18: Output of the workflow displayed in Figure 5.17 when all actor and director parameters use
default settings

What happened to strings 5-8? The answer lies in how the DDF Director determines
which actors to fire and when. In this case, the input comes from the containing
workflow, and all eight values are passed to the sub-workflow correctly. Listening to the
DDF Director during execution reveals that the expressions are fired in one iteration and
that the last Boolean Switch is fired only in the next iteration (thus emitting a token every
two iterations). In other words, one iteration is not a "full iteration" of the DDF
subworkflow.

To ensure that the BooleanSwitch actor iterates and that the sub-workflow completes its
task, one of the following techniques can be used:

1) Add a requiredFiringsPerIteration parameter to the BooleanSwitch actor
specifying the number of tokens it must consume at each iteration. To add the
new parameter, right-click the BooleanSwitch actor and select Configure Actor.
Click the Add button and enter the name and value of the new parameter (Figure
5.19)

Figure 5.19: Adding the requiredFiringsPerIteration parameter.

Click OK to save the new parameter and then Commit to save the changes. When
you rerun the workflow, the output should now be as expected (Figure 5.20).

 Chapter 5

 117

Figure 5.20: The output of the example workflow once a requiredFiringsPerIteration
parameter has been added to the BooleanSwitch actor.

Alternatively you can

2) Turn on the DDF Director's runUntilDeadlockInOneIteration
parameter. To turn on this parameter, double-click the director and check the box
beside the parameter name (Figure 5.21).

Figure 5.21: Turning on the DDF Director's runUntilDeadlockInOneIteration parameter.

Once this parameter is on, the DDF Director will, for each iteration, repeat the basic
iteration until deadlock is reached. Deadlock occurs when no active actors are able to fire
because their firing rules are not satisfied. Running the workflow again with the
runUntilDeadlockInOneIteration parameter selected will produce the
expected results (Figure 5.20)

For more information about the DDF Director, see the Ptolemy documentation. The
Ptolemy site also has a number of useful examples.

 Chapter 5

 118

5.3 Using Existing Actors

Kepler comes with a standard library of over three hundred fifty actors that can perform
tasks such as connecting to a database, executing a UNIX command, displaying images
and maps, or transforming data from one type to another. Existing actors can be
customized in several ways: via parameters, additional ports, and a user-defined label.
See Chapter 3 for more information about these features.

Users can select and use actors from the standard component library, the Kepler
Repository, or from collaborators who make actors available online or simply email a
component for immediate use. The following sections discuss each of these options in
greater detail.

5.3.1 Using Actors from the Standard Component Library

All actors that are included in the Kepler standard component library appear in the tree in
the Components area. Double-click an actor directory to open it (or double-click an open
directory to close it) and navigate to the desired component, or use the Search field at the
top of the library to locate the component directly (see Section 4.5.2 for more information
about searching for components). To search only the local library, make sure no Remote
repositories are marked ‘Search’ in the Tools > Preferences > Components tab.

To use an actor from Kepler's standard component library, simply drag-and-drop the
actor from the library onto the Workflow canvas. All of the actors in the library have
been tested and are ready to be incorporated into workflows.

To read more about an actor before instantiating it on the Workflow canvas, right-click
the actor and then click View Documentation (Figure 5.22). Kepler will open a
documentation screen containing information about the actor.

 Chapter 5

 119

Figure 5.22: Viewing information about an actor in the Component library.

5.3.2 Instantiating Actors Not Included in the Standard Library

If you cannot locate a component in the standard library, but you know its class name—
which might be the case with a Ptolemy actor that is not included in the standard library--
you can instantiate the actor using the Instantiate Component item in the Tools menu
(Figure 5.23). Instantiating an actor is the same as dragging an actor from the actor tree
to the Workflow canvas. Components can be instantiated either with a class name or via a
URL. Note that instantiation of an actor from a URL only works for Composite actors
made from actors already in the standard actor library. Instantiated components will
appear on the Workflow canvas.

 Chapter 5

 120

Figure 5.23: Instantiating a component via the Tools menu item.

The class name of each actor is displayed in the documentation. For example, to see the
class name of the Constant actor, right-click the actor and select Documentation >
Display (Figure 5.24).

 Chapter 5

 121

Figure 5.24: The class name of the Constant actor.

The online Ptolemy code documentation contains the actor class name near the top of
each page (Figure 5.25). For example, use the class name
ptolemy.domains.ct.kernel.CTBaseIntegrator to instantiate the
CTBaseIntegrator actor on the Workflow canvas.

 Chapter 5

 122

Figure 5.25: Online Ptolemy documentation contains the class name of each component near the top of
each page. Use the class name to instantiate the component in Kepler.

Note that actors that are instantiated from the Tools menu are placed on the Workflow
canvas, but are not added to the local library. See Section 5.3.5 for information about
saving actors to the local library.

5.3.3 Using the Kepler Analytical Component Repository

The Kepler Analytical Component Repository contains components in a remote library
hosted on the EarthGrid. Users can upload and download workflow components from this
centralized server, and these components can be searched, downloaded (or uploaded), and
used via the Kepler interface.

To search for components in the repository, first select the ‘remote’ repositories you’d
like to search from the Tools > Preferences > Components tab, and then type the name of
the required component in the search field (Figure 5.26). The component will
automatically download when a user drags and drops the search result onto the Workflow
canvas. If the found component is a KAR, it may be downloaded into your local ‘Save’
repository (also configured in the Components Preferences tab), and by default this is
KeplerData/MyWorkflows/.

 Chapter 5

 123

Figure 5.26: Search field for local and remote components.

Note that actors that are downloaded from the repository are instantiated on the
Workflow canvas, but are not added to the local library. See Section 5.3.5 for information
about saving actors to the local library.

To add a new component to the repository where it can be used by other workflow
designers:

1. Make sure that your actor has a unique and descriptive name. Right-click the actor
and select Customize Name to supply a name.

2. Right-click the actor and select Upload to Repository from the menu (Figure
5.27). Enter a username, password, and organization OR, if you do not have a
user account, click the Login Anonymously button to upload the actor without
credentials. To obtain log-in credentials, please register for a KNB account at
KNB.ecoinformatics.org.

 Chapter 5

 124

Figure 5.27: Uploading actors to the Kepler Repository. Right-click the actor and select the Upload to
Repository menu item (left). Log in to the Kepler Repository using the pop-up authentication dialog
(right).

3. Click "Yes" in the dialog box that asks whether the component should be publicly

accessible in the library. Each component must have a unique Life Science
Identifier (LSID), which identifies it. The system will automatically assign an
LSID if necessary. A confirmation screen appears when the upload is complete.

5.3.4 Saving Actors to Your Library

The local Kepler library, which is accessed in the Components tab can be customized
with additional actors and other components. To add actors to the local library, simply
right-click the new actor and select “Save Archive (KAR)”. If the KAR file is saved into
a configured local repository folder, e.g. the “MyWorkflows” directory, it will be
displayed automatically in the actor library. (Figure 5.28 and 5.29).

 Chapter 5

 125

Figure 5.28: Saving an actor to your local library.

Figure 5.29: A modified Binary File Reader actor saved to the local library.

 Chapter 5

 126

5.3.5 Importing Actors as KAR Files

Actors are stored as KAR (Kepler Archive Format) files, which allow them to be easily
transported, shared and archived. To save an actor as a KAR file:

1. Right-click the actor on the Workflow canvas and select Save Archive (KAR)…
from the menu.

2. Choose a save location and file name for the KAR file and click Save.
3. The actor will be saved as a KAR file. Note: if the actor has been compiled from

new source code available only on the local machine, you must follow several
additional steps when creating a KAR file. See the Appendix 1, Creating Your
own Actor for more information.

KAR files can be emailed, posted on Web sites, or otherwise shared with other users. To
open a KAR file into Kepler, use the Open… option of the File menu in the Menu bar.

5.3.6 Actor Icon Families

Each Kepler actor belongs to a family—a group of similar actors, often designated with a
common icon or symbol. Some families, like Display or Math, contain sub-families,
which are also identified with a common visual element. The actor icons, which appear in
the Components area as well as on the Workflow canvas, identify the function of each
actor.

Each icon can represent either an actor or a composite actor, depending on the number of
teal "rectangles." In general, an actor is represented by a single teal rectangle and a
composite actor is represented by two overlapping teal rectangles (Figure 5.32). Both
actors and composite actors appear in the component library and can be used in
workflows.

Figure 5.30: Basic actor and composite actor icons

The following table lists each actor family and sub-family, as well as the icon used to
represent it.

 Chapter 5

 127

Array

Array actors are indicated with a curly brace. Actors belonging to
this family are used for general array processing (e.g., array sorting).

Array
Accumulator

Array Accumulator actors read an array and output a
string containing the array elements. Actors:
ArrayAccumulator

Array
Average

Array Average actors read an array of values and output
the average of the values
Actors: ArrayAverage

Array
Contains

Array Contains actors read an array and determine
whether a specified element is contained in it. The actors
output a Boolean value: true if the element is contained
in the array, false if not.
Actors: ArrayContainsElement

Array Dot
Product

Dot Product actors read either two arrays or two
matrices of equal length and compute and output their
dot product.
Actors: DotProduct

Array Length Array Length actors read an array and output the length
of the array.
Actors: ArrayLength

Array Max Array Max actors read an array of elements and output
the value and the index of the largest element.
Actors: ArrayMaximum

Array Min Array Min actors read an array of elements and output
the value and the index of the smallest (i.e., closest to
minus infinity) element.
Actors: ArrayMinimum

Array Sort Array Sort actors read an array of values and output
them in either ascending or descending order (e.g., from
A to Z or Z to A).
Actors: ArraySort

General Array
Processing

General Array Processing actors are used to perform a
wide variety of array manipulations—from extracting a
specified array element, to outputting the indices of peak
array values.
Actors: ArrayElement, ArrayExtract, ArrayLevelCrossing,
ArrayPeakSearch, ArrayRemoveElements, ArrayPermute

Control

Control actors do not have a persistent family symbol. These actors
are used to control workflows (e.g., stop, pause, or repeat).

General
Workflow
Control

General Workflow Control actors are used to stop,
pause, delay, repeat, or branch a workflow.
Actors: Pause, Stop, Repeat, SampleDelay, Case, IterateOverArray,
TokenToSeparateChannelsTransmitter, ThrowException,
ThrowModelError, MessageDigestTest, NonstrictTest, Test,
TypeTest

 Chapter 5

 128

Data/File
Access

Data/File Access actors do not have a persistent family symbol.
Actors belonging to this family read, write, and query data.

Data Access
Support

Data Access Support actors are generally used to open
and close database connections, or to send commands to
a data source.
Actors: CloseDatabaseConnection, OpenDatabaseConnection,
SRBConnect, SRBCreateQueryConditions,
SRBCreateQueryInterface, SRBGetPhysicalLocation,
SRBProxyCommands, PhyloDataReader

Data Query Data Query actors query data sources or metadata.
Actors: DatabaseQuery, SRBQueryMetadata,
TransitiveClosureDatabaseQuery

 or

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler
workflow: files, images, or data sets.
Actors: BinaryFileReader, ExpressionReader, FileReader,
FileToArrayConverter, ImageReader, LineReader,
SimpleFileReader, NexusFileReader,
EML2Dataset, OrbImageSource, OrbPacketObjectSource,
SRBGetMetadata, SRBSGet, SRBStreamGet, DataTurbine,
OpendapDataSource

Read/Write Read/Write actors read and write data from host servers.
Actors: FTPClient, EcogridWriter, DataGridTransfer

 or

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks,
which store data for future use.
Actos: BinaryFileWriter, FileWriter, LineWriter, TextFileWriter,
OrbWaveformSink, OrbWaveformSource

Data
Processing

Data Processing actors do not have a persistent family symbol.
Actors belonging to this family assemble, disassemble, extract, and
convert data.

Data
Processing

Data Processing actors process data—converting data
from one format to another or extracting specified
values from a data set.
Actors: ClimateChangeFileProcessor, ClimateFileProcessor,
SProxy, ExperimentMonitor, XpathProcessor, XSLTProcessor,
Interpolator, LookupTable, RecordAssembler, RecordDisassembler,
RecordUpdater, VectorAssembler, VectorDisassembler,
PolygonDiagramsDataset, PolygonDiagramsTransition, PAUPInfer,
RecIDCM3, TreeDecomposer, TreeImprover, TreeMerger,
TreeParser

 Chapter 5

 129

Director Stand-alone component that directs the other components (the

actors) in their execution

Director Each of the directors packaged with Kepler (SDF, PN,
DDF, Continuous, CT, and DE) has a unique way of
instructing the actors in a workflow. For more
information about which director to use, see Section 5.2.
Directors: CT Director, Continuous Director, DE Director, DDF
Director, PN Director, SDF Director

Display

Display actors are indicated by vertical bars. Actors belonging to this
family display workflow output in text or graphical format.

Array/Matrix
Display

Array/Matrix Display actors accept matrix and/or array
tokens and display them in a scrollable table format.
Actors: MatrixViewer

Browser
Display

Browser Display actors read a file name or URL and
display the file in the user's default browser. Some
browser display actors allow users to interact with the
displayed content during workflow execution.
Actors: BrowserDisplay, BrowserUI

GIS/Spatial
Display

GIS/Spatial Display actors display geospatial data.
Actors: ESRIShapeFileDisplayer, GMLDisplayer

Graph
Display

Graph Display actors plot data sets and display the
results. Some of the actors use R, a language and
environment for statistical computing and graphics.
Graph Display actors that use R indicate so on the icon.
Actors: ArrayPlotter, BarGraph, ENMPCP, SequencePlotter,
TimedPlotter, TimedScope, XYPlotter, XYScope, Barplot, Boxplot,
Scatterplot

Image
Display

Image Display actors display image files.
Actors: ImageDisplay, ImageJ, ShowLocations, TreeVizForester

Table Display

Table Display actors display information in tabular
format.

Text Display

Text Display actors display textual output.
Actors: Display, MonitorValue

File
Management

File Management actors do not have a persistent family symbol.
Actors belonging to this family locate or unzip files, for example.

Directory
Listing

Directory Listing actors read a local or remote directory
name, and output an array of file and/or folder names
contained by that directory.
Actors: DirectoryListing

 Chapter 5

 130

File Locator

File Locator actors locate files from a file system.

File
Management

File Management actors copy, move, fetch, and put files
and directories on local and remote hosts.
Actors: DirectoryMaker, RandomDirectoryMaker, FileCopier, FileCopy,
GenericFileCopier

Zipped Files

The ZipFiles actor 'zips' multiple files into a single
zipped archive.
Actors: ZipFiles

GAMESS

GAMESS actors are used for computational chemistry workflows.

GAMESS
Actors/Comp
utational
Chemistry

GAMESS actors perform a broad range of quantum
chemical computations. For more information about
GAMESS, see http://www.msg.ameslab.gov/GAMESS/

Actors: QMViewDisplay, Babel, OpenBabel, MoleculeSelector,
GamessInputGenerator, GamessLocalRun, GamessNimrodRun,
DataGroup, EndGamessInput, FormattedGroup, KeywordGroup,
StartGamessInput, FileExistenceMonitor, FileListSequencer,
FileLocationChooser, FileNameChooser,
GamessAtomDataExtractor, GamessKeywords,
MoleculeArrayProducer, TemporaryScriptCreator

General Actors that don't fit into one of the other families fall into the

General family. General actors include email, file operation, and
transformation actors, for example.

Computation

Computation actors are used to perform calculations.

Email

Email actors send email notifications from a workflow
to a specified address.
Actors: EmailSender

Filter

Filter actors "filter" information, allowing users to select
specific data from a data set.
Actors: FilterUI

Timers or
Time

Timers or Time actors output the current time.
Actors: CurrentTime, TimeStamp, CreateDate, DateDifference,
DateToString, RandomDate

Transformation

Transformation actors transform data from one type to
another.
Actors: URLToLocalFile, StringToXML, XMLToADNConverter,
BooleanToAnything, ExpressionToToken, LongToDouble,
ObjectToRecordConverter, TokenToExpression,
TokenToStringConverter, UnitConverter, XMLToADNConverter,
ConvertURLToImage, CartesianToComplex, CartesianToPolar,
ComplexToCartesian, ComplexToPolar, PolarToCartesian,

 Chapter 5

 131

PolarToComplex, ArrayToElements, ArrayToSequence,
ElementsToArray, SequenceToArray, StringToN

GIS/Spatial
Processing

GIS/Spatial actors are used to process geospatial information.

GIS/Spatial
Processing

GIS/Spatial Processing actors are used to map and
manipulate geospatial data.
Actors: AddGrids, ConvexHull, CVHullToRaster,
GDALFormatTranslator, GDALWarpAndProjection, Get2DPoint,
GetPoint, GrassBuffer, GrassHull, GrassRaster, GridOverlay,
GridRescaler, MergeGrids, PointInPolygon, PointInPolygonXY,
Rescaler, StringToPolygonConverter, Interpolator,
GARPPrediction, GARPPresampleLayers, GARPSummary,
GridRescaler, GridReset, Rescaler

Image
Processing

Image Processing actors have no persistent family symbol. Actors
belonging to this family are used to work with graphics files.

Image
Processing

Image Processing actors are used to manipulate and
convert image files.

Actors: ASCToRaw, ConvertImageToString, IJMacro,
ImageContrast, ImageConverter, ImageRotate,
StingToImageConverter, SVGConcatenate,
SVGToPolygonConverter

Logic

Logic actors have no persistent family symbol. Actors in this family
include Boolean switches and logic functions.

Boolean
Accumulator

The BooleanAccumulator actor reads a sequence of
Boolean values and outputs one Boolean value from
their combination.
Actors: BooleanAccumulator

Boolean
Multiplexor/
Switch

Boolean Multiplexor and Switch actors determine which
of two or more input values to output. These actors are
useful when creating workflow control structures, which
allow workflows to branch, for example.
Actors: Boolean Multiplexor, Switch

Boolean
Switches

The BooleanSwitch actor reads a value of any type and
routes it to either a "true" or "false" port.
Actors: BooleanSwitch

Comparator

The Comparator actor reads two values and compares
them. The actor outputs a Boolean value (true or false)
that indicates whether the comparison criteria were met

 Chapter 5

 132

 or not.
Actors: Comparator

Equals The Equals actor compares values to see if they are
equal.
Actors: Equals

Is Present? The IsPresent actor outputs "true" or "false" depending
on whether it has received a data token or not.

Actors: IsPresent

Logic
Function

The Logic Function actor performs a specified logical
operation (e.g., "and" or "xnor").
Actors: LogicFunction

Select Select actors select and output a token from among
received input tokens.
Actors: Select, DDFBooleanSelect

Math Math actors have no persistent family symbol. Actors in this family

include add, subtract, integral, and statistical functions.

Absolute
Value

The AbsoluteValue actor reads a scalar value (e.g., an
integer, double, etc) and outputs its absolute value.
Actors: AbsoluteValue

Accumulator

The Accumulator actor outputs the sum of its received
inputs.
Actors: Accumulator

Add or
Subtract

The AddOrSubtract actor adds and/or subtracts received
values.
Actors: AddOrSubtract

Average

The Average actor outputs the average of the values it
receives via its input port.
Actors: Average

Constants

The Constant actor outputs a constant, a string or any
other data type.
Actors: Constant, StringConstant

Counter

Counter actors increment or decrement an internal
counter.
Actors: Counter, TokenCounter

 Chapter 5

 133

Differential
Equation

The DifferentialEquation actor reads differential
equations, subtracts the current equation from the
previously received one, and outputs the difference.
Actors: DifferentialEquation

Stand-alone
white box

Expression

The Expression actor evaluates an expression (e.g., an
addition or multiplication operation) specified in the
Ptolemy expression language.
Actors: Expression

Integral

The Integrator actor are used with the CT or Continuous
directors to help solve ordinary differential equations
(ODEs).
Actors: Integrator, ContinuousIntegrator

Limiter

The Limiter actor reads a scalar value and compares it to
the top and bottom value of a specified range.
Actors: Limiter

Maximum

The Maximum actor reads multiple scalar values and
outputs the maximum value.
Actors: Maximum

Minimum

The Minimum actor reads multiple scalar values and
outputs the lowest value.
Actors: Minimum

Multiply or
Divide

The MultiplyOrDivide actor multiplies and/or divides
received values.
Actors: MultiplyOrDivide

Ramp
Function

The Ramp actor is the equivalent of the "for loop" in
many traditional computer languages.
Actors: Ramp

Random
Number
Generators

The Random actors generate or select one or more
random values.

Actors: Bernouli, DiscreteRandomNumberGenerator,
GaussianDistributionRandomNumberGenerator,
RicianDistributionRandomNumberGenerator,
UniformDistributionRandomNumberGenerator, RandomNormal,
RandomUniform, RandomDate

Remainder

The Remainder actor receives an input value, divides the
value by a specified divisor, and outputs the remainder.
Actors: Remainder

 Chapter 5

 134

Round

The Round actor rounds a number using a specified
rounding function.
Actors: Round

Scale

The Scale actor reads any scalar value that supports
multiplication (e.g., an integer, double, array, matrix,
etc), and outputs a scaled version of the value.

Actors: Scale

Signal
Processing

Signal Processing actors generate or manipulate signals.

Actors: Sinewave

Statistics

Statistics actors organize and analyze data in a variety of
ways.

Actors: Quantizer, ANOVA, Summary, SummaryStatistics,
Correlation, Regression, LinearModel, RMean, RMedian

Trig Function

The TrigFunction computes a specified trigonometric
function.
Actors: TrigFunction

Other/Exter
nal Program

Other/External Program actors are indicated by a purple rectangle.
External Program actors include R, SAS, and MATLAB actors.

General
External
Program

General External Program actors execute UNIX
commands or create UNIX shells from a workflow.
Actors: ExternalExecution, InteractiveShell, SSHToExecute,
UserInteractiveShell

R R actors use R, a language and environment for
statistical computing and graphics.
Actors: ReadTable, Summary, RandomNormal, RandomUniform,
ANOVA, Correlation, LinearModel, Regression, RMean, Rmedian,
Rquantile, Summary, SummaryStatistics, Barplot, Boxplot,
RExpression, Scatterplot

String String actors have no persistent family symbol.

String String actors are used to manipulate and work with
strings in a variety of ways.
Actors: StringAccumulator, StringCompare, StringLength,
StringFunction, StringIndexOf, StringMatches, StringReplace,
StringSplitter, StringSubstring, StringToInt, StringToLong,
StringToN, StringToXML,

Units Unit systems are indicated with a blue oval.
 Units Units are parameters that define a unit system that

consists of a set of base and derived units.

 Chapter 5

 135

Actors: BasicUnits, CGSUnitBase, ElectronicUnitBase, SI

Utility Utility actors have no persistent family symbol.

Utility Utility actors help manage and tune a particular aspect
of an application.

Actors: VariableSetter, ExperimentPreparator, ExperimentStarter,
ForkResourceAdder, TokenDuplicator, Recorder, GUIRunCIPRes,
Initializer, SubsetChooserActor, TreeToString

Web Service

Web Services actors are indicated by a wireframe globe. Actors in
this family execute remote services.

Web Service Web Service actors are used to invoke a Web service,
allowing users to take advantage of remote
computational resources.
Actors:, ServerExecute, SoaplabAnalysis,
SoaplabChooseOperation, SoaplabChooseResultType,
SoaplabServiceStarter, WebService, WMSDActor

Table 5.1: Actor icons

5.4 Using Composite Actors

Composite actors, or actors that contain sub-workflows, are commonly used in Kepler.
These actors—much like document outlines that can be opened or collapsed to show or
hide increased levels of detail--simplify workflows by concealing some of the
complexity. Composite actors are reusable components that perform a potentially
complex task. The details of the process used to carry out the task are revealed when a
user is interested in the minutia and elects to open the composite actor to view its inner
workings.

Composite actors are easily spotted by the double teal rectangle that represents them on
the Workflow canvas (Figure 5.32).

 Chapter 5

 136

Figure 5.31: An example of a workflow that uses two composite actors (Sequence Getter Using XPath and
HTML Generator Using XSLT). The above workflow, 6-WebServicesAndDataTransformation.xml, is
included with the Kepler release in the demos/getting-started directory.

The workflow in Figure 5.32 uses two composite actors to perform workflow steps that
are identified as "Sequence Getter Using XPath" and "HTML Generator Using XSLT".
To see how the composite actor carries out these steps, simply right-click the composite
actor and select Open Actor from the menu. A new application window opens, with the
sub-workflow contained by the composite actor displayed on the Workflow canvas
(Figure 5.33).

 Chapter 5

 137

Figure 5.32: The inner workings of the Sequence Getter Using XPath composite actor.

5.4.1 Benefits of Composite Actors

In addition to simplifying workflows so that they can be more easily understood,
composite actors bring a number of other benefits to Kepler: they can be easily reused
and updated, they can be saved to the local component library or uploaded to the Kepler
Repository where they can be shared, and they can contain other composite actors.

Scientists and other workflow designers can use composite actors to execute a task by
combining existing analytical components rather than creating a new actor from scratch,
which requires knowledge of Java. When composing composite workflows, scientists
simply "wrap up" existing actors into a functional unit that performs a typical task.

Kepler uses two types of composite actors: opaque and non-opaque (or "transparent"). A
sub-workflow that contains its own director is called an opaque composite. Non-opaque
composites do not contain a director, and instead "inherit" their director from the
containing workflow.

 Chapter 5

 138

5.4.2 Creating Composite Actors

A composite actor can be created in one of two ways: either by dragging-and-dropping a
CompositeActor from the component library onto the Workflow canvas and then
customizing it, or by selecting existing components from the Workflow canvas and
selecting Create Composite Actor from the Tools menu. We will go over both methods in
this section.

To create a composite actor using the CompositeActor:

1. In the Components area, search for CompositeActor. Drag and drop the
CompositeActor to the Workflow canvas.

2. Right-click the CompositeActor and select Open Actor from the menu. A new
application window opens with a blank Workflow canvas (Figure 5.34). Use this
canvas to construct the sub-workflow contained by the CompositeActor.

Figure 5.33: Right-click the CompositeActor and select Open Actor to open a blank Workflow canvas
where the sub-workflow can be composed.

 Chapter 5

 139

3. Drag and drop the components needed to compose the sub-workflow onto the
CompositeActor Workflow canvas. Connect the components. The example in
Figure 5.35 contains a sub-workflow that can be used to add two constants and
display the sum in a text window.

Figure 5.34: Adding a sub-workflow to a CompositeActor.

4. Once the sub-workflow has been composed, close the sub-workflow canvas. The
sub-workflow can be accessed again by right-clicking the CompositeActor and
selecting Open Actor from the menu.

5. Right-click the CompositeActor and select Customize Name from the menu.

Select a unique and descriptive name for the Composite actor (e.g., MakeSum).
Click Commit.

6. To add input and output ports to the CompositeActor, use the Add port buttons on

the Toolbar (Figure 5.36). The port will appear on the Workflow canvas, where it
can be connected to actors in the sub-workflow.

 Chapter 5

 140

Figure 5.35: Adding ports to a composite actor.

7. To name the port or otherwise customize it, right-click the CompositeActor icon

and select Configure Ports from the menu (Figure 5.37). Click Commit to save
the customization. The new name (e.g., AddInteger) will appear on the Workflow
canvas of the sub-workflow.

 Chapter 5

 141

Figure 5.36: Customizing the ports of a composite actor.

8. To connect the new port, simply draw a channel between the port and an actor's

input port (Figure 5.38). The port must also be connected to an actor in the
containing workflow. Otherwise, an error may be generated.

 Chapter 5

 142

Figure 5.37: Connecting a port between a sub-workflow and a containing workflow. To complete the
connection, the port must also be connected to an actor in the containing workflow.

9. The Composite actor can now be incorporated into a containing workflow. The

simple example in Figure 5.39 passes a constant (5) to the MakeSum composite
actor, which adds the value, along with the two constants specified in the sub-
workflow, and outputs the sum in a text window.

Figure 5.38: Using a composite actor in a containing workflow. This workflow outputs the sum of the
constant passed to the composite actor (5) and the values specified in the sub-workflow (2 and 3).

 Chapter 5

 143

To create a composite actor using the Create Composite Actor item under the Tools
menu:

1. On the Workflow canvas, select the components you would like to include in the
composite workflow. All selected components will have a yellow highlight.

2. Select Create Composite Actor from the Tools menu. A composite actor

containing the highlighted components will replace them on the Workflow canvas
(Figure 5.41).

3. Customize the name of the new composite actor and add ports to connect it to the

existing workflow, or save the new composite actor to the local actor library by
right-clicking the actor icon and selecting "Save Archive (KAR) …" You will be
prompted to assign a Semantic Type to the new composite actor. It will then be
available for your use in the Component Library.

Figure 5.39: Creating a composite actor using the Tools > Create Composite Actor menu item.

5.4.3 Saving Composite Actors

Composite actors can be saved and shared just as other types of actors can be. In fact,
saving a workflow as a composite actor is one of the simplest ways to transport and share
workflows with colleagues. Simply paste a workflow into a composite actor to create a
composite actor. Composite actors can be saved to the local system or the remote Kepler
Repository, where they can be stored and shared.

 Chapter 5

 144

To save a composite actor to the local system, right-click the actor and select "Save
Archive (KAR)" from the menu. The composite actor will be saved in the Kepler Archive
Format—as a single file that can be stored anywhere on the local system.

To adjust how an actor appears in the Ontologies, adjust its Semantic Annotations by
right-clicking the actor and using "Semantic Type Annotation…".

To save a composite actor to the remote Kepler Repository, right-click the actor and
select "Upload to Repository." The composite actor can be saved to the repository just
like any other type of actor. See Section 5.3.4 for more information.

5.4.4 Combining Models of Computation

Opaque composite actors can be used to create workflows that combine models of
computation (i.e., processes that require different directors). For example, a workflow
that is managed by a CT Director can contain an opaque composite actor managed by a
DE Director (such a workflow can be used for mixed-signal modeling). For more
information about combining models of computation, see the Ptolemy documentation.

5.5 Using the ExternalExecution Actor to Launch an External Application

The ExternalExecution actor can be used to launch an external application from within a
Kepler workflow. The actor can pass values to the application and return values that can
be used or displayed by downstream actors. In order to use the ExternalExecution actor,
the invoked application must be on the local computer and, in some cases, configured
appropriately. In this section, we will look at several examples of workflows that use the
ExternalExecution actor.

The ExternalExecution actor is part of the standard Kepler library and can be found under
"General Purpose/Unix Command" in the component tree or via a search under the
Components tab.

 Chapter 5

 145

5.5.1. Opening the HelloWorld Application

The workflow in Figure 5.42 uses the ExternalExecution actor to open the HelloWorld
application, a simple Java program that ships with Kepler. The HelloWorld application
accepts an argument-- a user name (by default "Kepler_User")--and outputs the string
"Hello Kepler-User!". This workflow can be found in the demos/getting-started directory
(07-CommandLine_1.xml).

Figure 5.40: Using the ExternalExecution actor to launch the HelloWorld application.

The command to execute, "java –cp ./ HelloWorld Kepler_User", invokes
the HelloWorld application (the "-cp ./" option instructs Java to use the current
directory in the classpath). This command is specified by a Constant actor called
CommandLine and passed to the ExternalExecution actor via the actor's command port.
To change the output string from the default, "Hello Kepler_User!", to "Hello Bob!",
simply update Kepler_User to "Bob".

The working directory—the place where the HelloWorld application will be executed—is
specified via the actor's directory parameter. A workflow parameter, WorkingDir,
specifies the name of the directory
(property("outreach.workflowdir")+"/demos/getting-started"),
and the ExternalExecution actor's directory parameter references this value
($WorkingDir). Otherwise, the actor's parameters are left at their default settings
(Figure 5.42).

 Chapter 5

 146

Figure 5.41: The parameters of the ExternalExecution actor.

The ExternalExecution parameters are used to customize the environment and output of
the actor (Table5.1).

Parameter Purpose

firingCountLimit Specify a positive integer to limit the maximum number of

times the actor is executed.
command The command string to execute (e.g., ls or

C:/Program Files/Internet
Explorer/IEXPLORE.EXE) and, optionally, one or
more arguments. The command can also by input via the
actor's command port.

directory The directory in which to execute the command. The
default value of this parameter $CWD, which represents
the user's current working or home directory.

environment An array of records that name an environmental variable
and a value: {{name = "NAME1", value = "value1"}...}
Where NAME1 is the name of the environmental variable,
and value1 is the value. For example {{name = "PTII",
value = "c:/ptII"}} sets the value of PTII to c:/ptII. If the
parameter is set to {{name="", value = ""}}, then the
environment from the parent process is used. If
environmental variables are set with the parameter, the
parent values will not be passed to the process. To view
the current environment, use the "env" command.

 Chapter 5

 147

prependPlatformDependent
ShellCommand

If this parameter is selected, the actor will preface the
command with a platform-dependent shell command
'cmd.exe \c' (under Windows NT or XP) or Windows
95, the arguments 'command.com /C' under
Windows 95 or '/bin/sh –c' (all other
platforms). By default, the parameter is not selected.

NOTE: This parameter must be selected if file redirection
is used in command

NOTE: Under Cygwin, if true, the path environment of
the subprocess is not identical to the path of the calling
process.

throwExceptionOnNon
ZeroReturn

If selected, the actor will generate an error message if the
invoked subprocess returns an error.

waitForProcess Select to indicate that the command should finish
executing before the actor outputs results. By default, the
actor will stream command results as they are generated.

Table 5.1: The ExternalExecution actor parameters.

5.5.2 Opening a Local Browser

A very simple example of a workflow that uses the ExternalExecution actor to open a
browser window is shown in Figure 5.43. The location of the browser software, in this
case C:/Program Files/Internet Explorer/IEXPLORE.EXE for a
Windows system (on a Mac, the location would be something like
/Applications/Firefox.app/Contents/MacOS/firefox), is specified as
the value of the ExternalExecution actor's command parameter (Figure 5.44). All other
parameters are left at their default values.

 Chapter 5

 148

Figure 5.42: Using the ExternalExecution actor to open a browser window.

Figure 5.43: The location of the browser software is specified as the value of the command parameter.
The other parameters are left at their default values.

5.5.3 Opening the Maxent Application

The workflow in Figure 5.45 uses the ExternalExecution actor to launch the Maxent
software (a Java application) from a workflow and to process a specified set of data.
After the Maxent software has executed, Kepler's BrowserDisplay actor displays the
HTML file that contains the results (Figure 5.46). In order to run the workflow, the
Maxent software must be installed on the local system and properly configured.
Instructions for downloading and customizing the software are included in this section.

 Chapter 5

 149

Maxent software is based on the maximum-entropy approach for species habitat
modeling. This software takes as input a set of layers or environmental variables (such as
elevation, precipitation, etc.), as well as a set of georeferenced occurrence locations, and
produces a model of the range of the given species. Maxent is written by Steven Phillips,
Miro Dudik and Rob Schapire, with support from AT&T Labs-Research, Princeton
University, and the Center for Biodiversity and Conservation, American Museum of
Natural History.16

Figure 5.44: Using the ExternalExecution actor to invoke an application.

Figure 5.45: Output of workflow displayed in Figure 5.45. The BrowserDisplay actor displays the HTML
results page generated by the Maxent software.

16 Maxent website, http://www.cs.princeton.edu/~schapire/maxent/

 Chapter 5

 150

The Kepler workflow passes arguments to the Maxent software. These arguments, which
are specified by a parameter (args), tell the software where to find the appropriate data
files. In other words, if you run this workflow on your system, you must either ensure
that your local data files are in the directories specified by the existing workflow
arguments (or change the arguments to point to the location of your source data and
match your existing configuration).

Before you can run a Kepler workflow to invoke Maxent, you must download and
configure the software (if it's not already on your system). To set up your system:

1. Download and configure the Maxent software. Maxent can be freely downloaded
from http://www.cs.princeton.edu/~schapire/maxent/. Place the maxent.jar and
the maxent.bat file (if using Windows) in a directory called: C:/maxent

2. Download and unzip the sample data from the Maxent site:

http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial-data.zip

The sample data are contained in four directories:

layers: contains environmental data such as rainfall, etc.
samples: contains latitude/longitude occurrence location data for
Bradypus variegatus, a three-toed sloth.
outputs: an empty directory that will be used for result files generated
by the application.
swd: (not used in this tutorial)

3. Move the "/layers," "/samples" and "/outputs" directories so that the file paths are:

C:/maxtent/layers
C:/maxtent/samples
C:/maxtent/output

The Maxent software and the data files needed to run the Kepler workflow are
now in place.

4. Open Maxent and perform an example run by specifying the sample and
environmental layer data as well as an output directory (Figure 5.47). Click RUN
to execute. If you have trouble installing, running, or using Maxent, please see the
tutorials on the Maxent site.

 Chapter 5

 151

Figure 5.46: The interface of the Maxent software. Select sample and layer data as well as an
output directory to perform a simple run.

When you click Run, Maxent processes the selected sample and layer data and generates
a number of result files (including an HTML page of results) which are saved to the
"C:/maxent/output" directory.

The Kepler workflow "recreates" all the steps just performed in the previous step: Kepler
opens the Maxent software, specifies sample and layer data, as well as an output
directory, and then runs the software. To create the workflow:

1. Drag and drop an SDF Director to the Workflow canvas. Set the director's
iterations parameter to 1 to avoid calling the Maxent software multiple
times.

2. Drag and drop a Parameter onto the Workflow canvas and specify the arguments

that should be passed to the Maxent software (in this case, the location of the
sample and layer files as well as the name of the output directory and the name of

 Chapter 5

 152

the variable that is categorical (ecoreg). Paths are relative to the location of the
invoked software). The parameter value is:

 -e layers -s samples/bradypus.csv -o outputs -t ecoreg -r –a

Remember to enclose the parameter value in double quotes.

3. Rename the Parameter args. To rename the parameter, right-click its icon and
select Customize Name from the drop-down menu.

4. Drag and drop a ExternalExecution actor onto the workflow canvas and

customize its parameters (Figure 5.48):

a. Specify the value of the command parameter. The command parameter
contains a command to execute, in this case:

java -mx512m -jar maxent.jar $args

This command runs Java, specifies Java arguments (-mx512m specifies
the megabytes of memory available to the program and –jar specifies
that java is to be run from a Java Archive (JAR) file format), opens the
Maxent software and passes it a string of arguments. $args references
the value of the args parameter defined on the Workflow canvas.Note:
arguments can also be included in a .bat file that is used as a command.

b. Set the working directory to c:/maxent/

c. Activate the waitForProcess parameter (if it is not already selected)

by checking the box beside it. The actor will not produce output (i.e., a '1'
on the exitCode output port if the execution is successful) until the
Maxent software has completed processing. By default, the actor outputs
results as they are processed.

 Chapter 5

 153

Figure 5.47: The parameters of the ExternalExecution actor.

5. Drag and drop a Constant actor onto the Workflow canvas and connect it to the

output port of the CommandLineExec actor. Specify the location of the
Maxent HTML result file as the value of the Constant actor:

 "C:/maxent/outputs/bradypus_variegatus.html"

Note: The Constant actor will not output this location until it receives a trigger
from the ExternalExecution actor.

6. Drag and drop a BrowserDisplay actor onto the Workflow canvas and connect its

inputURL port to the output port of the Constant actor.

The workflow is now ready to run! After the Maxent software has executed, the results
are saved to the C:/maxent/output directory and the ExternalExecution actor
outputs a token that alerts downstream actors that it is done. A Constant actor specifies
the location of the HTML file output by Maxent, and a BrowserDisplay actor opens the
file and displays it in the default browser.

The ExternalExecution actor is part of the standard Kepler library and can be found under
"General Purpose/Unix Command" in the component tree or via a search under the
Components tab.

5.5.4 Opening R

The workflow in Figure 5.50 uses the ExternalExecution actor to open the R application,
with the "--no-save option". The workflow passes a string "q()\n", which

 Chapter 5

 154

sends R a 'quit' function followed by a 'new line ('\n'). This workflow can be
found in Kepler's demos/getting-started directory (08-CommandLine_2.xml).

Figure 5.48: Using the ExternalExecution actor to open the R application.

The command to execute, "R –no-save", which invokes the R application with the "—
no-save" option, is specified by a Constant actor named Command and passed to the
ExternalExecution actor via the actor's command port. The input, "q()\n", is also
specified by a Constant actor (Input).

The working directory—the place where the command will be executed—is specified via
the actor's directory parameter. A workflow parameter, WorkingDir, specifies the
name of the directory
(property("outreach.workflowdir")+"/demos/getting-started"),
and the ExternalExecution actor's directory parameter references this value
($WorkingDir). Otherwise, the actor's parameters are left at their default settings
(Figure 5.51).

 Chapter 5

 155

Figure 5.49: The parameters of the ExternalExecution actor, customized for the demos/getting-started/08-
CommandLine_2.xml workflow.

5.6 Iterating and Looping Workflows

Creating a Kepler workflow to execute a task once is relatively easy: simply connect a
series of actors and run the workflow. Creating a Kepler workflow that repeats that task a
number of times, perhaps with different input data for each iteration, is somewhat more
complicated. In more conventional programming languages like Fortran, C, C++, or Java,
iteration is accomplished using a loop structure with an index that is incremented each
time the body of the loop is executed. In a visual programming environment like Kepler,
there are several ways of carrying out iterative calculations, most notably using:

• SDF iterations
• Ramp and Repeat actors
• array data objects
• higher-order composites
• feedback loops

Some of these techniques are more appropriate for feedback loops—iterating workflows
in which each iteration depends on the output of the previous one. Others are more suited
for iterating workflows in which the output of each iteration is independent of the
previous one (repeating a process a number of times for different parameter values, for
example). In this section, we will look more closely at each strategy for iteration and
when each is most appropriate.

 Chapter 5

 156

5.6.1 Iterating with the SDF Director

The simplest way to iterate a workflow is with the SDF Director's iterations
parameter (Figure 5.52). By default, the iterations parameter is set to "0". Note that
"0" does not mean "no iterations." Rather, "0" means that the workflow will iterate
forever. Values greater than zero specify the actual number of times the director should
execute the entire workflow. A value of 1 means that the director will run the workflow
once (i.e., that the workflow will not be iterated).

Figure 5.50: The SDF Director's iterations parameter. Set the value to the number of desired iterations.

Setting the workflow iterations with the SDF iterations parameter is useful for
cycling a workflow a number of times, provided that each iteration is independent (i.e.,
that the value of a given iteration does not depend on the output of any previous
iterations). Workflows used to transform a series of values read from a data file are
usually well-suited for this type of iteration. In this case, the iterations parameter
can be set to the number of values in the data set. Choose an actor that can retrieve the
desired input for each iteration (e.g., a LineReader actor).

The portion of a workflow displayed in Figure 5.53 uses a LineReader actor to read a
data table that contains a Species name and the URL of a data file that contains
information about locations in which the species has been found (the complete workflow
can be found under demos/unsupported/ENM/GARP_MultipleSpecies-V.xml). The
LineReader actor outputs one line of data each time the workflow iterates.

 Chapter 5

 157

Figure 5.51: A simple workflow that could use SDF iterations parameter to control the number of
workflow iterations.

The workflow uses a sample dataset that contains two records
(KeplerData/workflows/module/outreach-2.X.Y/data/garp/speciesList.txt). The original
data looks like this:

Mephitis,digir_data_mephitis.dat
Zapus,digir_data_zapus.dat

Each time the workflow iterates, the LineReader actor reads and outputs one line of data,
and the workflow outputs the corresponding species name and data file.

5.6.2 Using Ramp and Repeat Actors

The standard Kepler component library includes several actors that can be useful when
iterating a workflow or a portion of a workflow: the Ramp actor is used much like a "for
loop", which executes a task a set number of times; and the Repeat actor can be used to
repeatedly output a specified value. The Ramp actor is particularly useful when iterating a
PN-directed workflow, as there is no way to set the number of iterations with a Director
parameter.

The Ramp actor controls iterations via its parameters: firingCountLimit, init
and step (Figure 5.53). The firingCountLimit parameter sets the number of
times the actor should iterate. The actor keeps track of the iterations, incrementing its
index every time an iteration is performed. The initial value of the index, as well as the
amount that the index is incremented is set with the int parameter and the step

 Chapter 5

 158

parameter, respectively. Each time the actor fires, it outputs the value of its index (an
integer).

Figure 5.52: The parameters of the Ramp actor, which can be used like a "for loop" in a workflow.

The Ramp actor's output can be used as a counter (increasing, or decreasing if the step
is set to a negative integer). The output is also commonly used to generate unique values
as a workflow iterates. For example, the Ramp actor's index value can be used to generate
a unique file name for each iteration (e.g., 'file1', 'file2', etc.) (Figure 5.54).

 Chapter 5

 159

Figure 5.53: The Ramp actor used with an Expression actor to generate a unique file name each time the
workflow iterates. The window in the upper-right displays the workflow output (the ten unique names
generated by the workflow).

The simple workflow in Figure 5.54 generates a unique file name each time the
workflow iterates (ten times, as specified by the SDF Director's iteration parameter).
Each time the workflow iterates, the Ramp actor increments its index by the value of its
step parameter and outputs the new value. Note that an input port named count has
been added to the Expression actor. The Expression actor references the value passed to
this port with the specified expression ("file"+count).

One common problem with iterating a workflow multiple times appears when only one
"branch" of a multi-branch workflow changes with each iteration. For example, an actor
in an iterated workflow may require two inputs: one input that changes with every
iteration (a counter or a value to process), and one that remains constant. If the constant
value is a simple integer or string, then repeatedly generating that value adds little
overhead to the workflow; however, if the constant value requires time-intensive
processing to generate, then repeating the calculation each time the workflow iterates will
significantly increase the workflow processing time. Use a Repeat actor, which reads an
input token and duplicates it a specified number of times, to avoid this type of redundant
calculation.

 Chapter 5

 160

For example, the workflow fragment in Figure 5.55 uses two Repeat actors to duplicate
the inputs that the Calculate Omission/Commission actor receives. In this case, both
inputs remain constant because the Omission/Commission calculation is probabilistic and
the Calculate Omission/Commission actor is designed to repeat a calculation on the same
set of inputs.

Figure 5.54: A fragment of workflow that uses Repeat actors to avoid redundant calculations. The full
workflow can be found at demos/unsupported/ENM/GARP_SingleSpecies_BestRuleset-IV.xml.

The numberOfTimes parameter for both Repeat actors is set to the number of
workflow iterations (Figure 5.56). In this case, the value of the parameter refers to the
value of a parameter (numIterations) specified on the Workflow canvas.

Figure 5.55: The parameters of the Repeat actor.

5.6.3 Using Arrays Instead of Iterating

Creating a Kepler workflow that repeats a task a number of times with different input
data each time, does not always require iterations. Rather than creating a loop to repeat a
calculation for a series of values, the values can all be passed and processed in a single

 Chapter 5

 161

workflow iteration using data arrays. Both the Expression actor and the R actors, which
are used for statistical computing, are designed to process data arrays, making workflows
that use these actors good candidates for this type of solution.

For example, in Kepler expressions and R scripts, the '+' operator works not only with
single numbers but also arrays (aka "vectors"). The workflow in Figure 5.57 uses an
Expression actor to read an array of values, add 10 to each value, and output the result.

Figure 5.56: Passing an array of values to an Expression actor to process in a single workflow iteration.

The Expression actor in Figure 5.57 receives an array through a user-defined port called
input, which is referenced by the Kepler expression input+10. The results are output
as an array, which is dismantled to a sequence of values and then displayed by the
Display actor.

The eml-simple-plot-R workflow (Figure 5.58), included with the Kepler distribution
(KeplerData/workflows/module/r-2.X.Y/demos/R/eml-simple-plot-R.xml) demonstrates
how arrays can be used with an RExpression actor. The workflow uses two
SequenceToArray actors to transform sequences of data (for relative humidity and

 Chapter 5

 162

barometric pressure) that are stored on the EarthGrid in the dataset Datos
Meteorologicos. These arrays are passed to an RExpression actor, which plots the data
and outputs a graph of the information.

Figure 5.57: Passing data arrays to an RExpression actor instead of iterating the actor multiple times for
individual values.

NOTE: To run this workflow R, a language and environment for statistical computing,
must be installed on the computer running the Kepler application.

 Chapter 5

 163

5.6.4 Iterating with Higher-Order Composites

Higher-order Composite actors, which are actors that operate on the structure of a model
rather than on data,17 provide a convenient mechanism for iterating an entire sub-
workflow. Of particular use is the higher-order composite actor called
RunCompositeActor, which executes a contained workflow as if it were a top-level
workflow each time it fires. The actor is well suited for use in workflows that repeatedly
run other workflows with varying parameter values (Figure 5.59).

Figure 5.58: The GARP-MultipleSpecies-V.xml workflow uses a higher-order composite actor to iterate a
complete workflow.

The higher-order composite actor in Figure 5.59, Single Species GARP Model, runs the
contained workflow each time it fires. In this case, the contained workflow is used to
create an environmental niche model for a single species; the top-level workflow iterates

17 Lee, Edward A. Steve Neuendorffer, Using Vergil
http://ptolemy.berkeley.edu/ptolemyII/ptII6.0/ptII6.0.2/doc/design/usingVergil/usingVergila9.htm

 Chapter 5

 164

through a list of multiple species, and invokes the RunCompositeActor to calculate the
niche model for each one.

The initial inputs of a workflow contained in a RunCompositeActor are specified as
parameters or via port-parameters. The RunCompositeActor in the example uses two port-
parameters: Species_Name and Location_Filename. The values of the
parameters (mephitis and location.dat) are used for the first workflow iteration.
Subsequent iterations use values passed to the RunCompositeActor by the top-level
workflow via ports (i.e., additional species names and associated data to be processed).

5.6.5 Creating Feedback Loops

From integrating differential equations, to modeling signal amplification or how global
warming and the concentration of greenhouse gases are related, feedback loops are a
common workflow structure. A feedback loop consists of iterations that rely on the value
of previous iterations. The simple example in Figure 5.60 shows a workflow that adds
one to the value of each previous workflow iteration and outputs the new sum, for
example. A relation is used to branch the looped output so that the sums can be displayed
as well as cycled back to the input of the Add or Subtract actor.

Figure 5.59: A simple feedback loop used to add one to the value of the previous iteration.

Note that the workflow in Figure 5.60 uses a SampleDelay actor, which is required when
constructing a feedback loop that uses an SDF director. The SampleDelay actor gets the
iteration loop 'started'. Because the input of the feedback loop depends on its output, the
loop will deadlock on the first iteration because there is not yet any output. The
SampleDelay actor breaks this deadlock by providing some initial values (specified with

 Chapter 5

 165

the SampleDelay's initialOutputs parameter). On subsequent loop iterations, the
actor simply passes along its inputs.

Feedback loops under different directors require different actors. Under a PN Director,
for example a Stop actor is required to stop feedback loops, as the director has no
iteration parameter (see $Kepler/demos/SEEK/DiscreteLogistics_PN_Director.xml for an
example).

Probably the most straight-forward example of a feedback loop is the integration of a
differential equation using the CT (Continuous Time) Director (Figure 5.61).

Figure 5.60: A workflow that uses a feedback loop to integrate a differential equation. This workflow can
be found under demos/SEEK/LogisticsModel_CT_Director.xml.

The workflow in Figure 5.61 solves the logistics equation, which is commonly used to
describe resource-limited population growth. In this model, n(t) is the population as a
function of time and the rate of population change is given by dn/dt = n*r*(1-n/k). The
integrand (the right side of the equation) is put into an Expression actor, which is
connected to an Integrator actor. The output of the Integrator is connected back to the
input of the Expression actor, creating a feedback loop and providing the current value of
n. In this example, the integrand is evaluated at some point in time and used to estimate
the population at a slightly later time (the desired time interval is specified by the CT
Director parameters). The estimated value is sent back to the Expression actor to evaluate
again, and the loop continues to iterate using the output of the Integrator actor in each
iteration. For examples of this workflow executed under an SDF and a PN director, see
demos/SEEK/DiscreteLogistics_SDF_Director.xml and
demos/SEEK/DiscreteLogistics_PN_Director.xml.

 Chapter 5

 166

5.7 Documenting Workflows

Whether a workflow is to be shared with the public or used by only you, documentation
is an important part of its development. Kepler has a number of documentation features
that facilitate the process of annotating workflows. In general, we recommend that the
workflow be annotated on the Workflow canvas and that in-depth documentation be
added to the workflow documentation screen, which is accessed (both to read and to
customize) via the workflow's right-click menu. Documentation should include the
scientific problem that the workflow solves, how the problem is solved using the Kepler
system, and the status of the workflow (if it is finalized, or what future work is planned).
Documentation should also provide instructions for running the workflow, offering
information about the type and format of data, the number of iterations to run, and any
other information that is needed to understand and use the workflow.

5.7.1 Annotation Actors

The Annotation actor, which is included in the standard Kepler component library,
provides an easy mechanism for adding notes to the Workflow canvas. Simply drag and
drop the actor to the Workflow canvas and double-click the default annotation ("Double
click to edit text") to open the parameters for customization. Any text added to the
Annotation actor's text parameter will be rendered on the Workflow canvas. The other
parameters allow basic formatting: size, color, and style (bold or italic).

A workflow can use any number of Annotation actors to document everything from an
overview of the workflow to the function of an individual actor to the value of a
parameter or format of a data set.

5.7.2 Documentation Menu

Right-click the Workflow canvas and select Documentation from the drop-down menu to
begin using the workflow documentation screens. To add instructions to a workflow
documentation screen, select Documentation > Customization from the menu. A dialog
window with fields for a description, author, version, and date allow users to input
instructional text. Click Commit to save the instructions and close the customization
window. The entered content will appear the next time the documentation window is
displayed.

Documentation content can include links to external web pages (which will open in a
Kepler viewing window) and HTML formatting (, <tt>, , etc). XML-reserved
characters (e.g., '>', '&', '"', etc) must be escaped. The most common reserved characters
and their entity replacement are listed in Table 5.3.

 Chapter 5

 167

XML-reserved Character Replace with:
& &
< <
 > >
" "
' '
Table 5.2: Common XML-reserved characters.

To delete the content of a documentation screen, select Documentation > Remove
Customization. Note that this action cannot be undone with the "Undo" Menu bar item.

5.8 Debugging Workflows

Just because Kepler eliminates much of the need to code by providing a library of actors
and a visual way to link them, does not mean that you will not encounter unexpected
problems as you build, test, and execute your own workflows. However, Kepler provides
a number of tools that can help you see how your workflow is executing and get to the
bottom of errors quickly.

5.8.1 Animating Workflows

Select Animate at Runtime from the Tools menu to follow the execution of the workflow
visually on the Workflow canvas. As each actor is executed, it will be highlighted with a
red outline (Figure 5.62). The actor will remain highlighted for the number of
milliseconds specified when the menu item is selected (e.g., 1000).

To turn off animation, simply select the "Animate at Runtime" menu item again. Note
that the "Animate at Runtime" command only works correctly with workflows that use
the SDF Director.

 Chapter 5

 168

Figure 5.61: Select Animate Workflow to highlight the currently executing actor in red when the workflow
is run.

5.8.2 Exceptions

When a workflow is run and something is amiss, Kepler often "throws an exception." An
exception is an event that disrupts the normal flow of a program's instructions while the
program is being executed. 18 The exception appears as an error screen that contains
information about the problem and an option to either Dismiss or Display Stack Trace
(Figure 5.63).

18 Sun Microsystems, The Java Tutorials,
http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html

 Chapter 5

 169

Figure 5.62: An exception message "thrown" when the workflow encounters trouble. Animate at Runtime
is currently active, so the portion of the workflow experiencing the trouble is highlighted.

Click the Dismiss button to close the exception window and allow workflow execution to
continue (if possible). The stack trace provides information about the workflow's
execution history and lists the names of the Java classes and methods that led up to the
error.

5.8.3 Checking System Settings

Select Check System Settings from the Tools menu to open a read-only display of the
Kepler settings (Figure 5.64). System settings include, among other things, information
about the current version of Java installed, the location of the Kepler installation, and the
current operating system and home directory.

 Chapter 5

 170

Figure 5.63: Kepler system settings.

5.8.4 Listening to the Director

Select Listen to Director from the Tools menu to open a viewing window that follows all
of the director's activities as the workflow is run (Figure 5.65). Each time the director
invokes a method or iterates an actor, the action is logged and displayed in the listening
window.

Figure 5.64: Listening to the director.

 Chapter 5

 171

5.9 Saving and Sharing Workflows

Workflow files can be saved and shared in a number of ways: they can be saved as KAR
or XML files and posted to a Web server, they can be emailed or saved to a portable
storage medium, and then opened with the File > Open File menu option; or, in instances
where a workflow has been saved as a composite actor and all of the workflow
components are contained in the local Kepler library, they can be instantiated via the
Tools > Instantiate Component menu option.

5.9.1 Saving and Sharing Your Workflows as KAR or XML Files

Workflows can be saved and shared as KAR or XML files in a few easy steps:

1. Save the workflow by selecting Save, or Export (for XML) from the File menu.
Workflows sent via email can be opened via the File > Open menu item.

2. If the workflow contains actors that are not included in Kepler's standard library

(or that users may not have on their local machines), those actors must be shared
as well. To share actors either:

a. Upload the actors to the Kepler Repository. The Kepler Repository allows

users to both upload and download workflow components to a centralized
server where they can be searched and re-used. For more information
about uploading actors to the repository, see Section 5.34

b. Save the actors as KAR files, which can be emailed and imported. See
Section 5.3.6 for more information.

Users interested in sharing the workflow must download the required actors from
the repository (or import the emailed KAR files into Kepler) in order for the
workflow to load properly. To search for and download actors from the
repository, select the remote repositories you would like to search from the Tools
> Preferences > Components tab, and then type in the name of the required
component in the Search field. The component will automatically download when
a user drags and drops the search result onto the Workflow canvas. If the result is
a KAR, you may right-click on it and select Download, and it will be downloaded
into your local Save repository (MyWorkflows/ by default). For more information
about opening a shared workflow, please see Section 5.9.2.

5.9.2 Opening and Running a Shared XML Workflow

If a shared workflow contains only standard Kepler components (ones distributed in the
standard Kepler library), you can open and begin to use a shared workflow immediately.
If, however, a workflow contains components specifically designed for that workflow—
or that exist in the Kepler Repository, but are not included in the standard library—then

 Chapter 5

 172

those components will have to be added to the local Kepler library before the workflow
can be run.

A well-documented workflow will contain information about the names and locations of
any non-standard components required. In a perfect world, all workflows are well
documented; however, there may be times when one must figure out what additional
components are necessary, most likely by attempting to run the workflow, and then
studying the error messages (Figure 5.66)

Figure 5.65: An error message that indicates that a workflow component is not available.

The error message in Figure 5.66 indicates that Kepler cannot find the HelloWorld entity.
The workflow that contains this actor will not run properly until the component is located
and made available to the workflow. Although the HelloWorld workflow can be opened
without the missing component, the workflow will not be drawn correctly and will not
run properly (Figure 5.67).

Figure 5.66: Workflows that contain missing actors will not open correctly on the Workflow canvas.

Missing components can be found in the Kepler Repository. Click the “Sources” button
and click the checkbox in the “search” column next to “library.kepler-project.org.” If
Kepler finds the actor in the repository, the actor will appear in the actor tree, where it
can be dragged and dropped to the Workflow canvas (Figure 5.68).

 Chapter 5

 173

Figure 5.67: Locating missing components in the Kepler Repository.

 Chapter 6

 174

6. Working with Data Sets

Kepler workflows can read, parse, and manipulate data that is stored in a variety of
formats. From tabular data, such as local Excel tables saved as comma-delimited text
files, to data contained in remote databases, to streaming sensor data, Kepler can
incorporate a wide assortment of information using actors. For example, actors can read
data files, open database connections and access stored information, and download and
output data stored on the EarthGrid.

The EarthGrid, which is accessible from the Data tab, provides a convenient mechanism
for discovering, accessing, and sharing data. The EarthGrid allows scientists access to
ecological, biodiversity and environmental data and analytic resources (such as data,
metadata, analytic workflows and processors) networked at different sites and at different
organizations via the Internet. Currently, the EarthGrid consists of the KNB Metacat and
KU Digir databases, which can be searched individually or in combination via the search
form at the top of the Data tab.

Metadata, such as EML (Ecological Metadata Language) or ADN
(ADEPT/DLESE/NASA), describes data so that they can be easily understood by both
scientists and actors. Actors use the metadata to automatically configure themselves with
appropriate data output ports. Although not every data set contains metadata, the benefits
of working with metadata-described data sets quickly makes the utility apparent. See
Sections 6.2 and 6.3 for examples of a biomass workflow constructed with EML data and
without EML.

How data are incorporated into a workflow depends to a large extent on how the data are
structured and stored. Are the data locally available? Are the data described by metadata?
Stored in a database? Formatted as a table? In each scenario, different actors can be
combined to access the data and prepare it for use.

6.1 Data Actors

The standard Kepler component library contains a number of actors used to read, write,
and translate data for use in workflows. Whether data sets are stored on a local machine,
the EarthGrid, or another remote server, actors can be used to access and output the
information. Actors used to read and write data are easily recognized by the peach-
colored file or drum icon that represents them on the Workflow canvas. Other useful data
actors are noted in the table below (Table 6.1).

 Chapter 6

 175

Data/File
Access

Data/File Access actors do not have a persistent family symbol. Actors
belonging to this family read, write, and query data.

Data Access
Support

Data Access Support actors are generally used to open
and close database connections, or to send commands to
a data source.

Actors: Close Database Connection, Open Database Connection,
SRB Connect, SRB Create Query Conditions, SRB Create Query
Interface, SRB Get Physical Location, SRB Proxy Commands,
PhyloDataReader

Data Query Data Query actors query data sources or metadata.

Actors: Database Query, SRB Query Metadata, Transitive Closure
Database Query

 or

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler
workflow: files, images, or data sets.

Actors: Binary File Reader, Expression Reader, File Reader, File
To Array Converter, Image Reader, Line Reader, Simple File
Reader, NexusFileReader,
EML2Data set, Orb Image Source, Orb Packet Object Source, SRB
Get Metadata, SRB SGet, SRB Stream Get, DataTurbine

Read/Write Read/Write actors read and write data from host servers.

Actors: FTP Client, Ecogrid Writer

 or

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks,
which store data for future use.

Actos: Binary File Writer, File Writer, Line Writer, Text File
Writer, Orb Waveform Sink, Orb Waveform Source

 Chapter 6

 176

Data
Processing

Data Processing actors process data—converting data
from one format to another or extracting specified
values from a data set.

Actors: ClimateChangeFileProcessor, ClimateFileProcessor,
SProxy, Experiment Monitor, Xpath Processor, XSLT Processor,
Interpolator, Lookup Table, Record Assembler, Record
Disassembler, RecordUpdater, Vector Assembler, Vector
Disassembler, Polygon Diagrams Dataset, Polygon Diagrams
Transition, PAUPInfer, RecIDCM3, TreeDecomposer,
TreeImprover, TreeMerger, TreeParser

Table 6.1: Useful data actors

6.2 Using Tabular Data Sets with Metadata

Although one might guess that the easiest way to incorporate data into a workflow is via
a simple tab-delimited text file, the most convenient way to access data is actually with
data sets described by metadata, or data that describes the data set.

Ecological Metadata Language (EML) is a broad metadata specification that was
originally developed by the ecology community, but can be easily used by other domains.
It is based on prior work done by the Ecological Society of America and associated
efforts (Michener et al., 1997, Ecological Applications). EML is implemented as a series
of XML document types that can be used in a modular and extensible manner to
document data. Each EML module is designed to describe one logical part of the total
metadata that should be included with any data set.19

Other types of metadata commonly used on the EarthGrid are Darwin Core and ADN
(ADEPT/DLESE/NASA). The purpose of the ADN metadata framework is to describe
resources typically used in learning environments (e.g. classroom activities, lesson plans,
modules, visualizations, some data sets) for discovery by the Earth system education
community.20 The Darwin Core (sometimes abbreviated as DwC) is a standard designed
to facilitate the exchange of information about the existence of specimens in collections
and the geographic location where they were collected. Extensions to the Darwin Core
provide a mechanism to share additional information, which may be discipline-specific,
or beyond the commonly agreed upon scope of the Darwin Core itself.21

Kepler has several actors designed to automatically download and output EML and
Darwin Core described data: the EML 2 Dataset actor and DarwinCoreDataSource actor,
which automatically download a data set and configure output ports to emit each field of
data.

19 KNB Website, http://knb.ecoinformatics.org/software/eml/
20 DLESE website, http://www.dlese.org/Metadata/adn-item/
21 TDWG Wiki, http://wiki.tdwg.org/DarwinCore

 Chapter 6

 177

Kepler's EML 2 Dataset actor understands EML: the actor parses the meta information
when a data set is downloaded (or accessed locally), and emits data to downstream actors.
A sample set of EML-described data ("Vegetation Test Data") for use with this manual is
on the KNB Metacat node of the EarthGrid. To access that data (or any data on the
EarthGrid), select the Data tab. In this case, we know the data are on the KNB Metacat
server, and we can narrow our search (and reduce the search time) by searching only that
data source (under Sources, deselect the KNB Authenticated Query and KU Digir source
(Figure 6.1).

The “Refresh” button on the Sources window allows Kepler to immediately synchronize
the application’s list of configured sources with all Earthgrid-registered sources. If
Kepler’s existing sources configuration should be preserved, the optional checkbox
allows the new and old to be merged upon refresh.

The KNB supports public searches as well as searches for access-restricted data
packages. If the Authenticated Query source is selected, a prompt for username,
password and organizational affiliation will be presented. Upon successful login, the
search will be performed, and both public and appropriately configured access-restricted
data packages will be returned. There is no need to search both the public and
authenticated sources simultaneously.

 Chapter 6

 178

Figure 6.1: Customizing the sources to be searched. In the above example, only the KNB Metacat source
will be searched as KU Digir and the Authenticated Query have been deselected.

To find a data set, type its name or a portion of its name into the Search field and click
Search. The search may take several seconds. When complete, the search will return a
number of data sets that match the search query. Note the peach data drum icon beside
each data set; this icon indicates that the data can be accessed with the EML 2 Dataset
actor. In fact, dragging and dropping any of the data sets onto the Workflow canvas
instantiates an EML 2 Dataset actor that accesses the data (Figure 6. 2).

 Chapter 6

 179

Figure 6.2: Dragging and dropping an EML-described data set onto the Workflow canvas instantiates an
EML 2 Dataset actor.

To open a local data set that is described by EML, simply drag and drop an EML 2
Dataset actor on to the Workflow canvas and configure the actor parameters to point to
the file name of the data source and its corresponding metadata file (Figure 6.3). The
EML 2 Dataset actor will automatically configure its output ports to correspond to the
fields described by the metadata.

The actor's parameters (Table 6.2) can be customized to access and output data in a
variety of ways:

EML File The file path of a local EML metadata file used to describe and

access an EML data set.
Data File The path to a local data file described by EML (must be used in

conjunction with a local EML file). The actor will retrieve the data
and automatically configure its ports to output it.

Selected
Entity

If this EML data package has multiple entities, the selectedEntity
parameter specifies which entity should be output. When this
parameter is unset (the default), data from the first entity described
in an EML package is output. This parameter is only used if no
query statement is specified, or if a query statement is used and the
output format is one of "As Table", "As Byte Array", "As
Uncompressed File Name", and "As Cache File Name". To specify
a query statement, right-click the actor and select Open Actor.

 Chapter 6

 180

Data Output
Format

The format in which the actor should output the data. See section
6.2.2 for more information about the different data output formats
and how they are used.

File
Extension
Filter

A file extension that is used to limit the array of filenames returned
by the data source actor when "As UnCompressed File Name" is
selected as the data output format. Only files that match the
specified extension will be returned. Specify a file extension
without a leading period.

Allow
lenient data
parsing

If this parameter is selected, "extra" columns of data (e.g.,
comments that people have entered on a line or something of that
nature) that are not described in the metadata are ignored, allowing
the workflow to execute. If the option is unchecked (the default),
the workflow execution will halt until the discrepancy between the
data and metadata is corrected.

Check for
latest
version

Select this parameter to check the EarthGrid for updates to the data.
If the actor finds a version of the data that is more recent than the
cached data on your local system, the actor will prompt the user to
either download the latest data and metadata or ignore the newer
version. Note that different versions of the data can have vastly
different structures (new columns, or even new tables of data might
be included or removed). If this parameter is selected, users should
be prepared to handle changes that might arise from differences in
the data structure.

recordid

(appears for downloaded data actors only) An identifier used to
retrieve the metadata from the EarthGrid. Typically, this identifier
is set automatically when a data package is dragged to the
Workflow canvas.

endpoint

(appears for downloaded data actors only) The endpoint is used to
retrieve data and metadata from the EarthGrid. Typically, this
parameter is left at its default value.

namespace

(appears for downloaded data actors only) The namespace sets the
type (and version) of the EML document used by
the actor.

Table 6.2: Parameters of the EML 2 Dataset actor.

 Chapter 6

 181

Figure 6.3: Configuring an EML 2 Dataset actor to read a local data set described with Ecological
Metadata Language

After parsing a data set's EML metadata, the EML 2 Dataset actor automatically
reconfigures its exposed ports to provide one port for each column of data described by
the EML description. For example, the Vegetation Test Data metadata has twelve
attributes describing twelve columns of data: Date, Site, Web, Plot, QD, Species, Obs,
Cover, Height, Count, Phen, Comments. The EML 2 Dataset actor will therefore create
12 corresponding output ports. To view the metadata, right-click the EML 2 Dataset actor
and select Get Metadata from the drop-down menu. Scroll to the bottom of the
description to see the data attributes and more information about each (Figure 6.4).

Figure 6.4: A portion of the EML metadata for the Vegetation Test Data. The EML 2 Dataset actor creates
one output port for each defined attribute (DATE, SITE, etc).

 Chapter 6

 182

The data are formatted as a comma-separated table containing observations of the height
and cover (among other things) of the species "ERPU8." To preview the data, right-click
the actor and select Preview from the drop-down menu (Figure 6.5). The preview table
can be resized, or sorted by clicking the column headers. Sorting time increases for very
large data sets.

Figure 6.5: A preview of the Vegetation Test Data data set.

When it is dragged to the Workflow canvas, the EML 2 Dataset actor automatically
downloads the data to the Kepler cache. If the data have already been downloaded, the
actor will access them from the cache.

Each time the EML 2 Dataset actor fires, it outputs one row of data via its ports. Rollover
an output port to see the name and type of the data output (Figure 6.6), or right-click the
EML 2 Dataset actor and select Configure Ports to customize the actor so that the port
names (which correspond to the name of each data item) appear on the Workflow canvas.

Figure 6.6: Roll over any port of the EML 2 Dataset actor with the cursor to open a tooltip containing the
name of the port and the type of the data it broadcasts.

To use the Vegetation Test Data to investigate relationships between plant volume and
biomass for the species "Erpu8," simply locate the cover and height ports and
connect them to the input ports of a graphing actor (biomass is a function of the species'
cover percent and height over time) (Figure 6.7).

 Chapter 6

 183

Figure 6.7: An example workflow that uses an XY Plotter actor to plot the "cover" and "height" of the
example species, Erpu8.

NOTE: Until the graphical output of the workflow in Figure 6.7 is customized, it
produces a somewhat unintelligible plot. Click the configure plot setting in the upper
right corner of the output graph to customize the graph (Figure 6.8).

 Chapter 6

 184

Figure 6.8: The output of the workflow displayed in Figure 6.7. Click the configure graph button in the
upper right corner to customize the graph.

In the "Set plot format" dialog window, specify a title and an axis label. Deselect
"Connect" and select "dots" as the type of mark (Figure 6.9). Changes will be applied to
the current graph and to graphs produced in subsequent workflow runs.

 Chapter 6

 185

Figure 6.9: Customizing the output of the XY Plotter actor.

6.2.1 Viewing Metadata

A data set's metadata can be viewed either from the Data tab or the Workflow canvas. To
view the metadata from the Data tab, right click the name of the data set, and then click
the Get Metadata option. The metadata will open in a viewing window. To view metadata
from the Workflow canvas, right-click the data actor icon and select Get Metadata from
the drop-down menu.

Metadata includes the name of the data set, the name of the data set owner, the structure
of the data (e.g., tab-delimited), the number of records in the data set, and information
about each field of data (name, type, date, etc).

6.2.2 Outputting Data for Use in a Workflow

 Chapter 6

 186

The EML 2 Dataset actor automatically configures itself with one output port for each
field of data described by the metadata. A data set that has four fields (date, time,
location, and species name) will, by default, "generate" an EML 2 Dataset actor that has
four output ports, each assigned the data type defined in the metadata (the "location" port
will have type "string", for example). The EML 2 Dataset actor can also be used to unzip
compressed data sets, and to output a data set in a number of useful formats. Instead of
outputting each field of data individually, the actor can be configured to create one port
that emits the entire data table at once in comma-delimited format, for example.
Specifically, the output format choices are: as table, row, byte array, uncompressed file
name, cache file name, column vector, or column-based record.

To customize the output format of the data set, double-click the EML 2 Dataset actor and
select a format from the drop-down menu beside the Data Output Format setting.

As Field: (the default) The EML 2 Dataset
actor creates one output port for each field
(aka column/attribute/variable) that is
described in the EML metadata for the data
set (Figure 6.10). If the Query Builder has
been used to subset the data, then only
those fields selected in the SQL statement
will be configured as ports (See Section
6.2.3 for more information about the Query
Builder).

Figure 6.10: An EML 2 Dataset actor customized
to output the Datos Meteorologicos data set as fields
(the default).

As Table: The data set will be output as a string that contains the entire data set (Figure
6.11). The EML 2 Dataset actor will configure itself with three output ports:
DataTable - the data itself, Delimiter – the delimiter used to separate fields (e.g.,
a comma or tab), and NumColumns - the number of fields in the table.

 Chapter 6

 187

Figure 6.11: Using an EML 2 Dataset actor to format and output a data set as a table via a single output
port. In this case, the delimiter is a comma ",".

As Row: The EML 2 Dataset actor formats one row of the data set as an array and
outputs it. The actor creates only one output port (DataRow) and the data type is a
record containing each of the individual fields. (e.g., {BARO = 953.4, DATE =
"01/01/01", DEW = 14.5, RAIN = 0.0, RH = 99, SOL = 0.0, SOL_SUM = 0.0, TIME =
"00:00", T_AIR = 15.0, WD = 99, WS = 0.8}.

As Byte Array: The EML 2 Dataset actor outputs the data set as an array of bytes (raw
data sent in binary format). The actor configures itself with two output ports:
BinaryData -- contains data itself, and EndOfStream -- a tag to indicate the end of
the data stream.

As UnCompressed File Name: If the data set is a compressed file (zip, tar, etc), the "As
UnCompressed File Name" format instructs the EML 2 Dataset actor to uncompressed
the data after it is downloaded. The actor will configure itself with one output port that
outputs an array of the filenames of the uncompressed archive files.

As Cache File Name: Kepler stores remotely downloaded data files into its cache system.
This format outputs the local cache file path of the data set so that workflow designers
can directly access the cache files. The actor configures itself with two output ports:
CacheLocalFileName - the local cache file path, and CacheResourceName – the
data set's EML identity (e.g., ecogrid://knb/tao.2.1).

 Chapter 6

 188

As Column Vector: This output format is similar to "As Field". The difference is that
instead of sending out a single value on each port, the EML 2 Dataset actor outputs an
array of all of the data for each field.

As Column Vector: This output format is similar to "As Field". The difference is that
instead of sending out a single value on each port, the EML 2 Dataset actor outputs an
array of all of the data for each field. This format is particularly useful when the output is
directed to an RExpression actor, which creates a vector object that is immediately
available for use in R the script.

As ColumnBased Record: The EML 2 Dataset actor outputs the data set on one port
using a Record structure that encapsulates the entire data object. The Record will contain
one array for each column of data, and the type of that array will be determined by the
type of the field it represents. This format is particularly useful when the output is
directed to an RExpression actor, which creates a dataframe object that is immediately
available for use in R the script.

6.2.3 Querying Metadata

At times, you may wish to use only a portion of the data in a given data set—only records
from May 2006, for example, or only records that relate to one of four species tracked in
a data set for a specific location. The EML 2 Dataset actor has a built-in query builder
that allows users to quickly and easily identify and output only the desired fields of
information.

To access the Query Builder, right-click the EML 2 Dataset actor and select Open Actor
from the drop-down menu (Figure 6.12)

 Chapter 6

 189

Figure 6.12: The Query Builder for the Datos Meteorologicos data set.

At the top of the Query Builder is a drop-down menu containing the name of each data
table in the data set (the Datos Meteorologicos data set contains only one table, named
Datos Meteorologicos). Beneath the table name is a list of the fields (as defined in the
metadata) in the selected table as well as the data type of each field.

Use the settings at the bottom of the Query Builder to select only the desired tables and
fields from the data set. For example, to select only the rainfall data from the Datos
Meteorologicos data set, select the "Datos Meteorologicos" table and the "Rain" field and
check the "Include in Selection" check box. (Figure 6.13). The EML 2 Dataset actor will
reconfigure its ports to match the specified output. In this case, the actor will configure a
single output port for the Rain data. To include all data fields in the selected table, select
"*" from the drop-down Field menu.

 Chapter 6

 190

Figure 6.13: Configuring the Query Builder to output only Rain data.

The Query Builder can also be used to extract only data records that meet certain criteria:
values greater or less than a specified threshold, for example, or strings that exactly
match the name of a region or species or other value. To return the date and temperature
of all records from the Datos Meteorological data set where the temperature is greater
than 20 degrees, use the Query Builder settings displayed in Figure 6.14.

Figure 6.14: Configuring the Query Builder to return only records in which the temperature is greater than
20 degrees.

When the Query Builder has been used to select particular fields or to specify criteria for
the records returned, those settings propagate to the Preview table when it is displayed for
the actor. This allows a view of exactly the data that will be used during workflow
execution.

6.3 Using Tabular Data without Metadata

In a perfect world, all tabular data sets would be described with metadata, and the EML 2
Dataset actor could be used to automatically access and output data fields to workflows.
In the real world, data comes in many formats: Excel spreadsheets, old tables created in
Microsoft Word, or tables grabbed from Web pages. Kepler workflows can read and
process this kind of "raw" data, but because multiple actors are required to do the work,
this type of workflow is more complex.

Some actors that often come in handy are: Binary File Reader, Expression Reader, File
Reader, File To Array Converter, Line Reader, Simple File Reader, NexusFileReader
(Table 6.3).

Note that these actors can be used to open either a local or remote data file. In the actor
parameters, simply specify the URL of a remote file, or use the Browse button to
navigate to the location of a local data set.

 Chapter 6

 191

Binary File Reader The Binary File Reader reads a local file path or URL
and outputs an array of bytes. The actor can read both
binary and ASCII file formats.

Expression Reader The Expression Reader reads a file or URL, one line at a
time, and evaluates each line as a Kepler expression.
One evaluated result is output each time the actor
iterates.

File Reader The File Reader actor reads a local file or URL and
outputs the contents of the file as a single string.

File To Array Converter The File To Array Converter actor reads a file or URL,

evaluates each line, and outputs an array of the
evaluated values. The actor is similar to the Expression
Reader actor, except that the File To Array Converter
actor outputs all of the evaluated expressions as a single
array instead of outputting each value separately.

Line Reader The Line Reader actor reads a file or URL, one line at a
time, and outputs each line as a string.

Simple File Reader The Simple File Reader reads and outputs the contents
of a file as a single string. The actor is similar to the File
Reader, except that the Simple File Reader can only take
its input from another workflow component via an input
port, whereas the File Reader actor can use either a port
or parameter.

NexusFileReader The NexusFileReader actor reads a Nexus file from the
local file system and outputs the file content as a string.

Table 6.3: Useful actors for working with tabular data sets with no metadata.

Once the data has been "read" into a workflow via one of the above actors, the data will
likely require parsing and further processing before it can be used. See Section 6.3.1 for
an example of opening a local data file and preparing it for use in a workflow.

6.3.1 Comma- Tab-, Text-Delimited Files

The plant volume workflow discussed in 6.1—which reads a data set, extracts two
columns of data, and plots them--can be recreated to run on data that does not use
metadata. In fact, the workflow displayed in Figure 6.15 is that workflow, recreated to
use a simple comma-delimited data table with no EML.

Note that R actors can also be used to access tab or comma delimited data sets. See
Chapter 8 for more information about using R.

 Chapter 6

 192

Figure 6.15: Recreating the plant volume workflow to use non-EML data.

The workflow in Figure 6.15 uses a LineReader to read the data file line by line and
output each row as a string. Double-click the Line Reader actor to specify the name of the
data file, as well as the number of lines to skip. In this case, we must skip the first line of
the data set, which contains header information instead of observational data (Figure
6.16).

Figure 6.16: Setting the parameters of the LineReader actor.

The Line Reader actor outputs each row of data to a String Splitter actor, which splits the
string into segments at points specified by the regular expression parameter ("," in this
case, as each value in the data set is separated from the next with a comma). The String
Splitter actor outputs the segments as an array of strings.

A relation branches the array of string segments to two Expression actors, which use the
Kepler Expression language to identify the appropriate columns of data. Each of the

 Chapter 6

 193

Expression actors has a user-defined input port named "input". The expression contained
in the actors (specified via the actor's expression parameter) references the value
passed to the input port (the array of strings) using the syntax input(7) or
input(8). The parenthetical value indicates the array index of the string segment to
select (input(0) would reference the first column in the data set, input(1) the second, etc).

Before the selected columns of data can be graphed by the XY Plotter actor, they must be
converted from a string to a double—a data type that the XY Plotter actor understands.
The relevant data types are specified in the Configure Port settings of the Expression To
Token actor (Figure 6.17).

Figure 6.17: Configuring the correct input and output type for the ExpressionToToken actor.

Once the data have been converted to doubles, the XY Plotter can graph them. See
Section 6.2 for more information about how to customize the settings of the XY Plotter.

6.3.2 Accessing Data from a Website

Downloading and accessing data from a website is easily accomplished via Kepler's URL
To Local File actor. This actor receives a URL of a remote file as well as a name that will
be applied to it when it is stored on the local system (Figure 6.18).

 Chapter 6

 194

Figure 6.18: Using the URL To Local File actor to download a file (the Kepler logo) from a remote
website.

Once the remote file has been downloaded and saved to the specified location, the URL
To Local File actor outputs a Boolean value: true if the operation has been completed
successfully; false, if not. The workflow in Figure 6.18 uses the output of the URL To
Local File actor as a trigger that alerts the next actor that the file has been downloaded
successfully and is ready for further processing, in this case, display.

 Chapter 6

 195

6.4 Accessing Data Access Protocol (DAP) Sources

Kepler's OpendapDataSource actor can be used to access and output any Data Access
Protocol (DAP) 2.0 compatible data source. The actor retrieves the specified data and
automatically configures its output ports to match the returned variables so that data can
be fed to downstream actors.

DAP 2.0 data sources, much like Web pages, are accessed via a URL that references a
host and data file as well as (optionally) a specific subset of the data to return. The host
server returns the requested data variables as well as information about them: the variable
name and data type, a description, and any associated attributes. For more information
about DAP, please see http://www.opendap.org/.

The OpendapDataSource actor must be configured with the URL of the data source as
well as an optional constraint expression (CE). The constraint expression specifies the
subset of data to return. Using a CE can reduce the system resources required to transmit
data or reduce the number of dimensions of a data variable so that the data can be more
easily processed in Kepler. The number of dimensions of a variable, similar to the
number of dimensions of a matrix, represents the number of rows and columns of data.
Because Kepler cannot efficiently process large volumes of multidimensional data
objects (i.e., n-dimensional arrays, where n>2), reducing the dimensions is sometimes
necessary.

The example parameters displayed in Figure 6.19 use the CE 'lat' to retrieve only
latitude data from a data set collected by the Fleet Numerical Meteorology and
Oceanography Center that contains five variables describing wind patterns: degree north
(lat), vector wind eastward component (u), Vector wind northward component (v), degree
east (lon), and time.

Figure 6.19: Configuring the parameters of the OpendapDataSource actor.

Based on the values of the DAP2 URL parameter and DAP2 Constraint Expression, the
OpendapDataSource actor configures its output ports to match the returned data. In the
above case, the actor creates a single output port for the lat data (Figure 6.20). Note:
You must commit a valid URL before the actor will reconfigure its ports and provide
access to any data.

 Chapter 6

 196

Figure 6.20: The OpendapDataSource actor automatically configures its output ports to match the returned
data.

Data is returned as a record, which is automatically disassembled and output by the
OpendapDataSource actor as a one, two, or N (>2) dimensional array, represented in
Kepler by either a matrix (one or two dimensions) token, or an array token for
dimensions greater than two. To better accommodate N-dimensional arrays, use a
constraint expression to reduce the number of data dimensions to one or two so they can
be more easily stored and processed. For example, the variable u in the FNOC1 data
source used in the previous example contains three dimensions (time, lat, lon).
The CE 'u[0][0:16][0:20]' selects only the first element (index 0) for the first
dimension (time) while requesting all of the remaining elements for the second (lat) and
third dimensions (lon). See the www.opendap.org for documentation about the CE
syntax.

Note that the OpendapDataSource actor automatically 'disassembles' the top most record
of returned data. However, some data sources contain nested hierarchies of records many
levels deep. When dealing with those data sources you will need to use the Kepler Record
Disassembler actor in your workflow to disassemble the nested records.

6.5 Accessing Data from DataTurbine Servers
The DataTurbine actor can be used to access data from DataTurbine servers. Please see
http://dataturbine.org/ for details and documentation for the DataTurbine software.
The actor has four input PortParameters: DataTurbine Address, specificChannel Name,
Start Time, and Duration.

Upon specification of the DataTurbine Address, the actor attempts to connect to the
server, and will generate output ports for the channels present (not including the metric
channels – those with names beginning with the underscore character). Also, two other
output ports will be created, channelNames and specificChannel. The channelNames port
outputs an array of the channel names, and specificChannel will output the data of the
port specified on the specificChannel Name input port. Since the channel output through

 Chapter 6

 197

the specificChannel output port may change during workflow execution, the data is
always typed String. The rest of the ports will output data for the DataTurbine channels
they reflect, with the data typed appropriately. The output data format may be changed
using the Output Data Type parameter, either an array of x records (each record
containing a timestamp and datapoint), or a record of 2 arrays (timestamps and data).

The Start Time input PortParameter, utilized when Sink Mode is Request or Subscribe,
specifies the beginning time of the data requested from the server.

Duration, also used by Request and Subscribe sink modes, specifies the number of
seconds of data requested.

Sink Mode may be Request, Monitor, or Subscribe. Request mode initiates a request for a
specific time slice of data. Subscribe mode starts a continuous feed of data for the
connected output port channels. Each block retrieved will be Duration time units in
length. Monitor mode is similar to Subscribe, but allows for continuous frames of data
without gaps.

The Reference parameter is used by Request and Subscribe modes. For Subscribe mode,
newest, oldest, absolute, next, or previous may be used. For Request mode, absolute,
newest, oldest, aligned, after, modified, next, or previous may be used.

absolute — The start parameter is absolute time from midnight, Jan 1st, 1970 UTC.
newest — The start parameter is measured from the most recent data available in the
server at the time this request is received. Note that for this case, the start parameter
actually represents the end of the duration, and positive times proceed toward oldest data.
oldest — As newest, but relative to the oldest data.
aligned — As newest, but rather than per channel, this is relative to the newest for all of
the channels.
after — A combination between absolute and newest, this flag causes the server to return
the newest data available after the specified start time. Unlike newest, you do not have to
request the data to find out that you already have it. Unlike absolute, a gap may be
inserted in the data to provide you with the freshest data.
modified — Similar to after, but attempts to return a duration's worth of data in a
contiguous block. If the data is not available after the start time, it will be taken from
before the start time.
next — gets the data that immediately follows the time range specified. This will skip
over gaps.
previous — get the data that immediately preceeds the time range specified. This will
skip over gaps.

The Block Timeout parameter, specified in milliseconds, is the amount of time to wait for
data to become available. Use 0 for no delay or any negative number for an infinite delay.

The Pad data gaps with nils parameter controls whether to attempt to identify and pad
gappy data with timestamp,nil pairs. As sample rate is unknown prior to execution, and

 Chapter 6

 198

must be assumed during execution, at least 2 datapoints must be retrieved for this
function to be able to guess sampling rate, and thus fill in any missing values. Having
gaps filled in, and thus dealing with a static number of datapoints for requests of different
time slices of the same size, can be useful in certain workflows.

6.6 Using FTP

The Kepler component library contains several actors that can be used to upload or
download files from remote servers: the FTP Client actor puts or gets files from a remote
FTP server (File-Transfer-Protocol is used to copy files from one computer to another
over a network), and the GridFTP, FileFetcher, FileStager, and UpdatedGridFTP actors
upload and/or download files from Globus servers, which use an authorization certificate
generated by the GlobusProxy actor (the GlobusProxy actor passes a proxy certificate
used to connect to the remote host).

The workflow in Figure 6.22 is used to upload a file from the local directory (the one in
which the workflow is stored) using the FTP Client actor. The FTP Client actor can be
used to upload or download a single file, multiple files, or a directory—simply pass the
desired files as a string (e.g., "C:\PleaseUpload\Notes.doc") via the FTP Client actor's
arguments port. If the server requires a username and password, these values must be
specified in the FTP Client actor's parameters as well. The FTP Client actor outputs the
file path of the uploaded or downloaded file.

 Chapter 6

 199

Figure 6.21: A workflow used to upload two files, specified with String Constant actors, to a remote server
using FTP.

The name of the operation (put or get), the mode (ASC or BIN), the remote host (e.g.,
dotnet.sdsc.edu), and path (/home/mydocs/), as well as username and password, when
relevant, are specified in the parameters of the FTP Client actor. Use "asc" (i.e., ASCII)
as the mode when transferring plain text files. Use "bin" (i.e., Binary) for everything else
(MS Word files, images, etc).

The FileFetcher and FileStager actors work much like the Get and Put operations of the
FTP Client actor, only these actors upload or download a set of files from a Globus host
For more information about these actors, please see Chapter 7.

6.7 Using Data Stored in Relational Databases

Kepler has a number of actors that are especially designed to open and close database
connections, query databases, and retrieve information. Whether data are stored in an
Oracle database, MySQL, local or remote MS Access, or a number of other supported
database formats, information can be accessed by Kepler and used in workflows.
To connect to an Oracle, MySQL, local or remote MS Access, DB2, MS SQL Server,
PostgreSQL, MySQL, or Sybase SQL Anywhere database, use an Open Database
Connection actor. The Open Database Connection actor opens a database connection
using the specified database format and URL, username, and password. Once a database

 Chapter 6

 200

connection has been established, the actor outputs a reference to the connection. Actors
downstream in the workflow can use this reference to access the database.

For example, the workflow in Figure 6.23 uses an Open Database Connection actor to
open a connection to a remote Oracle database. The actor passes a connection reference
to a Database Query actor, which uses the connection to pass a query to the database. A
Display actor displays the query return.

Figure 6.22: Opening a connection to an Oracle database and using the Database Query actor to return
query results.

The database format and URL are specified in the Open Database Connection actor
parameters (Figure 6.24). The database location is specified in the following format:
host:port:sid,where sid is the name of the database space(e.g.,
jdbc:oracle:thin:@129.108.20.225:1521:PDB1).

Figure 6.23: The parameters of the Open Database Connection actor are used to specify the database
format, location, and log in credentials.

 Chapter 6

 201

The Database Query actor can view the schemas in a database. The actor automatically
reads the schema definition once a connection to the database has been established
(Figure 6.25).

Figure 6.24: Parameters of the Database Query actor.

To browse the available database tables and specify a query, right-click the Database
Query actor and select Open Actor. A Query Builder window opens (Figure 6.26) Use
the Query Builder to view the data tables and specify query conditions. The specified
query will automatically populate the Database Query actor's query parameter.

 Chapter 6

 202

Figure 6.25: Browse database tables using the Query Builder.

6.8 Using Spatial and Image Data

Kepler has a number of actors designed to work with image and spatial data. From a
simple jpg image to a high-resolution map of North America, Kepler can process,
manipulate, and display a wide variety of data types.

Actors used to process and display image and spatial data are easily recognized by the
map icon (spatial data) or the mountain icon (image data) that represents them on the
Workflow canvas. A list of useful actors are noted in Table 6.4

 Chapter 6

 203

GIS/Spatial
Display

GIS/Spatial Display actors display geospatial data.

Actors: ESRI Shape File Displayer, GML Displayer

GIS/Spatial
Processing

GIS/Spatial Processing actors are used to map and
manipulate geospatial data.

Actors: Add Grids, Convex Hull, CV Hull to Raster, GDAL Format
Translator, GDAL Warp and Projection, Grass Buffer, Grass Hull,
Grass Raster, Grid Rescaler, Merge Grids, Rescaler, Interpolate,
GridReset, ShowLocations

Image
Processing

Image Processing actors are used to manipulate and
convert image files.

Actors: ASC To Raw, Convert Image To String, IJMacro, Image
Contrast, Image Converter, Image Rotate, Sting To Image
Converter, SVG Concatenate, SVG To Polygon Converter

Image
Display

Image Display actors display image files.

Actors: Image Display, ImageJ

Table 6.4: Useful image and spatial data actors.

6.8.1 Working with Images

Displaying a locally stored image via a Kepler workflow can be accomplished with one
of several useful actors: ImageJ or Image Display.

The ImageJ actor reads an image file name and opens and displays the image along with
a toolbar of image-processing options, which can be used to process the image (Figure
6.27). The name of the image file can be specified in the actor parameters or via the
actor's input port. The actor uses the ImageJ application to open and work with images.
ImageJ can be used to display and process a wide variety of images (tiffs, gifs, jpegs,
etc.) For more information about ImageJ, see http://rsb.info.nih.gov/ij/ and Chapter 8 of
the User Manual.

 Chapter 6

 204

Figure 6.26: Opening an image with the ImageJ actor. Specify the path of the image to open in the ImageJ
parameters or via the actor's input port.

The Image Display actor reads an image token and displays the image on the screen.
Image tokens can be generated from image URLs using the Image Reader or the Convert
URL To Image actors. These actors read an image path (e.g., C:\pictures\signature.jpg),
and output the image as an image token, which can be displayed and/or manipulated by
other Kepler actors, such as Image Rotate or Convert Image To String (Figure 6.28).

If the Image Display actor receives a sequence of images that are all the same size, it will
continually update the display with the new data. If the size of the input image changes,
the actor generates a new picture display.

Figure 6.27: An Image Reader actor "translates" an image path into an image token, which can be
manipulated by the Image Rotate actor and then displayed by the Image Display actor.

 Chapter 6

 205

The workflow in Figure 6.27 uses an Image Reader actor to "translate" an image path
into an image token, which can be manipulated by the Image Rotate actor and then
displayed by the Image Display actor. The standard Kepler component library contains
several actors that can be used to process image tokens; the IJMacro actor provides
access to an even wider variety of processing tools.

The workflow in Figure 6.28 uses an ImageJ macro to open an ASCII Grid file, a
Geographic Information System (GIS) format that neither the ImageJ or Image Display
actors support. This file format includes GIS information such as the longitude and
latitude and number of rows and columns of data at the start of the file, followed by pixel
data values in an ascii format. The IJMacro actor ignores the GIS information and
displays the pixel data as an image. The macro code is pasted into the macroString
parameter, and the image to process is either specified with a parameter or passed via the
input port.

Figure 6.28: The IJMacro actor can be customized to execute any ImageJ macros. See
http://rsb.info.nih.gov/ij/ for more information about macros.

 Chapter 6

 206

The IJMacro actor can also be used with an RExpression actor to display a PDF file
(Figure 6.29).

Figure 6.29: Using the IJMacro actor to display a PDF file.

In the above workflow, the R function or script used by the RExpression actor is:

fn <- pdf_file
pdf(file=fn,width=6,height=6)
plot(x <- sort(rnorm(47)), type = "s", main = "plot(x,
type = \"s\")")
dev.off()

This R script creates an image in a PDF file format.

The IJMacro string is:

call("ij.IJ.runPlugIn","ij.plugin.BrowserLauncher","fi
le://_FILE_");

This script calls the BrowserLauncher which, in turn, launches a PDF viewer to display
the PDF generated by the RExpression script.

See http://rsb.info.nih.gov/ij/macros/ for a library of macros that can be used with the
IJMacro actor (you can even use the actor to run a game of Pong!)

 Chapter 6

 207

6.8.2 Working with Spatial Data

Spatial data comes in a variety of forms and formats—from ESRI Shape files, which
contain a set of vector coordinates that represent non-topological geographic data, to
ASCII grids (such as the ones used for IPCC climate change data), to GeoTiff, DTED,
USGSDEM, and others. Some geospatial data in automated systems are described with
Geography Markup Language (GML), an XML-based encoding for geographic
information. Geospatial data may also be described using EML. Fortunately, Kepler has
a number of actors that can help open, display, and translate the variety of these formats
so that they can be compared, added, or otherwise manipulated. As with tabular data,
spatial data sets that contain metadata are far easier to work with. We will look at some
examples of both EML and non-EML spatial data sets in this section.

Spatial data files--depending on their extent and resolution—can be very large and may
require notable time to download and process. Most Kepler actors first check to see if a
data set has already been downloaded or if a requested transformation has already been
performed before initiating the download or transformation process. If the spatial data file
already exists in its desired form, the actors will access the data from the Kepler cache
rather than reprocessing the information.

The Ecological Niche Modeling workflows that are shipped with Kepler in the
outreach/resources/demos/ENM directory, contain a number of useful examples of spatial
data actors and manipulations. Many of these use the Geospatial Data Abstraction
Library (GDAL), an open source library of functions for reading and writing geospatial
data formats. For example, the GDAL_h1K_NS.xml workflow (Figure 6.30) converts
two Lambert Azimuthal Equal Area coordinate system projections (one of North America
and one of South America) to a format that uses a latitude/longitude system, and then
changes the file format from GEOTiff to ASC raster grid. The converted files are
rescaled and then stitched together (“added”) to form a single map of the entire Western
Hemisphere. The actors in the workflow can be used to convert a wide variety of spatial
data files and formats.

Note that the data sets, Hydro1k North American –DEM and Hydro 1k South America-
DEM, are described by EML metadata, and can be downloaded from the EarthGrid and
output by the EML 2 Dataset actor discussed earlier in the chapter.

 Chapter 6

 208

Figure 6.30: The GDAL-h1K_NS.xml workflow. The first time the workflow is opened, the data source
actors (Hydro1k North America DEM and Hydro1k South America DEM) will show a "Busy" status as they
download data from a remote server. The initial download may take as long as 30 minutes. Once data is
stored in the local cache, the data are more immediately available. Because of the high resolution of the
data, this workflow requires 30-45 minutes to execute once the data are downloaded.

The GDAL Warp And Projection actor "stretches" or "warps" geospatial projections from
one cartographic projection to another (in the GDAL-h1k_NS workflow, the actor
converts Lambert Azimuthal Equal Area coordinate system projections to a format that
uses a latitude/longitude system). The actor uses GDAL to perform this operation. GDAL
is a translator library for raster geospatial data formats. For more information about
GDAL, see http://www.gdal.org/index.html.

The GDAL Warp And Projection actor's inputParams and outputParams
parameters specify the format for the coordinate system (Figure 6.31). The parameter
values must be of a form used by the GDAL Warp utility. See the -s_srs and -t_srs
parameters of the GDAL Warp utility for more information about accepted forms:
http://www.remotesensing.org/gdal/gdalwarp.html.

 Chapter 6

 209

Figure 6.31: The parameters of the GDALWarpAndProjection actor. inputParams and
outputParams must be specified in a format used by the GDAL Warp utility.

The GDAL Format Translator actor also uses the Geospatial Data Abstraction Library to
convert the file format of spatial data (in the GDAL-h1k_NS workflow, the actor
converts a GEOTiff to ASC raster grid). The output type, format, and cache options are
specified with the actor's parameters (Figure 6.32). The Cache options specify
whether the output should be copied to the cache ("Copy files to cache"), copied to the
cache as well as the directory where the input raster is stored ("Cache files but preserve
location"), or not cached ("No caching"). If "No caching" is selected, the actor will not
cache the translated file and will ignore all previously stored cache items. Select this
option to force the actor to perform a translation even if the input file was previously
translated and cached.

Figure 6.32: The parameters of the GDALFormatTranslator actor.

Also of interest are the Grid Rescaler actor and the Merge Grids actors. The Grid
Rescaler actor ensures that spatial data files have a consistent resolution and extent. Grid
Rescaler parameters are used to set the x and y values for the lower left corner of the
output grid, the cell size, and the number of desired rows and columns (Figure 6.33).
Either the "Nearest neighbor" or "Inverse distance" weighted algorithms can be used to
calculate output cell values. If the “Use Existing File” checkbox is selected, the actor
will check to see if a file with the output file name already exists. If so, the actor skips all
actions except for returning the existing file name (i.e., the actor does not "re-translate"
the source data). Selecting the "use Existing File" parameter can help avoid lengthy
rescaling calculations that have already been completed in prior runs. If the checkbox is
not selected, any existing output file with the same name will simply be overwritten.
Note also the ‘use disk storage’ checkbox. If checked, disk files are used for calculations,
allowing the processing of very large data grids. If unchecked, all data is placed in
memory (RAM), Under this option, calculations are much faster, but a workflow may
require more memory than is usually available.

 Chapter 6

 210

Figure 6.33: Parameters of the Grid Rescaler2 actor. Note that the "use Existing File" parameter has been
selected, instructing the actor to return the file name of an existing output file if one exists.

Merge Grid actors are used to combine two geospatial image files. The actor merges files
according to a specified merge-operation (e.g., average, add, subtract, mask, or
not_mask), and outputs the name of the merged file. The actor can be used to combine
several regions into a large region--combining a grid covering North America with one
for South America to create a raster grid for the western hemisphere, for example, or to
"mask" certain areas of the map that are not relevant for an analyses.

For more information about working with geographic information, see Chapter 8.

6.9 Using Gene and Protein Sequence Data

Some data, such as genetic and protein sequences, are stored in sequence databases,
where each sequence is identified by a unique accession number used as a reference.
Accessing this type of data from a Kepler workflow involves "passing" the reference for
the desired sequence or sequences to the database and parsing the XML format in which
the data are stored to extract the information.

The workflow in Figure 6.34 demonstrates the use of the remote genomics data service to
retrieve a genetic sequence. The sequence is then displayed in three different ways, first
in its native format (XML), second as a sequence element that has been extracted from
the XML format, and third as an HTML document that might be used for display on a
Web site. Both of the latter two operations are performed using a composite actor that
hides some of the complexity of the underlying operation.

 Chapter 6

 211

Figure 6.34: Accessing genetic sequence data using a Web Service. The workflow outputs the XML
format in which the data is stored, the gene sequence, and an HTML document that might be used for
display on a Web site.

The workflow in Figure 6.34 can be found in the demos/getting-started directory, and
step-by-step instructions for using and recreating it are included in the Getting Started
Guide. For more information about using Web Services, see Chapter 7.

 Chapter 7

 212

7. Using Remote Computing Resources: The Cluster,
Grid and Web Services

Grid computing has emerged as a dominant Internet computing model in the past decade.
The word grid was chosen by analogy with the electric power grid, which provides
pervasive access to power (Foster & Kesselman 1999), and captures the early grid vision
of providing unlimited access to computational power. Sharing is conditional and secured
yet dynamic, and includes peer-to-peer access, where individual nodes are capable of
acting as both client and server. Data grids enable sharing of data and information
resources, while computational grids support data-intensive computing. A service is a
component within the model that provides a particular function through a simple remote
invocation mechanism. Through the introduction of Web and Grid services, many new
resources for different scientific domains are becoming available. 22,23

Grid technologies have captured attention because of their capability of providing
interactive collaboration between widely dispersed individuals and institutions, global
data management services, and sharing of computational resources (Foster et al. 2001).
The Grid provides mechanisms for harnessing computational resources, databases, high
speed networks and scientific instruments, allowing users to build innovative virtual
applications. Such virtual applications are synthesized by combining different
components on multiple computational resources. 24 A very common scenario is the
following: a user needs to copy (or stage) a set of files from one resource (e.g., the local
environment) to a remote resource, run a computational experiment on that remote
resource, and then fetch the results back to the local environment or copy them to another
resource/database. 25

Kepler has a number of actors that allow scientists to access remote resources in many
useful ways—from the Web Service actor, which can execute a remotely stored
application, to the suite of SRB actors that facilitate remote data storage, search, and
access, to the Globus actors that allow users to send a job to a host for remote processing.
In this chapter, we will look at a number of examples of scientific workflows that use
various types of grid actors to take advantage of the increased processing, storage
capacity, and resources provided.

22 Foster, I. and C. Kesselman (1999). The Grid, Blueprint for a New Computing Infrastructure . Morgan

Kaufmann Publishers, Inc.
23 Foster, I., C. Kesselman and S. Tuecke (2001). The anatomy of the Grid: enabling scalable virtual

organizations. International Journal Supercomputer Applications, 15, 200-222.
24 Abramson, David, Jagan Kommoneni, and Ilkay Altintas. Flexible IO Services in the Kepler Grid

Workflow System. First International Conference on e-Science and Grid Computing (e-Science'05) pp.
255-262.

25 I. Altintas, A. Birnbaum, K.K. Baldridge, W. Sudholdt, M. Miller, C. Amoreira, Y. Potier, B.
Ludaescher. A Framework for the Design and Reuse of Grid Workflows. in Proceedings of Scientific
Applications of Grid Computing: First International Workshop, SAG 2004, in series Lecture Notes in
Computer Science, pp. 119-132. Springer-Verlag GmbH, 2005. ISBN 3-540-25810-8.

 Chapter 7

 213

Notes: Globus actors introduced in sub-section 7.1.3 and 7.3.2 are not included in default
installation of Kepler 2.0. These actors may also be updated according to new Globus
Toolkit versions. The detailed documentation on the up-to-date status of these actors and
how to add these actors into Kepler 2.0 can be found at https://kepler-
project.org/developers/interest-groups/distributed/technical-documentation/enable-
globus-actors-in-kepler-2.0.

7.1 Data Movement and Management

Access and management of remote data are basic functions in distributed Grid
computing. There are several methods for moving data from one location to another, e.g.,
GridFTP, SRB put/get, scp, and others. GridFTP is a secure data transfer protocol
optimized for wide-area networks. The SDSC Storage Resource Broker (SRB) is a client-
server middleware that provides a uniform interface for connecting to heterogeneous data
resources over a network and for accessing replicated data sets, e.g., based on metadata
attributes. scp is a shell command that allows users to copy files between systems quickly
and securely, without the need for expertise in Grid systems. Such a tool can be as helpful
in some workflows as any of the other file transfer mechanisms, even for data that will be
used by a Grid job.26

In this section, we will look at an example of each of these methods for moving data
around on the grid.

7.1.1 Saving and Sharing Data on the EarthGrid

The EarthGrid is a distributed network providing scientists access to ecological,
biodiversity, and environmental data and analytic resources. The grid can be used to store
data, or to model or analyze it via remote EarthGrid services.

To search the EarthGrid for data sets, type a query into the Search field under Kepler's
Data tab. Kepler will automatically download the dataset and output it in the specified
format when the data set is dragged onto the Workflow canvas. For more information
about downloading EarthGrid data sets, please see Chapter 6.

To upload data to the EarthGrid, use the EcogridWriter actor, which writes a data file and
the EML metadata describing that data file to a remote grid repository. Ecological
Metadata Language (EML) is a standard set of terms and definitions used to describe
ecological data27. For example, EML metadata might contain information about a data
set's units of measurement, date of collection, location, etc. Although an EML schema
document can be quite complex, several easy to use tools have been created specifically
to help users create EML: Morpho, available from
http://knb.ecoinformatics.org/software/index.jsp .

26 http://users.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
27 EML specification, http://knb.ecoinformatics.org/software/eml/eml-2.1.0/index.html

 Chapter 7

 214

The workflow in Figure 7.1 is used to write a data file (build.xml) to the EarthGrid. The
name of the data file is passed to a MetadataSource actor, which integrates EML
metadata with a data file and then sends the package to the EcoGridWriter.

Figure 7.1: Writing a data file to the EarthGrid

In addition to the name of the data file, the MetadataSource actor can receive up to two
optional strings through its parameter1In and parameter2In ports. These
values, if specified, will replace the substrings '_PARAM1_' and '_PARAM2_' in the
metadata, allowing things like the package title or id to be dynamically changed in a
workflow. The EML metadata is pasted into the MetadataSource actor's parameters
(Figure 7.2)

Figure 7.2: EML metadata is pasted into the MetadataSource actor's XML Metadata parameter. The
text _PARAM1_ will be replaced with the value passed to the actor via the parameter1In port ("Kepler
Workflow Title").

The EcoGridWriter actor connects to the EarthGrid using a user's credentials, which are
input via the actor's parameters (Figure 7.3). You must register with KNB in order to

 Chapter 7

 215

upload data. To register, please go to http://ldap.ecoinformatics.org/cgi-
bin/ldapweb.cgi?cfg=knb. Type your user name after uid in the userName parameter,
and your organization after the o and specify your password for the passWord
parameter beneath.

Figure 7.3: Enter username and password to access the EarthGrid

The EcoGridWriter actor outputs the doc ID of the metadata and data file (e.g.,
doc.1190394793046.1 and doc.1190394793078.1), which can be used to reference the data in
the future. Once a data set is uploaded, you or your colleagues can access it via Kepler's
data tab. Simply search for the data set by its title, or a portion of the title (Figure 7.4).

Figure 7.4: Searching for a dataset uploaded to the EarthGrid. In this case, the title of the dataset (specified
in the metadata) is "Minimal Package with Data."

7.1.2. Secure Copy (scp)

Sometimes the easiest way to move data from one place to another is with a simple scp
("secure copy") command. You can use the ExternalExecution actor to call a local scp

 Chapter 7

 216

program, or use the SSHFileCopier actor to securely perform the file transfer (Figure
7.5). Note: Windows users may need to install 3rd party software in order to use scp.

Figure 7.5: Using the SSHFileCopier actor to securely copy files.

The SSHFileCopier can be used to copy files and directories to or from a path. Either the
source or target can be a remote path in the form [[user@]host[:port]:]path
(e.g., john@farpc:/tmp/foo.txt or john@farpc:2222:/tmp/foo.txt).
The other path must be a local path in the form "local:path" or simply "path"
(local:foo.txt or foo.txt). Both the source and target are specified in the
SSHFileCopier actor's parameters (Figure 7.6)

Local paths are either relative to the user's home directory (when specified
local:path) or the current directory (when specified simply by a path).

To copy a directory, you must check the SSHFileCopier's recursive parameter
(Figure 7.6). If the target path is empty, it is replaced with "."

Figure 7.6: Check the recursive parameter if copying a directory.

An actor, called GenericFileCopier, is to copy files/directories between a local and
remote machine or between two remote machines, using scp, sftp, bbcp or srmlite
protocol. The actor uses the SSH protocol to connect to remote hosts. As shown in Figure
7.7, the workflow will copy file from windows machine to remote Linux machine with
setting the protocol parameter as ‘scp’.

 Chapter 7

 217

Figure 7.7: Using the GenericFileCopier actor to securely copy files.

7.1.3 GridFTP

A leading Grid software is the Globus Toolkit developed by the Globus Alliance, which
addresses the common problems that arise when building distributed-system services and
applications: security, information infrastructure, resource management, data
management, communication, fault detection, and portability. The Toolkit's core services,
interfaces and protocols allow users to access remote resources as if they were located
within their own machine room while simultaneously preserving local control over who
can use resources and when. 28

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-
bandwidth wide-area networks. It is developed by the Globus Alliance and is based upon
the Internet FTP protocol. GridFTP uses basic Grid security on both control (command)
and data channels. Other features include multiple data channels for parallel transfers,
partial file transfers, third-party (direct server-to-server) transfers, reusable data channels,
and command pipelining. For more information, please see the Globus website,
http://www.globus.org/grid_software/data/gridftp.php.

The Kepler component library contains several actors that can be used for GridFTP:
FileFetcher, FileStager, GridFTP, UpdatedGridFTP and GridFTPCopy. The
FileFetcher and FileStager actors work much like the Get and Put operations of the
FTPClient actor, only these actors upload or download a set of files between the local
system and a remote Globus host. The GridFTP and UpdatedGridFTP actors are used to
fetch and stage files from and to any Globus host (i.e., not necessarily the local system).

In order to access the Globus machine, the FileFetcher and FileStager actors must use a
proxy certificate provided by the GlobusProxy actor (Figure 7.8). A certificate allows the

28 I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International
Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

 Chapter 7

 218

actors to access the Grid. To generate a certificate, users must have a Globus user
certificate and key. These credentials are issued by a trusted Grid authority, called a
Certificate Authority (CA) and are stored on your local system (usually as "usercert.pem"
and "userkey.pem"). The GlobusProxy actor references these credentials with its
parameters (as well as an optional passphrase used to decrypt the key file) and uses them
to create a proxy certificate, which is used by all downstream Globus actors.

Figure 7.8: The FileFetcher actor uses a proxy certificate provided by the GlobusProxy actor to fetch files
from a Globus server.

In the workflow in Figure 7.8, the files to fetch are specified via the FileFetcher actor's
filesToGet port. A StringConstant actor specifies the names of three files. Multiple
files are separated by a semicolon ";"

The FileFetcher actor stores the fetched files in the location specified by its
DestinationDirectoryPath parameter and outputs the file paths of the fetched
files once the operation is complete.

The GridFTP and UpdatedGridFTP actors can also be used to fetch and stage files to a
Globus server, only the files to fetch are specified as parameters (Figure 7.9) and the
actors can be used to move files between any two Globus hosts. The Full path to
source file parameter specifies the name of the file to fetch, and the Full path
to destination file parameter specifies the location in which to put the file. In
addition, the Source hostname and Destination hostname parameters
specify the names of the Globus hosts to fetch from and save to, respectively. The

 Chapter 7

 219

GridFTP and UpdatedGridFTP actors also require a certificate generated by the
GlobusProxy actor. The certificate must be provided via the actor's input port.

Figure 7.9: The parameters of the GridFTP actor.

The parameters in Figure 7.9 specify that a file (/etc/passwd) from the remote
Globus host "griddle.sdsc.edu" be fetched and stored on the local system. Note that files
can be fetched and placed on any Globus host—one could, for example, fetch files from
one remote host and place them on another remote host.

The GridFTPCopy actor can also be used to fetch and stage files to a Globus server, only
the files to fetch are specified as parameters (Figure 7.10) and the actors can be used to
move files between any two Globus hosts. The difference between this actor with the
above actors is that the credential needs to be given by MyProxy actor (the detailed
MyProxy actor can be found at section 7.3.2.1). The Full path to source file parameter
specifies the name of the file to fetch, and the Full path to destination file parameter
specifies the location in which to put the file. In addition, the Source Host and
Destination Host parameters specify the names of the Globus hosts to fetch from and save
to, respectively. The output of the actor is the full path to destination file.

 Chapter 7

 220

Figure 7.10: The GridFTPCopy actor uses a proxy certificate provided by the MyProxy actor to fetch files
from a Globus server.

7.1.4 Storage Resource Broker (SRB)

The SDSC Storage Resource Broker (SRB) is a Grid storage management system
providing data access, transfer, and search functionality, as well as persistent archiving
(usually for files). Every user has a home directory (or "collection") where the user can
read, write, or create-sub collections; users grant permission to their home collection to
other users. In addition, project-level collections can be shared by users and groups. SRB
collections use a "logical name space" that maps logical paths consisting of collections
(directories) and individual data objects (files) to physical files stored on different
devices. Users see and interact with the logical paths, and the physical location is handled
by the SRB system and administrators. Files and datasets have associated metadata,
which determine where the data are physically located and who has access to the data, as
well as user-defined metadata, which contains information about the data. For more
information about SRB and its integration with Kepler, see
http://www.sdsc.edu/srb/index.php/Main_Page and
http://www.sdsc.edu/srb/index.php/Kepler.

To get data from an SRB system, use the SRBSGet, SRBStreamGet, or SRBGetMetadata
actors. The SRBSGet actor fetches data files from an SRB system, the SRBStreamGet
actor reads a file stored on an SRB system and outputs its contents as a series of bytes,
and the SRBGetMetadata actor retrieves and outputs (as a string) user-defined metadata
for a SRB dataset or collection. To upload data to an SRB system, use the SRBSPut or or
SRBStreamPut actor.

Users must have a valid SRB account in order to connect to the SRB system and use the
SRB actors. To obtain an account, contact your local SRB system administrator. If you
do not have a local administrator, applications can be made to srb@sdsc.edu. To use
these actors, users usually also need make sure that both the SRB host server and
resource server, which are specified at the srbHost and srbDefaultResource attribute of
the SRBConnect actor, are running. One way to test these servers is using SRB client
commands http://www.sdsc.edu/srb/index.php/Scommands.

All workflows using SRB actors require an SRBConnect actor, which connects to a SDSC
Storage Resource Broker (SRB), where users can upload, download, or query data. The
SRBConnect actor connects to an SRB file system and returns a reference to the system.
This connection reference can be propagated to all actors accessing the SRB workspace,
allowing the actors to access the SRB system. The actor requires the user to specify
account information in the connection parameters (Figure 7.11).

 Chapter 7

 221

Figure 7.11: Example of SRBConnect actor's parameters and settings.

The srbHost, srbPort, srbUserName, srbPasswd, srbDomainHome,
and srbDefaultResource parameters specify user account settings, which are
emailed to users when the SRB account is first set up. If you need this account
information, please contact your local SRB system administrator. The
srbHomeCollection parameter specifies the path to the home collection. Each SRB-
registered user has a home collection, where the user can read, write, create-sub
collections, and grant access permissions. In general, the SRB home collection is
specified in the following format: /home/<username>.<domain>.

The workflow in Figure 7.12 uses an SRB connection generated by an SRBConnect actor
to copy a file from an SRB file system to a local directory. If successful, the SRBSGet
actor outputs the status (i.e., "success") via its exitCode port. The file path of the
fetched file is output by the fetchedFiles port.

Figure 7.12: A workflow that copies a file stored on an SRB host to the local system. The path to the file to
fetch is specified by a StringConstant actor labeled "File to fetch".

 Chapter 7

 222

The SRBStreamGet actor works similarly to the SRBSGet actor, only it outputs the SRB
file as a sequence of bytes. To view the user-defined metadata associated with a data file
stored on an SRB host, used the SRBGetMetadata actor. Metadata describes the data and
might contain information about unit systems used by the data, for example, or the extent
of the geographic area from which it was collected.

To write data to an SRB host, use the SRBSPut or SRBStreamPut actor (Figure 7.13).

Figure 7.13: Using the SRBPut actor.

In the above workflow, the SRBConnect actor is used to create a connection to the SRB
server. You must have an SRB account. To request an account, or if you require help
with an existing account, please see the SRB website.

The name of the dataset to upload to the remote server as well as the directory in which to
place it are specified with constant actors (Dataset to upload and Remote Directory, in
the above workflow). Once the dataset has been uploaded, the SRBSPut actor will output
the new remote file path as well as the status (e.g., "Success").

The suite of SRB actors also includes components designed to help manage SRB systems
and execute commands such as registered Web services. The SProxy and
SRBProxyCommands actors execute a proxy command on a remote SRB system and
output the command result along with an exit status. Only a predefined set of SRB
commands can be executed via the SProxy actor: list directory, copy or move a directory
or file, remove, replicate, create or remove a directory, change permissions (to execute a
broader range of commands, use the SRBProxyCommands actor). The SProxy actor
executes the command specified by its parameters (Figure 7.14). Parameters qualified by

 Chapter 7

 223

parenthetical comments only apply to specific commands, e.g., Sls (for list directory) or
Srm (for remove).

Figure 7.14: The parameters of the SProxy actor.

Sproxy actor commands include:

List directory: List the contents of a remote directory. The path to the directory must be
input as a string (e.g., /data/2007/). By default, contained file paths are output as an array.
To output each file separately, select the output each path separately (for
Sls) parameter. When this parameter is selected, one file path will be output with each
iteration.

Copy/Move: Copy or move files to a new path. The actor outputs the new file paths and
recursively copies/moves directories. The path to the original file or directory must be
input as a string (e.g., /data/2007/). In addition, the new path must be specified via the
newPath port. To reveal this port, right-click the SProxy actor and select Configure Ports
(Figure 7.15). Check the Show Name checkbox beside the newPath port. The actor
outputs an array of the new file paths.

Figure 7.15: To reveal the newPath port, check the Show Name box beside the port.

Remove/Remove directory: Remove files/directories. To remove directories
recursively, select the –r (for Srm) parameter. Select forward parent
directory (for Srm/Srmdir) to output an array of the removed file and

 Chapter 7

 224

directory paths. The path to the original file or directory must be input as a string (e.g.,
/data/2007/).

Create directory: Create a new directory. The name of the new directory must be input
as a string (e.g., /data/2007/). The actor outputs the new directory path.

Replicate: Replicate a file/directory to a new resource. Replication is the process of
making a replica, or copy, of something. Replication in SRB does not distinguish
between the original and the copy. Therefore it is possible to delete the original and
continue working with the copy (also called Migration). Replication in SRB serves a
number of purposes: disaster protection and recovery, migration to new storage
technologies, and load balancing.29 The path to the original file or directory must be input
as a string (e.g., /data/2007/). In addition, the new path must be specified via the
newPath port. To reveal this port, right-click the SProxy actor and select Configure
Ports (Figure 7.15). Check the Show Name checkbox beside the newPath port. The
actor outputs an array of the new file paths. The actor outputs the path of the new
resource.

Change mode: Change the permissions of a file or a directory. Access permissions
allowed are write (w), read (r), all (a), annotate (t), none (n), give curator (c) permission
or change owner (o).30 The path to the file or directory must be input as a string (e.g.,
/data/2007/). In addition, a new permission string (e,g., rw), user name (of the user being
granted permissions) and mdasDomain (of the person granting the permissions) must be
specified via ports. The mdasDomain (metadata domain) contains password information
(e.g., ~.srb/.MdasAuth). To reveal the relevant actor port, right-click the SProxy actor and
select Configure Ports (Figure 7.15).

The workflow in Figure 7.16 uses an SProxy actor to list the contents of the kepler_dev
home directory on an SRB system. An SRBConnect actor is used to connect to this
system and output a reference to it. The SProxy actor reads the SRB reference as well as
the name of the directory to list ("/pzone/home/kepler_dev.sdsc/"), and outputs an array
of contained files and directories.

29 Nirvana website, http://www.nirvanastorage.com/index.php?module=htmlpages&func=display&pid=32
30 SRB Manual, http://www.sdsc.edu/srb/index.php/Schmod

 Chapter 7

 225

Figure 7.16: Using SProxy actor to pass a command to an SRB system.

The SRBProxyCommands works much like the SProxy actor, only it can be used to
execute any command that is available on the server side. The actor requires an SRB
connection reference, a command to execute, and command arguments. Multiple
arguments should be separated by a space. In addition, the name of an output file can also
be specified via either an input port or the actor's parameters.

For more information and examples of Kepler and SRB, please see the Kepler/SRB user
documentation, https://code.kepler-project.org/code/kepler-docs/trunk/legacy-
documents/user/KeplerSRBUserManual.pdf.

7.1.5 Integrated Rule-Oriented Data System (iRODS)

iRODS™, is a data grid software system developed by the Data Intensive Cyber
Environments (DICE) group (developers of the SRB, the Storage Resource Broker),
and collaborators. The iRODS system is based on expertise gained through nearly a
decade of applying the SRB technology in support of Data Grids, Digital Libraries,
Persistent Archives, and Real-time Data Systems. iRODS management policies (sets of
assertions these communities make about their digital collections) are characterized in
iRODS Rules and state information. At the iRODS core, a Rule Engine interprets the
Rules to decide how the system is to respond to various requests and conditions. iRODS
is open source under a BSD license. For more information about iRODS and its
integration with Kepler, see https://www.irods.org/ and
https://www.irods.org/index.php/Kepler.

 Chapter 7

 226

The DataGridFileTransfer actor has functionality similar to the SRB/IRODS commands,
namely Sget, Sput, iget, and iput. DataGridFileTransfer allows users to copy one or
more objects from one local/remote file system to another local/remote file system. The
following actor expects as input a reference to local or remote file systems support by the
Jargon API31. This reference connection is created from the source and destination URL
values. Currently available file system URLs are, file:///myDir/myfile.txt,
irods://username:password@myhost.org:1247/myDir/myfile.txt,
srb://username.domain:password@myhost.org:5544/myDir/myfile.txt, or ftp and http urls.

The workflow in Figure 7.17 uses an DataGridFileTransfer actor to transfer a local file
to a directory at one iRODS server. The SProxy actor reads the file from sourceURL and
transfer it to destinationDirectoryURL. Its outputs is an array of transferred files, and
exitCode.

Figure 7.17: Using a DataGridFileTransfer actor to transfer files between different file system.

7.2 Remote Service Execution

Kepler has several actors that can invoke different types of services for use in
workflows—from Web Services, to REST services, to Soaplab services. In this section,
we will look at a few examples of various remote services and how they are invoked from
a workflow.

7.2.1 Using Web Services

The WebService actor executes a Web service-- a computer program that runs on a
remote host and communicates using a standardized protocol. The actor invokes the Web
service and broadcasts the response through its output ports.

31 https://www.irods.org/index.php/Jargon

 Chapter 7

 227

Each Web service is described by a Web Service Description Language (WSDL) file.
WSDL is a format for describing network services--from simple eBay watcher services to
complex distributed applications. The WSDL file defines the methods that the service can
execute, as well as the type of data the service requires as input. Public WSDL files are
typically available on the Web site of the organization that publishes the service. Check
the WSDL description (you can open the WSDL URL in a browser to view it) to see if
the service uses complex types (you can recognize complex types by the <complexType
name=xx> tag used to declare them in the WSDL file). If the service uses
complex types, you must use Kepler's WSWithComplexTypes actor; otherwise, use the
WebService actor.

The WebService actor accepts the URL of a WSDL file and the name of an operation
defined by that file (such as "getXMLEntry"). Available operations will automatically
populate a drop-down menu for methodName parameter once the URL of a WSDL file
has been specified and committed in the wsdlUrl parameter and the parameters.
(Figure 7.18).

Figure 7.18: The parameters of the Web Service actor. Method names will automatically populate the drop-
down menu once a wsdlUrl has been committed.

Once the user has selected and committed a WSDL and operation, the actor automatically
configures itself to perform that operation by creating the necessary input and output
ports.

The Web Services and Data Transformation workflow (found in the demos/getting-
started directory) uses the WebService actor to access a genomics database and return a
genetic sequence from it, which is queried using a remote genomics data service. The
name of the returned genetic sequence (i.e., the gene accession number) is passed to the
WebService actor by a StringConstant actor named "Gene Accession Number" (Figure
7.19).

 Chapter 7

 228

Figure 7.19: Using the Web Service actor to access a service and return a genetic sequence.

The Web Service actor outputs the gene sequence obtained from the remote server so that
it can be displayed in multiple formats using three different textual Display actors: one
for XML (the format in which the results are returned by default), one for a sequence of
elements extracted from the XML, and one for an HTML document that can be displayed
on a website. A Relation is used to “branch” the data output by the Web Service actor so
that it can be shared by all of the necessary components.

The workflow uses two composite actors: Sequence Getter Using XPath and HTML
Generator Using XSLT to process the returned XML data and convert it into a sequence
of elements and an HTML file, respectively. These actors have been created for use with
this workflow using existing Kepler actors. Sequence Getter Using XPath and HTML
Generator Using XSLT do not appear in the Components tab. To see the “insides” of the
composite actors, right-click the actor icon on the Workflow canvas and select Open
Actor from the menu.

The resulting workflow and output are shown below (Figure 7.20).

 Chapter 7

 229

Figure 7.20: The Web Services workflow and its output.

The WSWithComplexTypes actor is similar to the WebServices actor, only it has several
additional parameters: inputMechanism and outputMechanism, and, as we
mentioned earlier, this actor should be used when the WSDL definition contains complex
types. The WSWithComplexTypes actor automatically specializes its ports to reflect the
input and output parameters of the Web service operation. For simple Web service types,
e.g., string, int, double, etc., the ports are set to the matching Kepler types. For complex
Web service types, the ports are set to XMLTOKEN. When the actor fires, it reads each
input port, invokes the Web service operation with the input data, and outputs the
response to the output ports.

The workflow in Figure 7.21 uses the WSWithComplexTypes actor to return an array of
organisms that are supported by ProThesaurus ("Protein Thesaurus", which implements a
Biological Name and Mark-up Service for protein names and identifiers32) Web service.

32 http://services.bio.ifi.lmu.de:1046/prothesaurus/

 Chapter 7

 230

Figure 7.21: Using the WSWithComplexTypes actor to return supported organisms at the ProThesaurus
Web service.

The URL of the WSDL defining the service is specified in the actor's wsdl parameter,
and a method is selected (in this case, listOrganisms) from the drop-down menu that
is populated when the Web service WSDL is committed. In addition, the
inputMechanism and outputMechanism parameters are set to simple, the
default. When these parameters are set to simple, the actor will behave as previously
described, setting simple-types to their Kepler type equivalent, and complex-types to
XMLTOKEN in the workflow.

Set the inputMechanism and outputMechanism parameters to composite to
automatically create a composite actor that contains the XMLAssembler or
XMLDisassembler actors needed to build any required complex Web service type (Figure
7.22). The WSWithComplexTypes >parameters actor in Figure 7.18 was automatically
created and connected to the WSWithComplexTypes actor; this composite actor will
accept and combine all the simple input types (e.g., strings representing the method,
organism, etc) into the XML format required by the Web service. Changing the
inputMechanism parameter back to simple deletes the connected composite actors.
(If you have made changes to the composite actors and don't want them lost, disconnect
them from WSWithComplexTypes before changing the mechanism to simple).

 Chapter 7

 231

Figure 7.22: Set the inputMechanism and outputMechanism parameters to composite to
automatically create a composite actor that contains the XMLAssembler or XMLDisassembler actors needed
to build any required complex Web service type.

7.2.2 Using REST Services

A RESTful web service (also called a RESTful web API) is a simple web service
implemented using HTTP and the principles of REST33. The RESTService actor executes
a REST service. The actor invokes the REST service and broadcasts the response through
its output port.

The workflow in Figure 7.23 calls a REST service at the Amazon web site, and the
configuration information of the actor is shown in Figure 7.24. To The actor will the
REST service: http://developer.amazonwebservices.com/connect/entry.jspa. To invoke
the service, users should know from service provider that: 1) service Url; 2) it accept
‘Get’ or ‘Post’ invocation, and 3) the parameters for the service (externalID and ref are
two parameters in the example). Since the service offers ‘Get’ method, so the
methodType parameters in the Figure 7.23 is set as ‘Get’. The workflow passes two
parameters name/value pairs and they are separated by ‘,’ (without quotes) delimiter that

33 Wikipedia, http://en.wikipedia.org/wiki/Representational_State_Transfer#RESTful_web_services

 Chapter 7

 232

is also defined as a parameter in the dialog box. Its value could be changed to something
else especially when user has a parameter value that contains ‘,’ (without quotes).

Figure 7.23: Using RESTService actor to call a REST service in Amazon web site.

Figure 7.24: The parameters of the RESTService actor.

7.2.2 Using Soaplab Services

Soaplab is a set of Web Services providing programmatic access to command-line tools
available on remote computers. Because such tools usually analyze data, Soaplab is often
referred to as an Analysis (Web) Service. Soaplab services are defined by an API that is
the same for all analysis tools, regardless of the operating system where they run, the
manner in which they consume and produce data (e.g., from/to files or from/to standard
streams), and the precise syntax of the underlying command line tools.34

Kepler's Soaplab actors can access any derived Web service that is described by Web
Service Description Language (WSDL) and is registered with the European
Bioinformatics Institute (EBI). For a complete list of EBI-registered WSDLs, see
http://www.ebi.ac.uk/soaplab/services .

34 Senger, Martin, Peter Rice, and Tom Oinn. Soaplab –a unified Sesame door to analysis tools. Proc UK e-
Science programme All Hands Conference, 2003 - nesc.ac.uk

 Chapter 7

 233

The workflow in Figure 7.25 uses a Soaplab service called segret to return a protein
sequence from the EMBL Nucleotide Sequence Database, a nucleotide sequence
resource.

Figure 7.25: Using Soaplab actors to lookup a protein sequence from the EMBL Nucleotide Sequence
Database.

A StringConstant actor (called "Sequence USA") is used to pass the input—in this
example, a Uniform Sequence Address (USA)--to the Soaplab service. USAs are a very
flexible way of specifying one or more sequences from a variety of sources (files,
databases, etc). The format used in the workflow consists of a database name followed by
an accession number, which is a unique identifier given to a biological polymer sequence
(DNA, protein) when it is submitted to a sequence database35. For more information
about USAs, please see
http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa.

35 Wikipedia, http://en.wikipedia.org/wiki/Accession_number

 Chapter 7

 234

The SoaplabChooseOperation actor receives the USA and "prepares" the input for the
Soaplab service. The actor requires the WSDL of the Soaplab service, which is specified
via parameters (Figure 7.26)

Figure 7.26: The parameters of the SoaplabChooseOperation actor.

Once a wsdlUrl has been specified and the setting has been committed, the
SoaplabChooseOperation actor will automatically populate the inputSetMethods
parameter with a drop-down menu of available "set methods", which are used to identify
the input (Figure 7.27) so that the Soaplab service can recognize and use it.

Figure 7.27: A drop-down menu of input "set methods" that is automatically generated by the
SoaplabChooseOperation actor after a WSDL URL has been specified and committed.

The example workflow uses the set_sequence_usa set method to specify that the
input is a USA. If the input were a fasta formatted sequence instead (an actual protein
sequence described in a text-based format), use the set_sequence_direct_data
menu item; other set methods describe additional types of input that the service accepts:
an output sequence format (set_osformat) or the last position to use in the sequence
(set_send), for example. For more information about the types of input that can be set
and passed to the segret service, see
http://emboss.sourceforge.net/apps/release/4.1/emboss/apps/seqret.html .

The WSDL of the Soaplab service must also be specified in the parameters of the
SoaplabServiceStarter actor, which starts the Soaplab service. The actor starts the service
by creating an empty job used to execute the process before the workflow is even run.

 Chapter 7

 235

The two SoaplabAnalysis actors perform standard Soaplab operations: run and
waitFor. Non-standard operations can be specified and performed as well, provided
they are defined in the service's WSDL file. See the documentation for individual
Soaplab services for more information about defined operations.

The SoaplabChooseResultType actor "grabs" the desired service output using "get
methods". The actor generates a list of relevant methods once the WSDL of the service
has been specified and committed (Figure 7.28). In this case, the get_outseq method
is used to return the protein sequence. By default, sequences are returned in fasta format.

Figure 7.28: Parameters of the SoaplabChooseResultType actor. outputGetMethods are used to "grab" the
desired results output by the service.

If the service executes successfully, the retrieved sequence is displayed by the Display
actor (Figure 7.29).

Figure 7.29: The protein sequence output by the Soaplab workflow.

7.2.3 Using Opal Services

Opal36 is a toolkit for wrapping scientific applications as Web services, providing
features such as scheduling, standards-based Grid security and data management in an
easy-to-use and configurable manner. Opal toolkit is provided by National Biomedical
Computation Resource, University of California, San Diego.

36 http://www.nbcr.net/software/opal/

 Chapter 7

 236

Kepler's Opal Client actors can access any Web services that are generated by Opal
toolkit. For the list of Web services deployed at opal project, see
http://ws.nbcr.net/opal2/services.

Figure 7.30: An Opal Client actor where other parameters are dependent on serviceURL parameter value.

An Opal Client actor is shown at Figure 7.30, which has service URL and other
parameters to run the service. Other parameters are dependent on serviceURL parameter
value. So users need to firstly fill in the value of serviceURL parameter, and then click
Commit button. After this step, users can double-click the actor again to get other
parameter options.

Figure 7.31: A sample workflow using configured Opal Client Actor, called MEME, to access MEME
Web service generated by Opal toolkit.

 Chapter 7

 237

A sample workflow using the above configured Opal Client Actor, called MEME, to
access MEME Web service generated by Opal toolkit is demonstrated at Figure 7.31.
The file connected to the input of MEME actor, called At.fa, will be automatically
transferred to the server side and get executed. The base URL containing the working
directory of the running jobs MEME Web service is obtained from the baseUrl output
port of MEME for downstream processing.

7.3 Job Submission

Job submission is a common and efficient way to utilize distributed computing resources,
such as Cluster, Grid. Kepler has two set of actors that can submit jobs to two typical
distributed resources: Cluster and Grid. Each set has some actors which can be used for
different job operations: create, submit, status check. In this section, we will look at a few
examples of these actors and how they are combined from a workflow to realize the
whole lifecycle of job submission.

7.3.1 Cluster Job Submssion

A computer cluster is a group of linked computers, working together closely so that in
many respects they form a single computer.

The Kepler component library contains several actors that can be used for different
Cluster job operations: JobCreator, JobFileFetcher, JobGetDirectory, JobGetRealJobID,
JobManager, JobRemover, JobStatus, JobSubmitter. The current supported job scheduler
includes Condor, Fork, LoadLeveler, NCCS, PBS and SGE.

As shown in Figure 7.32 – 7.35, a common logic for cluster job operations include three
main steps: select job manager according to its type by the JobManager actor, submit job
to a cluster by the JobCreator and JobSubmitter actor, check cluster status by the
JobStatus actor within a loop.

 Chapter 7

 238

Figure 7.32: An example workflow for cluster job operations, whose sub-workflow in SelectJobManager,
SubmitSimJob and WaitForSimFinish are shown in Figure 7.33, 7.34 and 7.35 respectively.

Figure 7.33: The content of SelectJobManager composite actor in Figure 7.32.

Figure 7.34: The content of SubmitSimJob composite actor in Figure 7.32.

 Chapter 7

 239

Figure 7.35: The content of WaitForSimFinish composite actor in Figure 7.32.

Besides the above set of actors, another actor called GenericJobLauncher is a generic
actor that can create, submit and manage a job on a remote machine accessible through
SSH. The user may choose to wait till the job has attained a specific status in the queue -
for example until it is ‘Running’, ‘Complete’, ‘Not in Queue’ and etc. A sample
workflow is shown in Figure 7.36. If the 'Wait Until Status' parameter of
GenericJobLauncher actor is set as ‘Not in Queue’, the workflow will keep running until
the job is done at the target cluster.

Figure 7.36: An example workflow for cluster job submission using GenericJobLauncher actor.

7.3.2 Grid Job Submission

With Grid infrastructure, users are able to locate, submit, monitor and cancel remote jobs
on Grid-based compute resources. A Grid job is an executable or command that runs on a
(typically remote) Grid resource. Currently, Kepler mainly supports job submission to
Grid resources built by Globus Toolkit37. To support job submission to Grid resources

37 http://www.globus.org/toolkit/

 Chapter 7

 240

built by other Grid toolkits, such as Campus Grid Toolkit38 and gLite39, the
corresponding actors need to be implemented.
To initiate, monitor, manage, schedule, and/or coordinate remote computations, Globus
toolkits, supports the Grid Resource Allocation and Management (GRAM) interface.
Usually two different GRAM implementations, namely Pre-WS GRAM and WS GRAM,
are provided by the different versions Globus Toolkit, e.g. GT440.

Kepler provides two sets of actors to support these two implementations respectively. We
will first introduce how to get proxy certificates, which is the security prerequisite to
invoke Globus actors. Then the two sets of actors to submit Globus jobs using Pre-WS
GRAM and WS GRAM will be introduced.

7.3.2.1 Kepler Globus Actors for Proxy Certificate

To use Globus services, end users need two X.509 certificates. The first one is user
certificate, which is issued by a certification authority (CA) and is used to identify users.
This certificate will typically be valid for a year or more and will be stored in a file in the
individual's home directory. The second certificate is proxy-certificate, which is to
support the temporary delegation of the user’s privileges to user grid services. Proxy
certificates typically have a much shorter lifetime than end-user certificates (usually 12
hours). Several ways are provided by Globus Toolkit, which is listed at.
http://globus.org/toolkit/docs/latest-stable/security/.

The GlobusProxy actor uses Globus certificate and key file to create a proxy certificate.
These files are issued by a trusted Grid authority, called a Certificate Authority (CA) and
are stored on your local system (usually as "usercert.pem" and "userkey.pem"). The
GlobusProxy actor references these credentials with its parameters (Figure 7.37) and uses
them to create a proxy certificate, which is used by downstream Globus actors.

Figure 7.37: Setting the parameters of the GlobusProxy actor.

38 http://www.omii.ac.uk/wiki/CGT
39 http://glite.web.cern.ch/glite/
40 http://www.globus.org/toolkit/docs/4.0/execution/

 Chapter 7

 241

The MyProxy actor is to create a Globus proxy certificate by ‘MyProxy user account’ or
‘MyProxy X509 Credential file’ way. For ‘MyProxy user account’ way, users need to
specify host info (URL and port) and user info (username and password). For MyProxy
Credential way, which is shown in Figure 7.38, users need to specify the file path, is
/tmp/x509up_u<uid> typically. More information about MyProxy can be found at
http://grid.ncsa.uiuc.edu/myproxy/ and http://globus.org/toolkit/docs/latest-
stable/security/myproxy/.

Figure 7.38: Setting the parameters of the MyProxy actor.

7.3.2.2 Kepler Globus Actors for Pre-WS GRAM

Pre-WS GRAM is the GRAM implementation first introduced in GT2. In Pre-WS
GRAM, the jobs to be submitted can be described using the Resource Specification
Language (RSL), a common interchange language to describe resources. For more
information about using and creating RSL strings, please see the Globus online
documentation, http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html, or
http://programaticus.com/anl/globus/RSL.html.

The GlobusJob actor accepts the certificate generated by the GlobusProxy actor via an
input port. To use the actor to execute a job on a remote Globus host, specify the name of
a Globus server (e.g., "griddle.sdsc.edu") and a Resource Specification Language (RSL)
string, which defines the commands to perform. A full RSL string must be specified
(Figure 7.39).

 Chapter 7

 242

Figure 7.39: Using the GlobusJob actor to execute a command on a remote Globus server by Pre-WS
GRAM way.

The workflow in Figure 7.39 uses actors to connect to a Globus host named
griddle.sdsc.edu. The GlobusJob actor passes a specified RSL String
"&(executable=/bin/cat)(arguments=/tmp/pas.local)" to the server,
where it is executed. In the above example, the host is instructed to print the file pas.local
from the tmp directory. The GlobusJob actor then outputs the printed file as a string.

The same workflow functionality could be achieved without using an RSL string by
using the ParameterizedGlobusJob actor instead of the GlobusJob actor. Instead of
passing an RSL string to a Globus host, the ParameterizedGlobusJob actor passes a
command (specified as an executable path) and command arguments (input via a port).
The workflow in Figure 7.40 has the same output as the workflow in Figure 7.39.

 Chapter 7

 243

Figure 7.40: Using the ParameterizedGlobusJob actor.

The name of the Globus host and the remote executable (/bin/cat) is specified in the
ParameterizedGlobusJob actor's parameters. Arguments, in this case the path to the file to
open and output (/tmp/pas.local), is passed via the actor's input port.

7.3.2.2 Kepler Globus Actors for WS GRAM

WS GRAM builds on Web services technologies and is the recommended system for
most users due to its superior scalability and its support for WS-Security mechanisms. In
WS GRAM, the jobs to be submitted can be described by the Job Description Schema, an
xml language to describe resources. For more information about using and creating the
Job Description Schema, please see the Globus online documentation,
http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/schemas/gram_job_descri
ption.html.

Figure 7.41: Setting the parameters of the GlobusWSJob actor.

The GlobusWSJob actor accepts the certificate generated by the MyProxy actor via an
input port. To use the actor to execute a job on a remote Globus host, specify the name of

 Chapter 7

 244

a Globus server (e.g., "griddle.sdsc.edu") and a Job Description string, which can be
gotten from a Job Description file or defined by GlobusJobDescriptionGenerator actor.
The parameter configuration dialogue is shown in Figure 7.41, where users can specify
whether the job will be executed in batch mode, job scheduler type of the Globus Host
(which is Fork, SGE, PBS, LSF or Condor), the GLOBUS_LOCATION and AXIS
ClientConfigFile Path of the client machine.

Figure 7.42: Using the GlobusWSJob actor to execute a command on a remote Globus server by WS
GRAM way.

The workflow in Figure 7.42 uses actors to connect to a Globus host named
griddle.sdsc.edu. Using GlobusJobDescriptionGenerator actor, this workflow
defines the executable, out file and error file information for the job to be submitted. The
GlobusWSJob actor uses the defined job description and submits to the specified Globus
host, where the job is executed. The output of the GlobusWSJob actor is the job handler
of the submit job which can be used to check status or other operations.

The workflow in Figure 7.43 uses GlobusWSJobStatus actor to check the current status
of a job by its jobhandler. A typical jobhandler is like
https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-
62a7-11de-bf68-da862a69e457. The string description of the status, which is
"UnSubmitted", "Active", "Done", "Failed" or "Expired", can be gotten from the ‘Job
Status’ output of the GlobusWSJobStatus actor. Using the logic similar in Figure 7.32, it
is easy to construct a workflow which submit a job and monitor its execution until it is
done or get exception by composing the above actors for Globus WS GRAM execution.

 Chapter 7

 245

Figure 7.43: Using the GlobusWSJobStatus actor to get the status of a Globus job by its job handler.

 Chapter 8

 246

	

8 Mathematical, Data Analysis, and Visualization
Packages

The Kepler library contains a number of useful actors that interface with commonly used
applications and integrate their functionality into workflows. Without ever leaving the
Workflow canvas, workflow designers can access the powerful statistical and data
processing environments of R and/or MATLAB, the image processing features of
ImageJ, and the convenient expression language built into Kepler itself.

8.1 Expressions and the Expression Actor
The Kepler expression language provides a convenient infrastructure for specifying
algebraic expressions textually and for evaluating them. In this section, we will look at
several examples of how the expression language and the Expression actor are used—
from specifying the values of parameters to performing calculations with the Expression
actor. For a complete reference on the Expression language, please see the Ptolemy user
documentation.

Expressions can contain variables, constants--either a symbolic name such as PI or NaN
or a literal (an integer, string, float, etc)--operators (+, -, *, etc), and functions (either
built-in ones such as sin() and cos(), or user-defined functions). The following are
examples of expressions:

1 An integer
PI/2 A symbolic constant divided by a literal
sin(PI/2) A function performed on a symbolic constant divided by a

literal
{1,2,4,5,6} An array
"ImAString" A string
CWD The current working directory. CWD is a built-in string-valued

constant

Expressions are often used as the values of parameters, port parameters, string parameters
and inside the Expression actor, which evaluates a specified expression and outputs the
value.

For more information about expressions and the expression language, please see the
Ptolemy documentation.

 Chapter 8

 247

8.1.1 The Expressions Language

The Kepler Expression language, which provides a means of specifying and evaluating
algebraic expression textually, is identical to the Ptolemy Expression language. The
language can be used to represent constants and literals, variables, operators, arrays,
matrices, records, methods and functions, and we'll look at examples of each in this
section. The material in this section is based on the Ptolemy documentation. For
additional information, please see Chapter 3 of the Ptolemy User Manual.

To begin experimenting with expressions, select Tools > Expression Evaluator from the
Toolbar. A command-shell styled window opens (Figure 8.1). Expressions will be
evaluated on return. To scroll back to previous commands, click the up arrow (or
Control-P). To scroll forward, click the down arrow (or Control-N).

Figure 8.1: The Expression Evaluator. In this example, the system returns the value of the expression pi.

8.1.1.1 Constants and Literals
The simplest expression is a constant, either a literal (a number or string) or a symbolic
name (e.g., PI). Please see Table 8.1 for a list of supported symbolic names. Numerical
constants can be integers (e.g., 1 or 73), doubles (e.g., 33.2 or 1.5), longs (e.g., 12L),
unsigned bytes (e.g., 5ub), or complex numbers (e.g., 2+3i). Anything between double

 Chapter 8

 248

quotes is interpreted as a string ("hello" or "777"). In addition, Kepler has several
globally defined string constants, noted in Table 8.2.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or
hexadecimal. Numbers with a leading “0” are octal numbers. Numbers with a leading
“0x” are hexadecimal numbers. For example, “012” and “0xA”are both equal to the
integer 10.

Symbolic Name Meaning
E or e E = 2.718281828459
false False
i or j Imaginary number with value equal to the square root of -1.
Infinity Infinity. The result of dividing 1.0/0.0.
MaxDouble Maximum double (i.e., 1.7976931348623E308). Numerical

values with decimal points, such as “10.0” or “3.14159” are
of type double

MaxFloat MaxFloat = 3.4028234663853E38
MaxInt Maximum integer (i.e., 2147483647)
MaxLong Maximum long (i.e., 9223372036854775807L). Numerical

values without
decimal points followed by the character “l” (el) or “L” are
of type long.

MaxShort MaxShort = 32767
MaxUnsignedByte Maximum unsigned byte (i.e., 255ub). Unsigned integers

followed by “ub” or “UB” are of type unsignedByte (e.g.,
5ub)

MinDouble Minimum double (i.e., 4.9E-324). Numerical values with
decimal points, such as “10.0” or “3.14159” are of type
double.

MinFloat MinFloat = 1.4012984643248E-45
MinInt Minimum integer (i.e., -2147483648)
MinLong Minimum long (i.e., -9223372036854775808L). Numerical

values without
decimal points followed by the character “l” (el) or “L” are
of type long.

MinShort MinShort = -32768
MinUnsignedByte Minimum unsigned byte (i.e., 0ub). Unsigned integers

followed by “ub” or “UB” are of type unsignedByte (e.g.,
5ub)

NaN "not a number,” e.g., the result of dividing 0.0/0.0
NegativeInfinity Negative infinity.
PI or pi PI = 3.1415926535898
PositiveInfinity Infinity. The result of dividing 1.0/0.0.
true True
Table 8.1: Supported symbolic constants and their meaning

 Chapter 8

 249

To see the list of globally defined constants, open Kepler's Expression Evaluator and type
constants() at the command prompt. Kepler will return a list of defined constants
and their values (Figure 8.2)

Figure 8.2: Use the constants() function to return globally defined constants and their values.

Predefined Strings Meaning
PTII The directory in which Ptolemy II is

installed (e.g., c:\tmp)

HOME The user home directory (e.g.,
c:\Documents and Settings\you)

CWD The current working directory (e.g., c:\ptII)

TMPDIR The temporary directory (e.g.,
c:\Documents and Settings\
you\Local Settings\Temp)

KEPLER The directory in which Kepler is installed
(e.g., c:\kepler)

Table 8.2: Predefined String Values in Kepler

 Chapter 8

 250

8.1.1.2 Variables
Expressions can contain variables—either built-in constants such as PTII or assignments
that have been made previously. For example, the following expression uses a variable
named "x", which is multiplied by the value 2.

2*x

Kepler can only evaluate the above expression (or any expression that uses variables for
that matter) if the variable is defined. Variables must be defined at the same level of
hierarchy or above (if working with nested workflows). For example, in Figure 8.3, the
variable x is defined as 4. Kepler can evaluate the expression 2*x (i.e., 8) because it
knows the value of x. Kepler cannot evaluate the expression 2*y, however, as the y
variable is not defined.

Figure 8.3: Defining a variable. In this example, x is defined as 4. y is not defined and Kepler cannot
evaulate the expression.

Variables are often defined on the Workflow canvas or using parameters. For more
information, please see Section 8.1.3.

 Chapter 8

 251

8.1.1.3 Operators
The Kepler Expression language supports a number of arithmetic, relational, bitwise, and
logical Boolean operators (Table 8.3). When an operator involves two distinct types, the
expression language decides which type to use to implement the operation. If one of the
two types can be converted without loss into the other, then it will be. For instance, int
can be converted losslessly to double, so 1.0/2 will result in 2 being first converted to 2.0,
so the result will be 0.5. If the types cannot be converted, an error message will be
generated (e.g., "Error evaluating expression "2.0/2L" in
.Expression.evaluator Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and
ptolemy.data.LongToken '2L' because the types are incomparable.")

Operator Meaning

Arithmetic Operators Arithmetic operators operate on most data types, including arrays,

records, and matrices
+ The + operator is an addition operation.
- The – operator is a subtraction operation.
* The * operator is a multiplication operation.
/ The / operator is a division operation.
^ The ^ operator computes “to the power of” or

exponentiation
where the exponent can only be an int or an unsignedByte.

% The % operation is a modulo or remainder operation. The
result is the remainder after division. The sign of the result
is the same as that of the dividend (the left argument). E.g.,
3.0%2.0 is 1.0.

Relational Operators

Relational operators check the values when possible, irrespective of type
(e.g., 1 == 1.0 returns true). If you wish to check for equality of both
type and value, use the equals() method.

< The < operator is LESS THAN

<= The <+ operator is LESS THAN OR EQUAL

> The > operator is GREATER THAN

>= The >= operator is GREATER THAN OR EQUAL

== The == operator is EQUAL

!= The != operator is NOT EQUAL

Bitwise Operators Bitwise operators operate on type boolean, unsignedByte, int and long
(but not fixedpoint, double or complex).

& The & operator is bitwise AND.

 Chapter 8

 252

| The | operator is bitwise OR.

The # operator is bitwise XOR (exclusive or, after MATLAB)

~ The ~ operator is bitwise NOT

Logical Boolean
Operators

Logical Boolean operators operate on type boolean and return type
boolean.

&& The && operator is logical AND. The difference between logical
&& and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. For example, the
expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will
throw an exception.

|| The || operator is logical OR. The difference between logical
|| and logical |is that |evaluates all the operands regardless of
whether their value is now irrelevant.

! The ! operator is logical NOT
& The & operator is logical AND. The difference between logical

&& and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. For example, the
expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will
throw an exception.

| The | operator is logical OR. The difference between logical ||
and logical |is that |evaluates all the operands regardless of
whether their value is now irrelevant.

 Boolean-valued expressions can be used to give conditional
values. The syntax for this is

boolean ? value1 : value2

If the Boolean is true, the value of the expression is value1;
otherwise, it is value2.

"Shift" Operators Shift operators operate on type unsignedByte, int, and long.

<< The << operator performs an arithmetic left shift.
>> The >> operator performs an arithmetic right shift.
>>> The >>> operator performs a logical right shift, which does

not preserve the sign.
Table 8.3: Arithmetic, Relational, Bitwise, and Logical Boolean Operators in the Kepler Expression
language

 Chapter 8

 253

8.1.1.4 Arrays

An array is an ordered list of elements. It is specified with curly brackets (e.g., {1,2,3}.
An array can consist of elements of any type. The only constraint is that the elements
must all have the same type (see Table 8.4 for examples). If an array is given with mixed
types, the expression evaluator will attempt to losslessly convert the elements to a
common type. For example, {1, 2.3} has value {1.0, 2.3} (type double).
The common type might be scalar, which is a union type (a type that can contain
multiple distinct types) e.g., (1,2.3, true) is an array with three elements of scalar
type.

Example Arrays
{1, 2, 3}

An array of type int. The type is denoted {int}

{"x","y","z"} An array of type string. The type in denoted {string}
{2*pi, 3*pi} An array where the elements are given by expressions
{{1, 2}, {3, 4, 5}} An array of arrays of integers (a "nested array").
{1, 2.3, true}

An array of scalar type. Scalar is a type that can contain
multiple distinct types.

Table 8.4: Examples of arrays

Each element in an array has an index, which is used to access it, and a length, which is
equal to the number of elements in the array. The first element has an index of 0, the
second 1, etc. To access the second item in the array {1.0, 2.3} (i.e., 2.3) type the
following command into the Expression Evaluator:

>> {1.0, 2.3}(1)

Arithmetic and Logical operators can also be used with arrays. See Table 8.5 for
illustrations.

Example Result

Arithmetic Operations Arithmetic operations on arrays are carried out element-by-

element. Addition, subtraction, multiplication, division, and
modulo of arrays by scalars is also supported. Arrays of
length 1 are equivalent to scalars.

{1, 2}*{2, 2} {2, 4}

{1, 2}+{2, 2} {3, 4}
{1, 2}-{2, 2} {-1, 0}

{1, 2}^2 {1, 4}

 Chapter 8

 254

{1, 2}%{2, 2} {1, 0}

{1.0, 2.0} / 2.0

{0.5, 1.0}

1.0 / {2.0, 4.0}

{0.5, 0.25}

3 *{2, 3}

{6, 9}

12 / {3, 4}

{4, 3}

{1.0, 2.0} / {2.0}

{0.5, 1.0}

{1.0} / {2.0, 4.0}

{0.5, 0.25}

{3} * {2, 3}

{6, 9}

{12} / {3, 4}

{4, 3}

{{1.0, 2.0}, {3.0, 1.0}} /
{0.5, 2.0}

{{2.0, 4.0}, {1.5, 0.5}}
Note: A significant subtlety arises when using
nested arrays. In this division example, the left
argument is an array with two elements, and the
right argument is also an array with two elements.
The divide is thus elementwise. However, each
division is the division of an array by a scalar.

Relational
Operations on Arrays

As with scalars, testing for equality using the == or !=
operators tests the values, independent of type. For other
comparisons of arrays, use the compare() function.

{1, 2}=={2, 2}

false

{1, 2}!={2, 2}

true

{1, 2}=={1.0, 2.0}

true

Extracting Elements from an
Array

To extract elements from an array use either the subarray() or
extract() methods.

{1, 2, 3, 4}.subarray(2, 2) {3, 4}
The first argument is the starting index of the
subarray, and the second argument is the length.

{"red","green","blue"}.extract({
true,false,true})

{"red", "blue"}
The extract() method can take a boolean array of
the same length as the original array which
indicates which elements to extract.

{"red","green","blue"}.extrac
t({2,0,1,1})

{"blue", "red", "green", "green"}
The extract() method can also take
an array of integers giving the indices to extract.

 Chapter 8

 255

Table 8.5: Performing operations on arrays

8.1.1.5 Matrices
Matrices are more specialized than arrays and are intended for data intensive
computations. They are specified with square brackets, using commas to separate row
elements and semicolons to separate rows. For example., “[1, 2, 3; 4, 5, 5+1]” gives a two
by three integer matrix (2 rows and 3 columns). For more examples of matrices, please
see Table 8.6.

Matrices can contain only certain primitive types: boolean, complex, double, fixedpoint,
int, and long. Currently unsignedByte matrices are not supported. If a matrix with mixed
types is specified, then the elements will be converted to a common type, if possible.
Thus, for example, “[1.0, 1]” is equivalent to “[1.0, 1.0],” but “[1.0, 1L]” is illegal
(because there is no common type to which both elements can be converted losslessly).

Example Matrices Notes
[1, 2, 3] A row vector
[1; 2; 3] A column vector
[1:2:9] A MATLAB-style constructor giving an

array of odd numbers from 1 to 9. In the
syntax “[p:q:r]”, p is the first element, q is
the step between elements, and r is an
upper bound on the last element. The value
is equivalent to [1, 3, 5,7, 9].

[1:2:9; 2:2:10] A MATLAB-style constructor. In the
syntax “[p:q:r]”, p is the first element, q is
the step between elements, and r is an
upper bound on the last element.
equivalent to [1, 3, 5, 7, 9; 2, 4, 6, 8, 10]

Table 8.6: Examples of matrices.

Each matrix element can be referenced by its row and column index. Index numbers start
with 0. For example, [1,2;3,4](0,0) returns the element at row and column index 0—i.e.,
1.

Arithmetic and logical operators can also be used with matrices. See Table 8.7 for
illustrations. Matrix addition and subtraction are element wise, as expected, but the
division operator is not supported (you must use the divideElements() function).
Multiplication by a matrix inverse can be accomplished using the inverse() function.

 Chapter 8

 256

Example Results and notes

Multiplying matrices
[1, 2; 3, 4]*[2, 2; 2, 2] [6, 6; 14, 14]

If the dimensions of the matrix don’t match, then
you will get an error message. To do element wise
multiplication, use the multipyElements() function

[3, 0; 0, 3]*3

[9, 0; 0, 9]

In this example, a matrix is multiplied by a scalar.

Raising a matrix by an integer
[3, 0; 0, 3]^3

[27, 0; 0, 27]
A matrix can be raised to an int or unsignedByte
power, which is equivalent to multiplying it by itself
some number of times.

Subtracting and adding matrices
1-[3, 0; 0, 3]

[-2, 1; 1, -2]

In this example, a matrix is subtracted from a scalar.

[1,2;3,5]+[3,5;4,7] [4, 7; 7, 12]
Two matrices are added elementwise. If the
dimensions of the matrices don't match, Kepler will
generate an error message.

Testing matrices for equality
[3, 0; 0, 3]!=[3, 0; 0, 6]

True

In this example, two matrices are checked for
inequality.

[3, 0; 0, 3]==[3, 0; 0, 3]

True

In this example, two matrices are checked for
equality.

[1, 2]==[1.0, 2.0]

True

As with scalars, testing for equality using the == or
!= operators tests the values, independent of type.

[1, 2].equals([1.0, 2.0])

False

Use the equals() method to perform a type specific
test.

Table 8.7: Performing operations on matrices

8.1.1.6 Records
A record token is a composite type containing named fields, where each field has a value.
The value of each field can have a distinct type. Records are delimited by curly braces.
For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”, with
values 1 (an integer) and “foo” (a string), respectively.

Fields can be accessed using the period operator. For example:

 Chapter 8

 257

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, -, *, /, and % can be applied to records. See Table 8.8 for
examples.

Example Result and notes
Adding records
{foodCost=40, hotelCost=100} +
{foodCost=20, taxiCost=20}

{foodCost=60}
If the records do not have identical fields, then the
operator is applied only to the fields that match, and
the result contains only the fields that match.

Merging records
merge({a=1, b=2}, {a=3, c=3})

{a=1, b=2, c=3}.
Records can be joined using the
merge() function. This function takes two
arguments, both of which are record tokens. If the
two record tokens have common fields, then the
field value from the first record is used.

Finding the intersection of two
records

intersect({a=1, c=2}, {a=3, b=4})

{a=1}
Use the intersect() function to form a record that has
only the common fields of two specified records,
with the values taken from the first record.

Comparing records
{a=1, b=2}=={b=2, a=1} True

When comparing records, the order of the fields is
irrelevant.

{a=1, b=2}=={a=1, b=2} true

{a=1, b=2}!={a=1, c=2} True

{a=1, b=2}=={a=1.0, b=2.0+0.0i}

True

Note that two records are equal only if they have the
same field labels and the values match. As with
scalars, the values match irrespective of type.

{a=1, b=2}.equals({a=1.0,
b=2.0+0.0i})

false

To perform type-specific equality tests, use the
equals() method

{a=1, b=2}.equals({b=2, a=1}) true

Table 8.8: Performing operations on records.

 Chapter 8

 258

8.1.1.7 Methods

Each of the different types of expressions—constants, records, matrices, etc—are
represented by tokens, and these tokens have a number of associated methods. For
example, array tokens have a length() method that is used to return the number of
contained elements. A record token has a length() method as well. To see what methods
are available for each type of token, see the Ptolemy online documentation. Most of the
relevant tokens belong to a class derived from token, e.g., an integer token is a subclass
of the scalar token class, which in turn is a subclass of token.

The syntax for using methods with expressions is:(token).methodName(args)
where methodName is the name of the method and args is a comma-separated set of
arguments. Each argument can itself be an expression. Note that the parentheses around
the token are not required, but might be useful for clarity. For examples, please see
Table 8. 9.

Example Result and notes
{1, 2, 3}.length()

3
Using the length() method with an array
token

{a=1, b=2, c=3}.length()

3
Using the length() method with a record
token

[1, 2; 3, 4; 5, 6].getRowCount()

3
Using the getRowCount() method with a
matrix token

[1, 2; 3, 4; 5, 6].getColumnCount()

2
Using the getColumnCount() method with
a matrix token

[1, 2; 3, 4; 5, 6].toArray()

{1, 2, 3, 4, 5, 6}
Using the toArray() method with a matrix
token

 [1:1:100].toArray()

The latter function can be particularly useful
for creating arrays using
MATLAB-style syntax. For example, to obtain
an array with the integers from 1 to 100, you
can enter:

Table 8.9: Using methods with expression tokens

8.1.1.8 Functions

 Chapter 8

 259

The expression language supports the definition of functions—sets of instructions that
perform a specific task and return the result. Functions are defined using the keyword
function followed by the arguments to pass to the function and their types, followed by
the function body (i.e., function(arg1:Type, arg2:Type...) function
body). For example:

function(x:double) x*5.0

The above function takes a double argument (x:double), multiplies it by 5.0, and
returns a double. To apply this function to a specified argument, simply type the function
into the Expression Evaluator followed by the argument, which is specified in
parenthesis:

>> (function(x:double) x*5.0) (10.0)
50.0

Alternatively, you can assign the function to a variable, and then use the variable name to apply
the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0
>>

Note: when defining a function, the type of an argument can be left unspecified, in which
case the expression language will attempt to infer it. The return type is always inferred
based on the argument type and the expression.

Functions can be passed as arguments to certain “higher-order functions” that have been
defined. For example, the iterate() function takes three arguments, a function, an integer
representing the length of the array to generate, and an initial value to which to apply the
function. For example, to get an array of five elements whose values are multiples of 3,
you could use the following:

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the
specified initial value (0) followed by the result of applying the function once to that
initial value, then twice, then three times, etc.

Another useful higher-order function is the map() function. The map() function takes a
function and an array as arguments, and simply applies the function to each element of
the array to construct a result array:

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

 Chapter 8

 260

The map() function is often used in workflows that define a parameter whose value is a
function. Suppose that the parameter named “f” has the value function(x:double) x*5.0.
Then the expression “f(10.0)” will yield result 50.0, providing the parameter is in scope.

For more information about predefined functions, including tables of supported functions,
please see the Chapter 3, Appendix A of the Ptolemy User Manual.

8.1.2 Expressions and Parameters

The value of parameters is an expression, from a simple integer to a more complex
combination of operations and constants. For example, consider the following workflow
parameter named DataDirectory:

The value of the DataDirectory parameter is an expression
"property("KEPLER")+"/lib/testdata/". 'property("KEPLER”)' returns the path to the
directory in which Kepler is installed. "/lib/testdata" is the path to the desired sub-
directory. Using an expression of this type allows the path to be evaluated properly no
matter where the Kepler system is installed in the file system.

8.1.3 Expressions and Port Parameters

A port parameter functions as both a port and a parameter that is used to configure the
operation of an actor (for more information about port parameters, see Chapter 3). Port-
parameters allow users to specify a value for a parameter (e.g., iterations=4 or
name="mouse"), and to allow that value to be "updated" via a coupled port. If a value is
received via the port component of the port parameter, that value will replace the value
specified by the parameter component. For example, the Sinewave actor, which is a
composite actor found in the standard Kepler component library, has two port parameters,
frequency and phase (Figure 8.4):

 Chapter 8

 261

Figure 8.4: Inside the Sinewave composite actor, which uses two port parameters.

The port parameters specify the "default" values for these two items. The values specified
on the Workflow canvas are also visible in the Sinewave actor's parameters, opened when
the Sinewave actor is double-clicked (Figure 8.5).

Figure 8.5: The parameters of the Sinewave actor. frequency and phase are port parameters. The
parameter value will be overridden if the corresponding port receives a value.

The Ramp actor found inside the Sinewave composite actor references the port parameter
in its parameters (Figure 8.6):

 Chapter 8

 262

Figure 8.6: The parameters of the Ramp actor found inside the Sinewave composite actor.

Note how the value of the Ramp actor's step parameter references the frequency port-
parameter by name: (frequency*2*PI/samplingFrequency).

8.1.4 Expressions and String Parameters
Some parameters have values that are always strings of characters. Such parameters
support a simple string substitution mechanism where the value of the string can
reference other parameters in scope by name using the syntax $name, where name is the
name of the parameter in scope.41 The simple workflow in Figure 8.7 uses the $name
syntax to reference the value of the salutation parameter.

Figure 8.7: Using the $name syntax to reference a string parameter.

8.1.5 The Expression Actor

To Expression actor can be used to evaluate an expression. The simple workflow in
Figure 8.8 is used to evaluate the expression PI/2 and display the result. The expression
(PI/2) is specified by the actor parameter in this case.

41 Ptolemy documentation: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

 Chapter 8

 263

Figure 8.8: The Expression actor used to evaluate an expression specified in its parameters.

The Expression actor is a particularly useful when it comes to evaluating expression that
use variables passed by other actors. Consider the LotkaVolterraPredatorPrey workflow
displayed in Figure 8.9. This workflow is used to solve two coupled differential
equations that model the relationship between predator and prey populations. Note: The
workflow can be found in the KeplerData/workflows/module/outreach-
2.X.Y/demos/getting-started/demos/getting-started/ directory, and full documentation and
step-by-step instructions for creating and using it can be found in the Getting Started
Guide. The important thing to note at the moment are the two Expression actors used in
the workflow (named dn1/dt and dn2/dt)

 Chapter 8

 264

Figure 8.9: The LotkaVolterraPredatorPrey workflow, which uses two Expression actors to evaluate
differential equations.

 Chapter 8

 265

By default, the Expression actor has one output and no input ports. Users can define input
ports used to pass variables to the actor. For example, the dn1/dt actor displayed in
Figure 8.10 has two user-defined input ports named n1 and n2.

Figure 8.10: Expression actor with two user-defined ports

The port names identify the values that are passed through the channels to the actor. The
actor can then use those values when it evaluates the expression. For example, if the
token passed through n1 is an integer with a value of 5 and the token passed through n2
has a value of 2, then the Expression actor will evaluate the expression (r*n1-a*n1*n2)
and output the result (9, which is 2*5-.1*5*2). Note that the Expression actor can
reference workflow parameters (in the LotkaVolterra example, r and a are parameters
defined on the Workflow canvas.

Expression actors can also be useful for generating a series of files or file names. The
workflow in Figure 8.11 uses an Expression actor in conjunction with a Ramp and
TextFileWriter actor to name and write three unique files to the working directory.

Figure 8.11: Using the Expression actor (File Names) with a Ramp actor to generate unique file names.

 Chapter 8

 266

In the example above, the Ramp actor has been set to fire three times, augmenting its step
by 1 each time (Figure 8.12). The Ramp actor will output 0,1,2 (the initial value specified
by the int parameter, and then incremented by the amount of the step until the firing
limit is met).

Figure 8.12: Parameters of the Ramp actor.

The count generated by the Ramp actor is input into an Expression actor named File
Names via a user-defined input port named cnt. The Expression actor evaluates the
specified expression (CWD+"/file"+cnt+".html"). CWD is a built-in string-
valued constant referring to the current working directory (in this case,
C:\kepler20070813). "/file" and ".html" are strings, which the actor adds to the current
working directory and the count to form three unique file names:
C:\kepler20070813\file0.html, C:\kepler20070813\file1.html, and
C:\kepler20070813\file2.html. These file names are input to a TextFileWriter actor,
which creates and saves the files in the specified location.

8.2 Statistical Computing: Kepler and R

Kepler users with little background in computer science can create workflows that
execute statistical analyses via Kepler's suite of useful R actors. Users need not know
how to program in R in order to take advantage of its powerful analytical features; pre-
programmed Kepler components can simply be dragged into a visually represented
workflow.

Note: To implement any of the R actors, R must be installed on the computer running the
Kepler application. See Section 8.2.2 for more information about installing R.

 Chapter 8

 267

8.2.1 What is R?

R is free software for statistical computing, data manipulation, and graphics.
Based on work originally carried out at Bell Labs, R is part of the GNU project. R
provides a wide variety of statistical (linear and nonlinear modeling, classical
statistical tests, time-series analysis, classification, clustering, ...) and graphical
techniques, and is highly extensible (Figure 8.13).42

Figure 8.13: Examples of graphics generated with R

The RExpression actor has been created for inserting R commands and scripts into Kepler
workflows. This actor makes it easy to integrate the powerful data manipulation and
statistical functions of R into workflows. In addition, a number of customized R actors
designed to perform specific functions (creating a Bar or Box plot, for example) are
included in the Kepler library. See Section 8.2.3 for a list of useful R actors, or the R
appendix for detailed examples. A search for "RExpression" in the Components tab will
return all R-related actors.

8.2.2 Installing R
R can be freely downloaded from links on the R Project web site (http://www.r-
project.org). Follow the instructions provided for installation. In addition, the R 'bin'
directory must be added to the PATH variable on the host computer. To test if the
installation is correct, open a command/terminal window and type the command 'R'. The
command should startup the R environment and alert the user that R has been started.

42 R Project website, http://www.r-project.org/

 Chapter 8

 268

8.2.3 Useful R Actors
The Kepler library contains a number of useful R actors, described in Table 8.10.

Useful R Actors

The RExpression actor runs an R script or function. Input
and output ports are created by the user and correspond to
R variables used in the specified R script. The actor
outputs the result of the evaluated script.

ANOVA The ANOVA actor uses R to perform a variance analysis
on input data. The actor outputs a graphical representation
of its calculations.

Barplot The Barplot actor creates and saves a simple barplot
graph. The actor outputs the path to the barplot graph and
(optionally) display the graph itself.

Boxplot The Boxplot actor creates and saves a boxplot. The actor
reads an array of values and, optionally, an array over
which the values are divided (an array of dates, for
example). The actor outputs the path to the saved boxplot
and (optionally) displays the graph.

Correlation The Correlation actor uses R to perform parametric and
non-parametric tests of association between two input
variables (e.g., two arrays of equal length). The actor
outputs the level of association (r, rho, or tau, depending
on the analysis) between the two variables, an estimate of
the p-value (if possible), and n.

LinearModel The LinearModel actor runs a variance or linear regression
analysis on its inputs and outputs the result.

RandomNormal The RandomNormal actor uses an R-script to generate and
output a set of normally (Gaussian) distributed numbers
with a mean of 0 and a standard deviation of 1. The actor
outputs an array of the generated integers as well as the
file path to a graphical representation of the distribution.

RandomUniform The RandomUniform actor uses an R-script to generate
and output a set of uniformly distributed numbers. The
actor outputs an array of the generated integers as well as
the path to a graphical representation of the distribution.

ReadTable The ReadTable actor reads a text-based data file on the
local file system and outputs the data in a format that can
be used by other R actors.

Regression The Regression actor uses R to run a variance or linear
regression analysis. The actor accepts an independent and
a dependent variable. If the independent variable is
categorical, the actor uses R to run a variance analysis (or
a t-test if the variable has only 2 categories). If the

 Chapter 8

 269

independent variable is continuous, a linear regression is
run. The actor outputs both a graphical and textual
representation of the analysis.

RMean The RMean actor accepts an array of values and uses R to
calculate their mean. The actor outputs both a graphical
and textual representation of the analysis.

RMedian The RMedian actor accepts an array of values and uses R
to calculate their median. The actor outputs both a
graphical and textual representation of the analysis.

RQuantile The RQuantile actor accepts an array of values and uses R
to produce sample quantiles. The actor outputs both a
graphical and textual representation of the analysis.

Scatterplot The Scatterplot actor reads an independent and a
dependent variable, which are specified as arrays of
values. The actor creates a simple scatter plot based on the
input, and outputs the path to the generated graph file.

Summary The Summary actor uses R to calculate a specified
summary statistic. The actor accepts a number of factors
and a variable, and outputs the specified summary statistic
(e.g., presence, mean, standard deviation, variance, etc).

SummaryStatistics The SummaryStatistics actor accepts an array of values
and uses R to calculate their mean, standard deviation, and
variance. The actor outputs both a graphical and textual
representation of the summary analysis.

Table 8.10: Useful R actors

For example workflows using the above R actors, please see the R Appendix.

8.2.4 Working with R Actors
Using default and user-defined ports and R-scripts, Kepler's R actors can be used to
perform a wide variety of statistical and analytical calculations. In this section, we will
take a closer look at the RExpression actor as well as several sample R workflows that
demonstrate the power and flexibility of the integrated applications.

8.2.4.1 Using the RExpression Actor
The RExpression actor runs the R script or function specified in its parameters. To view
or change this R script, double-click the actor. By default, the actor creates and saves a
simple plot of an array of values using the script displayed in Figure 8.14.

 Chapter 8

 270

Figure 8.14: The default parameters of the RExpression actor.

 The RExpression actor outputs a graphical representation of its result as well a copy of
the text output that R generates. The text output consists of the actor's communications
with R to run the R function or script and the values and statistical outputs. Figure 8.15
displays a very simple R workflow that shows the text and graphical display of an
RExpression actor with its default settings.

 Chapter 8

 271

Figure 8.15: The default settings of the RExpression actor. The actor creates a simple plot of the values
(1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure 8.15
(‘setwd…’ and ‘png…’) are setup commands for R that are automatically added by the
actor. The last two lines of the display are exactly what would appear if one were
running the R system from the command line:

> a <-c(1,2,3,5)
> plot(a)

Additional ports can be added the RExpression actor to provide inputs or outputs. The
names of the additional input ports become named R objects used in the R script. For
example, the RExpression actor in Figure 8.16 has two user-defined input ports named
aaa and bbb (for information about adding and customizing ports, see Section

 Chapter 8

 272

3.2.4.1). Two Expression actors are used to pass arrays to these new ports, where an R
script can reference the values by the port name. The R script has been set to aaa+bbb,
where aaa is {1,2,3} and bbb is {4,5,6} (i.e., the values passed through the
correspondingly named ports).

Figure 8.16: Two user-defined ports have been added to an RExpression actor.

The Display window contains the workflow output and the text generated by R: aaa =
123; bbb = 4,5,6; and aaa+bbb = 5, 7, 9 (i.e., 1+4, 2+5, 3+6). If aaa and bbb were
simple scalar values (e.g., 1 or 17.5), then this RExpression actor would have simply
duplicated the functionality of the Expression actor. However, the base data type of the R
system is the vector (similar to the Kepler array). Thus the result consists of the
corresponding input array elements added together.

Figure 8.17 shows a variation of the previous workflow. The R-script has been modified
to instruct the RExpression actor to plot the sum of the inputs instead of outputting them
as text:

ccc <- aaa + bbb
barplot(ccc)

 Chapter 8

 273

Figure 8.17: An example of an RExpression workflow used to create a plot of the output.

In the above workflow, the graphical output is saved as a .png file (the default). The
RExpression actor can also generate and save a .pdf file—set the desired output type with
the GraphicsFormat parameter. The dimensions of the graphic can be customized
with the NumberOfXPixelsInImage and NumberOfYPixelsInImage
parameters. By default, the graphic is 480x480 pixels. Note that generated graphics files
are saved to the R working directory, which by default is the Kepler cache (e.g.,
C:\Documents and Settings\<UserName>\.kepler\).

For more information about working with R in Kepler, please see the R Appendix of the
User Manual.

8.2.4.2 Using EML Datasets with the RExpression Actor

EML datasets can be accessed and used in a variety of ways that are useful to R analyses.
In the following section, we'll look at how the RExpression actor can perform custom
statistical analyses--over two data variables, several variables, or the entire Datos

 Chapter 8

 274

Meteorologicos dataset (which consists of EML-described meteorological data collected
from the La Hechicera station in 2001) using R-scripts and appropriate input data
formats: arrays, records, or data tables, respectively. For more information about EML,
please see Chapter 6.

Using Arrays with the RExpression Actor

The data array, or vector in R, is commonly used as the data format for information
processed by the RExpression actor. The workflow in Figure 8.18 shows an example of a
workflow used to process two data variables (the RExpression actor is used to perform a
simple linear regression analysis) that are passed to the RExpression actor as arrays. This
workflow is included in the demos/getting-started directory (05LinearRegression.xml),
and step-by-step instructions for creating it can be found in the Getting Started Guide.

Figure 8.18: Linear Regression workflow and its output.

The left-hand window in Figure 8.18 displays the scatter plot of Barometric pressure to
Air Temperature along with a regression line. The graph shows a strong negative
relationship between the two: as air temperature lowers, the Barometric pressure

 Chapter 8

 275

rises. The right-hand window displays the Barometric Pressure and Air Temperature data
used in the scatter plot. Additionally, the intercept on the Y-axis (958.38 Barometric
Pressure and the slope – 0.32 for the linear regression equation y=mx+b) is displayed.

The data set used by the workflow in is
described by EML metadata, and so the
EML2Data set actor is used to access the
data. To locate the desired ports (for
barometric pressure and air temperature, in
this case), mouse over the data actor's ports
to reveal an identifying tooltip.

The Datos Meteorologicos actor is configured to output the barometric pressure and air
temperature data as arrays. To set this output type, select “As Column Vector” from the
pull-down menu beside the Datos Meteorologicos actor's Data Output Format
parameter (Figure 8.19) and click Commit.

Figure 8.19: Configuring Datos Meteorologicos for use with the RExpression actor.

The R-script used by the RExpression actor instructs it to read the Barometric Pressure
and Air Temperature data and then plot the values along with a regression line.

res <- lm(BARO ~ T_AIR)
res
plot(T_AIR, BARO)
abline(res)

Note that the user-defined input ports of the RExpression actor have been named
“T_AIR” and “BARO” as a convenience so that they correspond to the names of the

 Chapter 8

 276

EML2Dataset actor ports providing the data. There is no functional requirement that the
input port names match the names of the output port to which they are connected.

Using Record Tokens

The RExpression actor can be configured to process Kepler record tokens, which is
particularly useful when performing R-analyses over several columns of data in an EML
dataset but not the entire table. A record token is a collection of named arrays
representing the columns of a data table (e.g., {BARO = {953.4, 953.8, 954.0},
RAIN={2.4, 3.8, .01}, RH={99, 27, 99}} , where BARO, RAIN, and RH are
the column names).

The workflow in Figure 8.20 uses an RExpression actor and a record token to create a
scatter plot matrix of a subset of the Datos Meteorologicos data fields: Air Temperature,
Barometric Pressure, and RH.

Figure 8.20: Using the RExpression actor with a record token.

The Datos Meteorologicos actor in Figure 8.20 has been configured to output data as
"Fields" (the default). Each field of data is sent to a SequenceToArray actor that "limits"
the number of fields to 100 via the arrayLength parameter (set to 100). In order for

 Chapter 8

 277

the RecordAssembler actor, which reads and combines the three arrays output by the
SequenceToArray actors to produce a single record token, all of the arrays must be the
same length (though not the same data type). If the arrays are not the same length, the
input is ignored by the RecordAssembler actor. The RecordAssembler actor must be
configured with three user-defined input ports to receive the array data.

The RExpression actor reads the record token and displays the scatter plot matrix and
summary statistics for the three variables using the following RExpression script:

pairs(df)
summary(df)

Using Data Tables

The RExpression actor can be configured to process an entire dataset using a data table, a
format that can be output by the EML2Dataset actor instead of individual vectors. To
output a data set in table format, select "As Cache File Name" as the Data Output
Format. Note that the output ports of the data actor automatically reconfigure
themselves appropriately; the name of the data table is output via the port named
CacheLocalFileName.

The workflow in Figure 8.21 uses a data table and an RExpression actor to create a
scatter plot matrix of the entire Datos Meteorologicios dataset. The data table is also
displayed in the text display window.

 Chapter 8

 278

Figure 8.21: The RExpression actor using a data table. The data output format of the Datos Meteorologicos
actor has been set to "As cache file name".

The RExpression actor uses the following R-script to read the data table and create a pairs
graph:

datafile <- infile
df <- read.table(datafile,sep=",",header=TRUE)
pairs(df)
df

An alternative method for loading tabular data from the EML actor into the RExpression
actor is to use the “As Column Based Vector” output format for the EML actor. When
the actor is configured with this setting, a single “record” output port is created. When
the record port is connected to an RExpression input port, an R-dataframe structure is
created. This approach is advantageous because it can make use of the built-in data
selection mechanism (i.e., the Query Builder) of the EML actor. Additionally, it insulates

 Chapter 8

 279

the RExpression script from dealing directly with file parsing configuration details like
header lines and record delimiters. See the Appendix B for an example of this method.

8.2.4.3 Using Excel Data (i.e., Non-EML data) with the RExpression
Actor

Although simple comma- or tab-delimited data sets (e.g., Excel files exported as text) are
less versatile than EML-described data sets, Kepler has a special R actor designed to
process with this type of source: the ReadTable actor. The ReadTable actor reads a text-
based data file on the local file system and outputs the data as a data frame, a format that
can be digested by other R actors.

To use the ReadTable actor, data must be in a 'spreadsheet-like' tabular format, where
each line of the data file contains one row of values, separated by a 'separator' delimiter
(tab, comma, space, etc). Saving an Excel spreadsheet as a text file creates such a data
file (with a tab separator).

The "mollusc_abundance.txt" dataset, found in the R module demo directory is an
example of a simple tabular data set that contains occurrence data for several species of
mollusc collected in 2000. The workflow in Figure 8.22 uses the ReadTable actor to
"translate" this data set into a data frame that is then passed to an RExpression actor that
extracts each species name from the dataset and then calculates count averages for each
of the species. The workflow outputs a plot of the averages. The full workflow
(ReadTable.xml) can be found in the R module demo directory.

 Chapter 8

 280

Figure 8.22: Using the ReadTable actor to translate a local, tab-delimited data set into a data frame format,
which can be processed by other R actors.

The ReadTable actor is itself an R actor, and double-clicking the actor reveals the R-
script in the actor parameters (Figure 8.23).

 Chapter 8

 281

Figure 8.23: The ReadTable actor parameters.

By default, the actor assumes that the first row of the data file contains column names
(e.g., "Date", "Occurrence", etc). The default separator is any white space (e.g., spaces or
tabs). Use the ReadTable actor's header and separator ports to specify other
behaviors (e.g., a comma "," as the separator, or "FALSE" to indicate that the data set
does not contain header information. Often, all input ports other than the file name can be
left unconnected. An additional output port (called dataframe) has been added to the
ReadTable actor to pass the data frame to the downstream RExpression actor. For more
information, please see the R documentation for read.table.

 Chapter 8

 282

8.3 Statistical Computing: MATLAB

Kepler's MATLABExpression actor runs a MATLAB function or script and outputs the
result of the evaluated script. MATLAB ("MATrix LABoratory") is a high-level
technical computing language and interactive environment for algorithm development,
data visualization, data analysis, and numeric computation.43 The application is available
through The Mathworks, http://www.mathworks.com. The MatlabExpression actor will
not run unless MATLAB is installed on the local system. Please refer to the Mathworks
site for information about obtaining and installing MATLAB.

The MATLABExpression actor works much like the RExpression actor: specify the
desired MATLAB expression and configure the appropriate input and output ports. The
expression may include references to the input port names, current time (time), and a
count of the firing (iteration). To refer to parameters in scope, use $name or
${name} within the expression.

NOTE: You must set an environment variable to the MATLAB libraries directory before
running Kepler. The following examples are for MATLAB R2007b installed in a
common location:

Mac:
In a terminal window:
export DYLD_LIBRARY_PATH=/Applications/MATLAB_R2007b/bin/maci
kepler

Windows:
Start->Run
cmd
set PATH=%PATH%;c:\Program Files\MATLAB\R2007b\bin\win32
kepler.bat

Linux:
In a terminal window:
export LD_LIBRARY_PATH=/usr/local/matlab/bin/glnx86
kepler

Once your system is configured properly, you can begin to build and run workflows
using the MatlabExpression actor. The workflow in Figure 8.24 uses a
MATLABExpression actor to invoke a command in MATLAB: the function "surf" (which
renders a matrix as a surface plot) on the matrix input.

43 Mathworks website, http://www.mathworks.com/products/matlab/description1.html

 Chapter 8

 283

Figure 8.24: Using the MATLABExpression actor. This workflow can be found under
demos/MATLab/MatlabExpression.xml.

The 'surf' function is specified in the value of the MatlabExpression actor's
expression parameter (Figure 8.25). Note that the name of the actor's input port is
"input," which is referenced in the expression value as well. The actor's other two
parameters, get1x1asScalars and getIntegerMatrices, control data
conversion. get1x1asScalars specifies that all 1x1 matrix results be converted to
scalar tokens (the default). Select the getIngegerMatrices parameter to check all
double-valued matrix results and return an IntMatrixToken if all elements represent
integers. This setting is off by default for performance reasons.

 Chapter 8

 284

Figure 8.25: Parameters of the MatlabExpression actor.

To augment the search path used by the MATLAB engine to locate files, set a user-
defined parameter named packageDirectories containing a comma-separated list
of paths to be prepended to the MATLAB engine search path. Paths can be relative to the
directory in which Kepler was started, or any directory listed in the current classpath (in
that order, first match wins). After evaluation, the previous search path is restored. Note:
to add a new actor parameter, double-click the MatlabExpression actor and click the Add
button.

Add a _debugging parameter to send debug statements to stdout. An integer value of 1
will return statements from the MATLAB Engine, a value of 2 returns debug statements
from both the MATLAB Engine and the Kepler JNI, and a value of 0, or the absence of
the parameter, restores the debug behavior to the default setting (off).

8.4 Image Manipulation: ImageJ

The Kepler library contains two actors (ImageJ and IJMacro) designed to interface with
ImageJ, a public domain Java image processing program inspired by NIH Image for the
Macintosh. ImageJ can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-
bit images (Figure 8.26). It can read many image formats including TIFF, GIF, JPEG,
BMP, DICOM, FITS and "raw". It supports "stacks", a series of images that share a
single window. It is multithreaded, so time-consuming operations such as image file
reading can be performed in parallel with other operations.44

44 Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, USA, http://rsb.info.nih.gov/ij/ , 1997-2007.

 Chapter 8

 285

Figure 8.26: ImageJ toolbar (upper left) and examples of image data. This image is from the ImageJ Web
site, http://rsb.info.nih.gov/ij/index.html

Kepler's ImageJ actor reads an image file name and opens and displays the image along
with the ImageJ toolbar containing image-processing options, which can be used to
process the image. The IJMacro actor runs ImageJ macros, which are used to display,
edit, analyze, process, save, and print a wide variety of image formats. In this section, we
will look more closely at these actors and at how the ImageJ application can be used to
perform some useful processes such as rescaling, clipping, and adjusting color balance.
For an in-depth look into all of the capabilities of ImageJ, please see the ImageJ
documentation.

8.4.1 Intro to ImageJ and the ImageJ Actor

The ImageJ actor is used to display and/or manipulate a wide variety of image formats:
TIFF (uncompressed), PNG, GIF, JPEG, DICOM, BMP, PGM, FITS format, or ImageJ

 Chapter 8

 286

and NIH Image lookup tables (with ".lut" extension). Additional file formats are
supported via plugins installed in the Import submenu (File > Import…).

The simple (one actor!) workflow in Figure 8.27 demonstrates how the ImageJ actor is
used to open the Kepler logo (a PNG file specified by the ImageJ actor's fileOrURL
parameter) in a display window. The ImageJ toolbar opens as well, and can be used to
manipulate the image in a number of ways. The actor can also receive the URL of an
image via its input port, which is useful when displaying the graphical output of a
workflow, for example.

Figure 8.27: Opening an image with the ImageJ actor. Specify the path of the image to open in the ImageJ
parameters (shown above) or via the actor's input port.

8.4.1.1 Rescaling Images

Once an image has been opened by ImageJ, you can use the ImageJ tools and menu
options to process and save the image as desired. To rescale an image, for example, select
Scale from the drop-down Image menu in the ImageJ toolbar (Figure 8.28).

 Chapter 8

 287

Figure 8.28: Scaling an image using the ImageJ Scale menu item.

A dialog box allows users to select scaling
settings (Figure 8.29). Images can be scaled
by a factor (.05-25) or using specified
dimensions in the Width and Height fields.
Check Interpolate to scale using
bilinear interpolation. Select Create New
Window to open the scaled image in a new
display window. The Fill with
Background Color option applies when
the new image is opened in the original
display window.

To rescale multiple images, you may wish to
use the IJMacro actor with an appropriate
macro. We will look at an example of using
the IJMacro actor in Section 8.4.2.

Figure 8.29: ImageJ scaling settings

 Chapter 8

 288

8.4.1.2 Clipping Images

Another common way to manipulate images is to clip them, i.e., select a fragment of the
image that is of interest. To select only South America from a map of the world, for
example, use one of the seven ImageJ selection tools available in the toolbar (Figure
8.30). The selection will be highlighted with a yellow border.

Figure 8.30: Using an ImageJ selection tool to select a portion of a displayed image. ImageJ has a number
of selection tools (highlighted with red oval).

Once a selection has been made, copy it to the system clipboard with the Copy to
System menu item (Figure 8.31). This command copies the contents of the current
image selection to the system clipboard. If there is no selection, the command copies the
entire active image.

 Chapter 8

 289

Figure 8.31: Copying a selection to the system clipboard using the ImageJ toolbar.

Note that the ImageJ toolbar has a context-sensitive status area (Figure 8.32). When
rolling over an image, for example, the x- and y-position of the cursor is displayed along
with other relevant information, such as the cell value (for asc grid files) or the RGB
color value (for jpg files, etc).

 Chapter 8

 290

Figure 8.32: The ImageJ status area is highlighted with a red oval. The x and y position of the cursor is
displayed along with the cell value (the displayed file is an asc grid file).

8.4.1.3 Adjusting Image Color and Brightness

To adjust the color, brightness, contrast, etc. of an image, use the options in the ImageJ
Image > Adjust… menu (Figure 8.33). The Brightness and Contrast dialog window that
opens when that menu item is selected contains four sliders. Minimum and Maximum
control the lower and upper limits of the display range. Brightness increases or decreases
image brightness by moving the display range. Contrast increases or decreases contrast
by varying the width of the display range. The narrower the display range, the higher the
contrast. Use the Color Balance menu item to make adjustments to the brightness and
contrast of a single color of a standard RGB image.45

The ImageJ documentation has comprehensive information about all of the many image
adjustments (brightness, contrast, size, threshold, scale, crop, etc) that can be made with
ImageJ. Please see http://rsb.info.nih.gov/ij/ for more information.

45 See http://rsb.info.nih.gov/ij/

 Chapter 8

 291

Figure 8.33: Adjusting the contrast, brightness, and color of an image.

8.4.1.4 Selecting a Color Palette for ASC Grid Images

The image in Figure 8.32 was generated by one of Kepler's Ecological Niche Modeling
workflows (GARP_SingleSpecies_BestRuleSet-IV.xml), which displays an ASC grid file
that represents the possible distribution of a species. For each cell in the ASC grid, the
workflow calculates the likelihood of a species being present. The grid file is displayed
using the "fire" palette, which assigns brighter colors to higher pixel values (in general,
cells where there is a higher likelihood of species presence have higher values). To
change the look of the map (perhaps to prepare it for a black and white publication or to
find colors that match the look and feel of a presentation), simply select a new palette
under the Image > Lookup Tables… menu (Figure 8.34).

 Chapter 8

 292

Figure 8.34: Using the Image > Lookup Table menu to customize the look and feel of a displayed ASC
grid file.

The selected color palette can be further customized using the Brightness and Contrast
settings.

8.4.2 The IJMacro Actor

In addition to opening and displaying images, the IJMacro actor can be programmed to
access all of the powerful functionality of ImageJ using a macro--a simple program that
automates a series of ImageJ commands. Macros are written in the ImageJ Macro
Language, though in most cases users do not have to learn it. This is because (1) ImageJ
already has a large library of Macros that can be cut and pasted into the IJMacro actor
and (2) ImageJ macros can be easily created using the Recorder, accessed under Plugins
> Macros > Record… menu.

The workflow in Figure 8.35 uses an IJMacro to open an ASC grid file, adjust its
brightness and contrast settings, and assign a color palette.

 Chapter 8

 293

Figure 8.35: An Ecological Niche Modeling workflow (GARP_SingleSpecies_BestRuleSet-IV.xml) that
uses an IJMacro actor to customize the graphical display of the workflow output.

Note that ASC grid files cannot be opened natively with ImageJ. To open an ASC file,
one must evoke the ASC TextReader plug-in, which can understand the format. The
Macro used by the IJMacro actor in the ENM workflow calls the ASC reader plug-in as
well as a number of other commands used to adjust the Brightness/Contrast settings and
select a color palette (Figure 8.36).

Figure 8.36: The parameters of the IJMacro actor.

 Chapter 8

 294

To create a Macro like the one used in Figure 8.35, select Macros and then Record from
the Plugins menu. A macro record window opens (Figure 8.37).

Figure 8.37: The ImageJ macro recorder.

Once the recorder is open, simply perform the operations the macro should perform. For
example, to set the Contrast/Brightness of an image, select Adjust > Brightness/Contrast
from the Image menu. The action is "recorded" in the macro record window in Macro
Language: run("Brightness/Contrast..."); Any adjustments made to the
settings will be recorded as well. Once the macro has been "designed by hand" and
recorded, it can be cut and pasted into the macroString parameter of the IJMacro
actor.

For a library of over 200 ready-made ImageJ macros, see the ImageJ macro library at
http://rsb.info.nih.gov/ij/macros/.

8.5 Spatial Data: Geographic Information Systems (GIS)

The Kepler component library contains a number of GIS actors, which are used to
capture, manage, analyze, and display all forms of geographically referenced information.
From actors designed to interface with the Geospatial Data Abstraction Library (GDAL,
a translator library for raster geospatial data formats), to actors that can display geographic
information encoded as Geography Markup Language (GML) or ESRI shape files,
Kepler provides support for a wide variety of geographic formats and systems.

 Chapter 8

 295

8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors

Masks, which "black out" areas of a map that are not of interest, can be used to isolate a
specific geographic region (Figure 8.38). Kepler's environmental niche modeling (ENM)
workflows use masks to help generate species' absence points from a defined area (only
the area where species occurrences have been noted), for example. For more information
about Kepler's ENM workflows, including in-depth instructions for creating a mask file
for ENM purposes, please see the Guide to ENM.

The Kepler library contains several actors that are particularly useful for creating mask
files: ConvexHull and CVHullToRaster. The ConvexHull actor constructs a convex hull
(the smallest polygon that contains a given set of geographic points) for an area of
interest. The convex hull is derived from a set of input data points, which consist of a
longitude and latitude value (see KeplerData/workflows/module/outreach-2.1/data/garp
/DataPoints.txt for an example). The CVHullToRaster actor receives a convex hull and
creates and saves a mask file from it. Points outside the convex hull are assigned a value
of "NO_DATA".

Figure 8.38: Using ConvexHull and CVHulltoRaster actors to generate a mask file ("HullRaster.txt").

The name and location of the convex hull file are passed to the CVHullToRaster actor,
which creates and saves a mask file with the correct resolution and extent. The resolution

 Chapter 8

 296

(cellsize) and extent (numrows and numcols) are specified by the actor's parameters
(Figure 8.39).

Figure 8.39: The parameters of the CV Hull to Raster actor.

The CVHullToRaster actor writes the mask file to the location specified via the
rasterFileName port and outputs the name of the mask file.

8.5.2 Geospatial Data Abstraction Library (GDAL) Actors

The Geospatial Data Abstraction Library (GDAL) is an open source software package
designed to read, write, and manipulate a wide variety of Geographical Information
System (GIS) raster grid files.46 Kepler has several very useful actors that use the GDAL
library to perform geospatial file transformations: the GDALFormatTranslator actor
reads a geospatial raster file and translates it to a specified format (e.g., JPEG, AAIGrid,
etc); the GDALWarpAndProjection actor "stretches" or "warps" a geospatial raster file
(e.g., a digital elevation model) from one cartographic projection to another.

Because working with high-resolution geospatial raster files can be resource-intensive
and time consuming, Kepler's GDAL actors check the Kepler file cache to see if the
transformed file already exists (from a previous workflow iteration, for example) before
performing a translation.

The workflow (Figure 8.40) is designed to download a set of topographical data for
South America (Hydro1k data, a dataset developed by the U.S. Geological Survey's
EROS Data Center) via the Kepler EarthGrid. If the data have already been downloaded,
the workflow will access them from a local cache. Kepler's GDAL actors are then used to
transform the data: first to change the map projection and then the format.

46 GDAL website, http://www.gdal.org/index.html

 Chapter 8

 297

Figure 8.40: Using the GDAL actors to transform geospatial data. Note that the initial download of the
Hydro1k data may take as long as 30 minutes with a reasonably fast PC.

Once the Hydro1k data is downloaded to the cache, the data are extracted from their zip
file. The Hydro1k South America DEM actor's DataOutputFormat parameter (Figure
8.41) instructs the actor to unzip the downloaded data into the Kepler cache and output
the file name of the dataset (actually an array of file names: the file name of the raw data
as well as the file names of the associated meta data files). An ArrayElement actor reads
the array of file names and extracts the first element, which is the name of the raw
dataset. The name of the raw data is then passed to downstream actors for further
transformations.

Figure 8.41: The parameters for the Hydro1k South American –DEM actor. Selecting "As UnCompressed
File Name" as the value of the Data Output Format parameter instructs the actor to unzip the dataset
into the Kepler cache.

The Hydro1k data use a Lambert Azimuthal Equal Area coordinate system projection (for
information about the projection, see the dataset's meta data: right-click the data actor and

 Chapter 8

 298

select Get Metadata). The GDALWarpAndProjection actor converts this projection to one
that uses a latitude/longitude system. The input and output projection formats are
specified by the actor's parameters (Figure 8.42). The formats must be of a form used by
the GDAL Warp utility (a Lambert Azimuthal Equal Area Projection could be specified
as +proj=laea+lat_0=45+long_0=-100+x_0=0+y_0=0, for example). For more
information about supported formats, see www.remotesensing.org/geotiff/proj_list/.

Figure 8.42: The parameters of the GDALWarpAndProjection actor.

Once the projection has been updated, a GDALFormatTranslator actor converts the raster
format (GeoTiff) to a new format (ASC raster grid). Available formats are listed in a
drop-down menu (AAIGrid, DTED, PNG, JPEG, MEM, GIF, XPM, BMP, PCIDSK,
PNM, ENVI, ESRI, PCI, MFF, MFF2, BT, FIT, USGSDEM) in the actor parameters
(Figure 8.43). The actor's Cache options parameter specifies whether the output
should be copied to the cache ("Copy files to cache"), copied to the cache as well as the
directory where the input raster is stored ("Cache files but preserve location"), or not
cached ("No caching"). If "No caching" is selected, the actor will not cache the translated
file and will ignore all previously stored cache items. Select this option to force the actor
to perform a translation even if the input file was previously translated and cached.

Figure 8.43: The parameters of the GDALFormatTranslator actor.

After the map has been translated, it is rescaled and masked (so that only continental data
is displayed). The GridRescaler actor sets the x and y values for the lower left corner of
the output grid, the cell size, and the number of rows and columns (Figure 8.44). Either
the "Nearest neighbor" or "Inverse distance" weighted algorithms can be used to calculate
output cell values. If the “Use Existing File” checkbox is selected, the actor will check to
see if a file with the output file name already exists. If so, then the actor skips all actions

 Chapter 8

 299

except for returning the existing file name (i.e., the actor does not "re-translate" the
source data). Selecting the "use Existing File" parameter helps avoid lengthy rescaling
calculations that have already been completed in prior runs. If the checkbox is not
selected, any existing output file with the same name will simply be overwritten.

Figure 8.44: Parameters of the GridRescaler actor.

The example workflow uses a MergeGrid actor (called SA_Mask) to mask the
transformed map. The MergeGrid actor receives the map data as well as the name of a
mask file. Masked areas (e.g., oceans) will be assigned a value of "NO_DATA". The
results are displayed with an IJMacro actor (Figure 8.45).

Figure 8.45: A topographical map of South America, output by the example workflow.

 Chapter 9

 300

9. Domain Specific Workflows

This chapter contains example workflows that have been developed or are currently
under development for specific domains: chemistry, ecology, geology, molecular
biology, oceanography, and phylogeny.

9.1 Chemistry

The Kepler project in conjunction with the RESURGENCE project (RESearch sURGe
ENabled by CyberinfrastructurE) has developed a general workflow infrastructure for
computational chemistry that allows high-throughput calculations distributed on a
computational grid.47 To that end, the Kepler library contains a number of components
designed to interface with commonly used computational chemistry tools such as
GAMESS (General Atomic and Molecular Electronic Structure System), Open Babel,
Babel, and QMView. To use the full suite of computational chemistry actors, these
applications must be installed on the local system.

The workflow in Figure 9.1 demonstrates how Kepler can be used to prepare and run a
GAMESS experiment. All of the required applications necessary for file format
translation, display, and processing are accessed and executed via workflow actors.
Kepler actors also create all of the necessary directories and text files. The workflow is
parameterized to allow for molecule selection, for setting the main scientific parameters,
and for parsing the underlying program codes. Each of the actors in the workflow in
Figure 9.1 is a composite actor containing the individual actors required to perform the
workflow step.

For detailed information about the GAMESS workflow, please see https://code.kepler-
project.org/code/kepler-docs/trunk/legacy-
documents/user/WFDocumentation/LocalGAMESSPrepareRunDisplay.doc

Preparing and running a GAMESS Experiment and displaying the results visually
Workflow Authors:
Wibke SUDHOLT, Kim BALDRIDGE: University of Zurich
Ilkay ALTINTAS: San Diego Supercomputer Center

47 RESURGENCE project home page, http://ocikbws.uzh.ch/resurgence/index.html

 Chapter 9

 301

Figure 9.1: Preparing and running a GAMESS Experiment and displaying the results visually. This
workflow runs high-throughput calculations of several molecules using the GAMESS quantum chemistry
application. When completed, this workflow will enable users to obtain physical properties of all the
molecules involved. The workflow will also display the final (optimized) structures of these molecules
using QMView visualization software.

The Preparing and running a GAMESS Experiment and displaying the results visually:
workflow can be found in the workflows/chem/ directory. Please note that these
workflows are under development and may not be fully functional.

9.2 Ecology

The National Science Foundation-funded SEEK (Science Environment for Ecological
Knowledge) project-- the initial contributor to the Kepler project -- chose Ecological
Niche Modeling (ENM) as the prototype Kepler application. SEEK selected this
application because there were clear gains to be made through applying cutting-edge
technology to niche modeling.

The project makes use of the data resources of the distributed Mammal Networked
Information System (MaNIS; Stein and Wieczorek, 2004) to carry out a review of likely
climate change effects on the over 2000 mammal species of the Americas, constructing

 Chapter 9

 302

maps of potential species distributions under future climate scenarios. This analysis will
be the broadest in taxonomic and geographic scope carried out to date, and the
computational approach, the Kepler workflow (Figure 9.2) will be completely scalable
and extensible to any region and any suite of taxa of interest.

For detailed information about ENM workflows, please see Kepler's Guide to ENM.
Example workflows can be found in Kepler's demos/unsupported/ENM directory.

Ecological Niche Modeling
Workflow author:
Dan Higgins

Figure 9.2: The GARP_SingleSpecies_BestRuleSet-IV.xml workflow, discussed in more detail in the
Guide to ENM.

 Chapter 9

 303

Figure 9.3: Maps output by the GARP_SingleSpecies_BestRuleSet-IV.xml workflow. The map on the far
left displays a predicted distribution of Mephitis mephitis based on historical climate data. The map in the
center displays a prediction based on future climate data for 2020. The map on the far right displays a
prediction based on future climate data for 2050. The workflow also outputs a list of files used to generate
the predictions (not pictured).

The Ecological Niche Modeling workflows can be found in the
demos/unsupported/ENM/ directory.

9.3 Geology

The Kepler project in conjunction with the Geosciences Network (GEON) Project
(http://www.geongrid.org) has developed a wide variety of workflows for geosciences
research: a workflow for the integration and visualization of seismic events and their
related fault orientations with other image (map) services48; distribution, interpolation
and analysis of LiDAR (Light Distance And Ranging) point cloud datasets49; and mineral
classification50, among others.	

The workflow in Figure 9.4 is used to retrieve mineral classification points from the
Virginia Igneous Rock database and to classify the points. The workflow connects to a
database of mineral compositions of igneous rock samples and selects data points. This
data, together with a set of Igneous rocks diagrams (Figure 9.5) are fed into a Classifier
sub-workflow, which automates the often time-consuming process of classifying mineral
samples via a series of diagrams.
	

48 Jaeger-Frank, Efrat, Chaitan Baru, Ashraf Memon, Ilkay Altintas, Bertram Ludaescher, Ghulam Memon
& Dogan Seber. Integrati.ng Seismic Events Focal Mechanisms with Image Services in Kepler. 2005 ESRI
User Conference Proceedings
49Jaeger-Frank E, Crosby C J, Memon A, Nandigam V, Arrowsmith J R, Conner J, Altintas I and Baru C
2006 Three Tier Architecture for LiDAR Interpolation and Analysis 1st Int. Workshop on Workflow
systems in e-Science in conjunction with ICCS
50 Ludscher, B, K. Lin, S. Bowers, E. Jaeger-Frank, B. Brodaric, C. Baru. Managing Scientific Data: From
Data Integration to Scientific Workflows. GSA Today, Special Issue on Geoinformatics, 2005.

 Chapter 9

 304

Geon mineral classification workflow
Workflow Authors:
Efrat Jaeger, Bertram Ludaescher, Krishna Sinha.

Figure 9.4: The GEON mineral classification workflow, which determines the position of the sample
points in a series of diagrams such as the ones shown in Figure 9.5.

Figure 9.5: Igneous rock classification diagrams. If the location of a sample point in a non-terminal
diagram of order n has been determined (e.g., diorite gabbro anorthosite, left), the corresponding diagram
of order n+1 is consulted and the point is located therein. This process is iterated until the terminal level of
diagrams is reached. The result is shown on the right, where the classification result is anorthosite)51.

51 Ibid.

 Chapter 9

 305

The Geon mineral classification workflow and other earth science workflows can be
found in the workflow/geo/ directory. Please note, these workflows are under
development and may not be fully functional.

9.4 Molecular Biology

 The Kepler project in conjunction with the Scientific Process Automation (SPA)
project has developed a set of special "bio-services" actors that allow the scientist to
invoke standard tools such as BLAST or Transfac locally or remotely as web services.52

The Promoter Identification Workflow (PIW) shown in Figure 9.6 links genomic biology
techniques such as microarrays with bioinformatics tools such as BLAST to identify and
characterize eukaryotic promoters. Starting from microarray data, cluster analysis
algorithms are used to identify genes that share similar patterns of gene expression
profiles which are then predicted to be co-regulated as part of an interactive biochemical
pathway. Given the gene-ids, gene sequences are retrieved from a remote database (e.g.,
GenBank) and fed to a tool (e.g., BLAST) that finds similar sequences. In subsequent
steps, transcription factor binding sites and promoters are identified to create a promoter
model that can be iteratively refined.

 For detailed information about this workflow, please see the original article.53

Promoter Identification Workflow (PIW)
Workflow Authors:
Matthew Coleman @ Lawrence Livermore National Laboratory
Ilkay Altintas, Bertram Ludaescher, Yang Zhao @ San Diego Supercomputer Center

52 SPA web site, http://www-casc.llnl.gov/sdm/documentation/overview.php
53 Altintas, Ilkay, Oscar Barney, Zhengang Cheng, Terence Critchlow, Bertram Ludaescher, Steve Parker,
Arie Shoshani6, Mladen Vouk. Accelerating the scientific exploration process with scientific Workflows.
Journal of Physics: Conference Series, 2006

 Chapter 9

 306

Figure 9.6: The Promoter Identification Workflow (PIW)

The Promoter Identification Workflow can be found in the /workflow/spa/PIW/ directory
of the nightly Kepler build. Note that these workflows are under development and may
not be fully functional.

9.5 Oceanography

The Kepler project in conjunction with the ROADNet (Real-time Observatories,
Applications, and Data Management Network) project has developed an integrated,
seamless, and transparent information management system that will deliver seismic,
oceanographic, hydrological, ecological, and physical data to a variety of end users in
real-time.54

54 ROADNet project website, http://roadnet.ucsd.edu/

 Chapter 9

 307

The Graphical Display of Real-Time Geophysical Data workflow (Figure 9.7) displays
images taken on the research vessel, the Roger Reville in real time. For more information
about the technologies used in this workflow, please see http://nibot-
lab.livejournal.com/28612.html.

Graphical Display of Real-Time Geophysical Data
Workflow authors:
Tobin T. Fricke, University of California

Figure 9.7: The Graphical Display of Real-Time Geophysical Data workflow displays images taken on the
research vessel, the Roger Reville in real time.

The Graphical Display of Real-Time Geophysical Data workflow as well as other related
workflows can be found in the /workflows/orb/ directory of the nightly Kepler build.
Note that these workflows are under development and may not be fully functional.

9.6 Phylogeny

The Kepler project in conjunction with the Cyberinfrastructure for Phylogenetic Research
(CIPRES) project has been developing components and workflows to enable large-scale
phylogenetic reconstructions on a scale that will enable analyses of huge data sets
containing hundreds of thousands of bio molecular sequences.55 Please download the
Cipres-Kepler software package from http://www.phylo.org/sub_sections/software/ to
begin building scientific workflows for phylogenetic data analyses.

55 CIPRES project website, http://www.phylo.org/

 Chapter 9

 308

The Alignment-Inference-Visualization Workflow (Figure 9.8) reads a Nexus file, uses
ClustalW to perform a multiple sequence alignment on the data, constructs the
phylogenetic tree using PAUP, and reads and displays the tree using the Forester tree
viewer. For detailed information about the workflow, please see the CIPRES website,
http://www.phylo.org/sub_sections/software/ .

Figure 9.8 The Alignment-Inference-Visualization Workflow56

The Alignment-Inference-Visualization Workflow is included with the Cipres-Kepler
software package.

56 Guan, Zhijie PowerPoint presentation of CIPRES in Kepler (given at the 2006 Evolution meetings).

 Appendix A

 309

	

Appendix A: Creating New Actors

One of the simplest ways to create a new actor (and a good way to get started building
your own actors immediately) is to customize an existing actor. Actors can be
customized, saved to a KAR file and displayed in the library and/or uploaded to the
repository--all from the Workflow canvas. Users need not know Java or any other
programming language to create powerful new components in this way. Users who are
familiar with Java can also choose to write and compile new actors from source code. In
this chapter, we will look at how to create an actor by customizing an existing one, as
well as how to create an actor "from scratch" by extending existing Java code, compiling
it, and importing the new actor into Kepler.

In Section A.1, we will look at how to create, save, and share a customized Expression
actor. In Section A.2, we will look at the structure of an actor and how actors work: how
the code is structured, how to create ports, parameters, and behaviors (i.e., methods) and
how to compile custom actors and then import them into the Kepler. At the end of the
chapter, we step through tutorial examples designed to introduce you to the basics of
building and incorporating your own actors into Kepler.

A.1 Building a Custom Actor Based on an Existing Actor

One of the simplest ways to create a new actor is to customize an existing actor--usually
either an Expression or RExpression actor, which are easy to modify in useful ways.
Users can add ports, customize parameters (such as an R-script or expression), and create
powerful components that are easily saved and stored in a Kepler archive (KAR) file,
which can be shared with others.

In this section, we will take a look at how to create an actor (the Shannon Index actor)
that evaluates an equation and outputs the result. The Shannon Index actor, which is used
to calculate a measure of biodiversity in categorical data, is based on an Expression actor
included in the standard Kepler library.

The Shannon Biodiversity Index can be calculated using the following equation57:

57 From Statistical Ecology by John A. Ludwig and James F. Reynold, 1988

 Appendix A

 310

In the above equation, ni is the number of individuals in each species (the abundance of
each species) S represents the number of species in the sample (the "species richness");
and n is the total number of individuals. 58

Before an Expression actor can evaluate an equation, the equation must be "translated"
into the Kepler expression language. For detailed information about the expression
language, please see the Ptolemy documentation. The Shannon Biodiversity Index
equation is written in the expression languages as follows:

-1.0*sum(map(function(x:double)
(1.0*x/sum(numSp))*(log(1.0*x/sum(numSp))), numSp))

numSp is an array that must be provided to the actor. Each element in the array
represents the species abundance of a species in the sample. In other words, the number
of elements in the array is the number of species in a sample (S), and the value of each
element is the number of individuals of the corresponding species (ni). For example, the
array {10,20,30,40} represents a data set containing four species, one species having 10
individuals, the next having 20 individuals, etc. Summing the elements gives the total
number of individuals (n), which is equal to 100 in this example.

To begin using this equation, paste it into the value parameter of an Expression actor,
add an input port named numSp (which will receive the data set array), and rename the
actor "Shannon Index" to better identify its function. This actor can now be connected to
other actors and used in a workflow (Figure A.1).

Figure A.1: A simple workflow that calculates the Shannon Biodiversity Index, used to measure diversity
in categorical data.

58 Wikipedia, http://en.wikipedia.org/wiki/Shannon_index

 Appendix A

 311

To save the Shannon Index (or any other customized actor) to your library, right-click the
actor and select the Save Archive (KAR)…” menu item. This will save the actor in a
KAR file on your computer’s hard drive. If that KAR file is in a folder that is designated
as a Local Repository for Kepler components it will appear in the Component Library
within Kepler.

A KAR file (Kepler ARchive) is a zipped collection of files that can easily be shared with
others. To examine the contents of a KAR file, open it with a zip file editor (like
WinZip). The ShannonIndex.kar file contains two files: ‘Manifest.MF’ and an xml file.
These files contain information that Kepler uses when building the actor library and
displaying the actor. For more information about the files, see Section A.4.1.

To begin using the actor, make sure the KAR file is saved in a Local Repository folder.
Press the “Sources” button just below the search field in the Component Library, here
you can add, rename, and remove Local Repository folders. To resynchronize your
Component Library with the KAR files in your local repositories you can press the
“Build” button in the Component Preferences dialog that opened when you pressed the
“Sources” button. You can now search for your new actor in the Component Library.

A.2 Creating a New Actor by Extending a Java Class

Typically, new actors are created by extending an existing Java class. A class is the
blueprint from which individual objects (e.g., an instance of an actor displayed on the
Workflow canvas) are created.59 By extending a class, the new actor will inherit all of
the commonly used attributes and behaviors from the parent class—ports and parameters,
for example, or what tasks to perform at different times (i.e., methods). Only new
behaviors and attributes need be programmed. In addition to eliminating the need to
reinvent the wheel each time an actor is created, extending base classes helps maintain
consistent naming conventions, as the port and parameter names are inherited
(eliminating the confusion created when one actor has an input port called "in" and
another "inSystem", etc).

To create a new actor and begin using it, you need installed Kepler software and a Java
development kit (JDK). To see if you have the development kit running (not just the Java
runtime environment (JRE)), navigate to the directory in which Java is installed and then
open the "bin" directory (e.g., JAVA_HOME/bin). If the directory contains a program
called javac.exe, you are ready to get started! If you don't see javac.exe, or you're unsure
in any way, go to http://www.oracle.com/technetwork/java/javase/downloads/index.html
and download JDK6.
Note that you can use any application to code actors—from Eclipse, a common code-
development environment to a simple text editor. Full instructions for using Eclipse with
Kepler are available on the Kepler wiki, where the build system instructions are
available.

59 The Java Tutorials, http://java.sun.com/docs/books/tutorial/java/concepts/class.html

 Appendix A

 312

A.2.1 Coding a New Actor

The source code of Kepler actors is divided into several sections with highly visible
delimiters (Figure A.2). The sections consist of: constructors, public variables (including
ports and parameters), public methods, protected methods, protected variables, private
methods, and private variables, in that order.60 The constructor creates an instance of the
class (the actor) and the methods specify the actor behaviors (such as what to send to an
output port). "Public", "protected", and "private" specify access levels. Please see the
Java documentation for more information.

Because Kepler is a collaborative project, adhering to consistent formatting and naming
conventions is especially important. Please see Sun's Developer Network for information
about best practices.

Each Java source begins with a brief (usually one sentence) description of the actor that
identifies what the actor does and how it is intended to be used. This line appears at the
top of the file, above the copyright notice and the Java import statements. The copyright
is a “BSD” (“Berkeley Standard Distribution”) copyright, which is more liberal than the
GPL (Gnu Public License). To view the copyright license, right-click any actor in the
default Kepler library and select Open Actor.

60 Hylands Brooks, Christopher, and Edward A Lee, Ptolemy II Coding Style

 Appendix A

 313

Figure A.2: Generic actor template with major sections identified: constructors, public variables (including
ports and parameters), public methods, protected methods, protected variables, private methods, and private
variables.

The template in Figure A.2 shows the major sections of the actor Java code. We will
discuss each section in more depth in the next pages.

 Appendix A

 314

A.2.1.1 The Constructor

The constructor is the part of the Java code that creates each instance of the class (i.e.,
each actor). The class behaviors (methods), ports, and parameters are defined in other
sections of the code. The constructor takes this "blueprint" and builds the actor.

Each actor must have its own constructor (the constructor is not "inherited"). The
constructor contains documentation—Javadoc comments that are compiled when the
code is compiled—as well as Java code that builds the actor and its ports and parameters.

The constructor section of code displayed in Figure A.3 contains the constructor code for
the Constant actor. Right-click the Constant actor and select Open Actor to see the
complete Java source code.

Figure A.3: The constructor of the Constant actor.

 Appendix A

 315

The section of code displayed in Figure A.3 begins with the class name (Const) as well
as documentation for the class. The Const class extends the
LimitedFiringSource class. In other words, the Constant actor will inherit the
functionality of the pre-existing class.

The class documentation for the Constant actor is:

Produce a constant output. The value of the output is
that of the token contained by the <i>value</i>
parameter,which by default is an IntToken with value 1.
The type of the output is that of <i>value</i>
parameter.

Documentation is specified as Javadocs. Javadoc is a program distributed with Java that
generates HTML documentation files from Java source code files. Javadoc comments
begin with “/**” and end with “*/”, and should always proceed the class definition, the
constructor, and each defined port, parameter, and method to convey to other users what
the code does.61 Note that the description can contain HTML formatting (e.g.,
<i>value</i>).

Javadoc tags (e.g., @author …) convey information about the actor's author, code
version, and status (Table 10.1):

 @author Yuhong Xiong, Edward A. Lee
 @version Id
 @since Ptolemy II 0.2
 @Pt.ProposedRating Green (eal)
 @Pt.AcceptedRating Green (bilung)

Javadoc Tag Value
@author The authors and contributors (e.g., Yuhong Xiong, Edward A.

Lee)
@version Version information. The default value Id is replaced by

actual version information when the code is committed to CVS
(e.g. $Id: Const.java,v 1.52 2007/07/11
19:43:46 eal Exp $)

@since The release in which the class first appeared. Usually, the
release is one decimal place after the current release. For
example, if the current release is 3.0.2, then the @since tag
would read: @since Ptolemy II 3.1

@Pt.ProposedRating Proposed code rating. Each tag includes the color (one of red,
yellow, green, or blue) and the cvs login of the person
responsible for the proposed or accepted rating level. See the
Ptolemy documentation for more information.

61 See http://java.sun.com/j2se/javadoc/writingdoccomments/ for guidelines from Sun Microsystems on
writing Javadoc comments.

 Appendix A

 316

@Pt.AcceptedRating Accepted code rating. Each tag includes the color (one of red,

yellow, green, or blue) and the cvs login of the person
responsible for the proposed or accepted rating level. See the
Ptolemy documentation for more information.

Table A.1: Javadoc tags used to identify a class

The constructor itself should also be preceded by a Javadoc comment. The Javadoc
comments that describe the constructor begin "Construct a …", and explain what the
constructor is doing: creating an actor parameter called value and assigning it a default
value of 1, and throwing exceptions under certain circumstances. Ports and parameters,
which are defined under the Public Variables section of the actor code, are instantiated in
the constructor. We'll look more closely at how this is done in Section 10.2.3 Public
Variables: Actor Ports and Parameters.

A.2.1.2 Public Methods (Action methods and more)

How actors behave (e.g., what they output and when) is described by methods. Kepler
actors have a number of common "action" methods that tell the actor what to do at
various times during workflow execution: preinitialize(), initialize(),
prefire(),fire(), postfire(), and wrapup(). Different types of tasks
happen at different points in the workflow. Note that by convention methods are specified
alphabetically in the actor's source code (Table 10.2).

Method Use

preinitialize() Set port types and/or scheduling information. The preinitialize()
method is only invoked once per workflow execution and is
invoked before any of the other action methods.

initialize() Initialize local variables and begin execution of the actor.

prefire() Determine whether firing should proceed. This method is invoked
each time the actor is fired, before the actor is fired. The method
can also be used to perform an operation that will happen exactly
once per iteration.

fire() Read actor inputs and current parameter values, and produce
outputs.

postfire() Determine if actor execution is complete, schedule the next firing
(if appropriate) and update the actor's persistent state.

 Appendix A

 317

wrapUp() Display final results. The wrapUp() method is only invoked once
per workflow execution.

Table A.2: Common action methods and their use.

The public methods of the AddOrSubtract actor are displayed in Figure A.4. Only the
fire() method is defined--the other methods are inherited unchanged from the parent actor
(the AddOrSubtract actor extends TypedAtomicActor).

 Appendix A

 318

Figure A.4: The public methods (in this case, just the fire() method) defined for the AddOrSubtract actor.

Each method defined in the public method section should be preceded by a Javadoc
comment that describes what the method does and how it is used.

 Appendix A

 319

Note that the java code for the fire() method uses a number of other methods to access
and process data: the send() method sends data to a specified port channel; the get()
method retrieves data from ports; the getWidth() method returns the number of channels
of data received; the hasToken() method determines if a port has available data. For more
information about useful methods and syntax, please refer to the Ptolemy documentation.

A.2.1.3 Public Variables: Actor Ports, Parameters, and Port-Parameters

Actor ports and parameters are created by including the relevant Java classes in the
actor's source code: usually TypedIOPort to create an input or output port,
Parameter to create a parameter, and PortParameter to create a port-parameter. To use
these classes, first add them to the imports list:

import ptolemy.actor.TypedIOPort;
import ptolemy.data.expr.Parameter;
import ptolemy.actor.parameters.PortParameter;

Figure A.5 displays the ports and parameters section of the AddOrSubtract actor, which
has three ports: two input ports, one called minus and the other plus, and one output
port called output) and no parameters. Note that each port declaration is preceded by a
Javadoc comment that describes the port and its use.

Figure A.5: The input and output ports of the AddOrSubtract actor.

Though the ports are defined in the "ports and parameters" section of code, they are
actually created by the constructor. In other words, just declaring the ports will not create
them. They must be instantiated, which is accomplished with the AddOrSubtract actor's
constructor code highlighted in Figure A.6.

 Appendix A

 320

Figure A.6: Constructing the ports of the AddOrSubtract actor.

The code that instantiates a port takes the following form:

 portName = new TypedIOPort (arguments)

For example, the first instantiated port in Figure A.6 is the plus port:

[1] plus = new TypedIOPort(this, "plus", true, false);
[2] plus.setMultiport(true);

Line [1] instantiates the plus port. The first argument (i.e., this) is the container of the
port, this actor. The second is the name of the port ("plus"), which can be any string, but
by convention, is the same as the name of the public variable. The third argument
specifies whether the port is an input (it is in this example), and the fourth argument
specifies whether it is an output (it is not in this example). By default, ports are single
ports. Line [2] "overrides" the default, stating that the plus port should be a multiport
instead of a single port.

The constructor also sets type constraints. For example, if the plus port described above
requires input of type double, the following absolute type constraint could be added to the
constructor:

[3] plus.setTypeEquals(BaseType.DOUBLE);

 Appendix A

 321

More commonly, type constraints are specified as "relative type constraints," meaning
that the type is equal to or greater than the type of another port or parameter. If the type
of the plus port should be the same as the type of the minus port, the following line
could be used:

[3] plus.setTypeSameAs(minus);

For full details of the type system, see the Ptolemy documentation.

Parameters are declared and constructed much like ports are. Figure A.7 displays the
ports and parameters section of the Ramp actor code. The Ramp actor inherits two ports
from its parent class, but creates two new members: a parameter (called init) and a
port-parameter (called step).

Figure A.7: The ports and parameters code of the Ramp actor.

The Ramp actor's init parameter and the step port-parameter must also be instantiated
by the constructor before they will appear. Figure A.8 highlights the portion of the Ramp
actor's constructor code that instantiates the new class members and sets the type of an
existing member, the output port.

 Appendix A

 322

Figure A.8: Constructing the init parameter and step port-parameter and setting type constraints for
the actor's output port.

The code that instantiates a parameter takes the following form:

 paramName = new Parameter (arguments)

For example, the init parameter in Figure A.8 uses:

[1] init = new Parameter (this, "init");
[2] init.setExpression("0");

Line [1] instantiates the init parameter. The first argument (i.e., this) is the container
of the parameter, this actor. The second is the name of the parameter ("init"), which can
be any string, but by convention, is the same as the name of the public variable. Line [2]
specifies a default value for the parameter, in this case, 0.

 Appendix A

 323

A.2.1.4 Actor Icons

Actor icons, which appear on the Workflow canvas as well as in the actor tree, are
assigned via external mappings, and NOT in the actor code. The icons themselves are
SVG (scalable vector graphic) files.

In order to achieve visual consistency among the icons and to limit the number of icons in
use, as well as to classify the icons into families that share a common function, we ask
that you select an existing icon or icon family if possible. For a complete list of actor
icons and their function, please see Section 5.3.1 Actor Icon Families.

For complete instructions, please see Assigning/Adding Icons in Kepler

A.2.2 Compiling a New Actor

To compile new actors please see the online developer documentation at
https://kepler-project.org/developers
and
https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-
world-actor-using-the-kepler-build-system-and-eclipse

A.4 Sharing an Actor: Creating a KAR File

To save an actor and share it with other users, either save the actor as a KAR file (a
Kepler Archive format that allows actors to be easily transported and used), or upload the
actor to the Kepler repository, where it can be shared by the general public. If the actor is
built from a new Java source, the KAR file must include a dependency on the module
where the Java class has been compiled.

A.4.1 The Manifest File

The manifest file (MANIFEST.MF) is a simple text document that helps uniquely
identify an actor. It contains versioning information as well as the location of the actor's
MOML file and its LSIDs (Life Science Identifier)—one for the KAR file, another for
the actor. The manifest also contains information about the actors source code, when
relevant (i.e., when the actor is compiled from new source code).

Each actor must have a unique LSID. The LSIDs of actors in the standard Kepler library
take the form:

urn:lsid:kepler-project.org:actor:7:1.

 Appendix A

 324

In this case, kepler-project.org is acting as the "authority", actor is acting as the
"namespace", 7 as the "object id", and 1 as the "version". For your own actors, you might
try making up your own namespace to replace "actor" with. For more information about
LSIDs and their syntax, please see https://kepler-
project.org/developers/teams/framework/kepler-life-science-identifiers-keplerlsid.

To view Manifest files for existing KAR files right click on the KAR in the Component
Library and choose the “View Manifest” menu item. More information about KAR files
can be found at https://kepler-project.org/developers/teams/framework/kepler-archive-kar

A.4.2 The MOML File

MoML is an XML modeling markup language intended for specifying interconnections
of parameterized, hierarchical components—such as actors and workflows.62 Each actor
has a MOML file that describes it: its ports, parameters, settings, documentation,
semantic type (i.e., where it appears in the actor tree), and identifier (the LSID).

All MOML files begin with an XML declaration, which specifies the version of XML
being used:

 <?xml version="1.0" ?>

The bulk of the MOML file is contained between start and end <entity> tags that
surround a "body" of nested tags describing specific actor properties. People familiar
with XML will recognize the structure. Please note that all tags must be closed either
with an end tag (e.g., <entity>…</entity>) if the tag surrounds content, or a
closing "/>" (e.g., <property…. />) if the tag is empty.

The opening <entity> tag specifies the name and class of the actor's container.

<entity name="SshSession" class="ptolemy.kernel.ComponentEntity">

Inside the <entity> tag are tags that define the specific actor properties and parameters,
such as its LSID, user documentation (which overrides any documentation in the Java
source code), ports, parameters, and location in the actor tree.

Please see the Ptolemy documentation for a complete guide the syntax and components
of a MOML file.

62 Edward A. Lee, Stephen Neuendorffer. "MoML — A Modeling Markup Language in XML — Version
0.4". Technical report, University of California at Berkeley, March, 2000.

 Appendix B

 325

Appendix B: Modules
Kepler is broken up into units of software functionality known as modules. Modules have
three primary purposes:

To group related core Kepler software functionality together in logical units.
To enable addition functionality to be easily added to Kepler.
To enable existing Kepler functionality to be easily substituted by different

functionality.

What you need to know about modules differs based on whether you are primarily a
scientific user, a developer, or both. We will start with the user perspective.

B.1 The Module Manager

The module manager is the primary means by which users will interact with modules. It
can be accessed from the file menu by clicking Tools=>Module Manager… There are
two tabs in the module manager.

First, there is the Current Suite tab. A suite is simply a list of modules where the order is
significant. The current suite is the list of modules that make up the instance of Kepler
you are currently running. Besides providing information on the current suite, the current

 Appendix B

 326

suite tab has two functions: (1) saving the current suite to file and (2) loading a new suite
from file. The intent it to enable you to share your environment with colleagues. If you
are working in a particular environment and you want to allow a colleague to synchronize
their environment with yours, you could simply save your current suite, email it or
otherwise transmit the file to them, and when they load it they would end up working in
the same environment, including the download of any modules if necessary. Please note
that if you load a preexisting suite, Kepler will restart.

The second tab is the Available Suites and Modules panel. Here there are three lists, a list
of all available suites, all available modules, and selected suites and modules. Only
published modules and suites are displayed. Developers working with unpublished
modules are expected to use the build system.

The use of this panel is relatively simple. A typical user will simply select one of the
available suites and then click “Apply and Restart”.

Note: With Kepler 2.1 and earlier, you must be running Kepler with administrative
privileges in order to restart.

 Appendix B

 327

The capabilities here are more advanced however. For very advanced users, it is possible
to mix and match suites and modules. However, mixing and matching modules and
suites, as opposed to selecting a single suite should not be done by casual users unless
specifically instructed, since such mixing and matching can have unpredictable
consequences. For more advanced users/developers, the selected modules list is
essentially like modules.txt, which is described in the developer documentation on the
Kepler website.

B.2 Developing Modules

If you want to add non-actor functionality to Kepler, you will need to develop your own
modules. To learn how to do that, please refer to the Build System Instructions at the
Kepler website (https://dev.kepler-project.org/developers).

Click on the “Build System Instructions” link and then the “Making Your Own Modules”
link in the table of contents.

 Appendix C

 328

Appendix C: Using R in Kepler

The Kepler library contains a number of useful actors that interface with the R
environment, accessing its powerful statistical and data processing tools and integrating
that functionality into workflows.

Kepler's RExpression actor inserts R commands and scripts
into workflows, making it easy to use the data manipulation
and statistical functions of R. In addition, a number of
customized R actors designed to perform specific functions
(creating a bar or box plot, for example) are included in the
Kepler library. A search for "RExpression" in the
Components tab will return all R-related actors.

The RExpression actor icon

To implement any of the RExpression actors, R must be installed on the computer
running the Kepler application.

C.1 Installing R

R can be freely downloaded from links on the R Project web site (http://www.r-
project.org). Follow the instructions provided for installation. In addition (under
the Windows operating system), the R 'bin' directory must be added to the PATH
variable on the host computer. To test if the installation is correct, open a
command/terminal window and type the command 'R'. The command should
startup the R environment and alert the user that R has been started.

C.2 A Brief Overview of R
R is open source software for statistical computing, data manipulation, and
graphics. Based on work originally carried out at Bell Labs, R is part of the GNU
project. The software provides a wide variety of statistical (linear and nonlinear
modeling, classical statistical tests, time-series analysis, classification, clustering,
etc) and graphical techniques (Figure C.1), and is highly extensible.63

63 R Project website, http://www.r-project.org/

 Appendix C

 329

Figure C.1: Examples of graphics generated with R

The R language has many similarities to the Kepler expression language, with the added
advantage that many detailed statistical operations and data manipulation routines already
exist in R. In addition to performing a wide variety of statistical tests and analyses, R can
create sophisticated graphic displays with only a few lines of script (Figure C.2).

 Appendix C

 330

Figure C.2. A three-line R script can read a data table, plot all combinations of column data, and
summarize the data.

The R language emphasizes operations on “whole objects” (e.g., vectors, matrices, and
tables) rather than on individual elements. This emphasis eliminates many explicit
looping statements. We will take a closer look at R data objects in the next section.

R functions, which are often the building blocks of R-scripts, operate on the contents of
data objects. See Section 2.2 for more information.

C.2.1 Data Objects

R objects are specialized structures that facilitate high-level manipulation of information.
All R objects are derived from several basic types. The most basic kind of R data object
is the vector, which is a collection of elements that all have the same type (mode). For
example, {1,2,3,4,5} is a vector with a length of five and a mode of "numeric." Other
modes are complex, logical, character, or raw. A second basic R data object is the list. A
list is also a collection of elements, but its elements may be of different types (in fact,
each element can be any kind of R object, including another list).

 Appendix C

 331

Numerous other types of objects are derived from these basic types. Some examples of
objects commonly used during data analysis include:

Factor A special vector storing discrete categorical values
Array A vector with a dimension attribute
Matrix An array with two or more dimensions
Data Frame A data table (formally, a list of vectors all of the same length)
Table C.1: R data objects

For more information about R data objects, please see An Introduction to R by W.N.
Venables, D.M. Smith and the R Development Core Team. In Section 4, we will look at
examples of several of these data objects in Kepler/R workflows.

C.2.2 Functions

An R function is a self-contained routine that accepts input arguments and returns a
single R object. The base R system includes many useful functions that can be called
interactively or via scripts. For example, the read.csv() function reads a comma-
delimited ASCII file and creates a data frame object from it; write.table() writes a
data frame object to an ACSII text file; and the hist() function produces a histogram.
For a useful list of R functions, please see These are a Few of My Favorite R Things.

A rich set of additional functionality is available via freely available add-on packages
contributed by the R user community. The primary source of such packages is the
Comprehensive R Archive Network. Users can also write new functions and modify
existing functions as needed. For more information about writing new functions, please
see An Introduction to R by W.N. Venables, D.M. Smith and the R Development Core
Team.

C.2.3 Further Resources

Please see the NCEAS R Programming Language Resource Center for a collection of
useful R resources including information describing specific R add-on packages,
advanced geospatial and geostatistical analysis methods that incorporate R, a list of
questions (with answers) to common introductory R questions, information about R
spatial analysis tools and many new R packages, and dozens of R tutorials.

For a short reference to R functions see The R Reference Card by Tom Short and for
many tips on R usage, see Paul Johnson’s R tips page.

 Appendix C

 332

C.3 The RExpression Actor

To get started using R in Kepler, drag-and-drop the RExpression actor onto the Workflow
canvas (Figure C.3). A search for "RExpression" in the Components tab will return all R-
related actors. The RExpression actor is under the ‘General Purpose’ heading. Note that
all R actors are represented by the same icon: a teal rectangle with a blue square/white R
in the bottom left corner. Once the RExpression actor is on the Workflow canvas, it can
be customized with additional ports and a user-defined R-script.

Figure C.3: The RExpression actor.

 Appendix C

 333

C.3.1 Inputs

The RExpression actor is customized in two basic ways: via new ports, which can receive
data to be processed by the R-script; or via parameters, which are used to specify an R-
script and settings that relate to the R workspace (the working directory, graphics format,
etc). In the next sections, we will look more closely at both ports and parameters.

C.3.1.1 Input Ports

Input ports can (and very often must) be added to the RExpression actor to receive data
that will be processed by the R-script. To add an input port, right-click the RExpression
actor and select Configure Ports from the drop-down menu (Figure C.4).

Figure C.4: Configuring the ports of the RExpression actor. Ports that cannot be modified are noted with a
pink highlight.

To add a new port, click the Add button and then customize the new port. Every port
must have a name, which can be customized by double-clicking the field in the Name
column and typing a name. The port name will be used as the name of the corresponding
R data object. For example, if an input port called values accepts a data array, the R-
script will reference the array data object by the name values.

When input ports are configured as multiports, all tokens received on that multiport are
added to a list object in R. The list name corresponds to the name of the R actor's input
port. The list order is determined by the order in which connections are added to the
multiport. For an example, please see Section 4.1.1.5

The RExpression actor in Figure C.5 has two user-defined input ports named aaa and
bbb. Two Expression actors pass arrays to these ports, and the RExpression actor
constructs R vectors (aaa and bbb) from this input by applying the c() function: aaa
is {1,2,3} and bbb is {4,5,6}, the values passed through the correspondingly named
ports. The R script has been set to aaa+bbb, and the result is the sum of the R vectors:
5 7 9.

 Appendix C

 334

Figure C.5: Two user-defined ports (aaa and bbb) have been added to an RExpression actor.

The Display window in Figure 5 contains the text output that R generates. Additional
output ports can be added to output R-script results.

C.3.1.2 Parameters (the R-script and more)

The R script or function that the RExpression actor runs is specified by the actor
parameters. To view or change the R script, double-click the actor.

Figure C.6: The default parameters of the RExpression actor.

 Appendix C

 335

The default R script, shown in Figure C.6 creates and saves a plot of an array of values
{1,2,3,5}.To use another R-script, simply replace the default script with the desired one.
The additional RExpression parameters are used to customize the behavior of the actor
(Table C.2).

RExpression parameter Parameter use
directory The 'R' working directory (the Kepler cache by default).
Save or not Specify whether or not to save the R workspace when R is

closed; set to '--save' to retrieve the workspace later in a
workflow with another R actor.

Graphics Format The graphics output format. Currently the actor supports either
*.pdf or *.png.

Graphics Output Specify whether or not to send graphics to a graphics output
port. By default, the actor will send data to a graphics output
port.

Automatically
display graphics

Select to automatically display the plot once the actor has
generated it. Note that if this option is selected, the output file
will always be in PDF format, regardless of the value selected
as the Graphics Format setting.

Number of X
pixels in image

The width of the output graphic in pixels.

Number of Y
pixels in image

The height of the output graphic in pixels.

Table C.2: RExpression actor parameters and their use.

C.3.2 Outputs
 By default, the RExpression actor creates an output port for a graphical representation of
results as well a copy of the text output that R generates. Users can add additional output
ports for outputting results generated by the script.

C.3.2.1 R-Text

The R text consists of the actor's communications with R to run the R function or script
as well as the values and statistical outputs. Figure C.7 displays a very simple R
workflow that shows the text and graphical display of an RExpression actor with its
default settings.

 Appendix C

 336

Figure C.7: The default settings of the RExpression actor. By default, the actor creates a plot of the values
(1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure 7
(‘setwd…’ and ‘png…’) are setup commands for R that are automatically added by the
actor. The last two lines of the display are exactly what would appear if one were
running the R system from the command line:

a <-c(1,2,3,5)
plot(a)

To "hide" the R-text output, simply leave the port unconnected.

 Appendix C

 337

C.3.2.2 Graphical Output

Some R functions ‘draw’ to a graphical display device. The RExpression actor
automatically creates a display file and sends the name of this file to the
graphicsFileName port for use by a display actor. (If no functions that create
graphics are called this file will be blank.) Figure C.8 shows a workflow that uses an
RExpression actor to read two arrays, add them, and output a bar plot of the result. The
R-script used by the RExpression actor consists of two lines:

ccc <- aaa + bbb
barplot(ccc)

Figure C.8: An example of an RExpression workflow used to create a barplot.

In the above workflow, the barplot is saved as a .png file (the default). The RExpression
actor can also generate and save a .pdf file--set the desired output type with the
GraphicsFormat parameter. The dimensions of the graphic can be customized with
the NumberOfXPixelsInImage and NumberOfYPixelsInImage parameters.
By default, the graphic is 480x480 pixels. Generated graphics files are saved to the R

 Appendix C

 338

working directory, which by default is the Kepler cache (e.g., C:\Documents and
Settings\<UserName>\.kepler\).

The RExpression actor can also be set to display graphics automatically. Select the
AutomaticallyDisplayGraphics parameter to open graphical results in your
system's default viewing application. If this parameter is selected, the output file will
always be in PDF format, regardless of the value of the GraphicsFormat parameter,
as users are more likely to have a PDF viewing application than a PNG one.

C.3.2.3 User-Defined Output

To output results generated by the R-script (in addition to a graphic and R-text), add
additional output ports to the RExpression actor. The RExpression actor in Figure C.9 has
been modified with a user-defined output port to output the sum of two vectors (ccc). The
R-script used by the RExpression actor is:

ccc <- aaa + bbb
barplot(ccc)

Figure C.9: Adding an output port (ccc) to the RExpression actor.

 Appendix C

 339

The output port name must exactly match the name of the corresponding R data object. In
the workflow in Figure C.9, the R-script defines the sum of the vectors as ccc. The
output port called ccc broadcasts that value ({5,7,9}). Note: When an output port is
configured as a multiport, all of the actors connected to that multiport are sent the token.

C.4 Handling Data
R can process a number of different types of data objects (vectors, data frames, etc). How
those objects are best input to the RExpression actor depends to some extent on the
format of the data itself. Does the data set use metadata? Is it contained in an Excel
spreadsheet? Or is it a simple array of numbers? In the next sections, we will look at
examples that demonstrate various techniques for inputting data to an RExpression actor.
We will also look at how the RExpression outputs different types of data objects.

C.4.1 Inputting Data

Whether you are working with data arrays, records, R data frames, or local data sets
saved as tab- or comma-delimited text files, data can be input into an RExpression actor
via user-defined input ports. If the data is described by Ecological Metadata Language
(EML), an EML2Dataset actor can be used to format the data appropriately.

C.4.1.1 EML (Ecological Metadata Language) Data Sets

Datasets that use EML can be read and output in a variety of ways by the EML2Dataset
actor. In the next few examples, we will look at a meteorological data set (Datos
Meteorologicos) described by EML and stored on the EarthGrid. To download and
explore this dataset, select the Data tab and search for "Datos Meteorologicos" (or a
portion of the name, such as 'Datos'). When the data are dragged onto the Workflow
canvas, Kepler will create an EML2Dataset actor (Figure C.10) named after the dataset
and used to access and output the data in a variety of different formats.

 Appendix C

 340

Figure C.10: An EML dataset (Datos Meteorologicos).

By default, the EML2Dataset actor downloads the data to the Kepler cache (if the data is
not already available there) and creates an output port for each column of data. Mouse
over each port to see the name and type of the data output.

To learn more about the data set, right-click the actor and select Get Metadata from the
drop-down menu. The metadata contains information about the data (the owner and
structure) as well as the type and measurement of the data included in the set.

The EML2Dataset actor can be customized to output data in a variety of ways: as field,
table, row, byte-array, un-compressed file name, cache file name, column vector, or
column-based record. We'll look at examples of how these different formats can be used
with the RExpression actor in the next few sections.

C.4.1.1.1 Example One: Selecting and Using Columns of Data (Column Vectors)
The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/eml-pairs-R.xml

The workflow in Figure C.11 uses an R-script to create a pairs graph of three columns of
data (air temperature, relative humidity, and barometric pressure) from a meteorological

 Appendix C

 341

data set described by EML. The data are input to the RExpression actor as arrays of
column values (column vectors).

Figure C.11: Using column vectors with the RExpression actor.

The RExpression actor in Figure C.11 has three user-defined input ports: T_AIR, RH,
and BARO, which receive the temperature, relative humidity, and barometric pressure
data, respectively. These data are passed in the form of column vectors. To output the
data in this format, double-click the Datos Meteorologicos2 actor and select As
Column Vector as the value of the Data Output Format parameter (Figure
C.12).

 Appendix C

 342

Figure C.12: Setting As Column Vector as the data output format.

The RExpression actor uses a three-line R-script to combine the vectors into a data frame
(a collection of R data objects), summarize the table, and create a pairs-graph of the
values:

df <- data.frame(T_AIR, RH, BARO)
summary(df)
pairs(df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a
Display actor displays the text output by R.

C.4.1.1.2 Example Two: Selecting and Using an Entire Data Set (Column-Based
Records)

The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/eml_Table_as_Record.xml

The workflow in Figure C.13 uses an R-script to create a pairs graph of a column-based
record that contains all columns of data (date, time, air temperature, relative humidity,
dew point, barometric pressure, wind direction, wind speed, rainfall, solar radiation, and
solar radiation accumulation) from a meteorological data set described by EML. The data
are fed to the RExpression actor as a single column-based record. This data format is
specified by the EML2Dataset actor (Datos Meteorologicos2).

 Appendix C

 343

Figure C.13: Using column-based records with the RExpression actor.

The RExpression actor in Figure C.13 has a single user-defined input port (df), which
receives an entire data set as a column-based record that is translated into an R data frame
object. Double-click the Datos Meteorologicos2 actor and select As ColumnBased
Record as the value of the Data Output Format parameter to output the data in
the required format (Figure C.14).

A column-based record consists of named elements and their values. In Kepler, records
are specified between curly braces. For example, {BARO = {953.4, 953.8, 954.0}, DATE
= {"01/01/01", "01/01/01", "01/01/01"}, DEW = {14.5, 12.8, 12.8 }} is a record with
three elements named BARO, DATE, and DEW.

 Appendix C

 344

Figure C.14: Setting As ColumnBased Record as the output format for the data.

The RExpression actor uses a two-line R-script to created a pairs graph of the data and
summarize it:

pairs(df)
summary(df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a
Display actor displays the text output by R.

C.4.1.1.3 Example Three: Selecting and Using a Cached Dataset (read.table
function)

The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/dataFrame_R.xml

The workflow in Figure C.15 uses an R-script to create a pairs graph of a meteorological
data set described by EML that is saved to the local cache. The location of the cached
data set is fed to an RExpression actor, which reads the file and uses the read.table
function to parse the data before creating the pairs graph.

 Appendix C

 345

Figure C.15: Using column-based records with the RExpression actor.

The RExpression actor in Figure C.15 has a single user-defined input port (infile),
which receives the location of the cached data set (e.g., C:\Documents and
Settings\username\.kepler\cache\cachedata\urn.lsid.localhost.7a976669.0

.0). To output data in this format, double-click the Datos Meteorologicos2 actor and
select As Cache File Name as the value of the Data Output Format
parameter.

The RExpression actor uses an R-script to read the data file, create a data frame object
using R's read.table function, and then create a pairs graph from it.

datafile <- infile
df <- read.table(datafile,sep=",",header=TRUE)
pairs(df)
df

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a
Display actor displays the text output by R. Note that the data frame is also displayed in
the R-text output.

 Appendix C

 346

C.4.1.1.4 Example Four: Using Data Sequences
The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/emlToRecord_R.xml

The workflow in Figure C.16 uses an R-script to create a pairs graph of several columns
of meteorological data (barometric pressure, relative humidity, and air temperature)
described by EML. The data are originally output as three sequences of values, which are
converted to Kepler arrays and then combined into a single record of arrays. The data
conversion is handled by three SequenceToArray actors and one RecordAssembler, which
reads the three data arrays and combines them into a single record that is translated into
an R data frame.

Figure C.16: A workflow that converts three sequences of data to three arrays, and then combines the
arrays into a record input to the RExpression actor.

The RExpression actor in Figure C.16 has a single user-defined input port (df), which
receives the record of arrays created by the upstream Kepler actors.

The Datos Meteorologicos2 actor is configured to output data As Field (which is the
default value of the Data Output Format parameter). The output sequences are
read by SequenceToArray actors. Note that each SequenceToArray actor must be
customized to create and output an array with a length that matches the number of data
records in the data set. Since the Datos Meteorologicos2 contains 100 data records, the

 Appendix C

 347

arrayLength parameter for each of the three SequenceToArray actors must be set
to 100. (Figure C.17)

Figure C.17: Specify the length of the array to be created by the SequenceToArray actor (i.e., the number
of records in the data set).

The number of records in the data set is noted in the metadata. Right-click the Datos
Meteorologicos2 actor and select Get Metadata to view this information (Figure C.18).

Figure C.18: The number of data records is noted in the data set metadata.

 Appendix C

 348

The RExpression actor uses a two-line R-script to create a pairs graph and summarize the
data:

pairs(df)
summary(df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a
Display actor displays the text output by R.

C.4.1.1.5 Example Five: Using Ports Configured as Multiports

The UnionAll RExpression actor in Figure C.19 is configured with a multiport input and
output port. All tokens received on the multiport are added to a list object by the
UnionAll R actor and then output to two R actors (Pairs and Summarize) for further
processing. Note that the multiport output port broadcast the R data to all of the actors it
is connected to. The workflow outputs a pairs graph of the data and a summary table.

Figure C.19: Using an input port configured as a multiport.

 Appendix C

 349

To add and configure a multiport, right-click the actor and select Configure Ports from
the drop-down menu. Name the port, select its direction (input or output) and then check
the Multiport option (Figure C.20).

Figure C.20: Using an input port configured as a multiport.

The UnionAll actor receives two data sets through its records multiport. These data are
output by two EML actors set to output data in "As column based record" format. The
RExpression actor creates a dataframe from each received token and, because the data are
received through a multiport, adds the dataframes to an R list object. The UnionAll actor
uses the following R-script to concatenate the list of received dataframes into a single
dataframe:

allRecords = do.call("rbind", records)

The allRecords dataframe is output by the UnionAll actor's allRecords multiport
output port, which is connected to two downstream R actors: Pairs and Summarize. The
multiport output port broadcast the R data to all of the actors it is connected to, so there is
no need to use a relation.

C.4.1.2 Non-EML Data Sets

Data that do not use metadata—Excel spread sheets saved as text files, for example, or
the values of an Expression or Constant actor--can also be used by the RExpression
actor. In the next sections, we will look at several examples.

C.4.1.2.1 Example Six: Local Text-Based Data Sets (Selecting an Entire Data Set)
The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/localFile_to_dataFrame_R.xml

The workflow in Figure C.21 uses an R-script to (1) read a local text file containing
comma-delimited data, (2) create an R data frame with the data, (3) create a pairs graph
of the data set, and (4) summarize the data. The location of the data set is input to the
RExpression actor by an Expression actor named Path to local file.

 Appendix C

 350

Figure C.21: Using local data sets that do not use metadata with the RExpression actor.

The RExpression actor in Figure C.21 has a single user-defined input port (infile),
which receives the location of the local data set:
property("r.workflowdir")+"demos/R/sample.dat". The expression
'property("r.workflowdir")' returns the path to the R module’s workflow area.
Note the use of '/' rather than '\' in the expression, even on Windows platform.

The RExpression actor uses an R-script to read the data file, create a data frame object
using R's read.table function, and then a pairs graph of the data set:

datafile <- infile
df <- read.table(datafile,sep=",",header=TRUE)
pairs(df)
df

An ImageJ actor is used to display the pairs graph (a .png file saved to the R working
directory), and a Display actor displays the text output by R.

C.4.1.2.2 Example Seven: Using Kepler Records
The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/RecordToDataframe-R.xml

 Appendix C

 351

The workflow in Figure C.22 uses an R-script to read and display a record originally
specified by an Expression actor. In this case, the record represents a table. The
RExpression actor will automatically create an R data frame from the record, provided
that all the items in the record are arrays of the same length.

Figure C.22: Using a record specified by an Expression actor with the RExpression actor.

The RExpression actor in Figure C.22 has a single user-defined input port (record),
which receives the record data. The record specified by the Expression actor contains two
named items, 'a' and 'b'. Each item is an array with three values, {1,2,5} and
{"aa","aa","xx"}, respectively.

The RExpression actor uses an R-script to return the data frame object created by the
actor. A Display actor displays the text output by R.

C.4.1.2.3 Example Eight: Using the ReadTable Actor with Local Text-Based Data
Sets

The workflow discussed in this section can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/ReadTable.xml

The workflow in Figure C.23 uses a ReadTable actor to read a local, tab-delimited data
set that has a 'spreadsheet-like' tabular format. The ReadTable actor creates an R data
frame object from the data set and passes it to a second RExpression actor, which extracts
the species and species-count information from the data set and creates a box plot of the
data. The workflow uses an Expression actor (Data File Name) and two Constant actors
(Separator and header) to pass arguments to the ReadTable actor: the name of the data
set, the separator used by the data set, and a header, respectively.

 Appendix C

 352

Figure C.23: Using the ReadTable actor to process a local tab-delimited data set.

The ReadTable actor has five input ports (fileName, header, separator,
nrows, fill). The fileName port receives the location of the data set; the
separator port accepts the delimiter (by default, any white space, such as a space or
tab); the header is set to either TRUE (the default) or FALSE to indicate whether the first
row of the data file contains column names; nrows is the number of records in the data
table (by default, the ReadTable actor reads to the end of the file); and fill (set to
either TRUE or FALSE) determines whether or not the actor should "fill" missing
columns at the end of a line with empty strings. Often, all input ports other than the
fileName can be left unconnected. See the R documentation for read.table for more
information.

 Appendix C

 353

The default R-script in the ReadTable actor reads a data file and creates an R data frame
object:

if (any(ls() == "header") == FALSE) header= TRUE
if (any(ls() == "separator") == FALSE) separator = ""
if (any(ls() == "nrows") == FALSE) nrows = -1
if (any(ls() == "fill") == FALSE) fill = TRUE
df <- read.table(fileName, sep=separator, header=header,
nrows=nrows, fill=fill)
df
dataframe <- df
pairs(df)

The ReadTable actor saves the data frame object to a text file in the R working directory
and outputs the path to the file via the dataframe output port.

The RExpression actor in Figure C.23 has a single user-defined input port (df1), which
receives the R data frame. The actor's R-script creates a plot of the species and count
data:

species <- df1[,7]
ccnt <- df1[,8]
plot(species,ccnt)

An ImageJ actor displays the plot and a Display actor displays the R-text output.

C.4.1.2.4 Example Nine: Passing DataFrames Between R-Actors
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Dataframe_Test.xml

The workflow in Figure C.24 uses an RExpression actor to create a simple R data frame
object and save it as a text file to the Kepler cache. The RExpression actor passes the
location of the saved file to a second RExpression actor via a user-defined output port
(df). The RExpression2 actor reads the data file and selects the first row and column of
data, which is output to a Nonstrict Test actor that compares the input against the value
specified by its correctValues parameter. If the input matches the test criteria, the
workflow produces no output. However, if the two do not match, Kepler will generate an
error.

 Appendix C

 354

Figure C.24: Passing an R data frame object between RExpression actors.

The RExpression actor in Figure C.24 uses an R-script to create a simple data frame
object that contains two vectors {1,2,3} and {4,5,6}. The c() function used by the script
builds the two vectors, which are then combined into a single data frame object with the
data.frame function:

df <- data.frame(c(1,2,3),c(4,5,6))

The RExpression actor automatically saves the data frame object to the Kepler cache. A
user-defined df port is used to pass the location of the data frame file to the
RExpression2 actor. Note that the output port should be named after the R-object it emits
(e.g., the df port outputs the df object from the actor's R-script, in this case, the
location of the data file). The df port must have type string (Figure C.25)

Figure C.25: Creating an output port (df) of type string.

The RExpression2 actor receives the data frame via a user-defined input port named df1.
Its R-script selects the first row and column of data:

df2 <- df1
dframe <- df2[1,1]

A user-defined output port (dframe)outputs the value of the first row and column of
data (1.0). The NonstrictTest actor simply tests to ensure that the value is what is

 Appendix C

 355

expected. If the value does not match the value of the NonstrictTest actor's
correctValues parameter, Kepler will generate an error message. If the values
match, the workflow will execute without error or output.

Note: even though the array value was initially specified as an integer (1), it will be returned
as a double (1.0) by the workflow. To force integer storage, use the syntax 1L (or cast
using as.integer).

C.4.2 Outputting Data
In the next sections, we will look at how to customize the RExpression actor to output
results generated by the R-script (an array object in one case and a matrix object in
another).

C.4.2.1 Outputting a Data Array
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/R_output_example.xml

The workflow in Figure C.26 uses an R-script to create a pairs graph of several columns
of EML-described meteorological data (barometric pressure, relative humidity, and air
temperature). In addition, the workflow plots the relative humidity data and modified
relative humidity data. All data are originally output as fields by an EML2Dataset actor
(Datos Meteorologicos), which are combined into arrays an input to an RExpression
actor. This data conversion is handled by three SequenceToArray actors. The
RExpression actor reads the data arrays and combines them into a single R data frame.

 Appendix C

 356

Figure C.26: User-defined output ports are used to output data from an RExpression actor.

The RExpression actor in Figure C.26 reads three arrays of data (air temperature, relative
humidity, and barometric pressure) via three user-defined input ports, T_AIR, RH,
BARO, respectively. The R-script references the input data by the port names and, in
addition to summarizing the data and creating a pairs graph, "renames" the RH vector
XXX and creates a new vector of data (YYY) that contains doubled RH values.

df <- data.frame(T_AIR, RH, BARO)
summary(df)
pairs(df)
XXX <- RH
YYY <- 2*XXX

Two user-defined output ports (XXX and YYY)output the value of the RH data and the
modified RH data, respectively. The output ports must be named after the R-objects they
emit. Note that the RH vector had to be renamed in order to avoid duplicate port names.
The RExpression actor (or any actor, for that matter) cannot have both an input and
output port named RH.

An ImageJ actor displays the pairs graph (a .png file saved to the R working directory), a
Display actor displays the text output by R, and the ArrayPlotter actor receives, plots,
and displays the two RH arrays.

C.4.2.2 Outputting a Data Matrix
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Matrix_IO_Test.xml

The workflow in Figure C.27 uses an R-script to create and output an R matrix. An
Expression actor inputs a Kepler matrix into the RExpression actor, and a NonstrictTest
actor is used to ensure that the matrix output is as expected.

 Appendix C

 357

Figure C.27: Using the RExpression actor to output a matrix data object.

The RExpression actor in Figure C.27 reads a Kepler matrix specified by an Expression
actor. The matrix is input to the RExpression actor via a user-defined port (in1). The R-
script reads the value and creates an R matrix object:

in1
class(in1)
ma <- in1

A user-defined output port (ma) outputs the matrix data. The NonstrictTest actor simply
tests to ensure that the value is what is expected. If the input value does not match the
value of the NonstrictTest actor's correctValues parameter (Figure C.28), Kepler
will generate an error message. If the values match, the workflow will execute without
error or output.

Figure C.28: The value of the correctValues parameter must match the NonstrictTest actor's input.

 Appendix C

 358

C.5 Example R Scripts and Functions

The following section contains examples of R workflows used for a variety of common
statistical tasks, such as linear regression, plotting, statistical summaries, and sampling.

C.5.1 Simple Linear Regression
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/R/eml-simple-linearRegression-R.xml

The workflow in Figure C.29 uses an RExpression actor (R_linear_regression) to
perform and display a linear regression of two columns of data (air temperature and
barometric pressure) from a meteorological dataset.

Figure C.29: Using the RExpression to perform a linear regression.

 Appendix C

 359

The R_linear_regression actor in Figure C.29 reads two columns of meteorological data
(air temperature and barometric pressure) via two user-defined input ports: T_AIR and
BARO, respectively. The data are originally output As Column Vectors by the
EML2Dataset actor (Datos Meteorologicos).

The RExpression actor converts the input data into R vectors, and then performs the
linear regression. The script also adds a regression line through the scatter plot using the
abline() function:

res <- lm(BARO ~ T_AIR)
res
plot(T_AIR, BARO)
abline(res)

An ImageJ actor displays the scatter plot (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

The Regression or the LinearModel actors—which are both preconfigured RExpression
actors—can also be used to perform a linear regression. Please see Section C.5.7 for more
information.
.

C.5.2 Basic Plotting
The workflow discussed below can be found under KeplerData/workflows/module/r-2.X.Y/demos/R/eml-
simple-plot-R.xml

The workflow in Figure C.30 uses an RExpression actor to plot two columns of data:
relative humidity (y-axis) and barometric pressure (x-axis) from a meteorological dataset.

 Appendix C

 360

Figure C.30: Using the RExpression to plot data.

The RExpression actor in Figure C.30 reads two columns of meteorological data (relative
humidity and barometric pressure) via two user-defined input ports: RH and BARO,
respectively. The data are originally output As fields by the EML2Dataset actor
(Datos Meteorologicos). The fields are joined into arrays by two SequenceToArray
actors. For more information about using SequenceToArray actors in this way, please see
Section C.4.1.1.4.

The R-script summarizes the two data sets and creates a plot of the values:

summary(RH)
summary(BARO)
plot(BARO, RH)

An ImageJ actor displays the scatter plot (a .png file saved to the R working directory),
and a Display actor displays the text output by R.

 Appendix C

 361

The RPlot, Scatterplot, Boxplot and Barplot actors—which are preconfigured
RExpression actors--can also be used to generate plots. Please see Section C.5.7 for more
information.

C.5.3 Summary Statistics
The workflow discussed below can be found at KeplerData/workflows/module/r-2.X.Y/demos/R/eml-
summary-stats-R.xml

The workflow in Figure C.31 uses an RExpression actor to generate summary statistics
(mean, standard deviation, and variance) for a single column of data (barometric
pressure) from a meteorological dataset.

Figure C.31: Using the RExpression to generate summary statistics.

The RExpression actor in Figure C.31 reads barometric pressure data via a user-defined
input port (x). The data are originally output As column vector by the
EML2Dataset actor (Datos Meteorologicos). The R-script creates the summary statistics:

xmean = mean(x)
xstd = sd(x)
xvar = var(x)

Three user-defined output ports (xmean, xstd, and xvar) output the generated
statistics. The output ports must be named after the R-objects they emit. Display actors
display the output statistics.

The Summary, SummaryStatistics, RMean, and RMedian actors can also be used to
generate summary statistics. Please see Section C.5.7 for more information.

 Appendix C

 362

C.5.4 3D Plotting
The workflow discussed below can be found at KeplerData/workflows/module/r-
2.X.Y/demos/R/R_3D_Plot.xml

The workflow in Figure C.32 uses an RExpression actor to generate a 3D plot (a rotated
sine function).

Figure C.32: Using the RExpression to generate a 3D plot.

The RExpression actor in Figure C.32 generates a 3D plot using the following R-script:

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
op <- par(bg = "white")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue")

An ImageJ actor displays the 3D plot (a .png file saved to the R working directory), and a
Display actor displays the text output by R.

 Appendix C

 363

C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/BEAM_4_1.xml

The workflow in Figure C.33 uses four RExpression actors to generate the relationship
between area sampled and species richness (a rarefaction curve) for a data set, and then
finds the best-fit linear model for predicting this relationship. These actors (1) convert a
local data set containing plant biomass data into a site by species matrix, (2) generate a
species richness/area relationship using a bootstrap method, (3) find the best-fit linear
model for the relationship, and (4) create a plot of the results.

 Appendix C

 364

Figure C.33: The Biodiversity and Ecological Analysis and Modeling (BEAM) workflow.

The data used in the workflow (Sapelo_island_data.txt) is a text file that contains
information about parallel fertilization experiments that were performed at three different
geographical sites containing five different types of perennial plant communities found in
the salt marsh habitat around Sapelo Island, Georgia. Sixteen one-meter square plots were

 Appendix C

 365

placed within each plant community, and alternate plots were assigned to control and
fertilization treatments. The central 0.5m x 0.5m of each plot was harvested and live
plants were sorted to species, dried to a constant mass, and weighed to measure biomass.
The species biomass for the entire one meter plot was estimated from the sample. The
original data table contains nine columns of data: site code, plant community code,
fertilization treatment (N for fertilized sites, C for control), treatment replicate (1-8),
plant species code, taxonomic serial number, plant mass per .25 square meter quadrant,
and plant mass calculated per square meter.

The workflow's first RExpression actor, Site by Species matrix, reads the data file and
"reorganizes it", dropping fields that are not relevant to the current calculation (e.g., the
taxonomic serial number as well as the estimate of plant mass per square meter), and
creating a table of the presence (1) or absence (0) of species at each combination of Site,
Community, Treatment, and Replicate. The new data object is written to a text file
(Site_by_Species.txt) that is stored in the R working directory (the Kepler cache, by
default). The R actor is set to save the R workspace so that other downstream actors can
access the data (Figure C.34).

Figure C.34: Save the R workspace by setting the Save or not parameter to --save.

The Bootstrapping actor loads the species data and uses a randomization to estimate the
expected number of species present in increasingly larger sample plot areas. The actor
randomly selects experimental plots until a given area is reached (from 4 to 320 square
meters, in the example), and then sums the number of species present in that area. By
repeating this process a number of times (in this case 100), a distribution expected
species richness is estimated, and the mean and 95% confidence intervals are calculated

 Appendix C

 366

(y-axis) for given sample areas (x-axis). The actor creates a summary table containing
mean species richness and 95% confidence intervals for each area sampled. The number
of iterations to perform for each estimate, as well as the initial plot area, are specified via
Constant actors.

The LinearFit actor loads the R data and fits a linear model (or regression) to the mean
species richness estimates as a function of sampled area (both axes have been log-
transformed). In this case, the linear model does not fit the rarefaction curve well, and
other models should be investigated. The Curve plotter actor creates a plot of both the
rarefaction curve and the linear model, and the ImageJ actor displays this plot in Kepler.

C.5.6 Random Sampling
The workflow discussed below can be found under KeplerData/workflows/module/r-
2.X.Y/demos/R/sampling_occurrenceData_R.xml

The workflow in Figure C.35 uses an RExpression actor to read a local text file
containing a data set of latitude/longitude species occurrence locations, and divide the
data into two randomly assigned subsets.

Figure C.35: Using the RExpression actor to split a data set.

The location of the data set is specified by an Expression actor. The data are input to the
RExpression actor via a user-defined fileName port. The RExpression actor uses the
following R-script to create an R data-frame from the data and randomly assign each
value to one of two subsets:

read the original data

 Appendix C

 367

df <- read.table(fileName)
get number of rows (i.e. number of lines)
lll <- length(df$V1)
fraction <- 0.5
create a list of subset indices
sss <- sample(1:lll, size=(fraction*lll))
create 2 subsets
df1 <- df[sss,]
write output file
#sink("FirstSubset.txt")
#df1
#sink()
df2 <- df[-(sss),]
write output file
#sink("SecondSubset.txt")
#df2
#sink()

df1
df2

Note that comments can be added to R-scripts using the # syntax. A Display actor
displays the text output by R.

C.5.7 Custom RExpression Actors

The Kepler library contains a number of useful R actors that are "preconfigured" with R-
scripts and ports: Barplot, Box plot, Correlation, LinearModel, RandomNormal,
RandomUniform, ReadTable, Regression, RMean, RMedian, RQuantile, Scatterplot,
Summary, SummaryStatistics.

Many custom RExpression actors are intended to be reused in multiple workflows and
therefore use “generic” port names that will not necessarily correspond to the data. The
Scatterplot actor is a prime example. It has two input ports: Independent and
Dependent that are used to plot the graph.

C.5.7.1 Barplot

The Barplot actor creates and saves a barplot graph. The actor outputs the path to the
saved barplot, which can be displayed by the ImageJ actor (Figure C.36).

 Appendix C

 368

Figure C.36: Using the Barplot actor.

C.5.7.2 Boxplot

The Boxplot actor creates and saves a boxplot that is based on a data set's "five-number
summaries"--the smallest observation, lower quartile (Q1), median, upper quartile (Q3),
and largest observation. The actor reads an array of values to plot and, optionally, an
array over which the values are divided (an array of dates, for example). The actor
outputs the path to the saved boxplot, which can be displayed by the ImageJ actor
(Figure C.37).

 Appendix C

 369

Figure C.37: Using the Boxplot actor. The sample data points fall into one of two groups: 11/01 or 11/02.

C.5.7.3 Correlation

The Correlation actor performs tests of association between two input variables:
Variable1 and Variable2, which contain data arrays of equal length. The actor
outputs the level of association (r, rho, or tau, depending on the analysis) between the two
variables, an estimate of the p-value (if possible), and n (the number of items in the array)
(Figure C.38). By default, the actor performs a Pearson's correlation analysis; to specify
another analysis type, connect a Constant actor to the actor's method port and enter the
type of analysis (e.g., "spearmen" or "kendall").

 Appendix C

 370

Figure C.38: Using the Correlation actor.

C.5.7.4 LinearModel

The LinearModel actor runs a variance or linear regression analysis on its inputs and
outputs the result (Figure C.39).

Figure C.39: Using the LinearModel actor.

 Appendix C

 371

The LinearModel actor accepts an independent and a dependent variable, which are
specified as arrays (If using an EML data set, select "As Column Vector" as the output
format). If the independent variable is categorical, the actor runs a variance analysis (or a
t-test if the variable has only 2 categories). If the independent variable is continuous, a
linear regression is run. The actor outputs both a graphical and textual representation of
the analysis.

C.5.7.5 RandomNormal

The RandomNormal actor generates and outputs a set of normally (Gaussian) distributed
numbers with a mean of 0 and a standard deviation of 1 (Figure C.40). Specify the
number of random numbers to generate with a Constant actor. The actor outputs an array
of the random numbers as well as the file path to a histogram of the distribution, which
can be displayed with an ImageJ actor.

Figure C.40: Using the RandomNormal actor.

C.5.7.6 RandomUniform

The RandomUniform actor generates and outputs a set of uniformly distributed numbers.
Specify the number of random numbers to generate with a Constant actor (Figure C.41).
The actor outputs an array of random numbers as well as the path to a histogram of the
distribution, which can be displayed with an ImageJ actor.

 Appendix C

 372

Figure C.41: Using the RandomUniform actor.

C.5.7.7 ReadTable

The ReadTable actor reads a local, text-based, delimited data file and outputs the data in
a format that can be used by other R actors. For an example of this actor, please see
Section C.4.1.2.4.

C.5.7.8 Regression

The Regression actor runs a variance or linear regression analysis (Figure C.42). The
actor accepts an independent and a dependent variable, which are specified as arrays. If
using an EML data set, select "As Column Vector" as the output format. If the
independent variable is categorical, the actor uses R to run a variance analysis (or a t-test
if the variable has only 2 categories). If the independent variable is continuous, a linear
regression is run. The actor outputs both a graphical and textual representation of the
analysis.

 Appendix C

 373

Figure C.42: Using the Regression actor.

C.5.7.9 RMean

The RMean actor accepts an array of values and calculates their mean. If using an EML
data set, select "As Column Vector" as the output format. The actor outputs a histogram
of the data as well as the mean (Figure C.43).

 Appendix C

 374

Figure C.43: Using the RMean actor.

C.5.7.10 RMedian

The RMedian actor accepts an array of values and calculates their median (Figure C.44).

Figure C.44: Using the RMedian actor.

 Appendix C

 375

If using an EML data set, select "As Column Vector" as the output format. The actor
outputs a histogram of the values as well as the median value

C.5.7.11 RQuantile

The RQuantile actor accepts an array of data and generates sample quantiles. If using an
EML data set, select "As Column Vector" as the output format. The actor outputs a
histogram of the data as well as the generated quantiles (Figure C.45). One or more P-
values, specified with a Constant actor, specify which quantiles to calculate and return. P-
values must fall between 0 and 1.

Figure C.45: Using the RQuantile actor.

C.5.7.12 Scatterplot

The Scatterplot actor reads an independent and a dependent variable, which are specified
as arrays. If using an EML data set, select "As Column Vector" as the data output format.
The actor creates and saves a scatter plot. (Figure C.46).

 Appendix C

 376

Figure C.46: Using the Scatterplot actor.

The axis labels in Figure C.46 are the generic names of the actor's two input ports:
"Independent" and "Dependent".

C.5.7.13 Summary

The Summary actor calculates summary statistics (e.g., mean, maximum, minimum,
standard deviation, or median) of a variable (e.g., height) with respect to one or more
factors (e.g., classroom and sex). Up to five factors can be input using the ports on the
left of the actor. Factors are input as arrays (if using an EML data set, select "As Column
Vectors" as the data output format).

On Mac systems, the Summary actor will open the system's default text-editor to display
a table of the calculated statistics. On Windows systems, the results can be found in the
Kepler cache, saved to a file called "summary.txt."

 Appendix C

 377

The workflow in Figure C.47 uses a Summary actor to calculate the mean of crab hole
density with respect to site and zone. A StringConstant actor (Summary operation)
specifies the type of operation to perform (mean).

Figure C.47: Using the Summary actor to calculate the mean of a variable with respect to several factors.

The workflow uses an EML data source, "Fall 2003 crab population," and the data output
format is set to "As Column Vector." Note that the variable is input at the bottom of the
Summary actor and the factors are input into the ports on the actor's left. The summary
operation is specified using R-language syntax (e.g., mean, max, min, sd,
median, etc.)

The Summary actor performs the summary and saves a tab-delimited table of the results
to a text file called "summary.txt" in the R working directory (the .kepler cache, by
default). On a Mac system, the actor opens the table in the default text-editing program.

C.5.7.14 SummaryStatistics

The SummaryStatistics actor accepts an array of values and calculates their mean,
standard deviation, and variance (Figure C.48). The actor outputs both a graphical and
textual representation of the summary analysis.

 Appendix C

 378

Figure C.48: Using the SummaryStatistics actor.

 Glossary

 379

Appendix: Glossary

actor
An actor is a workflow component representing a service or data. Actors can be dragged
and dropped from the Components and Data Access area onto the Workflow canvas,
where they can be customized via parameters, and connected to other actors via ports.

Antelope
Antelope is a system, originally developed by Boulder Real-Time Technologies
(http://www.brtt.com/), for archiving and distributing environmental monitoring
information, such as data from a remote camera. Antelope ORBs act as sources (and
sinks) for real-time data, such as waveforms and events.

array token
An array is a data structure consisting of elements that can be identified by a key (or
index). The first item in an array has a key of 0, the second 1, etc. Arrays in Kepler are
denoted with curly braces, e.g. {1,2,3,4,5}

ARC
ARC is an information format for geospatial data.

Babel
Babel is an application designed to convert file formats used in molecular modeling and
computational chemistry. For more information about Babel, see
http://smog.com/chem/babel/.

Boolean token
The Boolean token can have one of two values: true or false (represented by 1 or 0,
respectively)

channel
Data flows between workflow components via channels or "links" between components.

CIPRES
The CIPRES (Cyberinfrastructure for Phylogenetic Research) project works to enable
large-scale phylogenetic reconstructions that facilitate analyses of datasets containing
large numbers of bio molecular sequences. For more information about CIPRES, see
http://www.phylo.org/

complex number
A complex number consists of a real and imaginary part. In Kepler, the imaginary
component of a complex number is designated with an i or j (e.g., 6+7i)

 Glossary

 380

composite actor
A composite actor, also called a nested or sub-workflow, is a collection or set of actors
bundled together to perform a more complex operation. Composite actors can contain a
director, or they can "inherit" their director from a containing workflow. Composite
actors that have a director are called opaque.

CORBA service
CORBA services, much like Web services, are computer programs that run on a remote
host and communicate using a standardized protocol that allows them to interoperate.

director
A director controls (or directs) the execution of a workflow, just as a film director
oversees a cast and crew. The actors take their execution instructions from the director. In
other words, actors specify what processing occurs while the director specifies when it
occurs. Every workflow must have a director.

double
A double represents a floating point number (e.g., 1.345) with "double precision." The
data can contain about twice the number of significant digits as a float, which is a single-
precision data type that is less precise than a double, but also requires less memory.

EarthGrid
The EarthGrid is a distributed network providing scientists access to ecological,
biodiversity, and environmental data and analytic resources, such as data, metadata,
analytic workflows, and processors.

ESRI ACSII Grid
The ESRI ASCII Grid format is a raster format used by Kepler to pass data between
various actors. For more information about this format, see
http://docs.codehaus.org/display/GEOTOOLS/ArcInfo+ASCII+Grid+format.

ESRI Shape file
ESRI shape files contain a set of vector coordinates that represent the non-topological
geometry of a data set. For more information about ESRI shape files, see
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Expression language
Kepler uses the Ptolemy expression language to specify and evaluate algebraic
expressions (e.g., the value of a parameter or the Expression actor). For more information
about the expression language, see
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

fixed-point number
A fixed-point number is a number in which the position of the decimal point is constant.
U.S. currency can be represented by a fixed-point number that has two digits to the right

 Glossary

 381

of the decimal point, for example. Fixed point numbers in Kepler are represented in the
following way: fix(value, integerBits, fractionBits).

floating-point number
A floating-point number can contain a decimal point in any position (e.g., 12.34 or
.0093).

float
A float represents a floating point number (e.g., 1.345) with "single precision." The data
type requires less memory and is less precise than a double (which also represents a
floating point number). The Kepler expression language does not support the float data
type. Use double or integer types instead.

GAMA
GAMA is a system for securely creating and managing Grid accounts. For more
information about GAMA, see:
http://www.geongrid.org/index.php/home/researchpubs/GAMA__Grid_Account_Manage
ment_Architecture/

GAMESS
GAMESS (General Atomic and Molecular Electronic Structure System) is a program that
can perform a broad range of quantum chemical computations. For more information
about GAMESS, see http://www.msg.ameslab.gov/GAMESS/

GARP
GARP (Genetic Algorithm for Rule Set Production) is a genetic algorithm that creates an
ecological niche model representing the environmental conditions where a species would
be able to maintain populations. For more information about GARP, see
http://www.lifemapper.org/desktopgarp/.

GDAL
GDAL (Geospatial Data Abstraction Library) is a library used to translate raster
geospatial data formats (e.g., GeoTIFF, ASCII Grid, or GRASS Raster). For more
information about GDAL, see http://www.gdal.org/.

general data type
The general data type is the most inclusive of the types. A port assigned type "general"
can accept data of all types (array, string, matrix, etc)

GEON
GEON (Geosciences Network) is a distributed infrastructure for Geoscience research and
education. For more information about GEON, see http://www.geongrid.org/.

Globus
Globus is an open source software toolkit used for building Grid systems, which help

 Glossary

 382

people share computing power, databases, and other tools. For more information about
Globus, see http://www.globus.org.

GML
GML is an XML-based encoding for geographic information. For more information
about GML, see http://www.w3.org/Mobile/posdep/GMLIntroduction.html

GRASS
GRASS is an open source software toolkit used to manage and analyze geospatial data
and produce graphics and maps. For more information about GRASS, see
http://grass.itc.it/.

grid
The Grid consists of geographically distributed resources (computers or scientific
instruments, for example) that can be easily accessed, allowing users to share computing
power, databases, and other tools.

GriddLeS
GriddLeS is a tool used to create Grid workflows that use legacy software, which has not
been designed for distributed use. For more information about GriddLes, see
http://www.csse.monash.edu.au/~davida/griddles/index.htm.

ImageJ
ImageJ is an application that can be used to display and process a wide variety of images
(tiffs, gifs, jpegs, etc.) For more information about ImageJ, see http://rsb.info.nih.gov/ij/.

integer token
The integer token ("int") represents numerical values that have no decimal points (e.g., 11
or -17)

long data type
Integers followed by an "l" or "L" are of type long. The long data type can represent large
integers. Float and double data types can also be used: these data types have greater
storage capacity than long data types, but less precision/significant digits.

MATLAB
MATLAB is "a high-level technical computing language and interactive environment for
algorithm development, data visualization, data analysis, and numeric computation." For
more information about MATLAB, see
http://www.mathworks.com/products/matlab/description1.html.

matrix token
A matrix contains data that can be referenced by row and column. Matrices in Kepler are
specified with brackets. Commas separate row elements and semicolons separate rows.
For example, a 1x3 matrix would be represented as [1,2,3]. A 2x2 matrix would be
represented by [1,2;3,4]

 Glossary

 383

MoML
MoML (Modeling Markup Language) is an XML format used to store workflows. For
more information about MoML, see
http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-intro/ptIIdesign1-intro.pdf

Nimrod
Nimrod is an application that allows computations to be run on the Grid. For more
information about Nimrod, see
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm

object token
An object token is a data container for an arbitrary Java object (most complex 'things' in
Java are objects). These tokens can be used to pass complex Java objects around a Kepler
workflow. Object tokens are primarily used for custom workflows with custom actors.
Non-programmers will probably not find them very useful.

ORB
An ORB (Object Resource Broker) permits applications, which may be running on
different servers or under different operating systems, to exchange and process
information.

parameter
Parameters are configurable values that can be attached to a workflow or to individual
directors or actors.

PAUP
PAUP is a tool used to infer phylogenetic relationships. For more information about
PAUP, see http://paup.csit.fsu.edu/

port
Each actor in a workflow can contain one or more ports used to consume or produce data
and communicate with other actors in the workflow. Ports can be one of three types:
input, output, or input/output. Each port is configured to be either a "singular" or
"multiple" port. A single port can be connected to only a single data channel, whereas a
multiple port can be connected to multiple channels.

R
R is a language and environment for statistical computing and graphics. For more
information about R, see http://www.r-project.org/.

record token
A record token consists of named elements and their values. In Kepler, records are
specified between curly braces. For example, {a=1, b=2} is a record with two elements,
named a and b, with values 1 and 2, respectively.

 Glossary

 384

relation
Relations allow users to "branch" a data flow. Branched data can be sent to multiple
places in the workflow.

scalar
The term scalar designates a value that consists only of magnitude (as opposed to a
vector, which consists of both a magnitude and direction). In Kepler, scalar values may
have any scalar data type: double, int, long, etc.

Soaplab
Soaplab is a set of Web services providing access to (mainly) data analysis applications
on remote computers.

SRB
SRB is a Grid storage management system providing data access, transfer, and search
functionality, as well as persistent archiving (usually for files). For more information
about SRB, see http://www.sdsc.edu/srb/index.php/What_is_the_SRB

string data type
A string is a sequence of characters. Strings are specified with quotation marks. Anything
between an open and close "" is interpreted as a string.

token
Data in Kepler is encapsulated and passed between workflow components as tokens.
Each token has an assigned data type (int, object, or matrix, for example).

Web service
A Web service is a computer program that runs on a remote host and communicates using
a standardized protocol.

workflow
Workflows are a flexible tool for accessing scientific data (streaming sensor data,
medical and satellite images, simulation output, observational data, etc.) and executing
complex analysis on the retrieved data. Each workflow consists of analytical steps that
may involve database access and querying, data analysis and mining, and intensive
computations performed on high performance cluster computers.

WSDL
WSDL is a format for describing network services—from simple eBay watcher services
to complex distributed applications. For a complete list of registered EBI-registered
WSDLs, see http://www.ebi.ac.uk/soaplab/services.

XSLT
An XSLT file specifies how an XML document should be transformed. For more
information about XSLT, see http://www.w3.org/TR/xslt.

 Glossary

 385

