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1 Introduction

There are many ways to use Ptolemy II. It can be used as a framework for assembling software
components, as a modeling and simulation tool, as a block-diagram editor, as a system-level rapid
prototyping application, as a toolkit supporting research in component-based design, or as a toolkit
for building Java applications. This chapter introduces its use as a modeling and simulation tool.

In this chapter, we describe how to graphically construct models using Vergil, a graphical user
interface (GUI) for Ptolemy II. Figure 1 shows a simple Ptolemy II model in Vergil, showing the
graph editor, one of several editors available in Vergil. Keep in mind as you read this document that
graphical entry of models is only one of several possible entry mechanisms available in Ptolemy
II. For example, you can define models in Java, or in XML. Moreover, only some of the models of
computations (called domains) are described here. A major emphasis of Ptolemy II is to provide a
framework for the construction of modeling and design tools, so the specific modeling and design
tools described here should be viewed as representative of our efforts.

2 Quick Start

This section shows how to start Vergil, how to execute and explore pre-built models, and how to
construct your own models.

2.1 Starting Vergil

First, go to http://ptolemy.org/ptolemyll/ptlllatest and download and install Ptolemy II. Then, start
Vergil. Choose one of the methods below:


http://ptolemy.org/ptolemyII/ptIIlatest
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Figure 1: Example of a Vergil window.

From the command line, enter vergil, or, if your path is not set SPTII/bin/vergil.

Under Windows, click Start | Ptolemy II | your version of Ptolemy | Vergil'

Under Mac OS X, click Applications | Ptolemy | your version of Ptolemy | bin | Vergil.app

e Click on a Web Start link on a web page supporting the web edition. See
http://ptolemy.org/ptolemyll/ptlllatest/webstart.htm

You should see an initial welcome window that looks like the one in figure 2. Feel free to explore
the links in this window. The “Tour of Ptolemy II” link takes you to the page shown in figure 3.

2.2 Executing a Pre-Built Model: A Signal Processing Example

The first example (Spectrum) listed under “Basic Modeling Capabilities” on the tour page is the
model shown in figure 1. It creates a sinusoidal signal, multiplies it by a sinusoidal carrier, adds

'Depending on your installation, you could have several versions of Vergil available in the Start menu. This document
assumes you select “Vergil - Full.” There are separate tutorial documents for “Vergil - HyVisual” (which is specialized
for modeling hybrid systems) and “Vergil - VisualSense” (which is specialized for modeling wireless and sensor network
systems).
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If you are viewing this from within Vergil, the graphical editor for Ptolemy Il, then many of the following links will open models that highlight the
key features of Ptolemy II. If you are using an ordinary web browser, then you will see the XML definition of the models. To run the models in
Vergil, click on the red triangle in the toolbar. The diagrams are fully editable, so feel free to explore. You can also access the complete list of
demos and the summary of new capabilities . Contents:

@ Application Domain-Specific Modeling: Application Domain-specific modeling and design.
@ Heterogeneous Modeling: Mixing models of computation.

@ Basic Modeling Capabilities: Commonly used models of computation.

@ Modeling Infrastructure: Capabilities shared by all uses of Ptolemy |I.

@ Actor Libraries: Useful libraries of actors.

® Experimental: Demonstrations of less mature capabilities.

Application Domain-Specific Modeling

Ptolemy Il can be used to build sophisticated application domain-specific modeling capabilities and frameworks. These frameworks can be
packaged as separate executable applications (e.g. HyVisual or VisualSense) or accessed from within Ptolemy Il. Here, we illustrate some such
frameworks.

® Modeling of wireless networks: WirelessSoundDetection (see also VisualSense introduction).

The wireless domain in Ptolemy |l provides discrete-event modeling of wireless communication systems. It is useful for modeling and
design of communication protocols, networking strategies, and applications such as sensor networks. The VisualSense package is a
subset of Ptolemy Il that includes the wireless domain and channel models plus domains that support the design of nodes in a wireless
network. The WirelessSoundDetection example models a sound localization problem, where single sound source moves through a
field of sound sensors. In the example, sound sensors detect the sound and communicate via a radio channel to a sensor fusion
component that localizes the sound by triangulation. Two distinct channel models are used, one that models sound propagation and
one that models radio communication.

@ Modeling of hybrid systems: StickyMasses (see also BouncingBall, FurutaPendulum, NewtonsCradleAnimated, and Hybrid Plant).
Hybrid systems are a special case of modal models where finite-state machines (FSMs) are combined with the continuous-time models
to get mixed continuous-time and discrete-event models. The StickyMasses example models a physical system consisting of two point
masses on springs that stick together when they collide.

@ Stochastic hybrid systems: Noise (see also IncreasingRatePoisson, HysteresisWithRandomDelay, Brownian ).

Stochastic hybrid systems add random behavior to continuous-time models mixed with discrete events. The Noise (and Noise
Spectrum, Sinusoid In Noise) models show bandlimited Gaussian noise processe. IncreasingRatePoisson models spontaneous mode
transitions governed by a Poisson process. The HysteresisWithRandomDelay example uses similar spontaneous mode transitions to
model random delay in mode transitions. The Brownian example models a stochastic differential equation describing a random walk
process.

® Signal Processing: MaximumEntropySpectrum (See also LMSAdaptive, SynthesizedVoice, FourierSeries, and SoundSpectrum)
Ptolemy Il includes an extensive library and models of computation suitable for digital signal processing, communication systems
design, and image and video processing. The MaximumEntropySpectrum example shows spectral estimation of sinusoids in noise. It
illustrates models the use of synchronous dataflow (SDF) for sianal processina. and also shows many basic capabilities like

Figure 3: The tour of Ptolemy II page.
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Figure 4: The Run Window for the model shown in figure 1.

noise, and then estimates the power spectrum. You can execute this model in either of two ways.
First, you can select Run Window in the View menu, and then click on Go. The result is shown
in figure 4. The upper plot shows the spectrum of the time-domain signal shown in the lower plot.
Note the four peaks, which indicate the modulated sinusoid. In the Run Window you can adjust the
frequencies of the signal and the carrier as well as the amount of noise. These can also be adjusted
in the block diagram in figure 1 by double clicking on the bulleted parameters near the upper right
of the window. The second alternative for running the model is to click on the run button in the
toolbar, which is indicated by a red triangle pointing to the right. If you use this alternative, then the
two signal plots are displayed in their own windows.

You can study the way the model is constructed in figure 1. Note the Expression actor in the
middle, whose icon indicates the expression being calculated: signal*carrier + noise.
The identifiers in this expression, signal, carrier, and noise refer to the input ports by
name. The names of these ports are shown in the diagram. The Expression actor is a very flexible
actor in the Ptolemy II actor library. It can have any number of input ports, with arbitrary names,
and uses a rich and expressive expression language to specify the value of the output as a function
of the inputs (and parameters of the containing model, if desired).

Three of the actors in figure 1 are composite actors, which means that their implementation is itself
given as a block diagram. Composite actors are indicated visually by the red outline. You can invoke
the “Open Actor” context menu choice to reveal the implementation, as shown in figure 5, which
shows the implementation of the Signal Source in figure 1. It is evident from the block diagram how
a sinusoidal signal is generated.
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Figure 5: Invoke Open Actor on composite actors to reveal their implementation.

2.3 Executing a Pre-Built Model: A Continuous Time Example

A key principle of the Ptolemy II system is that the model of computation that defines the meaning
of a block diagram is not built-in, but is rather specified by the director component that is included
in the model. The box labeled “SDF Director” in figures 1 and 5 specifies that these block diagrams
have synchronous dataflow semantics, which is explained further below. The second example under
“Basic Modeling Capabilities” in the Tour of Ptolemy II (figure 3), by contrast, has continuous-time
semantics (the one labeled “Continuous-Time Modeling”). The example is the well-known Lorenz
attractor, a non-linear feedback system that exhibits chaotic behavior.

The Lorenz attractor model, shown in figure 6, is a block diagram representation of a set of nonlinear
ordinary differential equations. The blocks with integration signs in their icons are integrators. At
any given time ¢, their output is given by

t
x(1) = x(to) + / i(t)dr, (1)
fo
where x(#) is the initial state of the integrator, fy is the start time of the model, and X is the input

signal. Note that since the output is the integral of the input, then at any given time, the input is the
derivative of the output,

x(t) = —x(1). ()
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Thus, the system describes either an integral equation or a differential equation, depending on which
of these two forms you use. Let the output of the top integrator in figure 6 be x;, the output of the
middle integrator be x,, and the output of the bottom integrator be x3. Then the equations described
by figure 6 are

x1(t) = o) —x())
() = (h—xa()n () —x() 3)
X3(l‘) = X](t)xz(t)—bX3([)

For each equation, the expression on the right is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for A and sigma for ©)
and input ports of the actor (such as x1 for x; and x2 for x;). The names of the input ports are not
shown in the diagram, but if you linger over them with the mouse cursor, the name will pop up in a
tooltip. The expression in each Expression actor can be edited by double clicking on the actor, and
the parameter values can be edited by double clicking on the parameters, which are shown next to
bullets on the right.

The integrators each also have initial values, which you can examine and change by double clicking
on the corresponding integrator icon. These define the initial values of x;, x,, and x3, respectively.
For this example, all three are set to 1.0.

The Continuous Director, shown at the upper left, manages a simulation of the model. It contains a
sophisticated ODE solver, and to use it effectively, you will need to understand some of its parame-
ters. The parameters are accessed by double clicking on the solver box, which results in the dialog
shown in figure 7. The simplest of these parameters are the startTime and the stopTime, which are
self-explanatory. They define the region of the time line over which a simulation will execute.

To execute the model, you can click on the run button in the toolbar (with a red triangle icon), or
you can open the Run Window in the View menu. In the former case, the model executes, and the
results are plotted in their own window, as shown in figure 8. What is plotted is x; (r) vs. x,(¢) for
values of ¢ in between startTime and stopTime.

Like the Lorenz model, a typical continuous-time model contains integrators in feedback loops, or
more elaborate blocks that realize linear and non-linear dynamical systems given abstract mathe-
matical representations of them (such as Laplace transforms). In the next section, we will explore
how to build a model from scratch.

2.4 Creating a New Model

Create a new model by selecting File | New | Graph Editor in the welcome window. You should see
something like the window shown in figure 9. Ignoring the menus and toolbar for a moment, on the
left is a palette of objects that can be dragged onto the page on the right. To begin with, the page on
the right is blank. Open the Actors library in the palette, and go into the Sources library. Find the
Const actor under GenericSources and drag an instance over onto the blank page. Then go into the
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Figure 6: A block diagram representation of a set of nonlinear ordinary differential equations.
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Figure 8: Result of running the Lorenz model using the run button in the toolbar.

Sinks library (GenericSinks sublibrary) and drag a Display actor onto the page. Each of these actors
can be dragged around on the page. However, we would like to connect one to the other. To do this,
drag a connection from the output port on the right of the Const actor to the input port of the Display
actor. Lastly, open the Directors library and drag an SDF Director onto the page. The director gives
a meaning (semantics) to the graph, but for now we don’t have to be concerned about exactly what
that is. Now you should have something that looks like figure 10. The Const actor is going to create
our string, and the Display actor is going to print it out for us. We need to take care of one small
detail to make it look like figure 10: we need to tell the Const actor that we want the string “Hello
World”. To do this we need to edit one of the parameters of the Const. To do this, either double
click on the Const actor icon, or right click? on the Const actor icon and select “Configure”. You
should see the dialog box in figure 11. Enter the string “Hello World” for the value parameter and
click the Commit button. Be sure to include the double quotes, so that the expression is interpreted
as a string. You may wish to save your model, using the File menu. File names for Ptolemy II
models should end in “.xml” or “.moml” so that Vergil will properly process the file the next time
you open that file.

20n a Macintosh, which typically has only one mouse button, instead of right clicking, hold the control key and click
the one button.
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Figure 9: An empty Vergil Graph Editor.
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Figure 11: The Const parameter editor.
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Figure 12: Execution of the Hello World example.

2.5 Running the Model

To run the example, go to the View menu and select the Run Window. If you click the “Go” button,
you will see a large number of strings in the display at the right. To stop the execution, click the
“Stop” button. To see only one string, change the iterations parameter of the SDF Director to 1,
which can be done in the Run Window, or in the graph editor in the same way you edited the
parameter of the Const actor before. The Run Window is shown in figure 12.

2.6 Making Connections

The model constructed above contained only two actors and one connection between them. If you
move either actor (by clicking and dragging), you will see that the connection is routed automati-
cally. We can now explore how to create and manipulate more complicated connections. First create
a model in a new graph editor that includes an SDFDirector, a Ramp actor (found in the Sources
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library, a Display actor, and a SequencePlotter actor, found in the Sinks library, as shown in figure
13. Suppose we wish to route the output of the Ramp to both the Display and the SequencePlotter.

1. Click on the output port of the Ramp actor and drag the mouse to the input port of the Display
actor. Note that the order does not matter, clicking first on the input of the Display and then
dragging to the output of the Ramp actor will also work.

2. Click on the input of the SequencePlotter actor and drag to the link between the Ramp and
the Display actor.

3. A relation, signified by a black diamond will appear and all three actors will be connected.

What happened is that the user interface detected that a relation was needed to make the connection.
Ptolemy II supports two distinct flavors of ports, indicated in the diagrams by a filled triangle or an
unfilled triangle. The output port of the Ramp actor is a single port, indicated by a filled triangle,
which means that it can only support a single connection. The input port of the Display and Sequen-
cePlotter actors are multiports, indicated by unfilled triangles, which means that they can support
multiple connections. Each connection is treated as a separate channel, which is a path from an
output port to an input port (via relations) that can transport a single stream of tokens. So how do
we get the output of the Ramp to the other two actors? We need an explicit relation in the diagram.
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Figure 15: A relation can be used to broadcast an output from a single port.

A relation is represented in the diagram by a black diamond, as shown in figure 15. It can be created
by any one of the ways below:

e Dragging the endpoint of a link into the middle of an existing ling
e Control-clicking® on the background

e or by clicking on the button in the toolbar with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the
relation gets selected and moved. To make a connection, hold the control button while clicking and
dragging on the relation.*

In the model shown in figure 15, the relation is used to broadcast the output from a single port to
a number of places. The single port still has only one connection to it, a connection to a relation.
Relations can also be used to control the routing of wires in the diagram. Relations may be linked to
other relations. Any two relations that are linked are said to be members of the same relation group.
Semantically, a relation group has the same meaning as a single relation. In a relation group, there
is no significance to the order in which relations are linked.

To explore multiports, try putting some other signal source in the diagram and connecting it to the
SequencePlotter or to the Display. If you explore this fully, you will discover that the SequencePlot-
ter can only accept inputs of type double, or some type that can be losslessly converted to double,
such as int. These data type issues are explored next.

30n a Macintosh, shift-command-click.
4 On a Macintosh, hold the command key rather than the control key.
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Figure 16: Another example, used to explore data types in Ptolemy II.

3 Tokens and Data Types

In the example of figure 10, the Const actor creates a sequence of values on its output port. The
values are encapsulated as tokens, and sent to the Display actor, which consumes them and displays
them in the Run Window.

The tokens produced by the Const actor can have any value that can be expressed in the Ptolemy II
expression language. We will say more about the expression language in chapter 2, "Expressions”,
but for now, try giving the value 1 (the integer with value one), or 1.0 (the floating-point number
with value one), or {1.0} (an array containing a one), or {value=1, name="one”} (a record with two
elements: an integer named “value” and a string named “name”), or even [1,0;0,1] (the two-by-two
identity matrix). These are all expressions.

The Const actor is able to produce data with different fypes[1], and the Display actor is able to
display data with different types. Most actors in the actor library are polymorphic, meaning that they
can operate on or produce data with multiple types. The behavior may even be different for different
types. Multiplying matrices, for example, is not the same as multiplying integers, but both are
accomplished by the MultiplyDivide actor in the math library. Ptolemy II includes a sophisticated
type system that allows this to be done efficiently and safely.

To explore data types a bit further, try creating the model in figure 16. The Ramp actor is listed under
the Sources library, SequenceSources sublibrary, and the AddSubtract actor is listed under the Math
sublibrary. Set the value parameter of the Const to be 0 and the iterations parameter of the director
to 5. Running the model should result in 5 numbers between 0 and 4, as shown in the figure. These
are the values produced by the Ramp, which are having the value of the Const actor subtracted from
them. Experiment with changing the value of the Const actor and see how it changes the 5 numbers
at the output.

Now for the real test: change the value of the Const actor back to “Hello World”. When you execute
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Figure 17: An example that triggers an exception when you attempt to execute it. Strings cannot be
subtracted from integers.

the model, you should see an exception window, as shown in figure 17. Do not worry; exceptions
are a normal part of constructing (and debugging) models. In this case, the exception window is
telling you that you have tried to subtract a string value from an integer value, which doesn’t make
much sense at all (following Java, adding strings is allowed). This is an example of a type error.

The actor that caused the exception is highlighted and the name of the actor, “.helloWorldSub-
tractError.AddSubtract” is mentioned in the exception. In In Ptolemy II models, all objects have a
dotted name. The dots separate elements in the hierarchy. Thus, “.helloWorldSubtractError. AddSubtract”
is an object named “AddSubtract” contained by a object named “.helloWorldAddSubtract”. This as-
sumes that the model was saved as a file called hel1loWorldAddSubtract .xml.

Exceptions can be a very useful debugging tool, particularly if you are developing your own compo-
nents in Java. To illustrate how to use them, click on the Display Stack Trace button in the exception
window of figure 17. You should see the stack trace shown in figure 18.

This window displays the execution sequence that resulted in the exception. For example, if you
scroll towards the bottom, you will see a line like

at ptolemy.data.StringToken._subtract (StringToken. java:359)

that indicates that the exception occurred within the subtract() method of the class
ptolemy.data.StringToken, at line 359 of the source file StringToken.java. Since Ptolemy II is dis-
tributed with source code (most installation mechanisms at least offer the option of installing the
source), this can be very useful information. For type errors, you probably do not need to see the
stack trace, but if you have extended the system with your own Java code, or you encounter a subtle
error that you do not understand, then looking at the stack trace can be very illuminating.
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Stack trace

Because:
subtract operation not supported between ptolemy.data.StringToken 0" and ptolemy.data.StringToken "Hello World"'

in .helloWorldSubtractError.AddSubtract S
Because:
subtractReverse operation not supported between ptolemy.data.StringToken "Hello World" and ptolemy.data.IntToken '0'
Because:
subtract operation not supported between ptolemy.data.StringToken 0" and ptolemy.data.StringToken "Hello World"'

0 subtractReverse operation not supported between ptolemy.data.StringToken "Hello World" and ptolemy.data.IntToken '0'

ptolemy.kernel.util.lllegalActionException: subtractReverse operation not supported between ptolemy.data.StringToke 4
Because:
subtract operation not supported between ptolemy.data.StringToken "0" and ptolemy.data.StringToken "Hello World"|
in .helloWorldSubtractError.AddSubtract
Because:
subtractReverse operation not supported between ptolemy.data.StringToken "'Hello World" and ptolemy.data.IntToken
Because:
subtract operation not supported between ptolemy.data.StringToken 0" and ptolemy.data.StringToken "Hello World"'
at ptolemy.actor.AtomicActor.iterate(AtomicActor.java:508)
at ptolemy.actor.sched.StaticSchedulingDirector.fire(StaticSchedulingDirector.java: 188)
at ptolemy.actor.CompositeActor.fire(CompositeActor.java:458)
at ptolemy.actor.Manager.iterate(Manager.java:714)
at ptolemy.actor.Manager.execute(Manager.java:349)
at ptolemy.actor.Manager.run(Manager.java:1119)
at ptolemy.actor.Manager$3.run(Manager.java:1160)
Caused by: ptolemy.kernel.util.lllegalActionException: subtractReverse operation not supported between ptolemy.data

Because:
cubteact i L d b, 1L data CerinaTale ma d ntalamie datas CtrinaTalean "Ualla Warl A" b 4
<« ) >

(o)

Figure 18: Stack trace for the exception shown in figure 17

To find the file StringToken.java referred to above, find the Ptolemy II installation directory. If that
directory is SPTII, then the location of this file is given by the full class name, but with the periods
replaced by slashes; in this case, it is at $SPTII/ptolemy/data/StringToken. java (the
slashes might be backslashes under Windows).

Let’s try a small change to the model to get something that does not trigger an exception. Disconnect
the Const from the lower port of the AddSubtract actor and connect it instead to the upper port, as
shown in figure 19. You can do this by selecting the connection and deleting it (using the delete
key), then adding a new connection, or by selecting it and dragging one of its endpoints to the
new location. Notice that the upper port is an unfilled triangle; this indicates that it is a multiport,
meaning that you can make more than one connection to it. Now when you run the model you
should see strings like “OHelloWorld”, as shown in the figure.

There are two interesting things going on here. The first is that, as in Java, strings are added by
concatenating them. The second is that the integers from the Ramp are converted to strings and
concatenated with the string “Hello World”. All the connections to a multiport must have the same
type. In this case, the multiport has a sequence of integers coming in (from the Ramp) and a
sequence of strings (from the Const).

Ptolemy II automatically converts the integers to strings when integers are provided to an actor that
requires strings. But in this case, why does the AddSubtract actor require strings? Because it would
not work to require integers; the string “Hello World” would have to be converted to an integer.
As a rough guideline, Ptolemy II will perform automatic type conversions when there is no loss of
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SDF Director
OHzllo World
Ramp 1Hello World

2Hello World

! SHello World

AddSubtract Display AH=1lo World

: =)

[= "Hello World"

Figure 19: Addition of a string to an integer.

information. An integer can be converted to a string, but not vice versa. An integer can be converted
to a double, but not vice versa. An integer can be converted to a long, but not vice versa. The details
are explained in the Data chapter of Volume 2 of the full design doc [2], but many users will not
need to understand the full sophistication of the system. You should find that most of the time it will
just do what you expect.

To further explore data types, try modifying the Ramp so that its parameters have different types.
For example, try making init and step strings.

4 Hierarchy

Ptolemy II supports (and encourages) hierarchical models. These are models that contain compo-
nents that are themselves models. Such components are called composite actors. Consider a small
signal processing problem, where we are interested in recovering a signal based only on noisy mea-
surements of it. We will create a composite actor modeling a communication channel that adds
noise, and then use that actor in a model.

4.1 Creating a Composite Actor

First open a new graph editor and drag in a CompositeActor from the Utilities library. This actor is
going to add noise to our measurements. First, using the context menu (obtained by right clicking’
over the composite actor), select “Customize Name”, and give the composite a better name, like
“Channel”, as shown in figure 20. (Note that you can alternatively give a display name, which is
arbitrary text that will be displayed instead of the name of the actor.) Then, using the context menu

50n a Macintosh, control-click.
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Rename CompositeActor

- L Channel

=, .
- Display name:  CompositeActor

Show name (vl

Cancel Commit

CompositeActor
g Channel
Customize » Configure HE

Documentation > Rename . F2
Appearance » Ports

Listen to Actor Units Constraints
QOpen Actor ®L

Open Instance
Save Actor In Library
Convert to Class

Figure 20: Changing the name of an actor

again, select “Open Actor” on the actor. You should get a blank graph editor, as shown in figure 21.
The original graph editor is still open. To see it, move the new graph editor window by dragging the
title bar of the window.

The toolbar contains an upward pointing triangle® that is used to open the container of a composite
entity.

4.2 Adding Ports to a Composite Actor

First we have to add some ports to the composite actor. There are several ways to do this, but
clicking on the port buttons in the toolbar is probably the easiest. You can explore the ports in the
toolbar by lingering with the mouse over each button in the toolbar. A tool tip pops up that explains
the button. The buttons are summarized in figure 22. Create an input port and an output port and
rename them input and output by right clicking on the ports and selecting “Customize Name”. Note
that, as shown in figure 23, you can also right click’ on the background of the composite actor and
select “Customize” and then “Ports” to change whether a port is an input, an output, or a multiport.
The resulting dialog also allows you to set the type of the port, although much of the time you will
not need to do this, since the type inference mechanism in Ptolemy II will figure it out from the
connections. You can also specify the direction of a port (where it appears on the icon; by default

The “open container” button is based on an idea by Captain Robbins of the USAF.
70n a Macintosh, control-click.
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Unnamed#Channel

File View Edit Graph Debug Help

==V EW N IE RIS
[ urilities

(L1 Directors

[:l Actors

[ MoreLibraries
[ UserLibrary

Channel

Customize »
Documentation >
Appearance >
Listen to Actor

Open Actor L

Open Instance
Save Actor In Library
Convert to Class

Figure 21: Opening a new composite actor which shows the blank inner actor.

inputs appear on the left, outputs on the right, and ports that are both inputs and outputs appear on
the bottom of the icon). You can also control whether the name of the port is shown outside the
icon (by default it is not), and even whether the port is shown at all. The “Units” column will be
discussed further below.

Then, using these ports, create the diagram shown in figure 24%. The Gaussian actor creates values
from a Gaussian distributed random variable, and is found in the Random library. Now if you close
this editor and return to the previous one, you should be able to easily create the model shown in

8Hint: to create a connection starting on one of the external ports, hold down the control key when dragging, or on a
Macintosh, the command key.

Unnamed

File View Edit Graph Debug Help

Haolee el AEd D I@ = s> ihoe
T A A A A A

New input port

New output port

New input/output port

New input multiport

New output multiport

—— New input/output multiport

Figure 22: Summary of toolbar buttons for creating new ports.
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input output
Customize &l Configure 3E
Documentation > Ports
QOpen Base Class Units Constraints
UnitConstraints Solver
Edit Custom Icon = — :
Remove Custom lcon onfigure ports fol nanne|
. Name Input  Qutput Multiport Type Direction  Show Name Hide Units
Listen to Channel
input [} DEFAULT (] (]
output O ™ O DEFAULT 0 [m]
— ——— ST r—
_ Commit _ Add _ Help Cancel

Figure 23: Right clicking on the background brings up a dialog that can be used to configure ports.

Input AddSubtract
output

B S

Gaussian

"“’““'E ST

Figure 24: A simple channel model defined as a composite actor.

figure 25. The Sinewave actor is listed under the Sources library, and the SequencePlotter actor
is found under the Sinks library. Notice that the Sinewave actor is also a hierarchical model, as
suggested by its red outline (try looking inside). If you execute this model (you will probably want
to set the iterations to something reasonable, like 100), you should see something like figure 26.

4.3 Setting the Types of Ports

In the above example, we never needed to define the types of any ports. The types were inferred
from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will
need to set the types of the ports. Notice in figure 23 that there is a column in the dialog box
that configures ports for specifying the type. Thus, to specify that a port has type boolean, you
could enter boolean into the dialog box. There are other commonly used types: complex, double,

SDF Director

Sinewave Channel SequencePlotter

50— 510

Figure 25: A simple signal processing example that adds noise to a sinusoidal signal.
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800 file:/private/tmp)/ ingle.xml
File View Debug Help
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Model parameters 25

ChannelSingle has no parameters. 20

Director parameters:
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vectorizationFactor:

allowRateChanges:
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1
allowDisconnectedGraphs: )
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execution finished.

Figure 26: The output of the simple signal processing model in figure 25.

fixedpoint, float, general, int, long, matrix, object, scalar, short, string, unknown, unsignedByte,
xmlToken, arrayType(int), arrayType(int, 5), [double] and { x=double, y=double}, Let’s take a
more complicated case. How would you specify that the type of a port is a double matrix? Easy:

[double]

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrele-
vant). It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an
array of complex numbers as

{complex}

In the Ptolemy II expression language, square braces are used for matrices, and curly braces are used
for arrays. What about a record containing a string named “name” and an integer named “address”?
Easy:

{name=string, address=int}

5 Annotations and Parameterization

In this section, we will enhance the model in figure 25 in a number of ways.

5.1 Parameters in Hierarchical Models

First, notice from figure 26 that the noise overwhelms the sinusoid, making it barely visible. A
useful channel model would have a parameter that sets the level of the noise. Open the channel
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model by right clicking on the channel model, and select “Open Actor”. In the channel model, add
a parameter by dragging one in from the Uftilities library, Parameters sublibrary, as shown in figure
27. Right click ° on the parameter to change its name to “noisePower”. (In order to be able to use
this parameter in expressions, the name cannot have any spaces in it.) Also, right click or double
click on the parameter to change its default value to 0.1.

Now we can use this parameter. First, let’s use it to set the amount of noise. The Gaussian actor has
a parameter called standardDeviation. In this case, the power of the noise is equal to the variance of
the Gaussian, not the standard deviation. If you recall from basic statistics, the standard deviation is
equal to the square root of the variance. Change the standardDeviation parameter of the Gaussian
actor so its value is “sqrt(noisePower)”, as shown in figure 28. This is an expression that references
the noisePower parameter. We will explain the expression language in the next chapter. But first, let
check our improved model. Return to the top-level model, and edit the parameters of the Channel
actor (by either double clicking or right clicking and selecting “Configure”). Change the noisePower
from the default 0.1 to 0.01. Run the model. You should now get a relatively clean sinusoid like
that shown in figure 29.

Note that you can also add parameters to a composite actor without dragging from the Utilities
library by clicking on the “Add” button in the edit parameters dialog for the Channel composite.
This dialog can be obtained by either double clicking on the Channel icon, or by right clicking and
selecting “Configure”, or by right clicking on the background inside the composite and selecting
“Edit Parameters”. However, parameters that are added this way will not be visible in the diagram
when you invoke “Open Actor” on the Channel actor. Instead, you would have to right click on the
background and select “Configure” to see the parameter.

5.2 Decorative Elements

There are several other useful enhancements you could make to this model. Try dragging an Anno-
tation from the Utilities library, Decorative sublibrary, and creating a title on the diagram. A limited
number of other decorative elements like geometric shapes can also be added to the diagram from
this same library.

5.3 Creating Custom Icons

A (rather primitive) icon editor is also provided with Vergil. To create a custom icon, right click on
the icon and select “Edit Custom Icon,” as shown in figure 30. The box in the middle of the icon
editor displays the size of the default icon, for reference. Try creating an icon like the one shown in
figure 31. Hint: The fill color of the rectangle is set to “none” and the fill color of the trapezoid is
first selected using the color selector, then modified to have an alpha (transparency) of 0.5. Finally,

90n a Macintosh, control-click.
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Figure 27: Adding a parameter to the channel model.
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Figure 28: The standard deviation of the Gaussian actor is set to the square root of the noise power.
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Figure 29: The output of the simple signal processing model in figure 25 with noise power = 0.01
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Figure 30: Custom icon editor for the Channel actor.

since the icon itself has the actor name in it, the Customize Name dialog is used to deselect “show
name.”

6 Navigating Larger Models

Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four
toolbar buttons, shown in figure 32 that help. These buttons permit zooming in and out. The “Zoom
reset” button restores the zoom factor to the “normal” one, and the ‘“Zoom fit” calculates the zoom
factor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in figure 33. Here, we
have zoomed in so that icons are larger than the default. The pan window at the lower left shows the
entire model, with a red box showing the visible portion of the model. By clicking and dragging in
the pan window, it is easy to navigate around the entire model. Clicking on the “Zoom fit” button in
the toolbar results in the editor area showing the entire model, just as the pan window does.
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Figure 31: Custom icon for the Channel actor.

File View Edit Graph Debug

HoeaRalilR

T A A A A N

Zoom in

Zoom reset

Zoom fit

Zoom out

Open parent (if any)

L—— Full screen

Figure 32: Summary of toolbar buttons for zooming and fitting.
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Figure 33: The pan window at the lower left has a red box representing the visible are of the model
in the main editor window. This red box can be moved around to view different parts of the model.

7 Classes and Inheritance

Ptolemy II includes the ability to define actor-oriented classes|3] with instances and subclasses with
inheritance. The key idea is that you can specify that a component definition is a class, in which
case all instances and subclasses inherit its structure. This improves modularity in designs. We will
illustrate this capability with an example.

7.1 Creating and Using Actor-Oriented Classes

Consider the model that we developed in section 4, shown for reference in figure 34. Suppose
that we wish to create multiple instances of the channel, as shown in figure 35. In that figure,
the sinewave signal passes through five distinct channels (note the use of a relation to broadcast
the same signal to each of the five channels). The outputs of the channels are added together and
plotted. The result is a significantly cleaner sine wave than the one that results from one channel
alone'?. However, this is a poor design, for two reasons. First, the number of channels is hardwired
into the diagram. We will deal with that problem in the next section. Second, each of the channels is
a copy of the composite actor in figure 34. This results in a far less maintainable or scalable model

10Ty communication systems, this technique is known as diversity, where multiple channels with independent noise are
used to achieve more reliable communication.
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Figure 34: Hierarchical model that we will modify to use classes.

than we would like. Consider, for example, what it would take to change the design of the channel.
Each of the five copies would have to be changed individually.

A better solution is to define a channel class. To do this, begin with the design in figure 34, and
remove the connections to the channel, as shown in figure 36. Then right click and select “Convert
to Class”. (Note that if you fail to first remove the connections, you will get an error message when
you try to convert to class. A class is not permitted to have connections.) The actor icon acquires a
blue halo, which serves as a visual indication that it is a class, rather than an ordinary actor (which
is an instance). Classes play no role in the execution of the model, and merely serve as definitions
of components that must then be instantiated. By convention, we put classes at the top of the model,
near the director, since they function as declarations.

Once you have a class, you can create an instance by right clicking and selecting “Create Instance”
or typing Control-N. Do this five times to create five instances of the class, as shown in figure 36.
Although this looks similar to the design in figure 35, it is, in fact, a much better design. To verify
this, try making a change to the class, for example by creating a custom icon for it, as shown in
figure 37. Note that the changes propagate to each of the instances of the class. A more subtle
advantage is that the XML file representation of the model is much smaller, since the design of the
class is given only once rather than five times.

If you invoke “Open Actor” any of the instances (or the class) in figure 37, you will see the same
channel model. In fact, you will see the class definition. Any change you make inside this hierar-
chical model will be automatically propagated to all the instances. Try changing the value of the
noisePower parameter, for example.
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Figure 35: A poor design of a diversity communication system, which has multiple copies of the
channel as defined in figure 34.

7.2 Overriding Parameter Values in Instances

By default, all instances of Channel in figure 37 have the same icon and the same parameter values.
However, each instance can be customized by overriding these values. In figure 38, for example,
we have modified the custom icons so that each has a different color, and the fifth one has an extra
graphical element. To do this, just right click on the icon of the instance and select “Edit Custom
Icon.”

7.3 Subclassing and Inheritance

Suppose now that we wish to modify some of the channels to add interference in the form of another
sinewave. A good way to do this is to create a subclass of the Channel class, as shown in figure
39. A subclass is created by right clicking on the class icon and selecting “Create Subclass.” The
resulting icon for the subclass appears right on top of the icon for the class, so it needs to be moved
over, as shown in the figure.

Looking inside the subclass reveals that it contains all the elements of the class, but with their icons
now surrounded by a dashed pink outline. These elements are inherited. They cannot be removed
from the subclass (try to do so, and you will get an error message). You can, however, change their
parameter values and add additional elements. Consider the design shown in figure 40, which adds
an additional pair of parameters named interferenceAmplitude and interferenceFrequency and an
additional pair of actors implementing the interference. A model that replaces the last channel with
an instance of the subclass is shown in figure 41, along with a plot where you can see the sinusoidal
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Figure 36: Creating and using a channel class.
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Figure 37: The model from figure 36 with the icon changed for the class. Note that changes to the

base class propagate to the instances.
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Figure 38: The model from figure 37 with the icons of the instance changed to override parameter

values in the class.
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Figure 39: The model from figure 38 with a subclass of the Channel with no overrides (yet).

interference.

An instance of a class may be created anywhere in a hierarchical model that is either in the same
composite as the class or in a composite contained by that composite. To put an instance into a
submodel, simply copy (or cut) an instance from the composite where the class is, and then paste
that instance into the composite.

7.4 Sharing Classes Across Models

A class may be shared across multiple models by saving the class definition in its own file. We will
illustrate how to do that with the Channel class. First, right click and invoke “Open Actor” on the
Channel class, and then select “Save As” from the File menu. The dialog that appears is shown in
figure 42. The checkbox at the right, labeled “Save submodel only” is by default unchecked, and
if left unchecked, what will be saved will be the entire model. In our case, we wish to save the
Channel submodel only, so we must check the box.

A key issue is to decide where to save the file. As always with files, there is an issue that models
that use a class defined in an external file have to be able to find that file. In general Ptolemy II
searches for class definitions relative to the classpath, which is given by an environment variable
called CLASSPATH. In principle, you can set this environment variable to include any particular
directory that you would like searched. In practice, changing the CLASSPATH variable often causes
problems with programs, so we recommend, when possible, simply storing the file in a directory
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Figure 40: The subclass from figure 39 with overrides that add sinusoidal interference.
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Figure 41: A model using the subclass from figure 40 and a plot of an execution.
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7.4 Sharing Classes Across Models

Figure 42: A class can be saved in a separate file to then be shared among multiple models.
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Figure 43: An instance of a class defined in a file can be created using Instantiate Entity in the Graph
menu.

within the Ptolemy II installation directory.!! In figure 42, the Channel class is saved to a file

called Channel.xml in the directory $PTII/myActors, where $PTII is the location of the Ptolemy II
installation. This class definition can now be used in any model as follows. Open the model, and
select “Instantiate Entity” in the Graph menu, as shown in figure 43. Simply enter the fully qualified
class name relative to the $PTII entry in the classpath, which in this case is “myActors.Channel”.
Once you have an instance of the Channel class that is defined in its own file, you can add it to the
UserLibrary that appears in the library browser to the left in Vergil windows, as shown in figure 44.
To do this, right click on the instance and select “Save Actor in Library.” As shown in the figure,
this causes another window to open, which is actually the user library. The user library is a Ptolemy
II model like any other, stored in an XML file. If you now save that library model, then the class
instance will be available in the UserLibrary henceforth in any Vergil window.

One subtle point is that it would not accomplish the same objective if the class definition itself (vs.
an instance of the class) were to be saved in the user library. If you were to do that, then the user
library would provide a new class definition rather than an instance of the class when you drag from
it.

1Tf you don’t know where Ptolemy 11 is installed on your system, you can find out by invoking File, New, Expression
Evaluator and typing PTII followed by Enter. Or, in a Graph editor, select View | JVM Properties and look for the
ptolemy.ptll.dir property.
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Figure 44: Instances of a class that is defined in its own file can be made available in the UserLibrary.
8 Higher-Order Components

Ptolemy II includes a number of higher-order components, which are actors that operate on the
structure of the model rather than on data. This notion of higher-order components appeared in
Ptolemy Classic and is described in [4], but the realization in Ptolemy II is more flexible than that in
Ptolemy Classic. These higher-order components help significantly in building large designs where
the model structure does not depend on the scale of the problem. In this section, we describe a few
of these components, all of which are found in the HigherOrderActors library. The ModalModel
actor is described below in section 10, after explaining some of the domains that can make effective
use of it.

8.1 Multilnstance Composite

Consider the model in figure 37, which has five instances of the Channel class wired in parallel.
This model has the unfortunate feature that the number of instances is hardwired into the diagram.
It is awkward, therefore, to change this number, and particularly awkward to create a larger number
of instances. This problem is solved by the MultilnstanceComposite actor'?>. A model equivalent

12The MultilnstanceComposite actor was contributed to the Ptolemy II code base by Zoltan Kemenczy and Sean
Simmons, of Research In Motion Limited.
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Figure 45: A model that is equivalent to that of figure 37, but using a MultilnstanceComposite,
which permits the number of instances of the channel to change by simply changing one parameter
value.

to that of figure 37 but using the MultilnstanceComposite actor is shown in figure 45. The Multiln-
stanceComposite is a composite actor into which we have inserted a single instance of the Channel
(this is inserted by creating an instance of the of Channel, then copying and pasting it into the
composite). MultilnstanceComposite must be opaque (have a director), so that its Actor interface
methods (preinitialize(), ..., wrapup()) are invoked during model initialization.

The Multilnstance Composite actor has three parameters, ninstances, instance and showClones shown
in figure 46. The first of these specifies the number of instances to create. At run time, this actor
replicates itself this number of times, connecting the inputs and outputs to the same sources and
destinations as the first (prototype) instance. In figure 45, notice that the input of the Multilnstance-
Composite is connected to a relation (the black diamond), and the output is connected directly to a
multiport input of the AddSubtract actor. As a consequence, the multiple instances will be wired in
a manner similar to figure 37, where the same input value is broadcast to all instances, but distinct
output values are supplied to the AddSubtract actor.

The model of figure 45 is better than that of figure 37 because now we can change the number of
instances by changing one parameter value. The instances can also be customized on a per-instance
basis by expressing their parameter values in terms of the instance parameter of the Multilnstance-
Composite. Try, for example, making the noisePower parameter of the Instance OfChannel actor in
figure 45 depend on instance. E.g., setitto instance * 0.1 and then set nlnstances to 1. You
will see a clean sine wave when you run the model.
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Figure 46: The first parameter of the MultilnstanceComposite specifies the number of instances.
The second parameter is available to the model builder to identify individual instances. The third
parameter controls whether the instances are rendered on the screen.

8.2 IterateOverArray

The implementation of the Channel class, which is shown in figure 42, happens to not have any
state, meaning that an invocation of the Channel model does not depend on data calculated in a
previous invocation. As a consequence, it is not really necessary to use n distinct instances of the
Channel class to realize a diversity communication system. A single instance could be invoked n
times on n copies of the data. We can do this using the IterateOverArray higher-order actor.

The IterateOverArray actor can be used in a manner similar to how we used the MultilnstanceCom-
posite in the previous section. That is, we can populate it with an instance of the Channel class,
similar to figure 45. Just like the MultilnstanceComposite, the IterateOverArray actor requires a
director inside. An example is shown in figure 47. Notice that in the top-level model, instead of
using a relation to broadcast the input to multiple instances of the channel, we create an array with
multiple copies of the channel input. This is done using a combination of the Repeat actor (found
in the FlowControl library, SequenceControl sublibrary) and the SequenceToArray actor (found in
the Array library). The Repeat actor has a single parameter, numberOfTimes, which in figure 47
we have set equal to the value of the diversity parameter that we have added to the model. The
SequenceToArray actor has a parameter arrayLength that we have also set equal to diversity (this
parameter, interestingly, can also be set via the arrayLength port, which is filled in gray to indicate
that it is both parameter and a port). The output is sent to an ArrayAverage actor, also found in the
Array library.

The execution of the model in figure 47 is similar to that of the model in figure 45, except that the
scale of the output is different, reflecting the fact that the output is an average rather than a sum.

The IterateOverArray actor also supports dropping into it an actor by dropping the actor onto the /¢-
erateOverArray icon. The actor can be either an atomic library actor or a composite actor (although
if it is composite actor, it is required to have a director). This mechanism is illustrated in figure
48. When an actor is dragged from the library, and then dragged over the IterateOverArray actor,
the icon acquires a white halo, suggesting that if the actor is dropped, it will be dropped into the
actor under the cursor, rather than onto the model containing that actor. When you look inside the
IterateOverArray actor after doing this, you will see the class definition. Add an SDFDirector to it
before executing it.
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Figure 47: The IterateOverArray actor can be used to accomplish the same diversity channel model

as in figure 45, but without creating multiple instances of the channel model. This works because
the channel model has no state.
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Figure 48: The IterateOverArray actor supports dropping an actor onto it. When you do this, it
transforms to mimic the icon of the actor you dropped onto it, as shown. Here we are using the
Channel class that we saved to the UserLibrary as shown in figure 44.
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Figure 49: The MobileFunction actor accepts a function definition at one port and applies it to data
that arrives at the other port.

8.3 Mobile Code

A pair of (still experimental) actors in Ptolemy II support mobile code in two forms. The Mobile-
Function actor accepts a function in the expression language (see the Expression Language chapter)
at one input port and applies that function to data that arrives at the other input port. The Mobile-
Model actor accepts a MoML description of a Ptolemy II model at an input port and then executes
that model, streaming data from the other input port through it.

A use of the MobileFunction actor is shown in figure 49. In that model, two functions are provided
to the MobileFunction in an alternating fashion, one that computes x> and the other that computes
2*. These two functions are provided by two instances of the Const actor, found in the Sources
library, GenericSources sublibrary. The functions are interleaved by the Commutator actor, from
FlowControl library, Aggregators sublibrary.

8.4 Lifecycle Management Actors

A few actors in the HigherOrderActors library provide in a single firing the entire execution of
another Ptolemy II model. The RunCompositeActor actor executes the contained model. The Mod-
elReference actor executes a model that is defined elsewhere in its own file or URL. The VisualMod-
elReference actor opens a Vergil view of a referenced model when it executes a referenced model.
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These actors generally associate ports (that the user of the actor creates) with parameters of the refer-
enced or contained model. They can be used, for example, to create models that repeatedly run other
models with varying parameter values. See the documentation of the actors and the demonstrations
in the tour for more details.

9 Domains

A key innovation in Ptolemy II is that, unlike other design and modeling environments, there are
several available models of computation that define the meaning of a diagram. In the above exam-
ples, we directed you to drag in an SDFDirector without justifying why. A director in Ptolemy II
gives meaning ((semantics) to a diagram. It specifies what a connection means, and how the dia-
gram should be executed. In Ptolemy II terminology, the director realizes a domain. Thus, when
you construct a model with an SDF director, you have constructed a model “in the SDF domain.”

The SDF director is fairly easy to understand. “SDF” stands for “synchronous dataflow.”[5] In
dataflow models, actors are invoked (fired) when their input data is available. SDF is a particularly
simple case of dataflow where the order of invocation of the actors can be determined statically
from the model. It does not depend on the data that is processed (the tokens that are passed between
actors)

But there are other models of computation available in Ptolemy II. And the system is extensible.
You can invent your own. This richness has a downside, however. It can be difficult to determine
which one to use without having experience with several. Moreover, you will find that although
most actors in the library do something in any domain in which you use them, they do not always
do something useful. It is important to understand the domain you are working with and the actors
you are using. Here, we give a very brief introduction to some of the domains. We begin first by
explaining some of the subtleties in SDF.

9.1 SDF and Multirate Systems

So far we have been dealing with relatively simple systems. They are simple in the sense that each
actor produces and consumes one token from each port at a time. In this case, the SDF director
simply ensures that an actor fires after the actors whose output values it depends on. The total
number of output values that are created by each actor is determined by the number of iterations,
but in this simple case only one token would be produced per iteration.

It turns out that the SDF scheduler is actually much more sophisticated. It is capable of scheduling
the execution of actors with arbitrary prespecified data rates. Not all actors produce and consume
just a single sample each time they are fired. Some require several input token before they can be
fired, and produce several tokens when they are fired.
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Figure 50: A multirate SDF model. The Spectrum actor requires 256 tokens to fire, so one iteration
of this model results in 256 firings of Sinewave, Channel, and SequencePlotter, and one firing of
Spectrum.
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Figure 51: A single iteration of the SDF model in figure 50 produces 256 output tokens.

One such actor is a spectral estimation actor. Figure 50 shows a system that computes the spectrum
of the same noisy sine wave that we constructed in figure 25. The Spectrum actor has a single
parameter, which gives the order of the Fast Fourier Transform (FFT) used to calculate the spectrum.
Figure 51 shows the output of the model with order set to 8 and the number of iterations set to 1.
Note that there are 256 output samples output from the Spectrum actor. This is because the
Spectrum actor requires 28, or 256 input samples to fire, and produces 2%, or 256 output samples
when it fires. Thus, one iteration of the model produces 256 samples. The Spectrum actor makes
this a multirate model, because the firing rates of the actors are not all identical.

It is common in SDF to construct models that require exactly one iteration to produce a useful result.
In some multirate models, it can be complicated to determine how many firings of each actor occur
per iteration of the model. See the SDF chapter in volume 3[6] of the design document for details.

A second subtlety with SDF models is that if there is a feedback loop, as in figure 52, then the loop
must have at least one instance of the SampleDelay actor in it (found in the FlowControl library,
SequenceControl sublibrary). Without this actor, the loop will deadlock. The SampleDelay actor
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Figure 52: An SDF model with a feedback loop must have at least one instance of the SampleDelay
actor in it.

produces initial tokens on its output, before the model begins firing. The initial tokens produced
are given by a the initialOutputs parameter, which specifies an array of tokens. These initial tokens
enable downstream actors and break the circular dependencies that would result otherwise from a
feedback loop.

A few actors in the actor library are particularly useful for building SDF models that manipulate
token streams in nontrivial ways. These are:

o ArrayToElements, ArrayToSequence, ElementsToArray, and SequenceToArray, found in the
Array sublibrary.

e Commutator and Distributor, found under FlowControl library, Aggregators sublibrary
e Chop and , found under FlowControl library, Sequencers sublibrary

e Downsample, UpSample, and FIR, found under SignalProcessing library, Filtering sublibrary,
and

e Case and ModalModel found in HigherOrderActors (ModalModel, which is a very expressive
actor, is also explained further below).

The reader is encouraged to explore the documentation for these actors (right click on the actor
select “Get Documentation™).

A final issue to consider with the SDF domain is time. Notice that in all the examples above
we have suggested using the SequencePlotter actor, not the TimedPlotter actor, which is in Sinks
library, TimedSinks sublibrary. This is because the SDF domain does not include in its semantics a
notion of time. By default, time does not advance as an SDF model executes, so the TimedPlotter
actor would produce very uninteresting results, where the horizontal axis value would always be
zero. The SequencePlotter actor uses the index in the sequence for the horizontal axis. The first
token received is plotted at horizontal position 0, the second at 1, the third at 2, etc. However, the
SDFDirector does contain a parameter called period that can be used to advance time by a fixed
amount on each iteration of the model. The next domain we consider, Discrete Event (DE) includes
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much stronger notion of time, and it is almost always more appropriate in the DE domain to use the
TimedPlotter actor.

9.2 Data-Dependent Rates

Several domains generalize SDF to support data-dependent rates. The most mature of these are the
process networks domain (PN), which associates with each actor its own thread of control, and the
dynamic dataflow domain (DDF), which dynamically schedules actor firings. PSDF (parameterized
SDF) and HDF (heterochronous dataflow) are more experimental, but are possibly more efficient
and formally analyzable than PN. See volume 3[6] of the design doc for details about domains.

9.3 Discrete-Event Systems

In discrete-event (DE) systems, the connections between actors carry signals that consist of events
placed on a time line. Each event has both a value and a time stamp, where its time stamp is a
double-precision floating-point number. This is different from dataflow, where a signal consists of
a sequence of tokens, and there is no time significance in the signal.

A DE model executes chronologically, processing the oldest events first. Time advances as events
are processed. There is potential confusion, however, between model time, the time that evolves
in the model, and real time, the time that elapses in the real world while the model executes (also
called wall-clock time). Model time may advance more rapidly than real time or more slowly. The
DE director has a parameter, synchronizeToRealTime, that, when set to true, attempts to synchronize
the two notions of time. It does this by delaying execution of the model, if necessary, allowing real
time to catch up with model time.

Consider the DE model shown in figure 53. This model includes a PoissonClock actor, a Current-
Time actor, a WallClockTime actor, all found in the TimedSources sublibrary and RealTime sublibrary
of the Sources library. The PoissonClock actor generates a sequence of events with random times,
where the time between events is exponentially distributed. Such an event sequence is known as
a Poisson process. The value of the events produced by the PoissonClock actor is a constant, but
the value of that constant is ignored in this model. Instead, these events trigger the CurrentTime
and WallClockTime actors. The CurrentTime actor outputs an event with the same time stamp as
the input, but whose value is the current model time (equal to the time stamp of the input). The
WallClockTime actor produces an event with the same time stamp as the input, but whose value is
the current real time, in seconds since initialization of the model.

The plot in figure 53 shows an execution. Note that model time has advanced approximately 10
seconds, but real time has advanced almost not at all. In this model, model time advances much
more rapidly than real time. If you build this model, and set the synchronizeToRealTime parameter
of the director to true, then you will find that the two plots coincide almost perfectly.
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Figure 53: Model time vs. real time (wall clock time).

A significant subtlety in using the DE domain is in how simultaneous events are handled. Simulta-
neous events are simply events with the same time stamp. We have stated that events are processed
in chronological order, but if two events have the same time stamp, then there is some ambiguity.
Which one should be processed first? If the two events are on the same signal, then the answer is
simple: process first the one that was produced first. However, if the two events are on different
signals, then the answer is not so clear.

Consider the model shown in figure 54, which produces a histogram of the interarrival times of
events from the PoissonClock actor. In this model, we calculate the difference between the current
event time and the previous event time, resulting in the plot that is shown in the figure. The Previous
actor is a zero-delay actor, meaning that it produces an output with the same time stamp as the input
(except on the first firing, where in this case it produces no output). Thus, when the PoissonClock
actor produces an output, there will be two simultaneous events, one at the input to the plus port
of the AddSubtract actor, and one at the input of the Previous actor. Should the director fire the
AddSubtract actor or the Previous actor? Either seems OK if it is to respect chronological order, but
it seems intuitive that the Previous actor should be fired first.

It is helpful to know how the AddSubtract actor works. When it fires, it adds at most one token
from each channel of the plus port, and subtracts at most one token from each channel of the minus
port. If the AddSubtract actor fires before the Previous actor, then the only available token will be
the one on the plus port, and the expected subtraction will not occur. Intuitively, we would expect
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Figure 54: Histogram of interarrival times, illustrating handling of simultaneous events.

the director to invoke the Previous actor before the AddSubtract actor so that the subtraction occurs.
How does the director deliver on the intuition that the Previous actor should be fired first? Before
executing the model, the DE director constructs a topological sort of the model. A topological sort
is simply a list of the actors in data-precedence order. For the model in figure 54, there is only one
allowable topological sort:

e PoissonClock, CurrentTime, Previous, AddSubtract, HistogramPlotter

In this list, AddSubtract is after Previous. So the when they have simultaneous events, the DE
director fires Previous first.

Thus, the DE director, by analyzing the structure of the model, usually delivers the intuitive behav-
ior, where actors that produce data are fired before actors that consume their results, even in the
presence of simultaneous events.

There remains one key subtlety. If the model has a directed loop, then a topological sort is not
possible. In the DE domain, every feedback loop is required to have at least one actor in it that
introduces a time delay, such as the TimedDelay actor, which can be found in the DomainSpecific
library under DiscreteEvent (this library is shown on the left in figure 55). Consider for example the
model shown in figure 55. That model has a Clock actor, which is set to produce events every 1.0
time units. Those events trigger the Ramp actor, which produces outputs that start at O and increase
by 1 on each firing. In this model, the output of the Ramp goes into an AddSubtract actor, which
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Figure 55: Discrete-event model with feedback, which requires a delay actor such as TimedDelay.
Notice the library of domain-specific actors at the left.

subtracts from the Ramp output its own prior output delayed by one time unit. The result is shown
in the plot in the figure.

Occasionally, you will need to put a TimedDelay actor in a feedback loop with a delay of 0.0. This
is particularly true if you are building complex models that mix domains, and there is a delay inside
a composite actor that the DE director cannot recognize as a delay. The TimedDelay actor with a
delay of 0.0 can be thought of as a way to let the director know that there is a time delay in the
preceding actor, without specifying the amount of the time delay.

9.4 Wireless and Sensor Network Systems

The wireless domain builds on the discrete event domain to support modeling of wireless and sensor
network systems. In the wireless domain, channel models mediate communication between actors,
and the visual syntax does not require wiring between components. See [7] and [8] for details.
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9.5 Continuous Time Systems

Ptolemy II 8.0 includes a new implementation of continuous-time models based on the semantics
given in [9], In particular, the Continuous domain cleanly supports continuous-time models (using
an ODE solver), discrete-event models, and arbitrary mixtures of the two, including signals that
combine continuous-time segments with discrete events. It also interoperates cleanly with most
other domains (pretty much all except PN and Rendezvous, for which there does not appear to
be reasonable semantic model of such an interaction). Modal models are also cleanly supported
with the Continuous domain, enabling hybrid system modeling with a rigorous semantics. The
Continuous domain is expected to eventually replace the older CT domain.

The Continuous domain has semantics considerably different from either DE or SDF. In Contin-
uous, the signals sent along connections between actors are usually continuous-time signals. A
Continuous example is described above in section 2.3.

The Continuous domain can also handle discrete events. These events are usually related to a
continuous-time signal, for example representing a zero-crossing of the continuous-time signal.
The Continuous director is quite sophisticated in its handling of such mixed signal systems.

10 Hybrid Systems and Modal Models

Hybrid systems are models that combine continuous dynamics with discrete mode changes. They
are created in Ptolemy II by creating a ModalModel, found in the HigherOrderActors library. We
start by examining a pre-built modal model, and conclude by illustrating how to construct one.
Modal models can be constructed with other domains besides Continuous, but this section will
concentrate on Continuous. Feel free to examine other examples of modal models given in the tour
(figure 3). See also [10], which is a detailed discussion of Finite State Machines and Modal Modes
and also includes hyperlinks to runnable examples.

10.1 Examining a Pre-Built Model

Consider the bouncing ball example, which can be found under “Bouncing Ball” in figure 3 (in the
“Hybrid Systems” entry). The top-level contents of this model is shown in figure 56. It contains
a Ball Model, a TimedPlotter, PeriodicSampler, and an Animate Ball composite actor. The Ball
Model is an instance of the ModalModel found in the HigherOrderActors library, but renamed. If
you execute the model, you should see a plot like that in the figure and a 3-D animation that is
constructed using the GR (graphics) domain. The continuous dynamics correspond to the times
when the ball is in the air, and the discrete events correspond to the times when the ball hits the
surface and bounces.

If you invoke “Open Actor” on the Ball Model, you will see something like figure 57. Figure 57
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ContinuousDirector  This continuous-time model uses a modal model
to simulate a bouncing ball and the GR domain to
animate it.

This is a classic example of a Zeno system, where

an infinite number of bounce events occur in a finite
time. Open the Ball Model to see how it is implemented.
T\me.(iP\aner This example requires Java3D. If you do not have
it installed, you can get it from:
http://java.sun.com/products/java-media/3D/

Ball Madel

Periodicsampler  Scale

Animate Ball

J
B
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BN E|
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Figure 56: Top level of the bouncing ball example.
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file:/private/tmp/BouncingBall.xml#Ball Model._Controller
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RepaintController free.initialVelocity = 0.0
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(L] Parameters *

] Analysis

O state position

guard: bump_isPresent
set

free.initialVelocity = -elasticity * velocity:
- free.initialPosition = position

. The transition from init to free initializes the ball position and velocity.
e The self transition on free is triggered when a bump has been detected
: (inside the state refinement). The set actions on the transition reverse
the velocity (with some loss due to elasticity). The transition to the
stop state is taken when the position and velocity have gotten small
enough that we decide the ball has stopped. If this transition is
removed, then in theory time cannot progress past a certain point.
In practice, numerical errors domainate and eventually the bump is
not detected. Try it.

Figure 57: Inside the Ball Model of figure 56

shows a state-machine editor, which has a slightly different toolbar and a significantly different
library at the left. The circles in figure 57 are states, and the arcs between circles are transitions
between states. A modal model is one that has modes, which represent regimes of operation. Each
mode in a modal model is represented by a state in a finite-state machine.

The state machine in figure 57 has three states, named init, free, and stop. The init state is the initial
state, which is set as shown in figure 58. The free state represents the mode of operation where the
ball is in free fall, and the stop state represents the mode where the ball has stopped bouncing.

At any time during the execution of the model, the modal model is in one of these three states.
When the model begins executing, it is in the inif state. During the time a modal model is in a state,
the behavior of the modal model is specified by the refinement of the state. The refinement can be
examined by right clicking on the state and selecting "Look Inside”. As shown in figure 59, the init
state has no refinement.

Consider the transition from init to free. It is labeled as follows:

guard true
free.initialPosition = initialPosition;
free.initialVelocity = 0.0

The first line is a guard, which is a predicate that determines when the transition is enabled. In this
case, the transition is always enabled, since the predicate has value true. Thus, the first thing this
model will do is take this transition and change mode to free. The second and third line specifies a
sequence of actions, which in this case set parameters of the destination mode free.

If you look inside the free state, you will see the refinement shown in figure 60. This model repre-
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Figure 58: The initial state of a state machine is set by right clicking on the background and speci-
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Figure 59: A state may or may not have a refinement, which specified the behavior of the model
while the model is in that state. In this case, init has no refinement.
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Figure 60: The refinement of the free state, shown here, is a continuous-model representing the laws
of gravity.

sents the laws of gravity, which state that an object of any mass will have an acceleration of roughly
—10meters/second?. The acceleration is integrated to get the velocity, which is, in turn, integrated
to get the vertical position.

In figure 60, a ZeroCrossingDetector actor is used to detect when the vertical position of the ball
is zero. This results in production of an event on the (discrete) output bump. Examining figure
57 you can see that this event triggers a state transition back to the same free state, but where the
initialVelocity parameter is changed to reverse the sign and attenuate it by the elasticity. This results
in the ball bouncing, and losing energy, as shown by the plot in figure 56.

As you can see from figure 57, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in
the model producing no further output.

10.2 Numerical Precision and Zeno Conditions

The bouncing ball model of figures 56 and 57 illustrates an interesting property of hybrid system
modeling. The sfop state, it turns out, is essential. Without it, the time between bounces keeps
decreasing, as does the magnitude of each bounce. At some point, these numbers get smaller than
the representable precision, and large errors start to occur. If you remove the stop state from the
FSM, and re-run the model, you get the result shown in figure 61. The ball, in effect, falls through
the surface on which it is bouncing and then goes into a free-fall in the space below.

The error that occurs here illustrates some fundamental pitfalls with hybrid system modeling. The
event detected by the ZeroCrossingDetector actor can be missed by the simulator. This actor works
with the solver to attempt to identify the precise point in time when the event occurs. It ensures that
the simulation includes a sample time at that time. However, when the numbers get small enough,
numerical errors take over, and the event is missed.
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Figure 61: Result of running the bouncing ball model without the stop state.

A related phenomenon is called the Zeno phenomenon. In the case of the bouncing ball, the time
between bounces gets smaller as the simulation progresses. Since the simulator is attempting to
capture every bounce event with a time step, we could encounter the problem where the number of
time steps becomes infinite over a finite time interval. This makes it impossible for time to advance.
In fact, in theory, the bouncing ball example exhibits this Zeno phenomenon. However, numerical
precision errors take over, since the simulator cannot possibly keep decreasing the magnitude of the
time increments.

The lesson is that some caution needs to be exercised when relying on the results of a simulation of
a hybrid system. Use your judgement.

10.3 Constructing Modal Models

A modal model is a component in a larger continuous-time (or other kind of) model. You can create
a modal model by dragging one in from the HigherOrderActors library. By default, it has no ports.
To make it useful, you will need to add ports. The mechanism for doing that is identical to adding
ports to a composite model, and is explained in section 4.2. Figure 56 shows a top-level continuous-
time model with a single modal model that has been renamed Ball Model. Three output ports have
been added to that modal model, but only the top one is used. It gives the vertical distance of the
ball from the surface on which it bounces.

If you create a new modal model by dragging it in from the HigherOrderActors library, create an
output port and name it output, and then look inside, you will get an FSM editor like that shown in
figure 62. The annotation text suggests that you delete it once you no longer need it.

The output port that you created is in fact indicated in the state machine as being both an output and
input port. The reason for this is that guards in the state machine can refer to output values that are
produced on this port by refinements. In addition, the output actions of a transition can assign an
output value to this port. Hence, the port is, in fact, both an output and input for the state machine.

To create a finite-state machine like that in figure 57, drag in states (white circles), or click on
the state icon in the toolbar. You can rename these states by right clicking on them and selecting
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Unnamed#ModalModel._Controller
File View Edit Graph Debug Help

EFIERREERNERNOEREREES

== DocViewerAtribute N o
— Localfref Create a state machine here (and ports, if needed) and
ocalPreferences create refinements for the states. Create transitions

"~ RepaintController by holding the (Mac: command key, Windows: control key)
(1] Decorative and dragging from one state to another.
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& i Then delete this annotation.

port

Figure 62: Inside of a new modal model that has had a single output port added.

“Customize Name”. Choose names that are pertinent to your application. In figure 57, there is an
init state for initialization, a free state for when the ball is in the air, and a stop state for when the
ball is no longer bouncing. You must specify the initial state of the FSM by right clicking on the
background of the FSM Editor, selecting “Edit Parameters”, and specifying an initial state name, as
shown in figure 58. In that figure, the initial state is named init.

10.3.1 Creating Transitions

To create transitions, you must hold the control button'? on the keyboard while clicking and drag-
ging from one state to the next (a transition can also go back to the same state). The handles on the
transition can be used to customize its curvature and orientation. Double clicking on the transition
(or right clicking and selecting “Configure”) allows you to configure the transition. The dialog for
the transition from init to free is shown in figure 63. In that dialog, we see the following:

e The guardExpression is true, so this transition is always enabled. The transition will be
taken as soon as the model begins executing. A guard expression can be any boolean-valued
expression that depends on the inputs, parameters, or even the outputs of any refinement of
the current state (see below). Thus, this transition is used to initialize the model.

e The outputActions are empty, meaning that when this transition is taken, no output is spec-
ified. This parameter can have a list of assignments of values to output ports, separated by
semicolons. Those values will be assigned to output ports when the transition is taken.

e The setActions field contains the following statements:

130r the command button on a Macintosh computer.
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Figure 63: Transition dialog for the transition from init to free in figure 57.

free.initialPosition = initialPosition;
free.initialVelocity = 0.0

The “free” in these expressions refers to the mode refinement in the free state. Thus, free.initial Position
is a parameter of that mode refinement. Here, its value is assigned to the value of the param-
eter initialPosition. The parameter free.initialVelocity is set to zero.

e The reset parameter is set to false, meaning that the refinement of the destination set is not
reset when the transition is taken.

e The preemptive parameter is set to false. In this case, it makes no difference, since the init
state has no refinement. Normally, if a transition out of a state is enabled and preemptive
is true, then the transition will be taken without first executing the refinement. Thus, the
refinement will not affect the outputs of the modal model.

o The defaultTransition parameter is set to false. If this parameter was set to true, then this
transition would be enabled if and only if no other non-default transition is enabled.

e The nondeterministic parameter is set to false meaning that if this transition is enabled, it
must be the only enabled transition. This parameter specifies whether this transition is non-
deterministic. Here nondeterministic means that this transition may not be the only enabled
transition at a time.

o The refinementName parameter is empty, indicating that the state is not refined. This parame-
ter specifies the names of refinements. The refinements must be instances of TypedActor and
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Figure 64: Adding a refinement to a state.

have the same container as the FSMActor containing this state, otherwise an exception will
be thrown when getRefinement() is called. Usually, the refinement is the empty string or a
single name. However, if a comma-separated list of names is provided, then all the specified
refinements will be executed.

A state may have several outgoing transitions. However, it is up to the model builder to ensure that
at no time does more than one guard on these transitions evaluate to true. In other words, Ptolemy
II does not allow nondeterministic state machines, and will throw an exception if it encounters one.

10.3.2 Creating Refinements

Both states and transitions can have refinements. To create a refinement, right click'# on the state or
transition, and select “Add Refinement.” You will see a dialog like that in figure 64. As shown in the
figure, you will be offered the alternatives of a “Default Refinement” or a “State Machine Refine-
ment.” The first of these provides a block diagram model as the refinement. The second provides
another finite state machine as the refinement. In the former case (the default), a blank refinement
model will open, as shown in the figure. You will have to create a director in the refinement. The
modal model will not operate without a director in the refinement.

You can also create refinements for transitions, but these have somewhat different behavior. They
will execute exactly once when the transition is taken. For this reason, only certain directors make
sense in such refinements. The most commonly useful is the SDF director. Such refinements are
typically used to perform arithmetic computations that are too elaborate to be conveniently specified
as an action on the transition.

140n a Macintosh, control-click.
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Once you have created a refinement, you can look inside a state or transition. For the bouncing
ball example, the refinement of the free state is shown in figure 61. This model exhibits certain key
properties of refinements:

e Refinements must contain directors. In this case, the ContinuousDirector is used.

e The refinement has the same ports as the modal model, and can read input values and specify
output values. When the state machine is in the state of which this is the refinement, this
model will be executed to read the inputs and produce the outputs.

10.4 Execution Semantics

The behavior of a refinement is simple. When the modal model is executed, the following sequence
of events occurs:

e For any transitions out of the current state for which preemptive is true, the guard is evaluated.
If exactly one such guard evaluates to true, then that transition is chosen. The output actions
of the transition are executed, and the refinements of the transition (if any) are executed,
followed by the set actions.

e If no preemptive transition evaluated to true, then the refinement of the current state, if there
is one, is evaluated at the current time step.

e Once the refinement has been evaluated (and it has possibly updated its output values), the
guard expressions on all the outgoing transitions of the current state are evaluated. If none is
true, the execution is complete. If one is true, then that transition is taken. If more than one is
true, then an exception is thrown (the state machine is nondeterministic). What it means for
the transition to be “taken” is that its output actions are executed, its refinements (if any) are
executed, and its set actions are executed.

e If reset is true on a transition that is taken, then the refinement of the destination mode (if
there is one) is initialized.

There is a subtle distinction between the output actions and the set actions. The intent of these two
fields on the transition is that output actions are used to define the values of output ports, while set
actions are used to define state variables in the refinements of the destination modes. The reason
that these two actions are separated is that while solving a continuous-time system of equations,
the solver may speculatively execute models at certain time steps before it is sure what the next
time step will be. The output actions make no permanent changes to the state of the system, and
hence can be executed during this speculative phase. The set actions, however, make permanent
changes to the state variables of the destination refinements, and hence are not executed during the
speculative phase.
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11 Vergil Command Line Arguments

The vergil script at $PTII/bin/vergil has several command line arguments. Typical use is
SPTII/bin/vergil model.xml where model.xml is a Ptolemy Il MoML file, for example:

SPTII/bin/vergil ptolemy/domains/sdf/demo/Butterfly/Butterfly.xml

Not all combinations of command line argments make sense. The best way to see what command
line arguments are available is to run $PTII/bin/vergil -help. The vergil command line
arguments are listed below:
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Table 1: Vergil command line arguments, part 1.

Command Line Argu-
ment

Description

—debug Enable debugging with jdb, see $PTII/doc/coding/debugging.htm
-help Print a help message for the vergil command

-helpall List the Ptolemy II scripts in $PTII/bin that can be invoked
-jdb Run jdb instead of java, see $PTII/doc/coding/debugging.htm
-profile Run under CPU sample profiling

-q Do not echo the command being run

-policyfile policy-
file

Run the model with a specified policyfile. For example,

to run in a restricted Java sandbox: S$PTII/bin/vergil
—-policyfile SPTII/bin/sandbox.policy
The -sandbox argument is an alias for

—-policyfile $PTII/bin/sandbox.policy.
Note that the file browser does not work well
sandbox. To run a model in the sandbox, specify the
model on the command line: vergil -sandbox
SPTII/ptolemy/moml/demo/modulation.xml

The -sandbox argument must be one of the first
arguments: vergil -sandbox —hyvisual
SPTII/ptolemy/moml/demo/modulation.xml

in the

—class classname

The -class option can be used to specify a Java class
to be loaded. The named class must have a construc-
tor that takes a Workspace as an argument. In the ex-

ample below, $PTII/ptolemy/domains/sdf/demo/Butter-
fly/Butterfly.java is a class that has a constructor But-
terfly(Workspace). $PTII/bin/vergil -class

ptolemy.domains.sdf.demo.Butterfly.Butterfly
Note that —class is not very well tested now that we have use
MoML for almost all models. The —class argument is usually
used with $PTII/bin/ptolemy, not $PTII/bin/vergil

—parameterName param-
eterValue

Set a parameter, where parameterName is the name
of a parameter relative to the top level of a model
or the director of a model. For instance, to set the
phase parameter of the signal composite: vergil

SPTII/ptolemy/moml/demo/modulation.xml
-signal.phase 0.5
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Table 2: Vergil command line arguments, part 2.

Command Line Argu- | Description

ment

—configuration con- | Set the Ptolemy configuration to be used. Ptolemy uses config-

figurationURL urations to provide custom actor libraries and splash screens for
different tools such as HyVisual, VisualSense and Vergil. The de-
faultis ptolemy/configs/full/configuration.xml,
which uses the vergil configuration. See the table below for pre-
defined configurations.

—-run Open the model or models and run them.

—-runThenExit Open the model or models, run them, then exit after the models
finish.

-test Start up and then exit after two seconds.

-version Print version information.

Vergil has a number of predefined configuration options that include specific sets of actors and
splash screens. Only one configuration option or —configuration configurationURL may be
used at a time. The configuration options are defined below, for example $SPTII/bin/vergil

-bcvtb will use the Build Controls Virtual Test Bed configuration.
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Table 3: Vergil configuration options

Command line ar- | Description

gument

-bcvtb Building Controls Virtual Test Bed Configuration which pro-
vides interfaces to C programs via sockets.  For details, see
https://gaia.lbl.gov/bcvtb

—-codegen Configuration that includes actors that have C code generation imple-
mentations

—dsp Configuration to use for Digital Signal Processing (DSP) applications

-full Configuration that invokes the full version of vergil. This is the default
configuration.

—-fullvViewer Configuration including all domains, used to view, not edit models.

~hyvisual Configuration  for  use with  Hybrid Systems, see
http://ptolemy.eecs.berkeley.edu/hyvisual/index.htm

-jxta Experimental configuration for use with JXTA, a peer to peer protocol.

-luminary Experimental Configuration for generating code for the Luminary
board.

-ptiny Configuration including only mature domains.

-ptinyKepler | Configuration including only domains shipped with Kepler. For details
about Kepler, see http://kepler-project.org.

-ptinyViewer | Configuration including only mature domains, used to view, not edit
models.

-space Configuration used to edit SpaceCadet office space management mod-
els.

-viptos Configuration for interface between Ptolemy and TinyOS, see
http://ptolemy.eecs.berkeley.edu/viptos.

—visualsense Configuration for use with VisualSense, a wireless tool, see
http://ptolemy.berkeley.edu/visualsense/index.htm.

12 Plotter

Several of the plots shown above have flaws that can be fixed using the features of the plotter.
For instance, the plot shown in figure 51 has the default (uninformative) title, the axes are not
labeled, and the horizontal axis ranges from 0 to 255'°, because in one iteration, the Spectrum actor
produces 256 output tokens. These outputs represent frequency bins that range between —x and ©
radians per second. The SequencePlotter actor has some pertinent parameters, shown in figure 65.
The xInit parameter specifies the value to use on the horizontal axis for the first token. The xUnit
parameter specifies the value to increment this by for each subsequent token. Setting these to “-PI”
and “PI/128” respectively results in the plot shown in figure 66.

I5Hint: Notice the “x10” at the bottom right, which indicates that the label “2.5” stands for “250.
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Edit parameters for SequencePlotter
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Figure 65: Parameters for the SequencePlotter actor.
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Figure 66: Better labeled plot, where the horizontal axis now properly represents the frequency
values
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Figure 67: Format control window for a plot.
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Figure 68: Still better labeled plot.

This plot is better, but still missing useful information. To control more precisely the visual ap-
pearance of the plot, click on the second button from the right in the row of buttons at the top right
of the plot. This button brings up a format control window. It is shown in figure 67, filled in with
values that result in the plot shown in figure 68. Most of these are self-explanatory, but the following
pointers may be useful:

e The grid is turned off to reduce clutter.

o Titles and axis labels have been added.

e The X range and Y range are determined by the fill button at the upper right of the plot.
e Stem plots can be had by clicking on “Stems”

e Individual tokens can be shown by clicking on “dots”

e Connecting lines can be eliminated by deselecting “connect”

e The X axis label has been changed to symbolically indicate multiples of PI/2. This is done by
entering the following in the X Ticks field:

-PI -3.14159, -PI/2 -1.570795, 0 0.0, PI/2 1.570795, PI 3.14159

The syntax in general is:
label value, label value, ...

where the label is any string (enclosed in quotation marks if it includes spaces), and the value
is a number.
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