
EUROPEAN SOUTHERN OBSERVATORY
Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral
Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

Reflex Workflow Development Guide

Author: Cesar Enrique Garcia Dabo (cgarcia@eso.org)
Department: Pipeline Systems Department
Version: 1.0
Date: 01/10/2013

Contents
1 Introduction and scope 2

2 Overview on the development of a Reflex workflow 3

3 Mini-HOWTO: Creating a simple workflow 4
3.1 Step by step . 4
3.2 The TEMPLATE workflow . 10

4 Main Components of a Reflex Workflow 10
4.1 Setup directories . 10
4.2 Data Organisation . 12

4.2.1 The OCA rules and Reflex . 12
4.2.2 Classification . 12
4.2.3 Target of the workflow . 13
4.2.4 Grouping and action triggering . 13

4.3 File Purpose . 13
4.4 FitsRouter . 14
4.5 ProductRenamer . 14
4.6 Recipe Execution . 14

4.6.1 Lazy mode in recipe execution . 16
4.6.2 Variable Setters . 16
4.6.3 Update to a change in the recipe . 16

4.7 Subworkflows . 16
4.8 Provenance actor . 17

5 Interactivity in the workflow 17
5.1 Reflex Python Interactive Module . 17

5.1.1 Python Interactive Module interface . 18
5.1.2 Python Plotting Module . 19
5.1.3 Basic implementation of an interactive window 21

5.2 Looping on a recipe execution with an interactive window 23
5.2.1 Deciding which parameters can be modified . 23
5.2.2 General layout for a looping . 24

6 Most useful tips 25
6.1 Supported directors . 25
6.2 Saving Workflows . 25
6.3 How to write workflows which do not use purposes . 26

6.3.1 Introducing a purpose-less recipe in the middle of a workflow 26
6.4 Incomplete Datasets . 26
6.5 Browsing actor documentation . 26
6.6 When to use the sof opt port in the SofCombiner . 26
6.7 Reflex and the CalSelector . 27
6.8 Requirements for input files . 27

7 Deploying and delivering a workflow 27

8 Guidelines for VLT instruments workflows 28

A Porting from Reflex 1.x to 2.0 32
A.1 Structural changes . 32
A.2 Design changes . 32
A.3 Testing . 33

B Porting from Reflex 2.0 to 2.2 33
B.1 General . 33
B.2 Python Framework . 33
B.3 Jython scripts . 34
B.4 Recipe Executer . 34

C Porting from Reflex 2.2 to 2.4 34
C.1 General . 34
C.2 Python Framework . 34
C.3 Python Actor . 35

D Porting from Reflex 2.4 to 2.5 35
D.1 ProductRenamer . 35
D.2 New Provenance actor . 35

1 Introduction and scope
Reflex is the ESO Recipe Flexible Execution Workbench, an environment to run ESO VLT pipelines
which employs a workflow engine (Kepler1) to provide a real-time visual representation of a data reduction

1https://kepler-project.org

2

cascade, called a workflow, which can be easily understood by most astronomers.
It is important that workflows present the overall data flow of a pipeline in a way that is intuitive and

self- explanatory. Workflows are complex programs and designing them in such a way that they meet these
high-level requirements takes significant planing and effort.

This document is a guide for those who want to write a workflow that uses VLT pipelines, which are
based in CPL. Although not all the components in Reflex are specific to the VLT pipelines most of them are
and what we describe here is based on our experience designing some VLT workflows. Using Reflex for
other purposes is very limited.

We will present the basic blocks of a pipeline workflow, a step by step procedure to create a simple
workflow and some hints on specific aspects of the workflow development. Finally we show some of the
guidelines used by the current VLT workflows and a section to transition from Reflex 1 workflows to Reflex
2.

This guide assumes that you have already some knowledge of Reflex at least from the user point of
view. Also, this tutorial does not cover installation issues. It is recommended that you read the Reflex
User Manual, the Kepler user manual and maybe some of the pipeline workflow tutorials (currently UVES
tutorial and Xshooter tutorial are available).

User support for this software is available by sending enquiries to usd-help@eso.org.

2 Overview on the development of a Reflex workflow
Developing a workflow is usually not as easy as dragging and dropping some actors in the canvas. In order
to avoid some mistakes, we recommend to follow these guidelines, during the development:

• Workflows are most useful for pipeline modularized with an appropriate granularity. Older monolithic
pipelines should be broken up into individual recipes. The modularization of pipeline should be done
from an astronomers point of view. This means that independent steps which might need to be redone
are contained in a single recipe. Intermediate data products should be useful for monitoring of the
progress in data processing and for diagnostic purposes. Recipe parameters should be independent
from each other, i.e. situations where the setting of a parameter in one recipe implies a particular
value for a parameter in a different recipe have to be avoided.

• Collect all the supported observing modes that the workflow should support. A workflow might
support different observing modes or calibration strategies, although sometimes it is recommended
to develop different workflows for substantially different observing modes.

In some cases the calibration strategy has different calibration chains, for instance when a given step
is optional (flux calibration is an example). It is important to collect all the possible calibration chains
in order to design the workflow with those cases in mind. Therefore, the modes to be supported have
to be carefully considered.

• It is recommended to start a workflow with a fairly stable pipeline, at least in terms of interface. This
means that the pipeline recipes should have well-defined inputs and outputs frames, with correspond-
ing PRO.CATG tags as used by esorex. The recipe chain depends strongly on this interfaces and
therefore a valid design for some inputs/outputs might not be valid if these are changed. There is
however some flexibility, for instance, adding a product created by a recipe which is not going to be
used anywhere else by other recipe doesn’t impact the workflow design.

It is also strongly recommended that the list of recipe parameters are well defined before creating
a workflow. If the parameters are changed, once a workflow already exists it may be tedious and
time consuming (and it is not recommended) to change the parameters. Also, the order in which the

3

parameters are defined by the recipe should be kept. See section on how to change the RecipeExecuter
if this happens.

• Reflex workflows are driven by the data files, which are sorted and routed based on the file tags. It is
therefore important that the file tags uniquely describes the purpose of a file. For example, if science
data and calibration data use different kind of sky observations, these sky observations should get
different tags.

• Start designing your workflow with the different calibration chains of the previous step in paper.
Rather than starting the workflow design with the Reflex tool itself, it is sometimes better to start a
design in paper, so that

• Design the interactive points in the workflow. It is usually useful to think about the interactivity
points in the workflow. Usually the interactivity allows to iterate on same parameters of a given
recipe. Therefore it has some impact in the modularity of the pipeline and/or the parameters that
might be exposed to the user by the recipe.

• Create a OCA rules file which mimics the relationships outlined in previous steps. One important
feature of Reflex is that the calibration cascade is somehow coded in two places: the workflow con-
nections of the recipes and the OCA rules. For this reason the OCA rules should be compatible with
the workflow connections. More information about OCA rules in section 4.2.1.

• Create workflow following the layout of the template workflow.

3 Mini-HOWTO: Creating a simple workflow
In this section we will show how to create a simple working workflow. Take into account that the complexity
of workflow creation depends very much on the complexity of the calibration cascade and the interactivity
points. In this case we will target a workflow with only two recipes, where one recipe creates a calibration
needed by the next recipe and no interactivity points (see 5 for the interactivity part).

Take into account that you can start already from a template workflow rather than writing a workflow
from scratch (see section 3.2).

3.1 Step by step
This step by step procedure will create a workflow similar to the template workflow distributed by Reflex
(see section 3.2)

1. It is recommended that Reflex is installed using the manual method rather than the install reflex
script. See http://www.eso.org/sci/software/reflex/ for details.

2. A CPL-based pipeline has to be created and made it available via esorex. This guide doesn’t cover
how to create a pipeline or esorex configuration. Please refer to the CPL and esorex documentation
guide for more details. For this HOWTO, it is assumed that a pipeline with recipes named rrrecipe
and rrrecipe calib are visible via esorex.

3. The first thing is to create a OCA-rule file that will be used to classify, group and associate the proper
files together.

The classification part of the OCA rules will look like this:

4

if DPR.CATG like "%SCIENCE%" and DPR.TYPE like "%OBJECT%" then
{

REFLEX.CATG = "RRRECIPE_DOCATG_RAW";
REFLEX.TARGET = "T";

}

if DPR.CATG like "%CALIB%" and DPR.TECH like "%IMAGE%"
and DPR.TYPE like "%STD%" then

{
REFLEX.CATG = "RRRECIPE_CALIB_DOCATG_RAW";

}

This basically specifies that based on some keywords of the main header of the files, the files should
be assigned some classification keywords. Reflex will use REFLEX.CATG mainly.

Next, with all the files that have been classified with the same keywords, there is the need to group
them and trigger a specific action. This part will look like this:

select execute(CALIB_IMG) from inputFiles
where REFLEX.CATG == "RRRECIPE_CALIB_DOCATG_RAW"

group by INS.FILT1.NAME, OBS.ID, OBS.NAME,
OBS.TARG.NAME, TPL.START as (TPL_A,tpl);

select execute(COMBINE_IMG) from inputFiles
where REFLEX.CATG == "RRRECIPE_DOCATG_RAW"
group by INS.FILT1.NAME, OBS.ID, OBS.NAME,
OBS.TARG.NAME, TPL.START as (TPL_A,tpl);

The next thing is to define the actions, and within the actions, the calibrations or dependencies needed
by each of the actions:

action CALIB_IMG
{
minRet = 0; maxRet = 1;
select file as STATIC_MASK from calibFiles
where REFLEX.CATG == "STATIC_MASK";
minRet = 0; maxRet = 1;
select file as IMG_STD_CATALOG from calibFiles
where REFLEX.CATG == "IMG_STD_CATALOG";

recipe rrrecipe_calib;
product IMG_CALIBRATED { REFLEX.CATG = "IMG_CALIBRATED";

PRO.CATG = "IMG_CALIBRATED"; PRO.EXT="tpl_0000.fits";}
}

action COMBINE_IMG
{
minRet = 0; maxRet = 1;
select file as STATIC_MASK from calibFiles

5

where REFLEX.CATG == "STATIC_MASK";
minRet = 1; maxRet = 1;
select file as IMG_CALIBRATED from calibFiles
where PRO.CATG == "IMG_CALIBRATED";

recipe rrrecipe;
product IMG_OBJ_COMBINED { PRO.CATG = "IMG_OBJ_COMBINED";

PRO.EXT="tpl_0001.fits";}
}

The minRet, maxRet keywords specify constraints on the number of matching files. If at least
minRet files are not found the dataset will be incomplete.

The product clause defines the products created by a given action, in order to associate it later (like
the IMG CALIBRATED file in the example).

4. Next thing will be to define some directories that will be used bu the workflow. There are three types
of directories:

(a) Input directories. These directories will be scanned by the DataOrganizer using the OCA rules
to define the datasets to process. It usually contains the user data and maybe the specific pipeline
calibration files. Use the name is RAW DATA DIR.

(b) Working directories. These directories are used internally by the Reflex actors. The user might
have to look at them only for debugging purposes. The common names are BOOKKEEPING DIR,
LOGS DIR and TMP PRODUCTS DIR. The latest one is likely to grow very quickly in size.

(c) Output directory. This directory will contain the final reduced data in a easy to browse directory
structure. The common name is END PRODUCTS DIR.

The way this is created is via variables in Reflex whose value points to the desired directory. Use
the FileParameter Kepler standard actor to define these variables. To change the name of the
variable, right click on the variable and select Customize Name. Figure 1 show how the standard
directories implementation looks like.

Figure 1: Standard setup directories.

6

Take into account that this is the standard for workflows but you can use other directories setup for
your workflows if needed. However, the working directories must be always be there and with those
names, since they are used by several standard Reflex actors. See section 4.1 for more information
about the standard directories.

Figure 2: Directory preparation for the DataOrganizer.

5. Now we start putting actors which represent the real workflow. The first thing is to combine the
calibration directory and the input directory in a single input that will be fed into the data or-
ganisation. For that we put two StringConstant actors with the values $RAWDATA DIR and
$CALIB DATA DIR. Make sure that the firingCountLimit parameter is set to 1 in both cases.
Then we connect the output of these two actors to an ElementsToArray actor. Figure 2 shows
the result of that.

Figure 3: Connections of the DataOrganizer, DataSetChooser and FitsRouter.

6. The next thing to do is to connect the output of the array to the input of DataOrganizer, i.
e., the port input data. The DataOrganizer has to be configured with a proper path to
the OCA rules. For that, use the parameter OCA File of the DataOrganizer. The output
port of the DataOrganizer has to be connected then to the input port datasets in of the
DataSetChooser and finally the output port datasets out of the DataSetChooser has to
be connected to the input port in of the FitsRouter.

7

After all these connections, the workflow supports the creation of datasets using the definitions of the
OCA rules, displaying the datasets for selection and inspection and feeding the selected datasets to
the FitsRouter.

Figure 4: Configuration of the FitsRouter.

7. The next thing is to setup the FitsRouter to deliver the proper data to different connections. Our
simple workflow has two main recipes, one calibration and one science. With this scheme, it would
be enough to create two channels: one with all the input needed by the calibration recipe and one
with science frames. We first create two ports in the FitsRouter: CALIB and SCIENCE. Then,
we create two parameters of the FitsRouter using the Add button in the Edit Parameter
window called CALIB config and SCIENCE config. By default, the parameter type is generic,
so we will have to quote the list of PRO.CATGs assigned to that port. Other option is to change the
parameter type to StringParameter and then the quotes are not needed.

The calibration port will just need one type of files: RRRECIPE CALIB DOCATG RAW. The sci-
ence port however will redirect several types of files: STATIC MASK and RRRECIPE DOCATG RAW.
The result is the configuration shown in figure 4. See section 4.4 for more details.

Figure 5: Composite actor which contains a recipe executer surrounded by a SofSplitter and SofAccumula-
tor. The top level canvas will show this composite actor with the name Calib, as shown in figure 6.

8. Now it is time to create the recipes which are going to be executed. First, create a composite actor,
i. e. a kind of subworkflow, by searching for CompositeActor. Drag it to the canvas and open it
(right click Open Actor) to start adding more actors in it. We will create an input port and an out-
put port and between them we will put three actors: a SofSplitter, a RecipeExecuter and
a SofAccumulator. The first and last can be instantiated easily with the components left menu,
however the RecipeExecuter should be instantiated using the Tools -> Instantiate Component
option. This will show a list of available recipes as seen by the esorex command which is in the cur-
rent path. If your recipe is not shown there, check your esorex and pipeline installation.

The sof out port of the SofSplitter should be connected to the sof in port of the RecipeExecuter
and the sof out of the latest to the sof in of the SofAccumulator. Additionally, the #groups

8

port of both SofSplitter and SofAccumulator should be connected together. The result is
shown in figure 5 for a recipe called rrrecipe calib.

9. Follow the same procedure as before with the science recipe. You can rename the top level composite
actors with the names Calib and Science for identification purposes.

Figure 6: Connection of the recipe composite actors and the FitsRouter for a simple workflow with one
calibration recipe and one science recipe.

10. Connect the output of the CALIB port in the FitsRouter to the input of the calibration composite
actor.

Figure 7: Configuration of the ProductRenamer.

11. Drag a SofCombiner actor in front of the science composite actor and connect both the output
of the calibration composite actor and the SCIENCE port of the FitsRouter to the input of the
SofCombiner, and the output of the latest to the input of the science composite actor. The result is
shown in figure 6.

12. Finally, add a ProductRenamer actor to rename the output of the science recipe to some more
meaningful names. Set up the RenameKeywords parameter of the ProductRenamer to some
keywords that are representative of the type of data or target. Figure 7 shows a typical configuration.

9

Figure 8: Layout of the workflow with a DataFilter and a ProductRenamer.

13. Optionally, a DataFilter actor can be put before the ProductRenamer to save only a selection
of the products created by the science recipe. Figure 8 shows the final layout of this second part of
the workflow.

14. Place a DDF director in the top level canvas.

15. Finally, it is recommended to document the workflow in a way that it is self-explanatory, as it is
described in section 8.

3.2 The TEMPLATE workflow
When Reflex is installed using the install reflex script as explained in the Reflex User Manual, you will be
presented with a list of pipelines to install. One of them is listed as TEMPLATE and contains a basic pipeline
with a basic workflow that can be used as a template or an example to build other pipelines/workflows. This
workflow uses the pipeline called iiinstrument and it can also be retrieved from this link:

ftp://ftp.eso.org/pub/dfs/pipelines/iiinstrument/.

Figure 9 shows how this basic workflow looks like. The OCA rules delivered with this workflow are also
very basic and just contain one level of dependency: a science recipe just needs the result of a calibration
recipe.

The steps followed in the previous section will create a simplified version of this template workflow.

4 Main Components of a Reflex Workflow
In this section we will describe more in detail which are the main components used most commonly in a
Reflex workflows.

4.1 Setup directories
Some actors require that some variables are set in order to work properly. In particular, the RecipeExecutor
actor requires the following variables:

• BOOKKEEPING DIR: a directory where each pipeline recipe execution will create a subdirectory to
use as a working directory. Useful for debugging purposes, since it contains the input sof for each
call of the recipe, the output sof created, the parameters used and the esorex command executed.

10

Figure 9: The layout of the template workflow.

• LOGS DIR: a directory where the recipe logs will be saved. In particular, the esorex log will be stored
here.

• TMP PRODUCTS DIR: a directory where the workflow intermediate products will be saved. Basi-
cally, for each esorex execution, the output directory will be pointed to here. Therefore, it can grow
very easily, and it is recommended that it is pointed to a file system with enough disk space.

• ESORexArgs: additional parameters passed to esorex by the RecipeExecuter

Each time the RecipeExecuter launches a recipe via esorex, it will create a subdirectory under
the mentioned directories named after the execution time stamp. In this way it is easy to recognise all the
configuration, logs and products of each recipe execution.

It is actually possible to use a RecipeExecuter which does not use those variables, defining the corre-
sponding actor parameters. However, being the default parameters, when the actor is instantiated, it requires
them to be present. Moreover, it is convenient to have them as a global variable in the main canvas, so that
they can be accessed by all the RecipeExecuter actors, including the subworkflows underneath.

A very convenient way to setup a workflow is to create a variable that defines a root directory and define
the rest of the directories as subdirectories of that. For instance, create a variable called ROOT DATA DIR
and point BOOKKEEPING DIR, LOGS DIR and TMP PRODUCTS DIR to subdirectories of it. A variable

11

can be used as part of the value of other variable if it is referenced using the $ operator, in a similar way as
in shell programming.

Other variables that we recommended to define are:

• END PRODUCTS DIR: a directory where the workflow final products will be saved. Typically the
ProductRenamer actor will use this variable to store the final renamed and copied products from the
science recipes.

• FITS VIEWER: executable used to visually inspect FITS files. This variable is used by the DataFilter
actor.

4.2 Data Organisation
One of the most useful tasks of a workflow is the automatic organisation of large lists of files available on
the disk. The organisation of the data is provided by the DataOrganiser actor, which actually uses a
OCA file that specifies the organisation logic.

4.2.1 The OCA rules and Reflex

Reflex uses the OCA rules of the purpose of classification, grouping and association. The OCA syntax is
explained in detail in 4.2.1 documentation, and here we will just point out the details specific to the use of
OCA rules by the Reflex application.

OCA rules written for other applications (Gasgano, DO, ABbuilder) could in principle be used with
Reflex, provided that some additions are included for the rules to work within Reflex. In fact Reflex uses
the same library to parse the rules as all the other applications

4.2.2 Classification

For the classification part of the OCA rules, Reflex will use the special keyword REFLEX CATG. Other
applications, for instance DO, use the keyword DO CATG, which Reflex will simply ignore. Usually, the
value of both keywords would be the same.

Each of the classification entries look like the following:

if DPR.CATG like "%SCIENCE%" and DPR.TYPE like "%OBJECT%" and INSTRUME=="TEMPLATE" then
{

REFLEX.CATG = "RRRECIPE_DOCATG_RAW";
}

The like operand will match for keyword values which contain the string between percentages. Any
Java regular expression can be used.

In contrast, the == operator will do an exact matching of the values of the keyword. Note that it is
recommended to match always the INSTRUME keyword, since it is a common use case that a user has data
for different instruments in the same directory and for a given workflow, only the supported instruments
should be matched. The use of INSTRUME is recommended also when matching static calibrations in the
OCA rules, using the syntax inputFile.INSTRUME==INSTRUME. Even for virtual product associations
this is a good practice.

One problem that might be encounter is that the user might have calibrations in the input directory of
the workflow. Those calibrations might be picked instead of recreated from pure raw frames. The way to
avoid that is to use a different frame type for the definition of the product. For instance, one might use the
following syntax when the product of the bias action is defined:

12

product MASTER_BIAS_WKF { PRO.CATG=‘‘MASTER_BIAS_WKF’’; PRO.EXT=‘‘tpl_0000.fits’’;}

The association must be done with MASTER BIAS WKF as well of course, and this will avoid that a
MASTER BIAS frame type already found in the input dir is chosen.

4.2.3 Target of the workflow

Reflex uses the OCA rules to define the calibration/association cascade. However, there must be a way to
indicate where the chain should be started. For instance, many workflows aim to reduce science frames,
while some other specialised workflows will just create calibration files.

The way to specify the target is using the REFLEX TARGET classification:

if DPR.CATG like "%SCIENCE%" and DPR.TYPE like "%OBJECT%" and INSTRUME=="TEMPLATE" then
{

REFLEX.TARGET = "T";
}

A workflow can have more than one target, for instance science images and standard star images, al-
though the rest of the workflow has to support both reduction chains, of course.

4.2.4 Grouping and action triggering

Reflex doesn’t need any special syntax or additions to the grouping and select commands in OCA. The
usual syntax is like

select execute(DARK) from inputFiles where RAW.TYPE=="DARK"
group by DET.READ.CLOCK,DET.CHIP1.ID,DET.WIN1.BINX,DET.WIN1.BINY,TPL.START as (TPL_A,tpl);

Note that the grouping usually contains TPL.START, which will group all the images of the same
template together, or ARCFILE, which will create just one group per file, since this keyword is unique to
each file.

The clause where can use any of the classification keywords defined in the classification part. If com-
patibility with other software (DO, ABbuilder), the same keyword used there could be used here.

If a group should contain at least a minimum number of files (for instance a raw bias group should have
at least 5 raw biases), then the clause minRet can be added before the select clause, like here:

minRet = 5;
select execute(BIAS_BLUE) from inputFiles where RAW.TYPE=="BIAS_BLUE"
group by DET.CHIPS,DET.WIN1.BINX,DET.WIN1.BINY,DET.READ.SPEED,TPL.START as (TPL_A,tpl);

4.3 File Purpose
In Reflex 2.0, each file which is part a Sof carries around a Purpose. It represents what a file is needed for.
The purpose of a file describes its position in the whole reduction cascade that will make use of the file. For
example, a raw BIAS might have purpose MASTER BIAS/SCIENCE if it’s going to be used to produce
the master bias that will be used to reduce the science frames.

13

4.4 FitsRouter
The FitsRouter actor is used to send the different types of frames to the relevant recipes. The name of the
port is used to determine the type of frame (as created by the DataOrganiser) that will be output to that
specific port. If one needs to output more than on type of file for that port then do the following:

• Create an output port with the desired name.

• Configure the actor and add a parameter.

• Name the parameter after the name of the port with config appended.

• Specify that the parameter is StringParameter (if this is not done, the value of the parameter must be
quoted).

• Fill the value of the parameter with a common separated list of frame types that should be output to
that port

4.5 ProductRenamer
After having processed the input data for a data set, the workflow highlights and executes the Product
Renamer actor, which, by default, will copy the most important final products of the UVES pipeline recipe
uves obs scired to the directory specified by END PRODUCTS DIR and rename them with names
derived from the values of certain FITS header keywords. Specifically, final products are renamed by de-
fault with names of the form <HIERARCH.ESO.OBS.NAME> <HIERARCH.ESO.PRO.CATG>.fits,
where <HIERARCH.ESO.OBS.NAME> and <HIERARCH.ESO.PRO.CATG> represent the values of
the corresponding FITS header keywords. These names are fully configurable by double-clicking on the
Product Renamer actor and editing the string as appropriate.

4.6 Recipe Execution
The relations in a Reflex workflows contain XML files that describes a Sof. This Sof are used as input to
execute recipes in general. However, through a single relation there could be several files with different
purposes. For instance, the input of the bias recipe could have biases used for the flat and biases used
for the science. In order to properly use the relevant files, the actor SofSplitter has been created. The
SofSplitter, as its name implies, will create several Sof with the same purposes, one at a time. This way, the
RecipeExecuter will receive a coherent Sof for only one purpose. The SofAccumulator, on the other hand,
waits until all the products of the recipes have been produced and joins them all together.

The proper way to use the RecipeExecuter will be to place a SofSplitter in front of it and a SofAccumu-
lator after it. This two actors have to be connected each other by the # groups port. Figure 10 shows how to
do this in general.

Figure 10: This figure shows how to properly use a RecipeExecuter actor in combination with a SofSplitter
and a SofAccumulator.

14

As explained in the Mini-HOWTO, in order to instantiate the RecipeExecuter one has to use the menu
option Tools -> Instantiate Component. The list of recipes that will appear there is the result
of the command esorex --recipes. In othere words, the recipes have to be visible to esorex before
they can be instantiated in the workflow. If you have installed Reflex using the install reflex script, the
reflex command sets the path to the esorex found within the installation, which in turn will found the
recipes within that installation too. If you have your own recipes, then you will have to install them in the
installation tree. If you installed Reflex directly from the tar file, then it will use the esorex command
found in your path. Consult the documentation for esorex to see how to configure it in order to found
your installed recipes.

Take into account that in order to help for the readability of the workflow, it is recommended to place
these three actors inside a CompositeActor.

One important question is which is the Purpose of the products created by a given recipe.
In the following we describe in more detail the function of some of the parameters for a recipe executor

actor:

• The “recipe” parameter states the UVES pipeline recipe which will be executed.

• The “mode” parameter has a pull-down menu allowing the user to specify the execution mode of the
actor. The available options are:

– Run: The pipeline recipe will be executed, possibly in Lazy mode (see Section 4.6.1). This
option is the default option.

– Skip: The pipeline recipe is not executed, and the actor inputs are passed to the actor outputs.

– Disabled: The pipeline recipe is not executed, and the actor inputs are not passed to the actor
outputs.

• The “Lazy Mode” parameter has a tick-box (selected by default) which indicates whether the recipe
executor actor will run in Lazy mode or not. A full description of Lazy mode is provided in the next
section.

• The “Recipe Failure Mode” parameter has a pull-down menu allowing the user to specify the be-
haviour of the actor if the pipeline recipe fails. The available options are:

– Stop: The actor issues an error message and the workflow stops. This option is the default
option.

– Continue: The actor creates an empty output and the workflow continues.

– Ask: The actor displays a pop-up window and asks the user whether he/she wants to continue
or stop the workflow.

• The set of parameters which start with “recipe param” and end with a number correspond to the
parameters of the relevant UVES pipeline recipe. By default in the recipe executor actor, the pipeline
recipe parameters are set to their pipeline default values. If you need to change the default parameter
value for any pipeline recipe, then this is where you should edit the value. For more information on
the UVES pipeline recipe parameters, the user should refer to the UVES pipeline user manual (Larsen
et al. 20102).

2Available from http://www.eso.org/sci/facilities/paranal/instruments/uves/doc/index.html

15

4.6.1 Lazy mode in recipe execution

By default, the recipe executor actors have “Lazy Mode” enabled. This means that when the workflow
attempts to execute such an actor, the actor will check whether the relevant pipeline recipe has already been
executed with the same input files and with the same recipe parameters. If this is the case, then the actor
will not execute the pipeline recipe, and instead it will simply broadcast the previously generated products
to the output port. The purpose of the Lazy mode is therefore to minimise any reprocessing of data by
avoiding data rereduction where it is not necessary.

One should note that the actor Lazy mode depends on the contents of the directory specified by
BOOKKEEPING DIR and the relevant FITS file checksums. Any modification to the directory contents
and/or the file checksums will cause the corresponding actor when executed to run the pipeline recipe
again, thereby rereducing the input data.

The forced rereduction of data at each execution may of course be desirable. To force a rereduction of
all data for all recipe executor actors in the workflow (i.e. to disable Lazy mode for the whole workflow),
set the EraseDirs parameter under the “Global Parameters” area of the workflow canvas to true. To
force a rereduction of data for any single recipe executor actor in the workflow, right-click the actor, select
Configure Actor, and uncheck the Lazy mode parameter tick-box in the “Edit parameters” window
that is displayed. For a composite actor, you will first need to open the subworkflow by right-clicking on
the composite actor and selecting Open Actor.

4.6.2 Variable Setters

This actor can be used to set a variable of the workflow at run time. For instance, it is used in most of the
VLT workflows to set variable GLOBAL TIMESTAMP using the current time. It is recommended that all
the Variable Setter actors have the parameter delayed unchecked.

4.6.3 Update to a change in the recipe

Sometimes, a change in the recipe interface cannot be avoided and a given parameter is renamed, deleted
or added. Reflex stores in the workflow the order of the parameters. For this reason, even a change in the
order in which the parameters are defined is strongly discouraged. However, if none of the parameters of the
recipe have been changed from the defaults, the workflow probably didn’t store any value of the parameters
and nothing should be changed.

The RecipeExecuter actor stores the recipe parameters by the order they appear in the recipe (i.e. like in
esorex –man recipe name). If a recipe has been changed, the best way to incorporate the changes is simply
to delete the current actor and reinstantiate it: Reflex will read the recipe parameters again and will create
a new configuration. In other cases, reinstantiating will cause too much trouble and the only change was
maybe a parameter renaming. In that case, the workflow .xml could be edited and searched for strings like
<property name="recipe param . Once the right parameter has been found (make sure that the
recipe is the correct one: <entity name="name of recipe 1"), you can change the value of the
Reflex parameter, which is in fact the name of the recipe parameter and the value together.

4.7 Subworkflows
A subworkflow can be created with a CompositeActor. To open the subworkflow canvas, right click on
the actor and select Open Actor. Note that it is handy to use the arrows toolbox to create ports directly
for the subworkflow. The name of the ports, however, should be changed in the usual way for the composite
actor.

During the overall design of the workflow it should be considered which parts should be grouped into
sections, and which parts should go into a subworkflow. As a rule of thumb, most workflows should not

16

contain more than 10 to 15 actors or subworkflows. Subworkflows should be kept simple and have clean and
simple input and output ports. For example, if a recipe or other actor is called several times with different
input or in different modes which depend on available data, these actors and the associated logical elements
should typically be moved to a dedicated subworkflow.

4.8 Provenance actor
The Provenance actor is used to display the full reduction chain for a given pipeline product. As explained
above, each time a recipe is run, its inputs and outputs are stored in the bookkeeping database. This database
can be queried to reconstruct the full set of frames that were used for a particular product. In fact this
information is better represented by a tree, and that’s how the Provenane actor will display it.

The Provenance actor allows to specify a range in time for the products to be displayed. A port can be
used to specify the starting date and hour. In In a workflow, which usually stores the starting time, this can
be used to display only the products created during that particular run of the workflow.

Other parameter needed by the Provenance actor is the path to the provenance database. In a standard
configured workflow this should point to $BOOKKEEPING DIR/bookkeeping.db.

5 Interactivity in the workflow
One of the benefits of using Reflex to create workflows is the ability to insert some interactivity in the
reduction process which includes some kind of data visualisation and fine tuning of pipeline parameters.
Reflex has full support for this kind of interactivity using a dedicated Python module.

The Python module makes use of some third-party modules: numpy, pyfits, matplotlib and wxPython.
It is strongly recommended to write interactive windows using these tools.

The general philosophy of the interactive windows is to place them after a specific pipeline recipe and
show a subset of the results where the user can asses the quality of their data. Additionally, the user can
easily modify the most relevant pipeline parameters to accomplish a successful reduction. Figure 11 shows
an example of such a window.

5.1 Reflex Python Interactive Module
The Reflex Python module is comprised of 4 main components:

1. The basic Python interface with Reflex. This is the same explained in section 5.

2. The Interactive Application module. This module is responsible for the definition of inputs and
outputs of an interactive actor as well as the creation and handling of the interactive window

3. The Pipeline Products module. This module helps reading common types of data from FITS files as
delivered by VLT instruments.

4. The Pipeline Display module. This module allows quite easily to display specific types of data with
just a few of Python commands.

The first two modules are mandatory for any interactive window, while the last two can be useful to
read and display common data structures, but they might not implement the support for a given instrument
data. Currently images, spectra and scatter plots from tables are supported, with more types of data and/or
visualisations coming in the future.

17

Figure 11: An example of a Reflex Python interactive window.

5.1.1 Python Interactive Module interface

The developer can use the above described framework to easily prototype and implement and interactive
window. There are some basic ingredients that the developer must provide, however:

• The set of files that have to be read.

• The plotting layout.

• The actual plotting of the different data.

• The recipe parameters that can be changed.

• The window title and help (these being optional).

The way to provide this information is via an object which implements the following methods, in the
same order as above:

• readFitsData(). This method will receive a reflex.FitsFiles object which contains the
output of a recipe execution (previous actor connected) and will allow to select the relevant files to
be read. Reading the files can be accomplished using the PipelineProduct class.

18

• addSubplots(). This method receives a matplotlib matplotlib.figure.Figure object
and is used to define the number and location of subplots, mainly trough the add subplot method.
The add subplot method takes three arguments (I, J, K) where IxJ defines a grid and K is the
place in the grid starting from top left corner. Note that in the same plot several subplots can be
added which don’t neccessarily share the same grid dimensions.

• plotProductsGraphics(). This method receives a Figure object and a FigureCanvasWxAgg
object. The first one will be used to actually do the plotting, while the second argument is deprecated
and should not be used.

• setInteractiveParameters(). This method does not receive any arguments, and it should
return a list of reflex.RecipeParameter objects which will be listed by the interactive window
as potential recipe parameters to be changed.

• setWindowTitle(). This method with no arguments should return a string with the title of the
interactive window.

• setWindowHelp(). This method with no arguments should return a string with the help of the
interactive window, as displayed when the help button is clicked.

5.1.2 Python Plotting Module

As mentioned above, Reflex includes a module to ease the reading and displaying data from ESO pipelines.
There are two components, one for reading and one for displaying. They can be seen as orthogonal in func-
tionality, since they don’t depend on each other, but used together they simplify the creation of interactive
plots. Here is a description of the basic functionality:

1. PipelineProduct. This class implements easy reading in a Python structure of some of the most
common pipeline products. So far the following methods have been implemented.

• PipelineProduct(). Constructor. The constructor receives a reflex.FitsFile ob-
ject.

• readImage(). This method will read a FITS image. It takes the FITS extension number as
an argument, starting at 0, which is also the default if it is not given. After calling the method,
the image is accessible through the self.image member.

• readSpectrum(). This method will read a FITS spectrum, considering that a 1-D FITS
image. It takes the FITS extension number as an argument, starting at 0, which is also the
default if it is not given. After calling the method, the spectrum is accessible through the
self.flux member. The wavelength range is available through the self.wave mem-
ber. Other additional members are self.start wave, self.end wave, self.crval1,
self.crpix1, self.cdelt1, self.bunit and self.type1.

• readTableXYColumns(). This method will read two columns from a FITS table. It takes
the FITS extension number as first argument fits extension, starting at 0. Two more
arguments xcolname, ycolname specify the names of the columns to read. After calling
the method, the X, Y values are stored in members self.x column, self.y column
columns respectively.

• readLinearWCS(). This method will read a linear WCS solution represented by keywords
CRVAL1, CRPIX1, CDELT1, and CTYPE1. It takes the FITS extension number as an ar-
gument, starting at 0, which is also the default if it is not given. After calling the method.
The solution is stored in members self.crval1, self.crpix1, self.cdelt1, and
self.type1. If the keywords are not present, these members are assigned None.

19

• read2DLinearWCS(). Similar to readLinearWCS() but it also reads keywords CR-
VAL2, CRPIX2, CDELT2, and CTYPE2.

• hdulist(). This method returns a pyfits.HDUList object with all the HDUs present in
the FITS file. It can be used to get quick access to the pyfits object in case none of the above
methods solves the reading of a particular type of data (for instance OIFits format).

2. PipelineDisplay. This module implements easy displaying in a matplotlib environment of
common pipeline products. So far the following classes have been implemented:

• ScatterDisplay. This class allows to plot a scatter graph, X vs Y. The basic usage is as
follows:

scadsp = ScatterDisplay()
scadsp.display(subplot, title, tooltip, x, y)

where x and y have the same length and where subplot is a subplot of a matplolib.Figure
object.
Additionally, the following methods can be used to change the aspect of the plot: setPointSize(self,
size), setLabels(self, xLabel, yLabel), setLimits(self, xMin, xMax,
yMin, yMax). All of them should be called before the display method.

• SpectrumDisplay. This class allows to plot a spectrum. The basic usage is as follows:

specdsp = SpectrumDisplay()
specdsp.display(subplot, title, tooltip, wave, flux)

where wave is the array with the wavelengths and flux contains the fluxes. The argument
errorflux can also be used to plot error bars in the spectrum. Automatic axes limits in the
plot can be set with autolimits=True.
Additionally, the following methods can be used to change the aspect of the plot: setWaveLimits(self,
wave limits), setLabels(self, xLabel, yLabel). All of them should be called
before the display method.
Also, the method overplot(self, subplot, wave, flux, color=’green’) can
be used to overplot a second or more spectra in the same plot. This method is called after the
display and the subplot argument must be the same.

• ImageDisplay. This class allows to a 2D image. The basic usage is as follows:

imadsp = ImageDisplay()
imadsp.display(subplot, title, tooltip, image)

where image is the 2D image to plot. Additionally a bpmimage argument can be added which
will flag in red all the pixels with bpmimage ¿ 1.
Additionally, the methods setXLinearWCSAxis(self, crval1, cdelt1, crpix1),
setYLinearWCSAxis(self, crval2, cdelt2, crpix2) can be used to specify a
different X or/and Y axis transformation than just pixels. It follows WCS convention for linear
transformation.
Also, overplotScatter(self, x, y, marker=’+’, size=1.4, color=’blue’)
can be used to overplot some scattered points over the image. This method is called before
display and the subplot argument must be the same.

20

5.1.3 Basic implementation of an interactive window

We will explain here how to create a basic interactive window using the ingredients explained above:

1. Create a python file with the following import statements:

try:
import numpy
import reflex
from pipeline_product import PipelineProduct
import pipeline_display
import_success = True

except ImportError:
import_success = False
print "Error importing modules pyfits, wx, matplotlib, numpy"

Note that some external modules are needed to be installed (pyfits, wx, matplotlib, numpy)
while others are port of the Reflex Python modules (reflex, pipeline product, pipeline display).

2. Create a class which implements the interface needed by the interactive window framework:

class DataPlotterManager(object):
def setInteractiveParameters(self):

...
def readFitsData(self, fitsFiles):

...
def addSubplots(self, figure):

...
def plotProductsGraphics(self, figure, canvas):

...

3. Complete the function which defines the parameters to be displayed:

def setInteractiveParameters(self):
return [

reflex.RecipeParameter(recipe="recipe"_name, displayName="stropt",
group="group2", description="Desc1"),

reflex.RecipeParameter(recipe="recipe"_name, displayName="boolopt",
group="group1", description="Desc2"),

reflex.RecipeParameter(recipe="recipe"_name, displayName="intopt",
group="group1", description="Desc2"),

]

4. Complete the function which will organise the files received by the python actor:

def readFitsData(self, fitsFiles):
self.frames = dict()
for f in fitsFiles:

self.frames[f.category] = PipelineProduct(f)

21

5. Complete the function which sets up the subplots of the gui:

def addSubplots(self, figure):
self.img_plot = figure.add_subplot(111)

6. Complete the function which finally plots everything:

def plotProductsGraphics(self, figure, canvas):
get the right category file from our dictionary
p = self.frames["RRRECIPE_DOCATG_RESULT"]
p.readImage()
setup the image display
imgdisp = pipeline_display.ImageDisplay()
imgdisp.setLabels(’X’, ’Y’)
tooltip = "This a an image"
imgdisp.display(self.img_plot, "Image title", tooltip, p.image)

7. Write the main of the python script. This part will be basically the same for all the interactive
windows written within Reflex:

#This is the ’main’ function
if __name__ == ’__main__’:

from reflex_interactive_app import PipelineInteractiveApp

Create interactive application
interactive_app = PipelineInteractiveApp()

get inputs from the command line
interactive_app.parse_args()

#Check if import failed or not
if not import_success:

interactive_app.setEnableGUI(False)

#Open the interactive window if enabled
if interactive_app.isGUIEnabled():

#Get the specific functions for this window
dataPlotManager = DataPlotterManager()

interactive_app.setPlotManager(dataPlotManager)
interactive_app.showGUI()

else:
interactive_app.set_continue_mode()

#Print outputs. This is parsed by the Reflex python actor to
#get the results. Do not remove
interactive_app.print_outputs()
sys.exit()

The template pipeline iiinstrumentp contains an example of a basic interactive window script
based on these instructions.

22

5.2 Looping on a recipe execution with an interactive window
5.2.1 Deciding which parameters can be modified

First thing is to decide which are the parameters that the user will see when running the interactive window.
These parameters must have some initial values that are used for the first iteration. These initial values have
to be created as variable in the canvas, like it is shown in figure 12.

Figure 12: Initial values for the first iteration of a looping subworkflow.

The recipe that is going to be used for the looping must also be configured to accept the parameters
values from external actors. For this, open the RecipeExecutor actor configuration and set those recipe
parameters to the special value PORT. This means that the values will be retrieved from the sop port of the
actor. Figure 13 shows an example of this configuration.

Figure 13: Configuration of a RecipeExecuter to accept parameter values from a port.

Finally, the python script has to be configured to show those parameters to the user. This is done in
function setInteractiveParameter. Please refer to the Python framework section for details.

23

5.2.2 General layout for a looping

Figure 14: General layout of a looping subworkflow.

The general layout of a looping subworkflow is shown in figure 14. It contains the following elements:

• Create initial sop. This subworkflow will create a string with the initial list of recipe parameters in
the form recipe:parameter=value, as shown in figure 15.

Figure 15: A string constant that generates the initial values for the recipe parameters.

This string is passed to a SopCreator actor that will format the recipe parameters in the appropiate
way understood by the rest of the actors.

24

• RecipeLooper. This is the main actor that allows the looping. It has three set of ports:

– The initial set of values ports: sof in and sop in. This ports are used only for the first
iteration.

– The looping set of values: sof loop, sop loop and iteration complete. The
sof loop, sop loop are the values that will be used in all iterations but the first one.
The port iteration complete indicates whether the loop has ended. If true then the
RecipeLooper will stop emitting tokens.

– The output ports sof out and sop out. These are the outputs that will be used by the
recipe. Their values are created from the initial set of values ports in the first iteration or from
the looping set of values in the rest of the iterations.

• The recipe. Do not forget to connect the sop out and sof out ports of the RecipeLooper to the
sof in and sop in ports of the RecipeExecuter.

• The Python actor. This is the interactive actor that will pop up the window with the displays and
parameter to be changed. It has to be connected to the rest of the actors in a specific way:

– in sop must be the output the recipe executer sop out port.

– in sof must be the output the recipe executer sof out port.

– in sof rec orig should be the input frames of the recipe, which is the sof out port of the
RecipeLooper.

– enable must contain true or false to indicate that the interactivity is enabled.

– out sop loop, out sof loop and iteration completemust be connected to the
equivalent port of the RecipeLooper.

– out sof is the final output frames of the whole loop.

– set enable could be connected to a VariableSetter actor that controls the interactivity.

The template workflow contains one example that can be used as a starting point to work on a looping
subworkflow.

6 Most useful tips

6.1 Supported directors
The recommended director is the DDF director. Other directors could be used, but problems have been
found with the Parallel director. These problems might be solved in the future.

One interesting behaviour of the DDF director is that a composite actor doesn’t necessarily trigger all
the actors in it before firing the next actor in the top level. The only way to assure that this happens is
checking option runUntilDeadlockInOneIteration is checked.

6.2 Saving Workflows
Saving a workflow uses by default the .kar format. However this is highly inconvenient for a workflow
developer, since this format cannot be easily modified. As explained in section 7, there are tools to integrate
a workflow in a pipeline that need to update the workflow. Therefore it is highly recommended to export
the workflow as XML using the File menu.

25

6.3 How to write workflows which do not use purposes
From the description above it is clear that the Purposes are a crucial feature in the design of the workflows.
However, if one is not interested in them and just want to process with a given recipe all the files which
come from a given relation, it is possible to do it. This is not, however, the recommended way to create
workflows.

Take into account that the behaviour might not be what you expect. If for instance a given calibration
set has been associated several times in the association tree, you would get duplicated files into your recipe
execution. One possible solution for that is to associate calibration files in the OCA rules only in the action
which has REFLEX.TARGET = T.

6.3.1 Introducing a purpose-less recipe in the middle of a workflow

There are cases where one is interested in introducing a recipe in the middle of two already existing recipes.
In order to work properly with Purposes, that change has to be reflected in the OCA rule, possible through
an intermediate action. However this might not work, if the new recipe does not have raw frames as an
input (this limitation of OCA rules might disappear in the future).

The option is to configure the RecipeExecuter with the option Do nothing in the parameter File Purpose
Processing, like it is shown in figure 16.

Figure 16: Configuration of a RecipeExecuter to act as a pass-through recipe.

6.4 Incomplete Datasets
Sometimes some of the datasets shown in the DataSetChooser are greyed out. Hovering the mouse over
the dataset, or clicking on Inspect Highlighted will show what the problem is. This happens when
the OCA rules contain mandatory associations that cannot be fullfilled. The way to make an association
mandatory or not is changing the minRet keyword to 0 or greater than 0.

6.5 Browsing actor documentation
The most convenient way to read the documentation of an actor is to right click on it Documentation
-> Display.

6.6 When to use the sof opt port in the SofCombiner
The sof opt port in the SofCombiner is used when there are some optional inputs. As explained in the
Reflex User Manual, the SofCombiner will use all the common purposes found in the sof in port to create
the list of output purposes. The important thing here is to realise that the inputs in sof opt port are not
considered to found the common purposes.

An example on when to use the sof opt is some optional step, for instance a dark recipe that needs extra
calibrations, for instance a master bias. In this example, we assume that the dark recipe should be triggered

26

only if dark frames are present. If we connect to the sof in the potential dark frames and the master bias, we
might found the situation where there are no dark frames and the purposes of the master bias are used by
the SofCombiner to determine the output purposes, which is not what we want. If we place the master bias
(and other potential calibrations) in the sof opt port, the SofCombiner will determine the common purposes
based only on the presence of darks.

6.7 Reflex and the CalSelector
CalSelector is a tool to provide all the needed raw frames used to reduce a given type of data. In order
to accomplish this, it uses OCA rules that define the calibration cascade. ESO sanctioned workflows use
a similar set of OCA rules, allowing the workflow to be fed with the data retrieved using CalSelector.
However, it has to be kept in mind that this is achieved only if the OCA rules do actually provide the same
calibration cascade.

6.8 Requirements for input files
The input files of a workflow have to comply with some minimun requirements. The following keywords
have to be found in the main header of the FITS file: ESO PRO CATG, INSTRUME and DATAMD5.

7 Deploying and delivering a workflow
If a workflow has to be delivered together with the pipeline, the recommended way is to incorporate it in
the usual autotools setup of it. In this way many of the paths that appear in the workflow are automatically
filled in by the autotools mechanism.

The procedure that we describe here will install a number of files when running the usual make
install command:

• $prefix/share/reflex/workflows/pipe-$vers. This is the directory where workflows
will be installed, where pipe−vers is the pipeline name and version. This place is where a user
should look for a workflow

• $prefix/share/esopipes/$pipe-$vers/reflex. This is the directory where the extra
files needed by the workflow (OCA rules, python scripts. . .) are installed.

The template pipeline implements this behaviour. We list here the steps to do:

• Place all your Reflex related files under reflex directory in the pipeline source tree.

• Edit file acinclude.m4 in the pipeline source directory and under the function [PIPE SET PATHS]
add the following:

if test -z "$wkfextradir"; then
wkfextradir=’${datadir}/esopipes/${PACKAGE}-${VERSION}/reflex’

fi

if test -z "$wkfcopydir"; then
wkfcopydir=’${datadir}/reflex/workflows/${PACKAGE}-${VERSION}’

fi

27

AC_SUBST(wkfextradir)
AC_SUBST(wkfcopydir)

• Edit file configure.ac and in the AC CONFIG FILES clause add the workflow:

reflex/Instrument.xml)

• Create a reflex/Makefile.am file with information about he workflow files, OCA rules and
Python scripts. For example, for VIMOS, which contain two workflows but not Python scripts would
be like this:

AUTOMAKE_OPTIONS = foreign
WORKFLOWS = VimosIfu.xml VimosMos.xml
OCAWKF = vimos_ifu_wkf.oca vimos_ifu_wkf.dvd.oca vimos_mos_wkf.oca
PYTHONWKF =
wkfextra_DATA = $(WORKFLOWS) $(OCAWKF) $(PYTHONWKF)
EXTRA_DIST = $(WORKFLOWS).in $(OCAWKF) $(PYTHONWKF)
wkfcopy_DATA = $(WORKFLOWS)

• Make sure that in the top level Makefile.am the reflex subdirectory is in the SUBDIRS vari-
able.

• The workflow should actually be named Instrument.xml.in (i. e., the name put in file configure.ac
appended with .in). The paths to the OCA rule has to be set to @prefix@/share/esopipes/pipe-@VERSION@/reflex/instrument.oca
where pipe is the name of the pipeline. Searching for string OCA File in the .xml will help.

• Also the paths to the python scripts should be updated accordingly. Search for string Python
script and substitute the path with @prefix@/share/esopipes/pipe-@VERSION@/reflex/script.py.

• It is also convenient to set the title of the workflow to something descriptive plus the version of the
pipeline. To do that, put the placeholder @VERSION@ instead of the version.

• Also convenient is to substitute the data paths with the placeholder ROOT DATA PATH TO REPLACE.
This is not substituted by autotools, but the install reflex script will do it. Also the calibra-
tion directory should be CALIB DATA PATH TO REPLACE/pipe-@VERSION@.

The template pipeline/workflow contains a script called reflex/parse wkf for cvs that will al-
low you to automatically parse the workflow file saved after an execution and prepare it for archiving in the
SCM. Most likely the script should be edited to suit the particular needs and the workflow in particular.

8 Guidelines for VLT instruments workflows
Official workflows developed by ESO and delivered as part of the official pipeline shall follow a number
of guidelines regarding graphical layout, standard components and user interface. Here we list these guide-
lines, which are also recommended for any user created workflow. All these guidelines are implemented in
the template workflow, which can be used as a reference.

• The top level of a workflow should represent an overview of the whole data reduction flow, with some
annotations and the main parameters to setup the workflow. Actors should be grouped in sections.
Each section represents a subjects relevant to the astronomer. The sections should be be labelled

28

Figure 17: Initialise composite actor.

accordingly. The first and last section should be Data Organisation and Output Organisation. Other
sections describe top level processing steps, such as Master Calibrations, Preprocessing or Image
Combination.

• Workflow initialisation. Should be placed on the left side of the main canvas. These actors prepare
the rest of the workflow to start with the data reduction. The workflow shall start with a composite
actor that deletes all the directories and prepares the input for the DataOrganiser. It consists of an
External Execution actor that receives a shell command to remove the BOOKKEEPING DIR
and TMP PRODUCTS DIR directories. For that this actor has to be configured with parameter command
= sh and should have in the input port a string like:

if ["x$EraseDirs" = "xtrue"]; then echo "Deleting files"; rm -rf
$BOOKKEEPING_DIR/*; rm -rf $LOGS_DIR/*; rm -rf $TMP_PRODUCTS_DIR/* ;
else echo "Will not delete files"; fi

The firingCountLimit parameter should be set to 1. The output of this actor is used to trig-
ger a Time Stamp actor which is used as an input to a Variable Setter actor that sets
GLOBAL TIMESTAMP. This in turn will trigger two String Constant actors that use the val-
ues of the global variables RAWDATA DIR and CALIB DATA DIR to create an array using the
Elements to Array actor. Remember to set parameter firingCountLimit to 1 for the
String Constant actors.

It is important to add a DDF Directorwith parameter runUntilDeadlockInOneIteration
checked.

Figure 17 shows the implementation of this initialisation composite actor.

• The DataSetChooser should be placed in a subworkflow as shown in figure 18. The variable that
has to be updated is N SELECTED DATASETS. It is important to add a DDF Director with pa-
rameter runUntilDeadlockInOneIteration checked, otherwise it is not warrantied that the
next actors would be triggered without the variable properly set. This variable is used for displaying
purposes only.

29

Figure 18: Data selection actor.

• After the DataSetChooser, a composite actor Initialise Current Dataset will be in
charge of updating some variables for visualisation purposes. It is also the responsible of creating the
final directory where the processing of this dataset will be stored. The implementation is not difficult,
but actually the best way to do it is follow the template workflow example. Figure 19 shows the final
outcome of this.

Take into account that the dataset port of this composite actor will go to the FitsRouter
actor in the top level canvas. The current dataset port will be connected with the end of
the workflow, the CloseDataset actor (see below).

Also in the actor it is important to add a DDF Directorwith parameter runUntilDeadlockInOneIteration
checked.

• Closing Dataset. This composite actor shall be places after the reduction cascade, the DataFilter
and the ProductRenamer. It will display a window at the end of the reduction of this dataset show-
ing the directory where the data has been successfully saved. Figure 20 shows how to implement this
composite actor. The template workflow can also be used as a reference.

• The actors which include interactive steps shall have a distinctive orange background around them.
You can create it using the Rectangle actor.

• Direction of Data Flow. The overall data flow in any workflow should be either from left to right,
or from top to bottom. Actors and subworkflows should be placed along this overall direction of the
workflow in such a manner that their position reflects the logical order of the flow.

• The connections between actors should also be grouped and labelled. Similar data should flow in
parallel connections. It should be easy to trace back each input to an actor to its origin.

• Logical Elements. The implementation of relative easy logical decisions sometimes require fairly
complex constructs in Kepler. Such constructs should be hidden in a subworkflow. An example of
this is the Flat Combiner in the official UVES workflow for spectroscopy.

30

Figure 19: Initialise current dataset actor.

Figure 20: Closing Dataset actor.

• To draw the attention of the user to the most important steps (e.g. interactive actors), actors should
be marked with coloured boxes. The color scheme should be explained on the workflow

• Use a global RecipeFailureMode variable. The individual RecipeExecuters can be con-

31

figured to use the value of a variable in the Recipe Failure Mode parameter.

• Use global non-interactive mode. It is useful to configure the workflows in such a way that all the
non-interactivity is disabled. To do that, some global variables are defined in the main canvas: $Glob-
alPlotInteractivity should be used to activate/deactivate the interactivity for the python windows that
are enabled by default. The EnableInteractivity parameter in those python actors is set to $Glob-
alPlotInteractivity. $ProvenanceExplorerEnabled should be used to enable/disable the provenance
explorer actor window. The mode parameter of this actor should be set to this variable. $DataSelec-
tionMethod should be used to set the bahaviour of the data selection actor. The default value should
be Interactive. The parameter mode of this actor should be set to this variable.

A Porting from Reflex 1.x to 2.0
Here we have summarised the important points to take into account when porting a workflow developed
with Reflex 1.x to Reflex 2.0.

A.1 Structural changes
• Place a SofCombiner before composite actors (where before there was simply a RecipeExecutor. This

will ensure that only common purposes to all the channels go through.

• Change the EmptySof string. Use the SofCreator with an empty string as an input - Use the new
IsSofEmpty actor

• Place PurposeSerialized/DeSerialized before each recipe.

• Set StripLast Purpose in all the recipes as a general rule.

• Change all the ports editing manually the XML.

• Change the ProductRenamer, since the code is new and the old one is directly embedded in the
workflow.

• Set the widths of all the channels which go to the SofSplitter to Auto.

A.2 Design changes
• In the FitsRouter, if two (or more) DO.CATG have several purposes, one has to separate them in

different ports, otherwise the Purpose matching of the SOFCombiner won’t work.

• In the OCA rules, if recipe1 generates 2 virtual products, and recipe2 needs them, only one virt
product can be associated. If you associate both, then there is a duplication of files.

• Do not connect the output of two recipes to the same SofCombiner unless one is really sure that they
share exactly the same purposes. Otherwise the non-matching purposes will be lost.

• Set the Variable Setters not to be delayed. This is not specific to Reflex 2.0, it is more a guideline.

• For massive reduction of data. Put everything to Continue ’Failure mode’ and non-interactivity. Run
everything. Then put back to Ask and enable interactivity, to review the problems.

32

A.3 Testing
• Check that the executed purposes match the action tree (presented by the Data Set Chooser), for

instance:

grep -i action reflex_book_keeping/Uves/uves_cal_mbias_1/*/*xml | uniq

• For each recipe, make sure that all the input SOFs correspond to all the presences of that action/recipe
in the action tree

B Porting from Reflex 2.0 to 2.2
Here we have summarised the important points to take into account when porting a workflow developed
with Reflex 2.0 to Reflex 2.2.

B.1 General
• Reinstantiate the Product Renamer. It can happen that the workflow won’t load at the beginning. Skip

the error and reinstantiate it.

B.2 Python Framework
• PipelineInteractiveApp class:

– Change isEnabled() to isGUIEnabled()

– Change setEnable() to setEnableGUI()

– Change showWindow() to changeGUI()

– readFitsData() receives now a list of FitsFiles

– Method passProductsTrough() has been changed to passProductsThrough()

• PipelineInteractiveApp class:

– Change isEnabled() to isGUIEnabled()

– Change setEnable() to setEnableGUI()

– Change showWindow() to changeGUI()

– readFitsData() receives now a list of FitsFiles

– Method passProductsTrough() has been changed to passProductsThrough()

• PipelineProduct class:

– The constructor now receives a FitsFile object

• RecipeParameter class:

– Name changed to RecipeParameter from RecipeParam.

– The constructor is now:

def __init__(self, recipe="", name="",longName="", group="", description="", value=""):

33

B.3 Jython scripts
• XMLTools doesn’t exist anymore. Use JSONTools instead like this:

#Read input file names
input = self.sof_in.get(0)
string = input.stringValue()
obj = JSONTools.fromJSON(string)

...........
#Broadcast outputs
self.sof_out.broadcast(StringToken(str(output)))

B.4 Recipe Executer
• Change Input Files Tag –¿ Input Files Category (Better in the XML file directly)

• Change Output Files Tag –¿ Output Files Category (Better in the XML file directly)

C Porting from Reflex 2.2 to 2.4
Here we have summarised the important points to take into account when porting a workflow developed
with Reflex 2.2 to Reflex 2.4.

C.1 General
• Reinstantiate the Product Renamer. It can happen that the workflow won’t load at the beginning. Skip

the error and reinstantiate it.

C.2 Python Framework
• PipelineInteractiveApp class:

– There is a new parameter called –set init sop. This parameter is used to output in a port the
recipe parameters to be used in the future as initial ones. There is a check box in the gui that
expose this functionality. The idea is that afterwards, there is another python actor that would
set the proper INIT variables (having as many outputs as recipe parameters and putting a Vari-
ableSetter after). However this whole thing is disabled by default. If you want to enable for
your interactive application, create the PipelineInteractiveApp instance like this: PipelineInter-
activeApp(enable init sop = True).

– passProductsThrough() is deprecated and will be removed in the future. Use set continue mode()
instead.

• RecipeParameter class:

– The constructor has been changed to

__init__(self, recipe="", displayName="", name="", group="", description="", value="").

This means that the previous variable called ”name” now has changed to ”displayName”, and
the old ”longName” has been changed to simply ”name”.

34

C.3 Python Actor
The conversion mode parameters are deprecated. Use RecipeParameters or SetOfFiles directly as the
output of a port, it will be automatically converted to the proper JSON format.

D Porting from Reflex 2.4 to 2.5

D.1 ProductRenamer
The ProductRenamer actor has to be reinstantiated in order to add support for the new database used in the
bookkeeping. The new version of this actor uses variable END PRODUCTS SUBDIR. Some workflows
used variable END PRODUCT SUBDIR, and in this case it will have to be changed.

D.2 New Provenance actor
The Provenance has to be placed at the end of the workflow, so it pops up everytime a new dataset is created.
The template workflow has a subworkflow at the end which implements this.

Acknowledgements
The Reflex team in alphabetical order consists of Pascal Ballester, Daniel Bramich, Vincenzo Forchı̀,
Wolfram Freudling, César Enrique Garcı́a, Maurice Klein Gebbinck, Andrea Modigliani, Sabine Möhler &
Martino Romaniello.

References
Forchı̀ V., Reflex User Manual, VLT-MAN-ESO-19000-5037, Issue 0.7

Horne K., 1986, PASP, 98, 609

Kaufer A. et al., UV-Visual Echelle Spectrograph User Manual, VLT-MAN-ESO-13200-1825, Issue 86

Larsen J.M., Modigliani A. & Bramich D.M., UVES Pipeline User Manual, VLT-MAN-ESO-19500-2965,
Issue 14.0

35

