
European Organisation for Astronomical Research in the Southern Hemisphere

Programme: ELT

Project/WP: Instrumentation Framework

ELT ICS Framework - Transfer Document

Document Number: ESO-363356

Document Version: 4

Document Type: Manual (MAN)

Released on: 2024-12-11

Document Classification: Public

Owner: Kiekebusch, Mario

Validated by PM: Kornweibel, Nick

Validated by SE: González Herrera, Juan Carlos

Validated by PE: Biancat Marchet, Fabio

Approved by PGM: Tamai, Roberto

Name

European Southern Observatory
Headquarters Garching

Karl-Schwarzschild-Straße 2
85748 Garching bei München

www.eso.org

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 1 of 34

Release

This document corresponds to ifw-doc1 v2024.0.1.

Authors

Name Affiliation

Kiekebusch, Mario ESO/DOE/CSE

Change Record from Previous Version

Affected Section(s) Changes / Reason / Remarks

See CRE ET-1517

All All sections updated for IFW24

1https://gitlab.eso.org/ifw/ifw-doc

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-doc

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 2 of 34

Table of Contents

1 Introduction 3

2 Release Notes 6

3 Installation 13

4 Getting Started 22

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 3 of 34

1 Introduction

This document serves as a general guide for the ICS Framework (IFW) version 2024, aiming to provide
an updated ELT software stack for instrument developers. The framework is intended as a toolkit to
assist instrument developers in implementing their control systems. The IFW has been validated with
the following ELT packages:

• ELT Development Environment version 5.2.0 (Fedora Distribution)

• CII MAL 4.2.0

• CII Services 4.3.1

Note: From version 2024 onward, IFW changed the versioning scheme from a correlative number to
a version based on the year.

1.1 Scope

This document is the transfer document for the ELT ICS Framework version 2024. The intended
audience are ELT users, consortia developers or software quality assurance engineers.

1.2 Acronyms

DB Database
CCF Camera Control Framework
CCS Central Control System
DAQ Data Acquisition
DDT Data Display Tool
ELT Extremely Large Telescope
ETR Extensible Test Runner
FCF Function Control Framework
FCS Function Control System
GUI Graphical User Interface
HLCC High Level Coordination and Control
ICS Instrument Control System
IFW ICS Framework
ODP Online Data Processing
OLDB Online DB
OTTO The new observing tool: Otto Tackles Telescope Observations
PLC Programming Logical Controller
RAD Rapid Application Development
SEQ Sequencer
SUP Supervisor

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 4 of 34

1.3 Overview

The framework components included in version 2024 are listed in the release notes Summary .

Our software is divided in several independent WAF projects, see the picture below.

Fig. 1: IFW GIT packages and their main dependencies.

Note: The ifw-ll stores mainly PLC Visual Studio projects.

Warning: Disclaimer:

ESO does not warrant that the functions contained in version 2024 of the ICS Framework will meet
all requirements or that the operation of their components and libraries will be flawless.

ESO does not ensure that solutions included in version 2024 are not subject to changes in future
releases.

While every precaution has been taken in the development of the ICS Framework software and in
the preparation of the documentation, ESO assumes no responsibility for errors or omissions, or
for damage resulting from the use of the software or of the information contained in the documen-
tation.

Note: The ICS Framework is distributed outside ESO for the development of applications related

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 5 of 34

to the ELT Project and ruled by the “General Conditions of ESO Contracts”. Any other use is not
permitted without prior authorization from ESO.

The rights of third party products, whose software is for convenience included in the development
environment, are ruled by their copyright notice included in their software.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 6 of 34

2 Release Notes

2.1 Summary

The official release 2024 of the IFW includes the following products:

ICS Framework Product Repository/Waf project Product version RPM version
Application Framework rad 5.5.0 elt-rad-5.5.0
Test Runner Framework etr 3.1.3 elt-etr-3.1.3
Sequencer seq 4.2.0 elt-seq-4.2.0
Data Display Tool ddt 1.1.0 elt-ddt-1.1.0
Camera Control Framework ifw-ccf 4.0.0 elt-ifw-ccf-4.0.0
Observation Coordination
Framework (daq)

ifw-daq 3.1.0 elt-ifw-daq-3.1.0

Observation Coordination
Framework (sup)

ifw-sup 4.0.0 elt-ifw-sup-4.0.0

Widget Library (wdglib) ifw-wdglib 0.2.0 elt-ifw-wdglib-
0.2.0

RTMS Tools ifw-rtmstools 2.0.0 elt-ifw-rtmstools-
2.0.0

Calibration Framework
(calob)

ifw-calob 0.1.3 elt-ifw-calob-
0.1.3

Function Control Frame-
work

ifw-fcf 6.0.0 elt-ifw-fcf-6.0.0

Online Data Processing ifw-odp 4.0.1 elt-ifw-odp-4.0.1
Miscellaneous Core Li-
braries

ifw-core 5.0.1 elt-ifw-core-5.0.1

The links to the components release in Gitlab are :

• ifw-core release1

• ifw-rtmstools release2

• ifw-wdglib release3

• ifw-calob release4

• ifw-fcf release5

• ifw-sup release6

1 https://gitlab.eso.org/ifw/ifw-core/-/releases
2 https://gitlab.eso.org/ifw/ifw-rtmstools/-/releases
3 https://gitlab.eso.org/ifw/ifw-wdglib/-/releases
4 https://gitlab.eso.org/ifw/calob/-/releases
5 https://gitlab.eso.org/ifw/ifw-fcf/-/releases
6 https://gitlab.eso.org/ifw/ifw-sup/-/releases

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-core/-/releases
https://gitlab.eso.org/ifw/ifw-rtmstools/-/releases
https://gitlab.eso.org/ifw/ifw-wdglib/-/releases
https://gitlab.eso.org/ifw/calob/-/releases
https://gitlab.eso.org/ifw/ifw-fcf/-/releases
https://gitlab.eso.org/ifw/ifw-sup/-/releases

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 7 of 34

• ifw-daq release7

• ifw-odp release8

• ifw-ccf release9

• ifw-calob release10

• ifw-ll release (fcf controllers)11

• rad release12

• etr release13

• seq release14

Note: Repository for Binaries:

We have moved our binaries to GIT Large File Storage (LFS). This includes but is not limited to PLC
compiled libraries, PLC modules and other utilities (binaries for Windows).

What is the scope of this version?

Version 2024 is the official release of the IFW under Fedora distribution (ELT DevEnv 5.2.0). This
release tries to keep updated developers with the latest developments the ELT software stack.

What is new in this release?

• IFW adapted to the latest ELT Software Stack (ELT DevEnv + ECOS)

• New versioning scheme based on the year rather than on a correlative number.

• Separation of MAL interfaces in dedicated Git repositories, e.g. ifw-fcfif for FCF interfaces.

• A new version of RTMS tools based on llnetio library is provided. The old version is still available
but it will be removed in the future.

• A first version of the Cryogenic HMI libraries is provided.

• Some changes in the Template Instrument, such as:

– Nomad files extension from .nomad to .hcl to follow new convention in the ELT project.
7 https://gitlab.eso.org/ifw/ifw-daq/-/releases
8 https://gitlab.eso.org/ifw/ifw-odp/-/releases
9 https://gitlab.eso.org/ifw/ifw-ccf/-/releases

10 https://gitlab.eso.org/ifw/ifw-calob/-/releases
11 https://gitlab.eso.org/ifw/ifw-ll/-/releases
12 https://gitlab.eso.org/ifw/rad/-/releases
13 https://gitlab.eso.org/ifw/etr/-/releases
14 https://gitlab.eso.org/ifw/seq/-/releases

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-daq/-/releases
https://gitlab.eso.org/ifw/ifw-odp/-/releases
https://gitlab.eso.org/ifw/ifw-ccf/-/releases
https://gitlab.eso.org/ifw/ifw-calob/-/releases
https://gitlab.eso.org/ifw/ifw-ll/-/releases
https://gitlab.eso.org/ifw/rad/-/releases
https://gitlab.eso.org/ifw/etr/-/releases
https://gitlab.eso.org/ifw/seq/-/releases

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 8 of 34

– Nomad files modified to support parameters (nomad variables). This allowed to remove
hardcoded paths in template files.

– Nomad files modified to limit reesheduling of jobs.

– Simplified a bit the data acquisition sequence for templates.

• Some improvements in DDT, such as:

– Final delivery from CGI merged into trunk and updated to Fedora 38

– Implemented prototype of a multi-viewer display in Python.

– Implemented prototype of signal visualization panel based on the transmission of 1D
arrays (Python).

– Converted DDT User Manual from Word to Sphinx/RsT

– Implemented a new dialog to monitor performance of the broker. The dialog shows: La-
tency, sample count, number of subscriber, number of publishers, last sample receiver
among other attributes.

• Some improvements in the Sequencer, such as:

– seqtool gui modified to accept a sequence as command line parameter.

– Added widget to report server execution status.

– Added initial support for Instrument Package (IP)

– Minor improvements in the GUI to display template parameters.

• Some improvements in FCF such as:

– Implemented generic multi-axis device.

– Externalized JSON schema files for client interfaces.

– Implemented Cabinet Cooling Controller (CCC) PLC library.

– Implemented a sensor widget with plotting capabilities.

– Extended device simulators to support different PLC instances in the same project.

• Some improvements in CCF, such as:

– Implementation of telemetry.

– Implementation of reconnection capabilities for ENVision protocol. This should improve
reliability under poor network conditions or unexpected disconnections.

– Added report of skipped frames.

For a more detailed list of changes, please refer to the individual component release notes.

Some of the third party products and middleware solutions used by the ICS Framework are:

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 9 of 34

• Qt Framework15 for developing GUIs.

• ZeroMQ16 for implementing request/reply and publish/subscribe message patterns.

• Google Proto Buffers17 for serialization/deserialization.

• Open62541 OPC-UA toolkit18 for communication to the PLCs

• Google Tests and Mockup libraries19 for unit tests.

• Robot Framework20 for integration tests.

• Nomad/Consul21 for software deployment.

• JSON format22 for setup serialization. The Development Environment includes libraries in C++
(nlohmann) and Python (json) to work with JSON format.

2.2 Development Environment

• The Development Environment has been upgraded to Fedora 38 v5.2.0

For a detail release notes of the Development Environment, please visit here23

2.3 Instrument Specifics Packages

To facilitate the development and integration, the IFW is now delivered as a set of additional RPMs to
be installed on top of the Development Environment. This saves developers from retrieving, building
and installing the IFW by their own. The additional RPMs are not part of the Development Environment
since this is specific for instruments and therefore its installation shall be done on demand.

2.4 Components

Rapid Application Development (RAD)

The is an application framework that enables the development of event-driven applications for the ELT,
based on call-backs or state machines.

For details, see the rad user manual.
15 https://www.qt.io/
16 http://zeromq.org/
17 https://developers.google.com/protocol-buffers/
18 https://www.open62541.org/
19 https://github.com/abseil/googletest
20 http://robotframework.org/
21 https://www.nomadproject.io/
22 https://www.json.org/json-en.html
23 https://ftp.eso.org/pub/elt/repos/docs/RELEASE_NOTES

Document Classification: Public

https://www.qt.io/
http://zeromq.org/
https://developers.google.com/protocol-buffers/
https://www.open62541.org/
https://github.com/abseil/googletest
http://robotframework.org/
https://www.nomadproject.io/
https://www.json.org/json-en.html
https://ftp.eso.org/pub/elt/repos/docs/RELEASE_NOTES

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 10 of 34

Extensible Test Runner (ETR)

The component etr is included in the release to support running integration tests. The following
features are available:

• Run Robot Framework tests with the robot plugin.

• Request test resources with the resources plugin.

• Modify template files with Jinja2 template engine and the jinja2 plugin.

• Deploy software with Nomad with the nomad plugin (experimental support).

For details see the etr user manual.

Sequencer

The component seq is included in the release to support the implementation of engineering scripts.
The following features are available:

• Sequencer Engine

• Sequencer API

• Sequencer CLI

• Sequencer GUI (experimental)

For details see the seq user manual.

Function Control Framework (FCF)

Device Manager

Supported Devices

• Shutters

– Configuration parameters: initial state (open, closed), timeout for HW operations, signal
logic, and more.

– Close/Open control.

• Lamps

– Configuration parameters: initial state (On, Off), timeout for HW operations, signal logic,
and more.

– On/Off control.

– Intensity control.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 11 of 34

– Automatic switch off after a timeout.

• Motors

– Configuration parameters: maximum velocity, axis type, initialisation sequence, timeouts,
SW limits, backlash compensation, usage of brakes, named positions, and more.

– Move in absolute encoders and user units.

– Move using named positions.

– Move in relative encoders.

– Move in speed.

• IOdevs

– Monitor a list of engineering variables.

– Values are not continuously read from the LCS but updated on data change.

– Write digital and analog signals.

• Derotators

– Five operation modes: engineering, stationary, sky, elevation and user defined.

– Tracking computation is based on slalib running in the PLC.

• ADCs

– Two operation modes: off and automatic.

– Multi-axis support.

– Tracking computation is based on slalib running in the PLC.

• Piezos

– Two operation modes: position and automatic.

– Supports up to three axes.

– Move in bits and userunits.

• Actuators

– Generic On/Off control.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 12 of 34

Device Simulators

FCF provides a set of simulators to all supported devices. The simulators have been implemented in
Python based on the FreeOpcUa toolkit24 and the “rad/scxml4py” engine.

Engineering Graphical Interfaces

The Device Manager includes two graphical applications, see fcf_gui_ref.

Warning: These two applications shall be considered just as a prototype implementations. Their
design (color scheme, layout and in general their look&feel) may change in the future according to
the development of ELT widget libraries and standards for graphical interfaces.

• FCF GUI (fcfGui): Engineering interface for the control and monitoring of Device Manager and
devices under its control.

• Motor GUI (fcfMotGui): Engineering interface for the control and monitoring of a single motor
device, implemented in Python.

PLC Libraries

PLC Libraries are now available in GIT and can be retrieved from the ifw-resource repository25. Note
that this repository uses the LFS (Large File Storage) Git extension. All libraries are located in the
same directory. This simplifies the installation of the libraries in the TwinCAT IDE.

The PLC source code can be retrieved from: https://gitlab.eso.org/ifw/ifw-ll/-/releases/v6.0.0

All libraries have been created with TwinCAT 3.1.4024.35.

Required TwinCAT 3.1 build is 4024.35 or higher.

Required OPC UA Server version is 3.3.16.0 or higher.

2.5 Known Problems

1. Errors running GUIs for the first time after installation:

Errors may occur when running the GUIs for the first time after installation. These errors are due to
missing OLDB attributes dynamically created by the applications.

24 https://github.com/FreeOpcUa/python-opcua
25 https://gitlab.eso.org/ifw/ifw-resource

Document Classification: Public

https://github.com/FreeOpcUa/python-opcua
https://gitlab.eso.org/ifw/ifw-resource
https://gitlab.eso.org/ifw/ifw-ll/-/releases/v6.0.0

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 13 of 34

3 Installation

3.1 Machine Preparation

Install a real or virtual machine with Fedora, ELT Dev packages and ELT Common Software (ECOS,
including CII) according to the Linux Installation Document26

ESO recommends setting the option ELT_STABLE_STREAM=no as the default configuration before
installing DevEnv. This setting is intended to disable the upgrade of packages, ensuring better config-
uration control. The default configuration can be changed at any time if needed.

3.2 Requirements

For this version, the IFW requires a WS with at least 8Gb of RAM memory to compile.

3.3 ELT Development Environment (DevEnv)

Before installing the IFW it is needed to setup the environment. A very good starting point is this
document27

Note: The version 5.2.0 of ELT Development Environment (Fedora) shall be used with version 2024
of ICS Framework (IFW).

3.4 ELT CII Services

The IFW requires the proper installation and configuration of CII services on the machine where it is
intended to be deployed. You can just execute the following script as root (see below) or follow the
post installation procedure documented here28

The IFW team recommends to use the “ownserver” role for the development machine where the IFW
is going to be installed.

$ /elt/ciisrv/postinstall/cii-postinstall role_ownserver
$ cii-services start all

For more information about CII post installation and other CII related topics, you can visit the ESO
knowledge base page29

26 https://ftp.eso.org/pub/elt/repos/docs/devenv5/install/html/index.html
27 https://ftp.eso.org/pub/elt/repos/docs/devenv5/developing-software-guide/html/index.html
28 https://www.eso.org/~eltmgr/CII/v2024-03/4.3.0/manuals/html/docs/services.html#cii-postinstall
29 https://gitlab.eso.org/ecos/eltsw-docs/-/wikis/KnowledgeBase/CII

Document Classification: Public

https://ftp.eso.org/pub/elt/repos/docs/devenv5/install/html/index.html
https://ftp.eso.org/pub/elt/repos/docs/devenv5/developing-software-guide/html/index.html
https://www.eso.org/~eltmgr/CII/v2024-03/4.3.0/manuals/html/docs/services.html#cii-postinstall
https://gitlab.eso.org/ecos/eltsw-docs/-/wikis/KnowledgeBase/CII
https://gitlab.eso.org/ecos/eltsw-docs/-/wikis/KnowledgeBase/CII

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 14 of 34

3.5 Operational User

It is recommended to install and run the instrument software under the eltdev account to simplify
integration with Nomad/Consul that comes configured to run under eltdev in DevEnv version 5.2.0.

Note: Since version 5.2.0 of ELT Development Environment (Fedora), nomad runs as root.

It is possible to start/shutdown the software from another user but it requires setting properly the
environment variables for the account where you want to run your software.

3.6 Environment Variables

IFW is relying on the following environment variables:

• DATAROOT: Directory on the host machine in which Output Data Products will be generated.

• CFGPATH: The “CFGPATH” environment variable, is a colon separated list of paths, pointing to
possible Resource Directories in which resource data of different kinds are located.

• INTROOT: In this release, the example configuration, libraries, header files and binaries, are
installed into the location pointed by “INTROOT”. It is used as “PREFIX” for waf installation
location.

3.7 Getting Started

1. Checking CII services

Check that CII services are properly running:

$ cii-services info

The output of the above command shall be similar to this:

CII Services Tool (20240220)
...
function
Log |functional:yes
OLDB DP |functional:yes
OLDB CE |functional:yes
IntCfg |functional:yes

If they are not properly running you can execute (as root):

$ cii-services start all

2. Install IFW components

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 15 of 34

Starting from IFW version 4, all IFW components are available as RPMs and can be installed using
dnf install as root.

$ dnf -y install elt-ifw

This command will install all ifw RPMs and the components seq, ddt RPMs :

• elt-ifw-2024.07

• elt-ifw-if-devel-2024.07

• elt-ifw-core-5.0.1

• elt-ifw-supif-1.0.0

• elt-ifw-wdglib-0.2.0

• elt-ifw-rtmstools-2.0.0

• elt-ifw-odp-4.0.1

• elt-ifw-daqif-1.0.0

• elt-ifw-fcfif-1.0.0

• elt-ifw-fcf-6.0.0

• elt-ifw-fcf-devel-6.0.0

• elt-ifw-fcfif-devel-1.0.0

• elt-ifw-daq-3.1.0

• elt-ifw-daq-devel-3.1.0

• elt-ifw-daqif-devel-1.0.0

• elt-ifw-ccf-4.0.0

• elt-ifw-ccf-devel-4.0.0

• elt-ifw-odp-devel-4.0.1

• elt-ifw-rtmstools-devel-2.0.0

• elt-ifw-wdglib-devel-0.2.0

• elt-ifw-sup-4.0.0

• elt-ifw-sup-devel-4.0.0

• elt-ifw-supif-devel-1.0.0

• elt-ifw-calob-0.1.3

• elt-ifw-calob-devel-0.1.3

• elt-ifw-core-devel-5.0.1

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 16 of 34

• elt-ifw-wdglib-doc-0.2.0

• elt-ifw-supif-doc-1.0.0

• elt-ifw-sup-doc-4.0.0

• elt-ifw-rtmstools-doc-2.0.0

• elt-ifw-odp-doc-4.0.1

• elt-ifw-fcfif-doc-1.0.0

• elt-ifw-fcf-doc-6.0.0

• elt-ifw-daq-doc-3.1.0

• elt-ifw-core-doc-5.0.1

• elt-ifw-ccf-doc-4.0.0

• elt-ifw-calob-doc-0.1.3

Note: Since IFW version 4, the elt-etr RPM is installed together with ELT Development Environment.

Note: The RPM elt-ifw-2024 is a mega RPM package to simplify the installation of all RPMs needed
by an Instrument.

3. Install HLCC Components (optional)

Since IFW version 5, the HLCC components are available as RPMs and can be installed using yum
install as root. The HLCC includes a telescope simulator that can be used to validate the non-
deterministic interface between the instrument and the ELT CCS. For more information about HLCC
refer to the User Manual30

Using the HLCC with the template instrument is optional. In case you want to use it, please install it
in a separate machine, and follow the installation procedure documented in the HLCC User Manual.

4. Create the directories for the installation areas:

$ cd <the location for introot>
$ getTemplate -d introot INTROOT
$ cd <the location for dataroot>
$ getTemplate -d dataroot DATAROOT

The environment shall contain the definitions of the relevant environment variables such as INTROOT,
DATAROOT, LD_LIBRARY_PATH, PYTHONPATH, etc. These environment variables will be automat-
ically defined by means of the file private.lua, defined here below, which in turn uses the system
modulefile definitions in /elt/System/modulefiles/introot.lua. (In the following steps, we assume that

30 https://ftp.eso.org/pub/elt/repos/docs/HLCC/webpages/hlcc-main/html/html/

Document Classification: Public

https://ftp.eso.org/pub/elt/repos/docs/HLCC/webpages/hlcc-main/html/html/

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 17 of 34

INTROOT and DATAROOT directories are created in the home directory of the user.)

5. Under eltdev home directory:

$ mkdir modulefiles
$ cd modulefiles

6. Create and edit the file private.lua under modulefiles directory. Use the example file below:

local home = os.getenv("HOME")

local introot = pathJoin(home, "INTROOT")
setenv ("INTROOT", introot)
setenv ("PREFIX", introot)

local dataroot = pathJoin(home, "DATAROOT")
setenv ("DATAROOT", dataroot)

load ("introot")
setenv ("NOMAD_ADDR", "http://<node ip>:4646")
setenv ("CONSUL_ADDR", "http://<node ip>:8500")

prepend_path("CFGPATH","<path_to_ins>/<instrument>/resource")

Note: IFW RPMs (elt-ifw, elt-seq, elt-ddt) provide a lua file to define minimum set of default envi-
ronment variables. The lua files are installed under /elt/common/modulefiles/default and loaded by
default.

Warning: Log out and then in again so that modulefiles directory becomes known to the en-
vironment and the newly created private.lua is loaded. This is needed only when the directory
modulefiles and the private.lua are created for the first time.

File private.lua is loaded by default upon login. In case more .lua files (with different names) will be
added to $HOME/modulefiles, they can be made known to the environment just with:

$ module load <lua file>

You can check which LMOD modules are available after login with:

$ module avail

The output should look like as follows: (the available/loaded modules might change with the software
versions, but private and introot should be loaded)

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 18 of 34

--- /home_local/eltdev/modulefiles ␣
↪→ ---

private (L)

-- /elt/common/modulefiles/core -----
↪→---

eltdev (L) introot (L)

-- /elt/common/modulefiles/default ␣
↪→ ---

ciisrv (L) cut (L) dcsif (L) ddt (L) elt-trs (L) ifw (L) mal (L) metadaqif (L) ␣
↪→mudpi (L) ra
d (L) recif (L) roadrunner (L) rtms (L) seq (L) stdif (L)

--- /usr/share/lmod/lmod/modulefiles/
↪→Core --

lmod settarg

Where:
L: Module is loaded

Note: For more information, read this document31

3.8 Start nomad and consul services

Following ELT standards, IFW uses Nomad (see here32) to manage the life cycle of the ICS SW
components (see next chapter Getting Started).

Warning: Unlike in the previous releases of the DevEnv, users have to provide a custom config-
uration for Nomad/Consul services. The default one cannot be used.

The IFW template provides an example configuration for Nomad/Consul that projects could use as
starting point. These files are located under:

$ <instrument>/<prefix>-resource/nomad/etc

Replace the <node ip> with the correct IP for your IWS machine and place these files under
/etc/nomad.d and /etc/consul.d.

31 https://ftp.eso.org/pub/elt/repos/docs/devenv5/developing-software-guide/html/docs/devtools.html#
environmental-modules-system-lmod

32 https://www.nomadproject.io/

Document Classification: Public

https://ftp.eso.org/pub/elt/repos/docs/devenv5/developing-software-guide/html/docs/devtools.html#environmental-modules-system-lmod
https://www.nomadproject.io/

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 19 of 34

Nomad and Consul services has to be started as the eltdev user with the command systemctl.

• Start nomad and consul services

$ systemctl start nomad
$ systemctl start consul

• Check status of nomad and consul services

$ systemctl status nomad
$ systemctl status consul

• Stop nomad and consul services

$ systemctl stop nomad
$ systemctl stop consul

3.9 Manual installation

As in previous versions, the IFW components can also be installed from Gitlab using the release tar
file. This step is optional since IFW software is already included in the RPMs mentioned above.

Note: The components to be installed will depend on the usage required by developers. Below
are the instructions of the packages to be installed that are needed to follow the examples provided
throughout the manual. Other IFW components can be installed following the same procedure.

Warning: Before building IFW components (rtmstools, ccf), the DDT RPM need to be installed
using yum install as root.

$ dnf -y install elt-ddt-devel

• Download, unpack and build IFW components

Go to the ESO Gitlab site and download the release tar file for each component (ifw-core, ifw-daq,
ifw-daq-if, ifw-rtmstools, ifw-odp, ifw-wdglib, ifw-fcf, ifw-fcf-if, ifw-ccf, ifw-sup, ifw-sup-if, ifw-calob).

After unpacking the ifw packages downloaded from ESO GitLab, execute the steps below to build and
install the software for each component.

$ cd ifw-core
$ waf configure
$ waf build install

(continues on next page)

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 20 of 34

(continued from previous page)

$ cd ifw-daq-if
$ waf configure
$ waf build install

$ cd ifw-daq
$ waf configure
$ waf build install

$ cd ifw-rtmstools
$ waf configure
$ waf build install

$ cd ifw-wdglib
$ waf configure
$ waf build install

$ cd ifw-sup-if
$ waf configure
$ waf build install

$ cd ifw-sup
$ waf configure
$ waf build install

$ cd ifw-fcf-if
$ waf configure
$ waf build install

$ cd ifw-fcf
$ waf configure
$ waf build install

$ cd ifw-odp
$ waf configure
$ waf build install

$ cd ifw-ccf
$ waf configure
$ waf build install

$ cd ifw-calob
$ waf configure
$ waf build install

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 21 of 34

3.10 Project Template

This template will provide a sample configuration for an instrument project. Developers can adapt it to
their own instruments. Examples in the documentation will refer to this template so it is recommended
to download it from GitLab.

Go to the ESO Gitlab site and download the tar file of the template: Template release33

After unpacking the template, you should see the following:

$ tree ifw-templates
ifw-templates

project
cookiecutter.json
{{cookiecutter.project_name}}
hooks

The instructions how to use this template can be found in next chapter (Getting Started).

33 https://gitlab.eso.org/ifw/ifw-templates/-/releases

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-templates/-/releases

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 22 of 34

4 Getting Started

This section will guide the ICS software developer in creating a working project using a provided
coockiecutter template. For getting the template from GitLab, go to the ESO Gitlab site and download
the tar file of the template: Template release34

The user will be able to start the software components with the specific configuration prepared as a
showcase for instrument developers. More details for each of the components will be given in the
respective user manuals.

4.1 Updating an existing Project Configuration

If a version of your instrument project already exists, it is recommended to start from scratch following
the instructions below and update your specific configuration in the new template afterwords. This ap-
proach might be better because of the possible changes in the template configuration and in the IFW
components. If you have problems doing this, please contact ESO to get help doing this migration.
Find here some guidelines to do the porting from previous version: ifw-porting.

4.2 Creating a Project Configuration

The IFW includes a project template that can be used to generate the initial package of an instrument.
The generated project can be considered as a mini template instrument that could be used as starting
point for the development of the control software. It is still basic but the idea is to develop it further in
future versions according to the progress of the framework components.

The generated directory contains a fully working waf project with the instrument directory structure,
some configuration files and some custom subsystem samples, e.g. an FCS including a special de-
vice. In this example we will use “micado” as an example instrument. After executing the cookiecutter
command with the provided template, the system will request the user input to enter the information
for the generation of the configuration and customized code. This template also generates the code
for a special FCF device that in this case we will name as “mirror”. The ‘component_name’ is referring
to an instance of FCS.

> cookiecutter ifw-template/project
[1/10] project_name (myproject): micado
[2/10] project_description (my project description): MICADO project
[3/10] project_prefix (xxx): mic
[4/10] nomad_user (eltdev):
[5/10] component_name (mycomponent): fcs
[6/10] device_name (mydevice): mirror
[7/10] olas_directory (): <path to OLAS directory>
[8/10] hlcc_available (No):

(continues on next page)

34 https://gitlab.eso.org/ifw/ifw-templates/-/releases

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-templates/-/releases

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 23 of 34

(continued from previous page)

[9/10] hlcc_uri (zpb.rr://127.0.0.1:000):
[10/10] ngc2o_available (No): No

Note: The OLAS directory is where the FITS files will be stored after they are completed to be sent
to the archive system.

Note: You can skip the usage of HLCC by setting the hlcc_available to No.

The generated directory structure including the first two levels is shown below. In this case, the
directory mic-ics is a waf project that can be built. The resource directory is meant for storing the
instrument resources like configuration files.

micado # Instrument repository
mic-ics # Valid waf project

build
fcs # Custom FCF instance
micstoo # Startup/Shutdown sequencer scripts
seq # Sample template implementation.
wscript

mic-resource # Instrument resource directory
config # Configuration files
nomad # Nomad job files
seq # Sample OB

After the new directory is created, one could build and install the generated software.

cd micado/mic-ics
waf configure
waf build install

4.3 Update CFGPATH environment variable

If not already done, the CFGPATH environment variable shall be updated in the LMOD configuration
to include the template resource directory. Add the following line to the modulefiles/private.lua file.

prepend_path("CFGPATH","<path_to_template>/micado/mic-resource")

Note: The above setting is needed for the proper functioning of tge IFW components. Make sure the
setting is correct before starting nomad.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 24 of 34

4.4 Starting/Stopping the ICS Software

The IFW uses Nomad (see here35) to manage the life cycle of the ICS SW components following
the recommendation from the ELT Control project. We are also using Consul, a complementary
package providing service discovery that allow us to use names instead of using hostname/IPs and
port numbers.

The project template includes the Nomad job configuration to start-up/shutdown the ICS components
that are generated by the coockiecutter template. We are also proving a Startup/Shutdown Sequencer
script that uses the Nomad jobs to start/stop the complete ICS SW resembling the osfStartup tool in
the VLT.

4.5 Startup/Shutdown Contents

The project template comes with a predefined startup/shutdown script to start/stop a representative
sample of ICS software processes. The list of processes is here:

• DDT broker

• CCF instance with Simulator and DDT publisher

• FCF Simulators (shutter, lamp and motor)

• Subsystem Simulators (subsim1, subsim2 and subsim3)

• Custom FCF server instance with custom device (mirror).

• Custom FCF simulator (mirror)

• HLCC processes (optional)

• NGCII Optical (optional)

• OCM instance

• DPM instance

• System Supervisor

These components are obviously using simulators and not real hardware. The script shall be executed
by the Sequencer.

The script contains three main parts:

1. Stop all processes

2. Start all processes

3. Move all processes to Operational state.
35 https://www.nomadproject.io/

Document Classification: Public

https://www.nomadproject.io/

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 25 of 34

Fig. 1: Startup/Shutdown script in the Sequencer.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 26 of 34

4.6 Executing Startup/Shutdown Script

Starting Sequencer GUI

In a terminal, type the following command to start the sequencer GUI.

> seqtool gui --config config/seqgui_config.yaml

Note: Since IFW version 2024, you need to specify the GUI configuration to enable the support of
Instrument Package (IP).

Running the Startup Script

Once the Sequencer GUI is running. Load the startup script (micado/mic-
ics/micstoo/src/micstoo/startup.py) by selecting the Load Script option as shown in the following
figure. It is assumed that the software has been already built and installed.

Fig. 2: Load script option from Sequencer File menu.

To execute the script, just press the play icon at the top of the Sequencer GUI as it is shown in the
next figure. At the end of the execution, all instrument jobs shall be running and the system should be
in Operational state.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 27 of 34

Fig. 3: Load script option from Sequencer File menu.

A quick way to verify is to check the status of the Supervisor.

> supClient `geturi syssup-req` GetStatus
Operational;Idle

After a successful execution of the startup script, the nomad web UI can be used to verify the status
the nomad jobs. A total of 15 jobs shall be running.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 28 of 34

Fig. 4: List of TINS Nomad Jobs.

The Consul UI can be used to verify the services registered. In this case the number of services is
greater because in some cases there are two services defined per each Job.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 29 of 34

Fig. 5: List of TINS Consul Services.

Note: As convention, we use <service>-req as the registered name in consul for the service re-
quest/reply port, e.g. fcs-req

As convention, we use <service>-pub as the registered name in consul for the service pub-
lish/subscribe port, e.g. fcs-pub

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 30 of 34

Troubleshooting

If all or some processes do not start, make sure of the following:

1. Check that Nomad/Consul have been started and are running correctly. Try using the Systemd
commands to get status of the service, see below.

> systemctl status nomad
* nomad.service - Nomad
Loaded: loaded (/usr/lib/systemd/system/nomad.service; disabled; vendor preset: disabled)
Active: active (running) since Tue 2021-04-20 07:14:11 UTC; 3 weeks 0 days ago
Docs: https://nomadproject.io/docs/
Main PID: 413992 (nomad)

Tasks: 541
Memory: 969.4M
CGroup: /system.slice/nomad.service

413992 /opt/nomad/bin/nomad agent -config /opt/nomad/etc/nomad.d
2864103 /opt/nomad/bin/nomad logmon

...

2. Make sure eltdev user has properly defined its environment. All environment variables shall be
defined under eltdev since it is at the end the user that runs the processes through Nomad.

3. Check the status information of Nomad/Consul services with journalctl.

> journalctl -u nomad

4. Stop Nomad and Consul and run them manually outside the Systemd to get all logs and see the
possible cause of the issues.

Validating the Software with a sample OB

We have prepared a very basic OB with an acquisition and observation template. The acquisition
template prepares FCS, the camera system and the telescope simulator for the upcoming observation
template that takes an image with the camera control system.

Note: The interaction between the Sequencer and the components is through the python client
libraries provided by each component.

Before to start, the current script loaded in the Sequencer GUI must be cleared by pressing the reset
button (trash icon).

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 31 of 34

Fig. 6: Clear the current script and reset the server.

Then, the OB shall be loaded by pressing the open button as shown in the next figure. The path of
the sample OB is: micado/mic-resource/seq/tec/MICADO_OB_sample.json.

Fig. 7: Load an OB.

To run the template, just press the play icon at the top of the Sequencer GUI.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 32 of 34

Fig. 8: Sample OB.

At the end of the execution, the image acquired by CCF shall be displayed in the DDT Viewer that it
started by the template.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 33 of 34

Fig. 9: DDT Viewer with image received from CCF.

When HLCC is used, you can verify using the HLCC GUI that the telescope simulator is pointing to
the right coordinates. You could change the OB parameters from the sequencer GUI and execute the
OB again validating the new values are correctly received by the telescope simulator.

Note: For simplicity, we are currently only sending alpha and delta parameters.

Document Classification: Public

ELT ICS Framework - Transfer Document
Doc. Number: ESO-363356

Doc. Version: 4

Released on: 2024-12-11

Page: 34 of 34

The resulting FITS file generated by DPM is located under $DATAROOT/dpm/result.

Congratulations that you reached the end of the general Getting Started section. Further instructions
you may find in the specific documentation of the components.

Updating Sample Configuration

To update the default configuration of the template, developers can modify the configuration files that
are located under the resource directory, e.g. under resource/nomad.

Document Classification: Public

	Introduction
	Scope
	Acronyms
	Overview

	Release Notes
	Summary
	What is the scope of this version?
	What is new in this release?

	Development Environment
	Instrument Specifics Packages
	Components
	Rapid Application Development (RAD)
	Extensible Test Runner (ETR)
	Sequencer
	Function Control Framework (FCF)
	Device Manager
	Supported Devices

	Device Simulators
	Engineering Graphical Interfaces
	PLC Libraries

	Known Problems

	Installation
	Machine Preparation
	Requirements
	ELT Development Environment (DevEnv)
	ELT CII Services
	Operational User
	Environment Variables
	Getting Started
	Start nomad and consul services
	Manual installation
	Project Template

	Getting Started
	Updating an existing Project Configuration
	Creating a Project Configuration
	Update CFGPATH environment variable
	Starting/Stopping the ICS Software
	Startup/Shutdown Contents
	Executing Startup/Shutdown Script
	Starting Sequencer GUI
	Running the Startup Script
	Troubleshooting
	Validating the Software with a sample OB
	Updating Sample Configuration

