
European Organisation for Astronomical Research in the Southern Hemisphere

Programme: ELT

Project/WP: Instrumentation Framework

ELT ICS Framework - Sequencer - User Manual

Document Number: ESO-363358

Document Version: 4

Document Type: Manual (MAN)

Released on: 2024-12-11

Document Classification: Public

Owner: Muñoz, Iván

Validated by PM: Kornweibel, Nick

Validated by SE: González Herrera, Juan Carlos

Validated by PE: Biancat Marchet, Fabio

Approved by PGM: Tamai, Roberto

Name

European Southern Observatory
Headquarters Garching

Karl-Schwarzschild-Straße 2
85748 Garching bei München

www.eso.org

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 2 of 54

Release

This document corresponds to seq1 v4.2.0.

Authors

Name Affiliation

Muñoz, Iván ESO/DOE/CSE

Moins, Christophe ESO/DOE/CSE

Change Record from Previous Version

Affected Section(s) Changes / Reason / Remarks

See CRE ET-1517

All All sections updated

2.8,3 New sections added

1https://gitlab.eso.org/ifw/seq

Document Classification: Public

https://gitlab.eso.org/ifw/seq

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 3 of 54

Contents:

1 Introduction 5
1.1 Scope . 5
1.2 Acronyms . 5
1.3 Overview . 5
1.4 Naming Conventions . 6

2 Tutorial 7
2.1 Building Sequences . 7
2.2 Very simple sequences . 8
2.3 Executing Tasks in Parallel . 10
2.4 Executing Tasks in a Loop . 12
2.5 Embedding Sequencer Scripts . 13
2.6 Observation Blocks and Templates . 15
2.7 Accessing Template Variables . 17
2.8 Inserting a basic dialog window . 18

3 Interface to Observation Handling SW 20
3.1 Configuration . 20
3.2 Simulation . 20
3.3 Instrument package . 21

4 Sequencer GUI 22
4.1 Overview . 22
4.2 Using the Sequencer GUI . 24
4.3 Configuration File . 33
4.4 Sequencer server . 34

5 A Deeper Look 35
5.1 Passing Arguments to Actions . 35
5.2 Using partial functions . 35
5.3 Runtime Flags . 36
5.4 Summary building DAGs . 37
5.5 Special Variables . 38
5.6 Result Handling . 38
5.7 Finding nodes . 39
5.8 Nodes have context . 40
5.9 Node Types . 41

6 Good Practices 44
6.1 Writing Sequences . 44

7 Sequencer Command Line Tools 46
7.1 The seqtool meta command . 46
7.2 seqtool run . 53

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 4 of 54

7.3 seqtool draw . 53

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 5 of 54

1 Introduction

The Sequencer is a software component developed in the scope of the Instrument Control System
Framework (ICS FW) as the generic tool for the execution of Observation Blocks (OB) and engineering
scripts.

1.1 Scope

This document is the user manual for the ELT ICS Framework - Sequencer. The intended audience
are ELT users, consortia developers or software quality assurance engineers.

1.2 Acronyms

DB Database
CCS Central Control System
ELT Extremely Large Telescope
FCF Function Control Framework
GUI Graphical User Interface
ICS Instrument Control System
OB Observation blocks
OHS Observation Handling Software

1.3 Overview

The sequencer shall support the execution of OBs and engineering scripts to automatize maintenance
and operational activities such as the daily startup/shutdown of the telescope.

The sequencer can be seen, broadly, as comprised of three main components.

Sequencer Engine
Allows to load and execute Sequencer scripts

Sequencer API
Allows to define Sequencer scripts

Sequencer GUI
Displays and interact graphically with Sequences

This documents shows how to use the Sequencer API in order to build Sequencer scripts. A basic
tutorial is given in Tutorial . A more detailed look is shown in A Deeper Look . The good practises and
some advices are given in the Good Practices, this section is still being written.

The Sequencer package provides some command line tools, they are described in Sequencer Com-
mand Line Tools.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 6 of 54

1.4 Naming Conventions

Observation Block
A high level view of telescope operations. An observation block is the smallest obser-
vational unit for a telescope. It is a rather complex entity, containing all information
necessary to execute sequentially and without interruption a set of correlated expo-
sures, involving a single target (i.e. a single telescope preset).

Sequencer Script
A sequencer script is a script that can be executed by the sequencer, i.e. a template
or an engineering script. The sequencer script may have parameters whose values
determine the exact execution behavior. The sequencer script defines the execution
order and the sequencer steps.

Engineering Script
A high level procedure to carry out a specific engineering task. The engineering script
is a sequencer script.

Sequencer Step
An entity containing executable code, defined within a sequencer script.

Template
An entity dealing with the setup and execution of an observation.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 7 of 54

2 Tutorial

The purpose of the sequencer is to execute Sequencer scripts, either for engineering or science
purposes.

The unit of execution is a single step which is just a normal python function or method with no input
parameters.

Sequences are modeled as Directed Acyclic Graph (DAG). Each node in the graph can either be a
simple action which just invokes a single sequencer step or a more complex node which contains a
complete sequencer script.

This allows sequences to be grouped and nested freely. Ultimately they will execute steps.

The Sequencer API allows the creation of these graphs.

Note: all the examples below can be found in seq/samples/src/seq/samples.

2.1 Building Sequences

Sequencer scripts are modeled as DAGs, the Sequencer API allows to create nodes in the DAG.
There are different node types that determine the way its children are scheduled for execution (e.g.
Parallel, Sequential). The sequencer scripts can use the same or different node types depending on
the purpose. select, mix and match the node type(s) that suits better your needs.

The Sequencer Engine expects to find either a module method or a specific class name in a module
in order to construct a Sequencer script from it. The conventions are the following.

1. A module level create_sequence() function. See Tutorial 1 (a.py).

2. A class named Tpl which must provide a static method create_sequence. See Parallel tasks
sample (b.py).

In either case, the return value is the root node of the graph being implemented.

The first convention is tried first, if no create_sequence() function is found, the second convention is
attempted.

For very simple scripts, following the first convention is perfectly fine. For more complex scripts, e.g.
a Sequencer script going to be parametrized to control multiple devices at the same time, the class
approach is recomended.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 8 of 54

Node Dependencies

Regarding the order of execution, the DAG edges allows to represent the nodes dependencies. Each
node in the DAG depends, from its parent nodes. Meaning that a node will not be started until every
node that precedes it has finished its own execution.

Node dependencies determines the execution order of the sequence steps. A node won’t run until all
its dependencies have finished. In the graph, a node dependency is seen as an incoming edge.

Chaining the basic node types Sequence and Parallel defines a dependency hierarchy.

Sequence nodes are executed one after the other, therefore each node depends on its predecessor.
On the other hand, Parallel nodes indicates that all nodes it contains shall be executed together. By
combining and chaining this two basic node types it is possible to express any dependency graph.

2.2 Very simple sequences

As mentioned before the simplest step is a python coroutine with no input parameters which is used
to create an Action node.

Note: The no input parameter rule can be bypassed with strategies shows in Passing Arguments to
Actions

In this case, we define a sequence that executes two steps, one after the other, namely a() and b().
Source codes is shown below.

Listing 1: Tutorial 1 (a.py)

#!/usr/bin/env python3
"""
Simple example (A)

Executes function a() and b()
"""
import logging
import asyncio
from seq.lib.nodes import Sequence
from seq.lib import getUserLogger

#LOGGER = logging.getLogger(__name__)
LOGGER = getUserLogger()

async def a():
"""Simply a"""

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 9 of 54

(continued from previous page)

await asyncio.sleep(1)
LOGGER.info("Ax")
print("AAAA")
return "A"

async def b():
"""b example
"""
LOGGER.info("Bx")
print("BBBB")
return "B"

def create_sequence(*args, **kw):
"""Builds my example sequence"""
myname = kw.pop('name', "Example A")
return Sequence.create(a, b, name=myname, **kw)

Important: The Sequencer Engine is based on the asyncio library, therefore it is biased towards
coroutines, but they are not mandatory as shown in Loop example (loop1.py).

These are some simple rules to create sequences:

• A step (Action) is a python coroutine with no input parameters. See Passing Arguments to
Actions to break this rule.

• In this case, the sequence is created using the Sequence.create (Sequence) constructor, which
receives the steps to be executed (in the given order).

• The python module which contains the sequence must define a create_sequence function as
shown in the example. It returns a Sequence node that holds the nodes it will execute.

Important: The Sequence.create constructor provides syntax sugar in order to support passing
coroutines as the sequence’s graph nodes. In such a case a node of type seq.nodes.Action is au-
tomagically created and inserted in the graph.

This simple sequence 01 is graphically shown below. It can be imported from python as:

>>> import seq.samples.a

Notice that only two nodes were specified in the create_sequence() function. However the simple
sequence 01 figure shows four nodes. The sequencer engine adds a start node (black circle) and end
node (double black circle) to every node container type, i.e. those nodes that have children: Parallel,
Sequence and Loop.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 10 of 54

seq.samples.a

a b

Fig. 1: simple sequence 01

Note: The start and end node, among other things, makes easy to chain nodes together by linking
the end node of a container with the initial node of the next.

2.3 Executing Tasks in Parallel

One is not limited to create just linear sequences. Parallel activities (pseudo parallel) can be cre-
ated using the Parallel.create() constructor. It receives the same parameters as the Sequence node
constructor. When executed, the sequencer engine processes the Parallel nodes children in parallel.

Listing 2: Parallel tasks sample (b.py)

"""
Parallel nodes example.
"""
import asyncio
import random
import time
import logging
from seq.lib.nodes import Parallel, ActionInThread
Logger = logging.getLogger(__name__)

class Tpl:
"""A sample Sequence"""

def a(self):
"""sleeps randomly"""
t = random.randrange(5)
time.sleep(t)

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 11 of 54

(continued from previous page)

Logger.info("... done A")

async def b(self):
"""sleeps randomly"""
t = random.randrange(5)
await asyncio.sleep(t)
Logger.info("... done B")

@staticmethod
def create(*args, **kw):

"""Builds my sequence"""
a = Tpl()
p = Parallel.create(ActionInThread(a.a), a.b, **kw)
return p

Which is represented graphically as follows.

seq.samples.b

a

b

Fig. 2: Parallel Sequence

Points to notice:

1. In this case the Sequencer Engine discover a class named Tpl and calls its create method
(@staticmethod as the convention mandates).

2. The example Parallel Sequence also shows that steps are not limited to coroutines. Just
wrap it in ActionInThread node.

3. There is no problem mixing normal routines and asynchronous code. The sequencer will
send the normal code to a separate thread and execute it there.

In order to avoid normal methods or functions to potentially block the asyncio loop (by holding the

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 12 of 54

CPU) they must be executed on their own Thread.

This is achieved with the ActionInThread node. In the example the a() method is wrapped in such
node.

2.4 Executing Tasks in a Loop

The Loop node allows to repeat a set of steps while a condition is True.

Listing 3: Loop example (loop1.py)

"""
Implements a loop.
The condition checks Loop's index < 3.
"""
import asyncio
import logging
import random
from seq.lib.nodes import Loop

logger = logging.getLogger(__name__)

class Tpl: # Mandatory class name
async def a(self):

"""sleeps up to 1 second"""
t = random.random() # 0..1
await asyncio.sleep(t)
logger.info(".. done A: %d", Loop.index.get())

async def b(self):
"""sleeps up to 1 second"""
t = random.random() # 0..1
await asyncio.sleep(t)
logger.info(" .. done B: %d", Loop.index.get())

async def c(self):
pass

async def check_condition(self):
"""
The magic of contextvars in asyncio
Loop.index is local to each asyncio task
"""
logger.info("Loop index: %d", Loop.index.get())

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 13 of 54

(continued from previous page)

return Loop.index.get() < 3

@staticmethod
def create(**kw):

t = Tpl()
l = Loop.create(t.a, t.b, t.c,

condition=t.check_condition, **kw)
return l

Which is represented graphically as follows.

seq.samples.loop1

Loop init condition

F

a b c

Fig. 3: Loop example

The code in Loop example shows the Loop’s node constructor which takes a variable number of
arguments comprising the Loop’s body, i.e. the part that is repeated, a(), b() and c() in this case. The
condition node is specified with the condition keyword.

The Loop’s index is kept in the context variable index, meaning it can be accessed as Loop.index.get()
as the check_condition() function shows.

In order to separate the index value of the different loops that might be occurring at the same time the
Loop’s index is implemented as an asyncio context variable. Therefore to get its value one has to call
its get() method as the check_condition() function shows.

2.5 Embedding Sequencer Scripts

Sequences can be reused or embedded in order to produce more complex activities. The following
example uses the sequences “a” and “b” to create a new sequence that executes them in Parallel and
adds a step from a local class.

Important: Embedding a Sequence entails to import the module and instantiate its Sequencer script
(either with create_sequence() or by Tpl.create()). The OB object can decide which one should be
imported:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 14 of 54

from seq.lib.nodes import seq_factory
from seq.samples.a

mynode = seq_factory(a)

Listing 4: Sequence embedding example

#!/usr/bin/env python3
"""
Simple example.

Uses nodes from template defined in module 'a'.
It also uses the 'a' template as a whole.
"""
from seq.lib.nodes import Parallel, seq_factory
from seq.lib.ob import OB

from seq.samples import a
from seq.samples import b

class Tpl:
async def one(self):

print("one")
return 0

async def two(self):
print("two")
return 99

@staticmethod
def create():

aa = OB.create_sequence(a, name="A")
bb = OB.create_sequence(b, name="B")

#aa = seq_factory(a, name="A")
#bb = seq_factory(b, name="B")
s = Tpl()
return Parallel.create(aa, bb, s.one)

Some points to note:

• Use seq.lib.nodes.seq_factory() to select the right method to instantiate a predefined se-
quencer script, so it can be reused.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 15 of 54

2.6 Observation Blocks and Templates

Observation Blocks are defined through JSON files. A JSON file can store simple data structures and
objects.

From the point of view of the Sequencer, an Observation Block is a sequence of templates that needs
to be executed in the specified order. Therefore the sequencer is only concerned with the “templates”
section of the JSON file. The Sample Observation Block file shows a simple Observation Block.

Listing 5: Sample Observation Block file

{
"obId": 0,
"itemType": "OB",
"name": "obex 2",
"executionTime": 0,
"runId": "string",
"instrument": "string",
"ipVersion": "string",
"obsDescription": {

"name": "My humble II OB(A)",
"userComments": "A",
"instrumentComments": "AA"

},
"constraints": {

"name": "string",
"seeing": 0,
"airmass": 0,
"moonDistance": 0,
"waterVapour": 0,
"atm": "string",
"fli": 0,
"strehlRatio": 0,
"skyTransparency": "string",
"twilight": 0

},
"target": {

"name": "string",
"ra": "string",
"dec": "string",
"coordinateSystem": "ICRS",
"comment": "string"

},
"templates": [

{
(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 16 of 54

(continued from previous page)

"templateName": "seq.samples.tpa",
"type": "string",
"parameters": [

{
"name": "par_b",
"type": "integer",
"value": 0

},
{

"name": "par_c",
"type": "number",
"value": 77

}
]

},
{

"templateName": "seq.samples.tpa",
"type": "string",
"parameters": [

{
"name": "par_b",
"type": "integer",
"value": 0

},
{

"name": "par_c",
"type": "number",
"value": 10

}
]

}
],
"pi": {

"firstName": "I",
"lastName": "Condor",
"email": "user@example.com"

}
}

In the current version, only the templates section is used. The Python modules implementing the
desired actions are defined with the templateName keyword. Many templates can be specified this
way. Moreover, many instances of the same template can be requested, The samples JSON file
shows this case with the seq.samples.tpa Python module.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 17 of 54

Note: templateName value must be a valid Python module expressed in dot notation similar to the
import performed from the python prompt. Therefore the Python module must be available on the
PYTHONPATH.

The parameters section describes the runtime parameters (name, type, value) to be handed over to
the Template instance and they can be accessed from the Template’s python code.

2.7 Accessing Template Variables

It is possible to access the value of the Template variables inside the Python code implementing a
Template.

In order to access to template parameters like the ones defined in Sample Observation Block file one
has to use the function get_param(). It knows the current template and request the parameters of
interest. In the case of the example, the code to access par_b and par_c is as follows.

Listing 6: Access Template variables in Python

1 #!/usr/bin/env python3
2 """
3 Shows variables
4

5

6 """
7 import sys, inspect
8 import logging
9 import asyncio

10 from seq.lib.nodes import Sequence, Parallel, Template
11 from seq.lib.nodes import Action as _a
12 from seq.lib.nodes import ActionInThread as _ait
13 from seq.lib import logConfig
14 from seq.lib.nodes import get_param
15

16 import tkinter as tk
17 from tkinter import simpledialog
18

19

20 logger = logging.getLogger(__name__)
21

22 __seq_params__ ={"par_b": 11, "par_c":22}
23

24 class Tpl:
25

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 18 of 54

(continued from previous page)

26 async def do_sum(self):
27 """Adds two integers"""
28 parb = get_param("par_b")
29 parc = get_param("par_c")
30

31 logger.debug("Node sum")
32 logger.info(
33 "xSUM {} + {} = {}".format(parb,parc,parb+parc))
34 await asyncio.sleep(1)
35

36 async def delay(self):
37 """Waits a sec"""
38 logger.debug("sleep a bit")
39 await asyncio.sleep(1)
40

41 @staticmethod
42 def create(*args, **kw):
43 "Adds two variables"
44 a = Tpl()
45 return Sequence.create(
46 a.do_sum,
47 a.delay,
48 name="TPL_SUM Example", **kw)
49

50

51

2.8 Inserting a basic dialog window

A basic dialog window is displayed when a specified condition is not met. It gives the user the pos-
sibility to perform an additional step to overcome the unfulfilled condition and proceed or to stop the
sequence execution. An instance of BasicDialog shall be inserted in a sequence as below with a
condition and an extra step provided by the user:

Listing 7: Insertion of a basic dialog window in a sequence

#!/usr/bin/env python3
"""Usage of a dialog node node"""
import logging
import asyncio
from seq.lib.nodes import Sequence, BasicDialog
from seq.lib import logConfig

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 19 of 54

(continued from previous page)

LOGGER = logging.getLogger(__name__)

async def a():
LOGGER.info("a")
return "A"

async def b():
LOGGER.info("b")

async def test_condition():
await asyncio.sleep(0.5)
return False

async def extra_step():
await asyncio.sleep(3)
print("What an extra step!")
return True

def create_sequence(*args, **kw):
"""Builds my sequence"""
logConfig(level=logging.INFO)
c = BasicDialog(name="some_dialog", description="my first dialog", condition_label = "test␣

↪→condition", check_condition=test_condition, step_label="perform extra step", condition_extra_
↪→step=extra_step)

return Sequence.create(a,c,b, **kw)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 20 of 54

3 Interface to Observation Handling SW

OTTO is an specification of the API used to fetch and execute OBs. It implements a REST interface
to the Observation Handling SW.

OTTO services allows the Sequencer to:

• loading a visitor execution sequence (VES) into the UI.

• fetching an OB, aka “the next unit of execution”.

• reporting OB events Initiated, Started, Executed.

3.1 Configuration

In order to connect to OTTO server one needs its URL, username and password. This info is specified
in the Sequencer GUI configuration file as:

otto:
url: http://127.0.0.1:5000/
insid: FORS2
mode: VM
user: pippo
password: 123

The Sequencer GUI allows to modify the otto server params with a dedicated dialog box. See Otto
popup menu. for details on OTTO and its GUI options and actions.

3.2 Simulation

TINO is the OTTO simulator. The recommended use is to start it on a terminal session. One can
invoke it from seqtool. It starts a server with the OTTO interface from which OBs can be fetched.
The OBs are served from a directory that contains them and it is a required argument of the tino
subcommand. Tino’s server port can also be specified from the command line.

TINO supports the following options:

$ seqtool tino --help
Usage: seqtool tino [OPTIONS] PATH

Friend of OTTO

Options:
--port INTEGER Tino server port
--help Show this message and exit.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 21 of 54

Usage

Upon starting TINO reports the addres it is serving as:

$ seqtool tino ./OBs
Loading OB files:
* Serving Flask app "seq.otto.ottoSim" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: off
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Once TINO is running point the Sequencer GUI to the address TINO reported (normally
http://127.0.0.1:5000/) see gui and OBs can be fetched from the server using the OTTO menu and
‘Fetch OB’ action.

Note: Regardless of the contents of the OB directory, TINO will only serve OBs that match the
instrument configured.

3.3 Instrument package

An instrument package (IP) bundles instrument specific information. It will contain a set of template
signatures, a set of observing constraints, a check list & questionnaire, external verification modules,
execution time reporting modules and any other instrument-specific information. It is possible to fetch
information from the template signatures IP and to integrate it in the ob for validation.

The CFGPATH shall point to a folder containing a directory named IP. IP will contain a directory named
according to the instrument defined in the configuration. In the instrument directory, there will be a
directory named ip that will contain two folders, app and templates. The app folder shall contain a
file name library.cfg where a map is defined that associates a python module to each template. The
signature of each of this template will be available in the templates folder.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 22 of 54

4 Sequencer GUI

The sequencer GUI allows to load and execute Python sequences and OBs (JSON format as defined
by OTTO).

Note: Do not rely on standard output to debug/check sequencer scripts.

Warning: As the server is responsible for executing sequencer scripts, the standard output is
processed by the server.

4.1 Overview

The sequencer GUI requires its own special purpose server.

The server spawns and controls a seqtool shell process. The client(s) (seqtool gui in this case)
talks to the server which relays the commands to the underlying shell process. This is one way
communication from the client to the server.

However, the seqtool shell publishes the state of the Sequencer script execution, the modules loaded,
state updates, logs and more using ELT’s Pub/Sub mechanism and DDS. Allowing interested parties,
namely seqtool gui or many instances of the seqtool gui to display the state Sequencer Graph. Figure
GUI interaction with server..

The communication between the GUI and the server is via simple string commands over a TCP
socket. The communication between the server and the shell is, again, simple string commands over
a UNIX pipe (the server consumes and interprets shell’s standard output) . Same for shell sending
commands to the kernel.

It is inside the seqtool kernel process that the actual execution of the Sequencer scripts takes place,
i.e. the kernel provides the Sequencer engine. It walks and executes the DAG constructed by the
user using the Sequencer API.

The Sequencer GUI requires the sequencer server to be up and running in order to work. Upon
starting, the GUI allocates ans spawns its own server. On the other hand there is an option to startup
the GUI and connect it to a running server.

During normal use, one would starts the GUI (and all supporting processes) as:

$ seqtool gui

In such a case, a sequencer server will be spawned to which the gui will connect.

To connect to a running server, e.g. running at port 8000:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 23 of 54

Fig. 1: GUI interaction with server.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 24 of 54

$ seqtool gui --address 8000

4.2 Using the Sequencer GUI

Starting the sequencer GUI is done as follows:

$ seqtool gui

One can pass change the defaults values for hosts and ports using the following options.:

$ seqtool gui --help
Usage: seqtool gui [OPTIONS] [SCRIPT]...

Client application for the Sequencer that allows to load OBs and execute
scripts and monitor their progress.

Options:
--address TEXT Sequencer server address [HOST:]PORT

[default: 8000]
--log-level [DEBUG|INFO|WARN|CRITICAL|ERROR]

Will present logs at this level of higher
[default: INFO]

--run Run the script passed as parameter
--config TEXT sequencer configuration
--help Show this message and exit.

The defaults values used by the sequencer server and the sequencer gui will suffice to run all of this
in the same machine.

If any port clash is forseen, please use the command line options to change port values to suitable
ones.

It is possible to automatically start a script when launching the gui with the –run option or to specify a
configuration file with –config (see Configuration File).

The GUI opens the following window.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 25 of 54

The GUI will try to automatically connect on start to the sequencer server, and its logs.

The GUI is divided in three parts.

1. The toolbar, displays button to open Observing Blocks, manipulate the OB, its steps,
and filter logs.

2. The Sequence tree. For each sequence step, displays two columns: name, and a
description in case provided.

3. The logs and OB variables tabs:

• OB variables presents and allows edition of variables for the block.

• Logs shows entries beloging to the Observing Block, and its steps, that are logged
using python logging module.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 26 of 54

The Toolbar

The GUI toolbar sports the following buttons and options.

Append OB
Loads and append to the sequencer server the selected OB in json format. When pressed,
a file selection dialog will appear. The user may select an OB file.

Run
Executes the scripts loaded into the sequencer.

Continue
A script(s) execution can be aborted or paused. The execution resumes with the Continue
button.

Abort
Stop a script that is currently in execution.

Reset
Cleans the execution tree and restarts the execution engine.

Pause
Sets the selected node to pause when reached. The same button may be used to unpause
a step.

Skip
Marks the selected node to be skipped when reached. The same button may be used to
toggle this option off.

Logs Filter
This dropbox applies a filter to the logs (section 3 in the GUI).

• Sequence: shows logs produced by the explicit calls to the logger by

the author of the sequence.

• seq.lib: shows internal logs produced by the sequencer.

• seq.user: shows logs that describes the changes in state of the sequence.

The toolbar commands can also be given directly on the input widget.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 27 of 54

The Tree Window

The tree window shows the loaded scripts in a tree widget. The script and its components can be
expanded or collapsed. Each column shows a single node with its name, state and doc string (from
python).

Note: The mouse secondary button displays a context menu that allows to Pause/UnPause or
Skip/UnSkip the selected node.

Along the node number an icon is displayed, which depends on the node type to help identify their
intent.

Marks Sequence nodes.

Marks Parallel nodes.

Marks Loop nodes.

When the sequence starts (by pressing the Run Button on the toolbar), this view will automatically
scroll to the latest node with Running state. Also, they will be highlighted in light green color while the
node is in Running state.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 28 of 54

Logs

This view presents a table with logs produced by the sequencer. The table contains a row for each
log, with the following columns:

Level
The log type, or level, which can be DEBUG, INFO, ERROR, CRITICAL, EXCEPTION
and FATAL. The colors helps to state the importance of the log entries.

Timestamp
Date and time of the log entry, up to milliseconds, using the sequencer server re-
ported time.

Logger
Name of the logger used to produce the entry. For developers of sequences is impor-
tant to use names that do not start with seq.lib.

Message
The log message displayed.

OB Variables

Variables for Observing Blocks can be set through this Tab.

The left side of the Tab shows the different OBs loaded in the sequencer server, while the right side
display the variables. Variables are grouped by the node in which they are required, and display the

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 29 of 54

name of the variable, the data type expected, and its current value.

Double clicking on a particular value edits the existing value.

Once a user is satisfied with the changes, they can be applied back to the sequencer server by using
Set Variables on Sequencer Button.

Note: Variables are saved back to the server per OB, so if changes were made for more than one
OB, the user needs to select that particular OB, and press the Set Variables on Sequencer.

OTTO Interface

For an explanation about OTTO’s purpose see Interface to Observation Handling SW . The GUI allows
to fetch and execute OBs from a VES (visitor execution sequence). The OTTO pop-up menu is
enabled if the configuration defines OTTO settings and consists of the following actions. See Otto
popup menu.

Fig. 2: Otto popup menu.

Fetch OB
Fetch next execution sequence from the queue.

List OBs
List OBs in the queue. See OTTO list available OBs.

Config
Opens OTTO server condfiguration dialog.

OTTO’s default configuration is found in the GUI’s configuration file but the GUI allows to configure its
parameters as shown in OTTO server configuration dialog

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 30 of 54

Fig. 3: OTTO server configuration dialog

Fig. 4: OTTO list available OBs

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 31 of 54

Error Handling

When a script aborts with an error (some exception was raised) a dialog window appears and displays
the python traceback.

The dialog presents three buttons that allows to:

1. Retry the failed node.

2. Ignore the error and resume script execution.

3. Discard the error window and reflect on what just happened.

In addition, an aborted script can be continued (skipping the failed node) by means of the continue
button in the toolbar.

One can retry the failed node typing the retry command and using the node serial number.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 32 of 54

Advanced: Debug Mode

The Application Menu hold the Debug Mode option. When clicked, it will present more options oriented
at developers of sequences.

The Nodes Treeview in section 2 of the GUI will display two more column: the internal serial number
assigned to the step (column #) and the state column.

The state column displays not only the node state but also if the node has been marked to pause or
to skip its execution. Pause and Skip are runtime flags, which extend the description of the state for a
given node. Node states can be one of the following:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 33 of 54

Not Started
Node has not been started yet.

Scheduled
Script execution started. The node will be executed at some point.

Running
Node is currently executing.

Finished
Node has completed its execution. A finished node can be in any of the following
substates:

Skip
Node is considered finished because it was purposedly skipped (Skip runtime
flag).

Error
The node raised a runtime exception and has finished with error.

Cancelled
Node execution has been cancelled. This happens when some other node, down the
tree has finished with error.

Paused
The execution of the tree is paused in the node mark with Pause runtime flag. A
paused script can be resumed by removing the Pause flag from the node. This is done
with the right mouse button menu and select Pause/UnPause node, or by selected
the node, and using the Pause Button in the toolbar.

The Tabs in section 3 of the GUI will display one more Tab named Console

The console is a direct communication line with the sequencer server, in which the user can execute
commands. This is not intended for final users and commands entered here will not display its output
on the same console.

It accepts the same commands for the sequencer kernel or shell. For feedback please see the stan-
dard output on the sequencer server.

4.3 Configuration File

The Sequencer GUI reads the configuration upon startup from the file specified with the –config
option. The path can be either absolute or relative to a folder defined in the CFGPATH environment
variable. It consists of two sections, one for the Sequencer server, the other for OTTO configuration
(optional). Below an example of a configuration file:

seq_server:
url: pl3.pl.eso.org:8000
loglevel: INFO

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 34 of 54

(continued from previous page)

otto:
url: http://127.0.0.1:5000/
insid: FORS2
mode: VM

On the seq_server section the default HOST:PORT for the server is specified. However this value is
just an initial guess. The GUI will attempt to spawn a server on the specified URL. However if the port
is already in use it will increase the port number up to 10 times until a free port is found and the server
is started there.

The OTTO section provides the default OTTO server url and the instrument.

If no configuration file is provided, the default configuration will set the server to hostname:8000 and
loglevel to INFO.

4.4 Sequencer server

Since the Sequencer GUI takes care of starting and stopping the sequencer server there shoud be
no need for an user to start on on its own. Anyway, this is how one can start the sequencer server
and its options:

$ seqtool server --help
Usage: seqtool server [OPTIONS]

Starts the Sequencer Server, a socket server for the sequencer.

It listens on the "address" for commands and applies them to its own
instance of sequencer (seqtool shell).

If you need multiple instances of the sequencer server, please start them in
their own port and provide their own instance of redis.

Options:
--address TEXT Sequencer server address [HOST:]PORT

[default: 8000]
--log-level [DEBUG|INFO|WARN|CRITICAL|ERROR]

Will present logs at this level of higher
[default: INFO]

--help Show this message and exit.

The sequencer server can be executed on a different host than the GUI. In that case, the server
address is given as [HOST:]PORT.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 35 of 54

5 A Deeper Look

A deeper look to nodes and its attributes is given in the following paragraphs.

5.1 Passing Arguments to Actions

Action and ActionInThread constructors only admits a function object, no space to pass parameters
to the function or coroutine that is going to be executed by the node.

However, functions are first class objects in python, this makes easy to create them and pass around
dynamically. It is recommended to use partial functions in order to pass parameters to the functions
associated to action nodes.

5.2 Using partial functions

The use of partial functions allows to fix a certain number of arguments of a function and generate a
new function, on the spot. Please see functools.partial() for the official documentation. In any case
the following example illustrates its use.

We recommend the use seq.lib.partial() instead of functools.partial() since the former will keep the
documentation of the wrapped function.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 36 of 54

Listing 8: partial function example

from seq.lib import partial

def f(a,b,c):
return a+b+c

g = partial(f,1,2) # creates new function g()
g(3) # Equivalent to f(1,2,3)
g(9)
g(1,2) # f will complain too many arguments were passed

The example partial function example shows a new function g() created by using partial in order to
specify that g() when, called will invoke f(1,2) plus any extra argument given.

From the point of view of the python interpreter g() is a normal function, meaning you can use g() as
many times as you see fit.

5.3 Runtime Flags

It is possible to associate runtime flags to the nodes. In order to skip or pause them. The easiest way
to do this is by using the _pause and _skip shortcuts, as follows:

from seq.lib import _pause, _skip, Sequence

async def a():
pass

def b():
pass

node1 = _pause(a);
node2 = _skip(b);

s = Sequence.create(node1, node2, _skip(a))

Another way is to use set_runtime_flags(node, flags) function which requires a node and sets its
runtime flags from the parameter. Valid runtime flags values are PAUSE and SKIP:

from seq.lib import RTFLAG, set_runtime_flag

node = Action(f)
set_runtime_flag(node, RTFLAG.PAUSE)
...
set_runtime_flag(node, RTFLAG.SKIP, False)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 37 of 54

5.4 Summary building DAGs

Constructor Calling conventions

First of all, except for Action and ActionInThread do not use the standard class_name() constructor to
build nodes. i.e. never use naked Parallel() to create a Parallel node, same for the other node types.

Important: Use the create() method to instance all container classes (Loop, Sequence, Parallel,
etc).

Since they hold a variable number of children nodes, their constructors (create() method) receives its
children as positional arguments. Any other attribute (mandatory or not) is passed trough keyword
arguments. See Node constructor calling convention

Listing 9: Node constructor calling convention

Sequence ctor
Sequence.create(child_1, child_2, ..., child_n,

id="my_unique_id", name="my nice name")

Parallel ctor
Parallel.create(child_1, child_2, ..., child_n,

id="my_unique_id", name="my nice name")

Loop ctor
Loop.create(child_1, child_2, ..., child_n,

id="my_unique_id", name="my nice name",
init = init_function,
condition= condition_function
)

Node Attributes

Node attributes are passed as keyword arguments in ts create method. Every node has, at least,
a name and id attributes. If they are not specified while building the DAG they are assigned by the
engine pseudo–randomly.

The specific attributes for each node type are detailed in the following table:

Node Class Attribute Description
ALL id Node id (must be unique)
ALL name Node name
Loop init Initialization node
Loop condition Loop’s condition node

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 38 of 54

5.5 Special Variables

Sequences uses contextvars.ContextVar to distribute special values around all tasks and threads that
are part of a given Sequencer script.

The ContextVar module implements context variables. This concept is similar to thread-local storage
(TLS), but, unlike TLS, it also allows correctly keeping track of values per asynchronous task, e.g.
asyncio.Task.

Class Variable Description
Sequence current_seq Current Sequence name
Sequence root The root node
Loop index Loop’s running index

5.6 Result Handling

Each node has a result attribute where the return value from its associated step is stored.

For Action and ActionInThread, the result is just the return value from its associated function. Since
each Action is just a simple function or method, their result is kept in its corresponding node’s attribute
result.

All other nodes will have an empty result unless it is explicitely set by some step, in the sequence.
Example Set node result shows a step setting the result of the sequence that contains it. The node
that contains a given action is accessed trough the Sequence.current_seq context variable as the
example shows.

It is clear that in order to check for a node’s result one needs to have a handler to that node or a way
to find it, see Finding nodes.

Note: Both Parallel and Loop classes inherit from Sequence. Therefore they can access Se-
quence.current_seq context variable.

Listing 10: Set node result

from seqlib.ob import OB
reuse some sequence ...
from . import test_a as a

async def mystep():
"""Sets current Sequence's result"""
s = Sequence.current_seq.get()
s.result = 0

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 39 of 54

(continued from previous page)

async def test_result():
tpa = OB.create_sequence(a)
sc = Parallel.create(tpa, mystep)
await sc.start()
assert sc.result == 0

5.7 Finding nodes

Unless one has saved a reference to a node, e.g. as a class member or global variable. The only way
to find a node in the DAG is trough its unique id.

The func:seq.lib.nodes.find_node receives as a parameter a starting node and the id of the node
being looked up. On success it returns a tuple the target node and its parent as the tuple (parent,
node).

1. In order to lookup a node from the DAG’s root (meaning look around the complete sequence
until a hit is found), simply pass the root context variable as the initial node.

2. In order to lookup a node from the current sequence use the current_seq context variable as
the starting node. Lookup a node illustrates both use cases.

Listing 11: Lookup a node

from seqlib.nodes import Sequence, find_node
...
async def do_a():
find node `id1` (not shown) starting at root and get its result.
_, node = find_node(Sequence.root.get(), "id1")
print("the other node result", node.result)
return node.result + 1; # or something

async def do_b():
find do_a's result
_, node_a = find_node(Sequence.current_seq.get(), "id_do_a")
return node_a.result +1; # or do something else

Given a Sequence s
s = Sequence.create(Action(do_a, id="id_do_a"), do_b)

Since node_ids are unique inside a given Sequence there is no risk of loosing an Action’s result
because it gets overwritten by some other node. As opposed to Nodes have context .

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 40 of 54

5.8 Nodes have context

Besides the result attribute that can be inspected in order to pass information between Sequencer
scripts. There is the context dictionary which can be freely accesses throughout all nodes being
executed.

The context dictionary is a property shared among all Sequence nodes (includes Loop and Parallel).
Action and ActionInThread nodes can gain access to it trough Sequence.get_context() static method.
Please see the following code excerpts Node context example.

The methods do_a() and do_b() must access the context trough the Sequence.get_context() static
method. The object tpl, being a Sequence instance can access its Sequence.context attribute.

Listing 12: Node context example

async def do_a():
ctx = Sequence.get_context()
ctx["do_a"] = 1

def do_b():
ctx = Sequence.get_context()
ctx["do_b"] = 1

creates the sequence
tpl = Sequence.create(do_a, ActionInThread(do_b))
Sequence.root.set(tpl)
await tpl.start()
ctx = tpl.context

assert tpl.context["do_a"] == 1
assert tpl.context["do_b"] == 1

Warning: Notice there are no hard rules about what can go into the context dictionary and under
what key. It might be simpler to use than setting results on nodes but there is no guarantee a given
key might be overwritten in some other part of the running script just because of a name clash.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 41 of 54

5.9 Node Types

The sequencer node types lives in the module seq.nodes:

Action

The simple action node. It contains a python function or method to be executed.

Creates a node with some properties.
node_a = Node(t.a, name="node")

Sequence

Executes nodes one after the other.

seq.samples.a

a b

Parallel

Executes nodes in parallel, finishes when all its nodes are done.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 42 of 54

seq.samples.b

a

b

Loop

A Loop consists of a condition and a block of nodes to execute while said conditions
remains True. It also accepts an initialization function to be called, only once, before the
first loop iteration.

seq.samples.loop1

Loop init condition

F

a b c

"""
Implements a loop.
The condition checks Loop's index < 3.
"""
import asyncio
import logging
import random
from seq.lib.nodes import Loop

logger = logging.getLogger(__name__)

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 43 of 54

(continued from previous page)

class Tpl: # Mandatory class name
async def a(self):

"""sleeps up to 1 second"""
t = random.random() # 0..1
await asyncio.sleep(t)
logger.info(".. done A: %d", Loop.index.get())

async def b(self):
"""sleeps up to 1 second"""
t = random.random() # 0..1
await asyncio.sleep(t)
logger.info(" .. done B: %d", Loop.index.get())

async def c(self):
pass

async def check_condition(self):
"""
The magic of contextvars in asyncio
Loop.index is local to each asyncio task
"""
logger.info("Loop index: %d", Loop.index.get())
return Loop.index.get() < 3

@staticmethod
def create(**kw):

t = Tpl()
l = Loop.create(t.a, t.b, t.c,

condition=t.check_condition, **kw)
return l

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 44 of 54

6 Good Practices

Here we provide some advice on how to use the Sequencer API.

6.1 Writing Sequences

Code Structure

For short scripts, putting together a Sequencer script out of a handful of functions or coroutines is
perfectly fine. OTOH, in order to provide reusable code, it is preferable to group common functionality
using classes.

Logging

The sequencer uses the standard python logging module logging and provides the logger seq.user.

User’s logging to a file (seq_user.log), its exact location depends on the tool used. See Sequencer
Command Line Tools.

The seq.lib.getUserLogger() function returns a standard logger object.

Listing 13: Logging support

from seq.lib.log import getUserLogger
user_logger = getUserLogger()

def my_method():
user_logger.info("My INFO msg")

Creating Sequences

Follow the convention outlined in Constructor Calling conventions. The class` create() method or
module’s create_sequence() should get its required arguments as positional arguments or variable
list of arguments (*args). Customization shall be accepted trough Keyword Arguments (**kw) in order
to allow the user to setup, at least, the nodes’ name and id.

The following example shows a module level sequence ctor (create_sequence), It creates a new
Sequence out of the arguments passed,

The returned sequence has an extra final step my_end_step() that was added by the constructor. The
usage of keyword arguments allows to pass options to the underlying Sequence object.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 45 of 54

Listing 14: Implement constructor convention

module ctor
async def my_end_step():

pass

def create_sequence(*args, **kw):
return Sequence.create(*args, my_end_step, **kw)

Listing 15: class example

Class Example
must be named `Tpl`
class Tpl:

async def my_end_step():
pass

@staticmethod
create(*args, **kw):

p = Tpl()
return Sequence.create(*args, p.my_end_step, **kw)

Invoke other processes

It is important not to redirect the or change stdin or stdout of the sequencer tools.

To invoke other processes, and keep them detached from the sequencer process use asyn-
cio.create_subprocess_shell() and pass options DEVNULL for stdin and stdout as shown in the ex-
ample.

Listing 16: subprocess example

from seq.lib.nodes import Sequence
import asyncio

async def proc_a():
print("A")

async def proc_b():
await asyncio.create_subprocess_shell('eog', stdin=asyncio.subprocess.DEVNULL,

stdout=asyncio.subprocess.DEVNULL)

def create_sequence(*args, **kw):
return Sequence.create(proc_a, proc_b)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 46 of 54

7 Sequencer Command Line Tools

7.1 The seqtool meta command

The seqtool provides the following subcommands:

run Allows to execute a sequencer script.

draw Generates DAG images of Sequencer scripts.

shell
Starts an interactive CLI which allows to load and run sequencer scripts.

gui
Starts the sequencer GUI

server
Starts the sequencer server

Common command-line options

Every seqtool sub-commands supports the following options:

–help
Shows command’s syntax and usage options.

–log-level
Sets the process’ logging level.

The seqtool shell sub command

Starts an interactive CLI where the user can submit commands to the sequencer library in order to
execute Sequencer scripts.

Supported commands are:

help
Provides a list of commands supported by the CLI. With a parameter, displays the
documentation of the given command. e.g.:

(seq)>> help load
load command
Will display `load`'s command documentation

quit
Stops the shell process.

load

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 47 of 54

Loads a python module that implements a sequencer script. The module has to be
specified as Python would import it. e.g.:

(seq)>> load seq.samples.a

modules
Lists the modules loaded by the Sequencer core.

run
Executes all the Sequencer scripts loaded.

tree
Shows the Sequencer tree, from the modules loaded. Along with the tree structure it
displays the node’s serial number needed by some commands.

pause <node_sn>

Allows to mark a node to pause execution. Receives the node serial number
as parameter.

Alternate syntax with node name.

skip –find_name <node_name> –no-flag
Allows to mark a node to pause execution. Receives the node name as parameter. if
–no-flag is passed the node is mark to NOT PAUSE.

resume <node_sn>
A paused script can be resumed with this command. One has to give the node serial
number to resume from (the PAUSED node).

skip <node_sn>
Allows to mark a node to skip from execution. Receives the node serial number as
parameter.

Alternate syntax with node names. skip –find_name <node_name> –no-flag

Allows to mark a node to skip from execution. Receives the node name as
parameter.

if –no-flag is passed the node is mark to NOT SKIP.

retry
Allows to retry the execution of a failed node.

continue
When the execution of a script is cancelled, due to an error. One can resume execu-
tion from the next available node with the continue command.

flip <skip|pause> <node_sn>
Flips the pause or skip flag of a node. Must give the flag to flip and the node’s serial
number:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 48 of 54

(seq)>> flip pause 3
(seq)>> flip skip 4

bp <command>
bypass to subprocess command

save
save the current session

break line
set a break at the specified line

err
forces an exception

lsob
list loaded obs

nodes
execute the obs’ nodes

session
load session sequences

unskip line
skip specified line

clear
kill seq-core subprocess

fetch
fetch an OB from OTTO

init
init command, creates sequencer exec process

lsvar
list variables

ob <obpath>
loads an OB file (json)

reset
executes all loaded modules

Upon start, a session directory is created, below the /tmp directory as seq_session_<pid>. The
following log files can be found there:

seq_user.log
User’s logging and very basic script execution info.

seq.log
Internal shell’s logging. Useful for debugging the sequencer itself.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 49 of 54

kernel.log
Internal sequencer logging, state changes, execution chain, etc. Useful for debugging
the sequencer itself.

Basic Usage

Command line options

The seqtool server command accepts the following command line options:

• –address (as [HOST:]PORT) where to listen for connections

• –redis (as [HOST:]PORT) where is the REDIS server

Loading sequences

At the prompt one can send commands to the shell. The following will load a sequence module (if
found):

$ seqtool shell
MAIN ...
INFO:(seqsh.__init__): shell started: /tmp/seq_session_13369/seq.log
(seq)>> INFO:(seqsh.do_init): initialize shell- False
INFO:(seqsh.do_init): dummy redis connection
INFO:(seqsh.start_seq_core): Starting seq kernel
INFO:(seqsh.start_seq_core): connected to child process

(seq)>> load seq.samples.a

One can examine the structure and state of the loaded script with the nodes command:

(seq)>> nodes
(seq)>> (Core)> A-- (5) begin NOT_STARTED
A-- (8) end NOT_STARTED
S+- (2) Sequence NOT_STARTED

A-- (6) begin NOT_STARTED
A-- (3) a NOT_STARTED
A-- (4) b NOT_STARTED
A-- (7) end NOT_STARTED

To decipher the above ouput, every line is formatted as:

<Node type> – (<Node_number>) <Node name> <state|flags>

Lines are indented according to its level in the DAG. Every node in the DAG is prefixed by its type, as
follows:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 50 of 54

A
This for Actions.

S
Refers to a Sequence.

P
Inidicates a Parallel sequence.

L
To indicate a Loop.

The number in parenthesis are the node’s serial number which some commands needs as a param-
eter.

Sequencer scripts are executed with the run command.

Executing Sequences

The run command executes the loaded sequences:

seq)>> run
(seq)>> INFO:seq.samples.a:a
INFO:seq.samples.a:B

The state of the script can be observed at any time with the nodes command:

A-- (5) begin FINISHED
A-- (8) end FINISHED
S+- (2) Sequence FINISHED

A-- (6) begin FINISHED
A-- (3) a FINISHED
A-- (4) b FINISHED
A-- (7) end FINISHED

Skipping Nodes

A node can be skipped from execution with the skip command and indicating the node number one
desires ti skip

(seq)>> skip 3
(seq)>> run
INFO:seq.samples.a:B

The nodes command after running the sequence looks as follows:

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 51 of 54

seq)>> nodes
(Core)> A-- (5) begin FINISHED
A-- (8) end FINISHED
S+- (2) Sequence FINISHED

A-- (6) begin FINISHED
A-- (3) a FINISHED|SKIP|RT.SKIP
A-- (4) b FINISHED
A-- (7) end FINISHED

Node (3) is marked as FINISHED and SKIP (was skipped). The RT.SKIP text indicates the runtime
flag SKIP is active.

In the example above all nodes are FINISHED, no error was detected.

Pause a script

The pause commands requires the node number where to pause. Pausing on node (4) on the script
we are working on activates the pause runtime flag on said node:

(seq)>> pause 4
(seq)>> nodes
(Core)> A-- (5) begin FINISHED
A-- (8) end FINISHED
S+- (2) Sequence FINISHED

A-- (6) begin FINISHED
A-- (3) a FINISHED|SKIP|RT.SKIP
A-- (4) b FINISHED|RT.PAUSE
A-- (7) end FINISHED

Executing the script will pause on node (4). It will look as follows (nodes command ouput redacted)

A-- (4) b PAUSED|RT.PAUSE

In order to resume execution just issue the resume command, with the node number:

(seq)>> resume 4
INFO:seq.samples.a:B
(seq)>> nodes
(Core)> A-- (5) begin FINISHED
A-- (8) end FINISHED
S+- (2) Sequence FINISHED

A-- (6) begin FINISHED
A-- (3) a FINISHED|SKIP|RT.SKIP
A-- (4) b FINISHED|RT.PAUSE

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 52 of 54

(continued from previous page)

A-- (7) end FINISHED
(seq)>>

To clean the runtime flags use flip command, in the example nodes (3) and (4) are back to normal:

(seq)>> flip skip 3
(seq)>> flip pause 4

Error Handling

When a Sequencer Item generates an error, i.e. raises a Python exception, then the whole sequence
is CANCELLED, and the offending node is marked as FINISHED|ERROR. The following example
shows such a sequence:

(seq)>>
(seq)>> load seq.samples.test_err
(seq)>> (Core)> NODES: ['begin___seq_ROOT___qVJL9XVXR3', 'Sequence_3j7VG0YWmM',
↪→ 'end___seq_ROOT___qVJL9XVXR3']
NODES: ['begin_Sequence_3j7VG0YWmM', 'Tpl.a_3jxvx', 'b', 'Tpl.c_1wWmj', 'end_Sequence_
↪→3j7VG0YWmM']

(seq)>> run
(seq)>> SEQRUN!, catch exception: Sequence

........

File "/home/eeltdev/introot/lib/python3.7/site-packages/seq/samples/test_err.py", line 28, in b
x = 1 / 0

ZeroDivisionError: division by zero

The exception stacktrace is shown clearly indicating the offending method and line where the excep-
tion occurrs (division by zero). The output of nodes command:

(seq)>> nodes
(seq)>> (Core)> A-- (7) begin FINISHED
A-- (10) end CANCELLED
S+- (6) Sequence CANCELLED|ERROR

A-- (8) begin FINISHED
A-- (3) Tpl.a FINISHED
A-- (4) Tpl.b FINISHED|ERROR
A-- (5) Tpl.c CANCELLED
A-- (9) end CANCELLED

Where the node b has state FINISHED|ERROR.

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 53 of 54

One the can retry the failed node or continue from the next unfinished
node.

7.2 seqtool run

Executes the Sequencer scripts given in the command line. Usage:

$ seqtool run --help

Starts seq CLI

Usage: seqtool run [OPTIONS] [MODULES]...

Options:
--log-level [DEBUG|INFO|WARN|CRITICAL|ERROR]

Will present logs at this level of higher
[default: INFO]

--help Show this message and exit.

It is non-interactive so it breaks at the slightest provocation. An example:

specify two modules to execute in sequence
$ seqtool run seq.samples.a seq.samples.b

log files

The seqtool run commands creates the following log files at user’s current directory.

seq_user.log
User’s logging and very basic script execution info.

seqrun_<pid>.log
Internal sequencer logging, state changes, execution chain, etc. Useful for debugging
the sequencer itself.

7.3 seqtool draw

Draws the graph representation of the Sequencer scripts given in the command line. Usage:

$ seqtool draw --help
Usage: seqtool draw [OPTIONS] OUTPUT [MODULES]...

Draws the graph representation of a Sequencer script given in the command
line.

(continues on next page)

Document Classification: Public

ELT ICS Framework - Sequencer - User
Manual

Doc. Number: ESO-363358

Doc. Version: 4

Released on: 2024-12-11

Page: 54 of 54

(continued from previous page)

Options:
--log-level [DEBUG|INFO|WARN|CRITICAL|ERROR]

Will present logs at this level of higher
[default: INFO]

--help Show this message and exit.

It is non-interactive so it breaks at the slightest provocation. An example:

generates a .dot diagram of the given module
$ seqtool draw a.dot seq.samples.a

Create a .dot file from seq.samples.a python module. The following example generates a JPEG image
from seq.samples.b module:

generates a .png and a .jpg image of the given module
$ seqtool draw a.png seq.samples.b
$ seqtool draw a.jpg seq.samples.a

Document Classification: Public

	Introduction
	Scope
	Acronyms
	Overview
	Naming Conventions

	Tutorial
	Building Sequences
	Node Dependencies

	Very simple sequences
	Executing Tasks in Parallel
	Executing Tasks in a Loop
	Embedding Sequencer Scripts
	Observation Blocks and Templates
	Accessing Template Variables
	Inserting a basic dialog window

	Interface to Observation Handling SW
	Configuration
	Simulation
	Usage

	Instrument package

	Sequencer GUI
	Overview
	Using the Sequencer GUI
	The Toolbar
	The Tree Window
	Logs
	OB Variables
	OTTO Interface
	Error Handling
	Advanced: Debug Mode

	Configuration File
	Sequencer server

	A Deeper Look
	Passing Arguments to Actions
	Using partial functions
	Runtime Flags
	Summary building DAGs
	Constructor Calling conventions
	Node Attributes

	Special Variables
	Result Handling
	Finding nodes
	Nodes have context
	Node Types
	Action
	Sequence
	Parallel
	Loop

	Good Practices
	Writing Sequences
	Code Structure
	Logging
	Creating Sequences
	Invoke other processes

	Sequencer Command Line Tools
	The seqtool meta command
	Common command-line options
	The seqtool shell sub command
	Basic Usage

	Command line options
	Loading sequences
	Executing Sequences
	Skipping Nodes
	Pause a script
	Error Handling

	seqtool run
	log files

	seqtool draw

