
European Organisation for Astronomical Research in the Southern Hemisphere

Programme: ELT

Project/WP: Instrumentation Framework

ELT ICS Framework Data Acquisition
User Manual

Document Number: ESO-396401

Document Version: 3

Document Type: User Manual (MAN)

Released on: 2024-12-11

Document Classification: Public

Owner: Rosenquist, Calle

Validated by PM: Kornweibel, Nick

Validated by SE: González Herrera, Juan Carlos

Validated by PE: Biancat Marchet, Fabio

Approved by PGM: Tamai, Roberto

Name

European Southern Observatory
Headquarters Garching

Karl-Schwarzschild-Straße 2
85748 Garching bei München

www.eso.org

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 2 of 89

Release

This document corresponds to ifw-daq1 v3.1.0.

Authors

Name Affiliation

Rosenquist, Calle ESO

Change Record from Previous Version

Affected Section(s) Changes / Reason / Remarks

See CRE ET-1517

All All sections updated

3.1,9.1.3,9.3,11.4 New sections added

14-16 Sections removed

1https://gitlab.eso.org/ifw/ifw-daq

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-daq

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 3 of 89

Contents

1 Introduction 6
1.1 Scope . 6
1.2 Acronyms . 6
1.3 Definitions . 7

2 Related Documents 11
2.1 Reference Documents . 11

3 Style Conventions 13
3.1 Interactive Shell Sessions . 13
3.2 JSON Data Structures . 13

4 ELT for VLT Developer 16

5 Components 17

6 Software Context 18

7 Deployment 20
7.1 Reference . 20
7.2 Deployment Constraints . 21

8 Overview 23
8.1 Introduction . 23

8.1.1 Stylistic Conventions . 23
8.1.2 Conceptual Model . 24

8.2 Control and Data Flow . 26
8.2.1 Control Flow . 27
8.2.2 Data Flow . 28

8.3 Data Product Creation . 29

9 The Data Acquisition Process 31
9.1 Introduction . 31

9.1.1 Stylistic Conventions . 31
9.1.2 Process Overview . 32
9.1.3 Data Validation . 34

9.2 StateAcquiring . 35
9.2.1 Overview . 35
9.2.2 Starting . 35
9.2.3 Stopping . 37
9.2.4 Aborting . 38

9.3 StateMerging . 40
9.3.1 Overview . 40
9.3.2 NotScheduled . 40
9.3.3 Scheduled . 40

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 4 of 89

9.3.4 Collecting . 42
9.3.5 Merging . 42
9.3.6 Releasing . 42
9.3.7 Completed . 42

10 Data Acquisition Guide 43
10.1 Prerequisites . 43
10.2 Lifecycle Control . 44

10.2.1 Startup . 44
10.2.2 Shutdown . 45

10.3 Observing Status Changes . 46
10.4 Automatic Stop Sequence . 47
10.5 Manual Stop Sequence . 50

11 Observation Coordination Manager 52
11.1 Introduction . 52
11.2 Client . 53

11.2.1 Environment Variables . 53
11.2.2 Command Line Arguments . 53

11.3 Server . 55
11.3.1 State Machine . 56
11.3.2 MAL URI Paths . 58
11.3.3 Command Line Arguments . 58
11.3.4 Environment Variables . 59
11.3.5 Configuration File . 59
11.3.6 Workspace . 62
11.3.7 Loggers . 63

11.4 Standard MAL API . 64
11.4.1 Interfaces . 64
11.4.2 Data Structures . 64

12 Data Product Manager 65
12.1 Introduction . 65
12.2 Server (daqDpmServer) . 66

12.2.1 State Machine . 66
12.2.2 MAL URI Paths . 66
12.2.3 Command Line Arguments . 67
12.2.4 Environment Variables . 67
12.2.5 Configuration File . 68
12.2.6 Workspace . 69
12.2.7 Loggers . 72

12.3 Merger (daqDpmMerge) . 72
12.3.1 Command Line Arguments . 72
12.3.2 Environment Variables . 73
12.3.3 Exit Codes . 73

12.4 Data Product Specification . 74

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 5 of 89

12.4.1 Primary HDU keywords . 74
12.4.2 HDU Extensions . 75
12.4.3 JSON Description . 75

13 MAL Interface 76
13.1 OCM Data Acquisition Control . 76
13.2 DPM Control . 82
13.3 DPM Data Acquisition Control . 83
13.4 Data Structures . 84

Python Module Index89

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 6 of 89

1 Introduction

1.1 Scope

This document is the user manual for the ELT ICS Framework products OCM and DPM and covers:

• Overview of the design and concepts

• Software context and deployment

• Data Acquisition guide

• Interface documentation

The intended audience are instrument or instrument framework developers. Readers are assumed to
be familiar with core ELT technologies:

• CII MAL (request/reply and publish/subscribe)

• FITS (Header/Data Units, keywords, extensions)

1.2 Acronyms

CII
Core Integration Infrastructure

DAQ
Data Acquisition

DPM
Data Product Manager

In some contexts DPM may colloquially be referring to the application daqDpmServer.

DICD
Data Interface Control Document

ELT
Extremely Large Telescope

FITS
Flexible Image Transport System

DHS
Data Handling Server where DPM can deliver merged products to On-Line Archive System

OCM
Observation Coordination Manager.

In some contexts OCM may colloquially be referring to the application daqOcmServer.

OCS
Observation Coordination System

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 7 of 89

OLAS
On-Line Archive System

OLDB
On-Line Database

RAD
Rapid Application Development toolkit. See also RD9.

ICD
Interface Control Document (may also refer to MAL XML Interface document)

ICS
Instrument Control System

JSON
JavaScript Object Notation

MAL
Middleware Abstraction Layer

TBC
To be confirmed

TBD
To be determined

1.3 Definitions

Archive File Name
Archive File Name is the unique name of the Data Product in the ESO Science Archive, which
follows the pattern {fileId}.fits, where {fileId} has the pattern {insPrefix}.{timestamp} and {in-
sPrefix} is the configured instrument prefix and {timestamp} is the ISO 8601 timestamp format
YYYY-MM-DDThh:mm:ss.sss.

The Archive File Name is recorded in primary HDU FITS keyword ARCFILE in all Data Products
created by OCM.

Example name: KMOS.2023-01-08T09:27:03.966.fits

See also:

• File Id

• RD7

Config Path
Term used in this document to refer to configuration paths resolved using the environment vari-
able $CFGPATH. The path can either be absolute or relative. In case of relative path the file is
resolved by testing the combination of each path in $CFGPATH with the provided relative path.

For example if $CFGPATH=/tmp/a:/tmp/b and Config Path is the file c the tested paths are

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 8 of 89

(in order):

1. /tmp/a/c

2. /tmp/b/c

Commentary Keyword
In this document a FITS Commentary Keyword refers to those keywords that are neither Value
Keywords or ESO Keywords. Commentary Keywords are special because the same keyword
name may occur multiple times in the same HDU, to e.g. continue a comment over multiple
records.

Note: Strictly speaking the HIERARCH keyword is also a commentary keyword but is treated
specially in applications that support the convention.

Examples are:

COMMENT Commentary keyword names may occur multiple times in a header, it may also
COMMENT be contextual, as in this case, where a comment is continued over multiple
COMMENT records.
HISTORY File modified by user 'USER' on host on 2021-09-03T01:28:26

Data Acquisition
In this document it refers to the process of acquiring data as coordinated by OCM which results
in one or more FITS files that contain the primary HDU and zero or more extensions such as
binary tables, and or FITS keywords only. These are then merged together used to create a
Data Product by DPM.

Refer to section Conceptual Model for a high level conceptual model of the process involved
and Process Overview for a concrete and detailed overview.

Data Product
In this document it refers to the FITS science data product that is produced by DPM using the
acquired data (see Data Acquisition) and normally archived in the ESO Online Archive System.

Data Product Specification
Specifies how to create a Data Product from input sources. This specification is created by
daqDpmServer and used by daqDpmMerge.

ESO Keyword
See ESO Hierarch Keyword .

ESO Hierarch Keyword
Refers to FITS keywords following the ESO HIERARCH keyword conventions RD6, i.e. key-
words of the form:

HIERARCH ESO INS FILT1 ENC = 2 / Filter wheel absolute position [Enc].
HIERARCH ESO INS FILT1 ID = 'OUT' / Filter unique id.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 9 of 89

The first token, INS in the example above, is referred to as the category.

File Id
Unique identifier for all Data Products in the ESO Science Archive and basis for the Archive File
Name.

File Id has the pattern {insPrefix}.{timestamp} and {insPrefix} is the configured instrument
prefix and {timestamp} is the ISO 8601 timestamp format YYYY-MM-DDThh:mm:ss.sss.

When a new Data Acquisition is initialized daqOcmServer will allocate the id which can be read
from e.g. fileId.

Example name: KMOS.2023-01-08T09:27:03.966

Uniqueness is ensured by having daqOcmServer create the id and that the following assump-
tions hold true:

• There is only one daqOcmServer instance for each instrument prefix.

• The time used to generate the identifier is correct.

See also:

• Archive File Name

• RD7

Keyword Classification
Refers to the CFITSIO classification for a given keyword. This can e.g. be structural keywords
like SIMPLE or NAXIS, WCS like CTYPEn or CUNITn. Keywords that are not known to CFIT-
SIO are referred to as user keywords. See RD8 for a complete list of categories.

Keyword Type
Refers to the different FITS standard[RD5] keyword record specifications which can be any of:

• Value Keyword

• ESO Keyword

• Commentary Keyword

Logical Keyword Name
The logical name of a FITS keyword depends on the type of keyword, but there are common
traits: Trailing white spaces are insignificant and are not part of the Logical Keyword Name.

For FITS Value Keyword and Commentary Keyword the logical name is the white-space trimmed
name component. The logical names for

NAXIS1 = 2048 / # of pixels in axis1
COMMENT This table was written by 'APPLICATION'

are NAXIS1 and COMMENT respectively.

For ESO Keyword the logical name is the part between HIERARCH ESO up to =. For example
the logical name is INS FILT1 ID for the HIERARCH keyword:

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 10 of 89

HIERARCH ESO INS FILT1 ID = 'OUT' / Filter unique id.

metadaqif
Standard metadata source interface used by e.g. FCF and other components [RD3].

daqOcmServer
Name of the OCM main server executable.

daqOcmCtl
Name of the OCM command line client executable.

recif
Standard primary data source interface implemented by DCSs [RD4].

Value Keyword
A FITS Value Keyword are those keywords that have a value indicator in bytes 9 and 10 (c.f.
RD5). Example keywords are:

SIMPLE = T / Standard FITS
BITPIX = 8 / # of bits per pix value
NAXIS = 0 / # of axes in data array

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 11 of 89

2 Related Documents

2.1 Reference Documents

[RD1]

Data Interface Control Document;
ESO-044156 v71

[RD2]

Technical Note on Inter-ICS Data Acquisition;
ESO-356883 v12

[RD3]

Metadata Acquisition Interface;
https://gitlab.eso.org/ecs/ecs-interfaces/-/tree/master/metadaq

[RD4]

DCS Recording Interface;
https://gitlab.eso.org/ecs/ecs-interfaces/-/tree/master/rec

[RD5]

Definition of the Flexible Image Transport System (FITS);
https://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf

[RD6]

The ESO HIERARCH Keyword Conventions;
https://fits.gsfc.nasa.gov/registry/hierarch/hierarch.pdf

[RD7]

ICD between ICS and OLAS;
ESO-384590 v13

[RD8]

1 https://pdm.eso.org/kronodoc/HQ/ESO-044156/7
2 https://pdm.eso.org/kronodoc/HQ/ESO-356883/1
3 https://pdm.eso.org/kronodoc/HQ/ESO-384590/1

Document Classification: Public

https://pdm.eso.org/kronodoc/HQ/ESO-044156/7
https://pdm.eso.org/kronodoc/HQ/ESO-356883/1
https://gitlab.eso.org/ecs/ecs-interfaces/-/tree/master/metadaq
https://gitlab.eso.org/ecs/ecs-interfaces/-/tree/master/rec
https://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf
https://fits.gsfc.nasa.gov/registry/hierarch/hierarch.pdf
https://pdm.eso.org/kronodoc/HQ/ESO-384590/1

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 12 of 89

CFITSIO User’s Reference Guide;
https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/cfitsio.html

[RD9]

ELT ICS Framework - Application Framework - User Manual;
ESO-363137 v44

[RD10]

ELT ICS Framework - Data Interface Tools - User Manual;
ESO-319696 v25

[RD11]

Data Acquisition Interface - daqif
https://gitlab.eso.org/ifw/ifw-daqif/

4 https://pdm.eso.org/kronodoc/HQ/ESO-363137/4
5 https://pdm.eso.org/kronodoc/HQ/ESO-319696/2

Document Classification: Public

https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/cfitsio.html
https://pdm.eso.org/kronodoc/HQ/ESO-363137/4
https://pdm.eso.org/kronodoc/HQ/ESO-319696/2
https://gitlab.eso.org/ifw/ifw-daqif/

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 13 of 89

3 Style Conventions

3.1 Interactive Shell Sessions

When examples are given in the following form it means the command command is executed with
argument --argument which produces output output to the console:

$ command --argument
output

In limited cases the syntax highlighting can be incorrect, but it should be clear from the context what
is meant.

3.2 JSON Data Structures

This manual documents a number of JSON data structures, their “schema”, using these common
conventions. In some cases a more formal documentation in the form of JSON Schema6 is also
provided.

Typically a concrete example is first provided:

Listing 3.1: Example JSON data structure with sum-type list

{
"name": "example",
"optional": 3.0,
"nestedAnonymous": {

"nestedProperty": "value"
},
"listOfObjectsProperty": [

{
"type": "unionTypeA",
"property": "value"

},
{

"type": "unionTypeB",
"anotherProperty": "value"

}
]

}

This top level structure is then documented, sometimes with named sub-objects. The types of each
property uses Python Variable Annotation7 syntax. For example a string would be str, a JSON object

6 https://json-schema.org/
7 https://www.python.org/dev/peps/pep-0526/

Document Classification: Public

https://json-schema.org/
https://www.python.org/dev/peps/pep-0526/

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 14 of 89

would be object, a list of strings would be List[str], a union of two alternative named objects like above
would use Union[type1, type2], a list of union of named types would be List[Union[type1, type2]].

Unions are used when multiple types alternatives are allowed. The way it is typically used for is to
have multiple object alternatives. In this case the union variant is discriminated using a type property
with a fixed literal string value. The example in Listing 3.1 contain a list of union type using this pattern.

Each property of an object, consisting of a <name>, <type> and <default> is then documented as
follows:

<name> (<type>) <default>
Documentation for property with name “<name>” type “<type>” and optionally a default value
<default>.

If <type> must have a specific value the literal value may be indicated instead.

If property is optional the <type> can specify this using Python annotation syntax: Op-
tional[<type>]. If there is a default value <default> specifies that as [default DEFAULTVALUE].
Lists are often optional and in this case it is simply indicated by a default empty list value: [de-
fault: []]. When a property is optional and no value should be provided the property should
simply be omitted from the object rather than specify a null value.

If a property is an anonymous object with nested properties it will be documented inline with
nested indentation (see example below).

Documenting the example structure above would look like:

Root object

name (str)
Name property.

optional (Optional[float]) [default: 1.0]
Optional property of float type with a default value of 1.0.

nestedAnonymous (object)
Example of how nested anonymous objects are documented.

nestedProperty (str)
A nested property of this anonymous object.

listOfObjectsProperty (List[Union[UnionTypeA, UnionTypeB])
Contains a list of either UnionTypeA or UnionTypeB types. See below for their structure.

UnionTypeA

Documents named object “UnionTypeA”.

type (“unionTypeA”)
Union discriminator and must have the literal value "unionTypeA".

property (str)
Example property of UnionTypeA.

UnionTypeB

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 15 of 89

Documents named object “UnionTypeB”.

type (“unionTypeB”)
Union discriminator and must have the literal value "unionTypeB".

anotherProperty (str)
Example property of UnionTypeB.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 16 of 89

4 ELT for VLT Developer

This section aims to help introduce developers familiar with VLT software to similar or related ELT
concepts.

Table 4.1: Concept mapping between VLT and ELT
VLT ELT Comment
BOSS OCM The main component coordinating the exposures/Data Acquisitions.

In VLT it also had a supervisory and role for which commands were
forwarded through BOSS. BOSS was also a common point of cus-
tomization to add new commands for e.g. slow guiding. This is not
the case in ELT where direct setup is the norm and custom behaviour
is implemented as separate components.

BOSS
Archiver

DPM Component responsible for creating the final Data Product and de-
liver it to the Archive (OLAS). In ELT DPM will also be able to deliver
the final Data Product to more than one receiver, but the standard
and default receiver will remain to be OLAS.

Exposure Data Acqui-
sition

The term has been generalized for ELT to better suit the wide range
of data that can be acquired. See glossary Data Acquisition for a
description.

Expoid Data Acqui-
sition Id

Uniquely identifies an exposure/Data Acquisition. This is a manda-
tory parameter in most Data Acquisition commands in OCM.

dxfFileSend
/ dxfFileRe-
ceive

DPM In VLT BOSS Archiver requires that all files are available on locally
mounted file system. DXF applications dxfFileSend and dxfFileRe-
ceive are used to send files to the workstation where merging takes
place.
In ELT DPM take over this responsibilty and will automatically re-
treive all remote files before executing the merge.

VCSOLAC DPM In VLT VCSOLAC is responsible for monitoring used to transfer the
merged file from BOSS Archiver to DHS workstation. In ELT DPM is
designed to be deployable on DHS workstation (see Deployment) in
which case the file is delivered to OLAS locally. In case DPM is not
deployed on the DHS workstation the file is transferred by DPM as
part of the file delivery.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 17 of 89

5 Components

Figure Fig. 5.1 show the application components provided by this software package.

Fig. 5.1: Package and main components overview

daqOcmServer
Coordinates the full Data Acquisition life-cycle.

Main responsibilities:

• Act as interface for creating Data Acquisitions.

• Provide life-cycle control of Data Acquisitions.

daqOcmCtl
Controls daqOcmServer from command line.

daqDpmServer
Data Product Manager server component.

Main responsibilities:

• Queues Data Acquisitions and schedules them for merging.

• Copy inputs for Data Product from source nodes to local storage.

• Execute daqDpmMerge to create Data Product.

• Deliver Data Product to specified receivers (normally OLAS).

daqDpmMerge
Standalone (command line) executable.

Main responsibilities:

• Create Data Product from Data Product Specification referencing and containing input
sources (FITS files and keywords).

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 18 of 89

6 Software Context

This section describes the software context of OCM and DPM, focusing on provided and used soft-
ware interfaces. Fig. 6.1 shows the components with their relations to interfaces which also speci-
fies their dependencies. The individual interfaces are described for daqOcmServer in Table 6.1 and
daqDpmServer in Table 6.2.

Fig. 6.1: Software context for daqOcmServer and daqDpmServer . The interface category refers
to whether the interface is used (or provided) persistently or in a transitory manner e.g. because
interface is used only for the duration of an operation. Non-conjugated ports (without ~) indicate that
the interface is provided whereas conjugated ports (with ~) indicate a interface is used.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 19 of 89

Table 6.1: Interface Description: daqOcmServer
Interface Description
stdif Standard interface implemented and provided by OCM which enables operational

life-cycle control and supervision.
daqif.
OcmDaqControl

Interface implemented and provided by OCM to manage Data Acquisitions.

~oldb OCM has a persistent dependency to the Online Database to update it with cur-
rent configuration and application status.

~metadaqif OCM use the metadaqif to acquire data from metadata sources for the duration
of each Data Acquisition.

~recif OCM use the recif to acquire data from primary data sources for the duration of
each Data Acquisition.

~daqif.
DpmDaqControl

If DPM is operational OCM will send commands to schedule the individual Data
Acquisitions to be merged into Data Products.

Table 6.2: Interface Description: daqDpmServer
Interface Description
daqif.DpmDaqControl Interface provided by DPM for scheduling Data Acquisition to be

merged into Data Product.
~oldb DPM has a persistent dependency to the Online Database (redis-

server) to update it with current configuration, application status and
status of all Data Acquisitions.

remote-storage Interface to remote file systems used to fetch the individual files to be
merged into Data Products or send final Data Product to a receiver.

archive Interface used to deliver Data Products to OLAS.
storage DPM stores all files on a file system before merging is performed as

well as the resulting Data Products.
daqDpmMerge To perform the merge daqDpmServer will execute daqDpmMerge as a

subprocess and monitor it using standard I/O pipes. To abort merging
signals will be used.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 20 of 89

7 Deployment

7.1 Reference

Two reference models for deployment are provided below in Fig. 7.1 and Fig. 7.2. The node Instrument
Workstation below refers to any instrument provided node. There are no particular requirements or
constraints unless daqDpmServer is deployed there.

Both daqOcmServer and daqDpmServer have a private workspace on the local file system that per-
sist independently of the deployed process and is used for state persistence and recovery. For addi-
tional details see sections for OCM and DPM respectively.

Fig. 7.1: Reference deployment showing how daqDpmServer is deployed on the Data Handling Server
Workstation. Advantage of this deployment is that daqDpmServer does not need to transfer the Data
Product to DHS Workstation. Both daqDpmServer and daqOcmServer have a private workspace on
the local file system where they are deployed.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 21 of 89

Fig. 7.2: Alternative deployment showing how daqDpmServer is deployed on an Instrument Worksta-
tion. In this deployment daqDpmServer needs to transfer the Data Product to DHS Workstation for
archiving. Both daqDpmServer and daqOcmServer have a private workspace on the local file system
where they are deployed.

7.2 Deployment Constraints

Software Context also show dependencies to neighbouring components or systems, as anonymous
interfaces, as well as the temporal dimension with the interface category. If a dependency is transitory
because it e.g. is only required to complete an operation, for the duration of the operation, this will
also be noted below.

The following constraints needs to be taken into consideration when deploying each component:

daqOcmServer
Apart from satisfying runtime dependencies and services enumerated in Table 6.1 there are no
specific deployment constraints for OCM. The only persistent service used by daqOcmServer
is the oldb (redis server).

To acquire data from a data source daqOcmServer requires request/reply access for the du-
ration of StateAcquiring. Once data has been acquired there is no connection or dependency
towards any data source.

daqDpmServer
daqDpmServer and its subprocesses may consume a lot of I/O resources. Both network I/O
when collecting source files to the local host or delivering the Data Product to receivers and
disk I/O when Data Product is created from the input source files. As such this needs to be
dimensioned.

daqDpmServer is special in that it does not require an operational ICS to perform its function.
This is also the reason why it does not provide the standard interface stdif, because it does
not require state management; if it is running it is operational. However, since daqOcmServer

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 22 of 89

continuously receives Data Acquisition status updates from daqDpmServer it is strongly recom-
mended to operate daqDpmServer with daqOcmServer running to have consistency between
them (state NotOperational is also ok).

daqDpmServer can also be deployed multiple times on the same host, each with their own
private workspace. It is e.g. a valid option to deploy multiple instances on the same OLAS
workstation, that may be shared by multiple instruments. In this scenario it is recommended
that each daqDpmServer runs as an instrument specific user. There is no coordination between
daqDpmServer instances and each may compete with available resources.

To create data products from the individually created FITS files daqDpmServer requires access
to the files using either locally mounted file system access or remotely with properly configured
unattended rsync access. The same is true for releasing the completed Data Product to remote
hosts such as the DHS.

At this time public key authentication should be used.

Example configuration:

~/.ssh/config

DPM access to hosts providing FITS files
Host 10.0.129.1

IdentityFile /path/to/public/key/id_rsa
Host 10.0.129.10

IdentityFile /path/to/public/key/id_rsa

To simplify configuration logical names can be used
which then correspond to a concrete host.
Host dhs

HostName 10.0.129.11
IdentityFile /path/to/public/key/id_rsa

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 23 of 89

8 Overview

This section gives an overview of the components involved in acquiring data, which is performed by
each component that provides data to the final data product and is coordinated by OCM and creating
the data product to be archived and notifying the Online Archive System, which is performed by DPM.
This means that other components in OCS are regularly not included.

8.1 Introduction

8.1.1 Stylistic Conventions

Note: Although diagrams sometime follow UML styling they are not created to be formally correct,
but to convey information efficiently.

The following visual convention is used for components (or systems), control and data flow:

Component Data A

B

 Control Flow (solid)

C

 Data Flow (dashed)

Fig. 8.1: Stylistic conventions

The direction of control refers to who the initiator is. The most common case is to use request/reply
in which case the diagram shows how requestor initiates the control from A to command B.

Data flow is typically reserved for the out-of-band information that is not carried as part of the control

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 24 of 89

flow. In practice data flow in this manual usually means FITS files being created by a component and
that are later transferred for consumption in another component. Strictly speaking the actual transfer
then depends on how components are deployed. The data flow can be thought both as the logical
information transfer and the physical information transfer, depending on deployment and context.

Note: There are exceptions to using request/reply for e.g. the interaction with OLAS, but in this
overview it can be considered conceptually equivalent.

8.1.2 Conceptual Model

A conceptual data model can be useful as a basis for understanding the more detailed documentation.
The following diagram show data flow, data entities and multiplicities for how a single Data Product is
created for a single Data Acquisition:

• There is one instance of OCM coordinating the Data Acquisition and acts as the interaction point
for clients.

• For each Data Acquisition there are 1 to any number of Data Sources providing data. A Data
Source can be any process that implement the supported MAL interfaces from [RD3,RD4].

Tersely the Data Sources implementing Metadata Acquisition Interface [RD3] are
started/stopped automatically based on the state change of primary Data Sources:

– Are informed by OCM when to start/stop. This happens before any primary Data Sources
are started and after all primary Data Sources are stopped.

– Can provide FITS keywords via FITS file or via MAL command response.

– Can provide one or more FITS files containing keywords and/or extensions.

– Examples: FCS Device Manager and RTCTK Metadata Collector.

The Data Sources implementing DCS Recording Interface [RD4]:

– Are informed by OCM when to start (either directly or synchronized to e.g. an absolute
time).

– Can be stopped by OCM by the request of a user with StopDaq(). It will not be stopped
automatically by OCM.

– Can decide to stop by itself (if e.g. configured with a fixed integration time), in which case
it informs OCM via the RecWait command.

– Can provide one or more FITS files containing keywords and/or extensions.

– Examples: NGC2 and CCF Technical Cameras

• Each Data Source may be provide 0 to any number of FITS files or keywords encoded in JSON
format. FITS files are stored on a file system whereas the JSON keywords are provided to OCM
via the MAL interface.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 25 of 89

OCM[1]

JSON Keyword [0 .. *]

Data Source [1 .. *]

JSON Keyword [0 .. *] FITS [0 .. *]

DPM [1]

Data Product [1]

Receiver [0 .. *]

Fig. 8.2: Conceptual model of a Data Acquisition which results in a Data Product delivered to con-
figured receivers. For sake of readability the figure does not include the details surrounding control
flow. A Data Source is any component that is configured to be used for the specific Data Acquisition.
Colloquially it may be referred to as a subsystem like the telescope or detector subsystem. More
accurately the Data Sources is one or more processes from those subsystems that implement a sup-
ported interface for acquiring data.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 26 of 89

• There is one instance of DPM handling a Data Acquisition that receives all JSON keywords from
OCM and transfers all FITS files from the origin filesystem to where DPM is deployed.

• DPM then produce a single Data Product using input sources in a process referred to as merg-
ing.

• DPM can deliver that Data Product to any number of receivers using post-processing recipes.
In practice this will almost always be one recipe with one receiver and that is to deliver the Data
Product to OLAS.

There is a special case for OCM where it is always included as a data source implicitly. OCM will
always deliver standard and user provided FITS keywords for the final Data Product.

For a more detailed overview see section Data Product Creation.

Important: All configuration that is related to a Data Acquisition is a per-Data Acquisition property.
Data Acquisitions are designed to be independent to allow concurrency without surprising side-effects.
This also means there is no static data source configuration in OCM. This and other parameters are
provided when creating the Data Acqusition.

Note: OCM and/or DPM is not responsible for deleting Data Products that might no longer be useful,
after post-processing. This activity falls within the scope of an operational procedure to free disk
space of files after confirming they can be removed.

8.2 Control and Data Flow

The following sections provides a simplified overview of the control and data flow from Data Acquisition
to Data Product delivered to the Online Archive System (OLAS)8.

Normally it is the Sequencer that is the client when interacting with OCM, but of course any client will
function the same. It requests new Data Acquisitions from OCM, specifying the sources to acquire
data from and other parameters.

OCM coordinates the Data Acquisition by commanding a number of data sources such as science de-
tectors, function controllers and telescope. In the diagram these are abstracted as the Data Source(s)
component. When the Data Acquisition completes OCM commands DPM to create the Data Product
from the acquired data.

There are no constraints on number or locality of data sources involved in a Data Acquisition. If
a component implements supported interfaces correctly and is reachable over network, OCM can
control it to acquire data. Refer to [RD2] for options when it comes to Data Acquisitions that span
multiple ICSs.

8 DPM supports per Data Acquisition configurable post-processing recipes, but the standard, and also default, is to
interface with OLAS to archive the Data Product. Refer to section Data Acquisition Process for additional details.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 27 of 89

Sequencer/Client

OCM* DPM*

Data Source(s) OLAS

Fig. 8.3: Process overview. Components marked with * are covered by this manual.

Once the Data Product is complete it is delivered to the archive system OLAS or which ever post-
processing recipe is configured.

8.2.1 Control Flow

This section provides an overview of the resulting control flow for individual Data Acquisitions. OCM
supports any number of concurrent, but independent, Data Acquisitions. For additional details on the
Data Acquisition process and how to control it c.f. section Data Acquisition.

Description of the control flow:

1. The client initiates a new Data Acquisition, specifying which data sources to acquire data from
using the command StartDaq() or StartDaqV2(). The client continues to be able to control the
Data Acquisition using the OCM Data Acquisition MAL interface OcmDaqControl.

2. OCM coordinates the Data Acquisition by commanding data sources to start, stop or abort, as
requested by client.

3. When data has been acquired OCM commands DPM to produce a Data Product from a speci-
fication on how to merge the data together.

4. When DPM has created the Data Product it is delivered to OLAS. This done using a special
purpose interface and not a normal request/reply MAL control interface.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 28 of 89

Sequencer/Client*

OCM

 1.

DPM
 3.

Data Source(s)*

 2.

OLAS*

 4.

Fig. 8.4: Control flow overview.

8.2.2 Data Flow

This section provides additional details on the data flow. To give the full picture of how the Data Prod-
ucts are formed the following diagram also show how Data Product FITS keywords can be provided
as part of the control flow from the client.

Description of the data flow:

1. When a new Data Acquisition is initiated FITS keywords and files can be provided at the very be-
ginning with the StartDaq() or StartDaqV2() commands. Additionally keywords can be provided
and after it has started with the UpdateKeywords() command.

See Data Validation for how FITS keywords are validated.

2. The individual FITS files created during Acquiring as well as any initial FITS files are transferred
by DPM to the host where it is deployed, to be merged into the final Data Product. This also
include OCM, which provides primary HDU keywords to be merged.

The individual FITS files follow ESO guidelines and specifications and may contain, apart from
mandatory FITS keywords, also ESO hierarchical keywords and/or FITS extensions.

Note: Files are transferred explicitly using rsync if source files are not reachable on a DPM
local mount. Files are transferred implicitly if files are located on a distributed file system, but

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 29 of 89

Sequencer/Client*

OCM

 1. FITS keywords and files

DPM
 2.

Data Source(s)* OLAS*

 3. 2.

Fig. 8.5: Data flow overview.

reachable from the DPM host (i.e. reachable on a locally mounted filesystem).

3. Once Data Product is created by DPM it is delivered to OLAS.

If DPM is deployed on the same file system where files are delivered to OLAS, then no additional
transfer is made. If the destination file system is either different or remote, another Data Product
file transfer is made.

8.3 Data Product Creation

This section provide an overview of how the final Data Product is created from individual files. The pro-
cess is fairly simple and mechanical to reduce configuration complexity. In addition the foreseen data
volumes makes complicated processing prohibitively expensive. The rule of thumb is that acquired
data should be created in the desired format rather than modifying it afterwards.

Given a list of sources (FITS files or JSON keywords) and a target9:

1. Sources are provided in priority order from high to low.
9 One of the source FITS files may be designated as the target to allow in-place merge, where that source file will act as

the base for the subsequent sources to merge into.
If no source is designated as the target an empty FITS file will automatically be created.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 30 of 89

The order is significant in the following ways:

• It determines the relative order of Value Keywords (i.e. value keywords from first
source always precede value keywords from subsequent sources).

• It determines the HDU extension order.

2. Target primary header is (re-)created.

Keywords are merged to target primary HDU, using default or user provided keyword rules. If
target also contains keywords those will be included first.

• The keywords are taken from the primary HDU if the source is a FITS file.

• If no keyword rules are provided all non-structure keywords are used.

• If multiple source provide keywords with the same name the keyword from the highest
priority source is kept.

3. FITS extensions from sources are copied to target.

The extensions are copied in priority order from sources as they are. No modifications are done
to the extensions.

Important: Merging multiple single-HDU FITS files with data is not supported. Data sources should
instead be configured to produce FITS file with one or more extensions that can be appended to the
same target file. I.e. there is no support for converting primary a HDU to an HDU extension.

New in version 3.1.0: If a FITS source file contains primary HDU data that is not merged an
alert will be raised for that Data Acquisition by default. This can be disabled with property aler-
tUnmergeable for each of json-schema-primarydatasource, json-schema-metadatasource or json-
schema-fitsfilesource.

4. Special keywords are added or updated.

For each HDU the FITS checksum keywords are computed and added/updated:

• ORIGFILE

• ARCFILE

• CHECKSUM

• DATASUM

User is able to specify the source order and other aspects such as keyword rules with the specification
provided in StartDaqV2().

See also:

For details see json-schema-startdaqv2 and Data Product Specification.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 31 of 89

9 The Data Acquisition Process

9.1 Introduction

This section provides an overview of the Data Acquisition process, both in terms of what is currently
implemented in OCM and what is planned for with DPM.

For an overview of conceptual model, processes and the relationships between components see the
section Overview .

9.1.1 Stylistic Conventions

The following visual convention is used for states and transitions.

Normal Transitional

Normal
Normal state.

Transitional
Transitional states are states where the Data Acquisition remain during handling of a command,
if it cannot be completed immediately.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 32 of 89

A

B

Command()Event

Command()
Transition that occurred when initiating the handling of a command. That it is a re-
quest/command can be identified by the suffix “()”.

Event
Transition that occurred due to an internally generated event, internal or external. This can also
occur due to completion of the handling a command and is where the reply is sent.

9.1.2 Process Overview

Each successful Data Acquisition includes the following states (represented in the MAL API with
DaqState) which spans the following high-level activities:

StateAcquiring
From the initial point it is created in OCM through the phase where data actually has been
acquired by data sources.

StateMerging
Through the phase where a Data Product is created from the acquired data and released to the
Online Archive System (OLAS) or other configured recipients.

StateCompleted
To the final state for a Data Acquisition. The two possible substates are:

• Completed and

• Aborted,

which indicates a completed or user aborted Data Acquisition respectively.

These states, each with their own substates with an overview of transitions are visualized in Fig. 9.1.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 33 of 89

Fig. 9.1: SysML diagram of Data Acquisition states and transitions. Transitions in bold indicate the
transition path for a successful Data Acquisition. Purple states are transitional states used for the
duration of an operation. The orthogonal region with states NotError and Error is exclusively a means
to model the error flag used in the implementation. Expect further refinement in StateMerging in
following releases.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 34 of 89

Important: The possible final states for a Data Acquisition is either Completed or Aborted. OCM and
DPM will never abort a successfully started Data Acquisition on its own volition; only at the request of
a client (normally the instrument operator).

The only scenario where OCM aborts is if StartDaq() fails, in which case the potentially partially
started Data Acquisition is forcibly aborted.

Note: Error is possible in any state which is indicated with an error flag in the Data Acquisition status
structure DaqStatus (this can be considered an orthogonal error state as shown in Fig. 9.1). This
means for example that a Data Acquisition may be Aborted with or without error.

Errors may prevent forward progress in some cases and in other cases errors may be ignored by forc-
ing forward progress with commands such as ForceStopDaq() (and accepting degraded Data Product
as a result).

The enumeration DaqState defines the top-level states and all the sub-states are enumerated together
in DaqSubState. See section OCM Data Acquisition Control for description of the states.

The next sections provide further details of the Data Acquisition life-cycle and how to interact with
OCM for control.

9.1.3 Data Validation

Although there is no general facility for validating all input data to detect problems early, there is
support for using the Data Interface Dictionaries from Data Interface Tools [RD10] in daqOcmServer
to validate FITS keywords as they are received in JSON format from the following sources:

Table 9.1: Places where keyword validation is made.
Command Direction Description
StartDaq() and StartDaqV2() Request Request is rejected and Data Acquisition is not

started.
UpdateKeywords() Request Request is rejected and Data Acquisition is not

updated with any keywords.
metadaqif.MetaDaq.StopDaq() Reply If invalid keywords are provided as part of the re-

ply structure DaqStopReply, from the metadaqif
StopDaq() request, this is treated as an error.

Keywords are validated and formatted against configured dictionaries and if this fails the command
will be rejected as a whole without starting or modifying Data Acquisition. Formatting is made by using
the format provided in dictionary. If no format is provided the built-in standard format is used. Similarly
the keyword comment is used from the dictionary if none is provided.

For configuration of dictionaries see dictionaries.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 35 of 89

Note: If no dictionaries are configured no validation or formatting is made.

9.2 StateAcquiring

This section documents the details of the top-level StateAcquiring state of a Data Acquisition; the
observable states, the transitions and how it relates to the OCM command interface described here.

Warning: Although the OCM API disambiguates on which Data Acquisition to operate on (by
requiring user to provide the Data Acquisition identifier), the interface to detector data sources recif
does not, and will always operate on its current recording whether it is correct or not. This means
that users must be extra careful and e.g. make sure to only have one active Data Acquisition at a
time which use the same primary data source.

9.2.1 Overview

The following diagram shows an overview for a nominal Data Acquisition where commands succeed:

Note: For brevity ForceAbortDaq() is not shown in the diagram as it performs the same transitions
as AbortDaq() except that when error occcurs it still performs the transition.

The transition for the event Stopping is performed automatically by OCM when all primary data
sources stop or if there are no stateful data sources10. If e.g. detector is configured to integrate
for 10 seconds it will automatically stop, which is then observed by OCM, which then triggers the
transition to Stopping state where metadata sources are being stopped.

9.2.2 Starting

The following diagram show the initial states of a Data Acquisition created with StartDaq(), from the
initial state NotStarted which is the point where the Data Acquisition has been created and registered
internally in OCM but has not yet initiated any actions. When ready OCM transitions to state Starting
in which all data sources are requested to start their data acquisition. When all sources acknowledge
successfully the Data Acquisition transitions to Acquiring.

Note: StartDaq() creates a new data acquisition and starts it in one command, so the state Not-
Started is never observed from outside. If a use-case requires it this can be changed to a two-step
command, one that creates the Data Acquisition and one command that starts it.

10 OCM can create a Data Product exclusively using existing FITS files for example.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 36 of 89

NotStarted

Aborted

AbortDaq()

Starting

StartDaq()

Aborting
AbortDaq()

Aborted

Stopping

AbortDaq()

StopDaq()

Stopped

Stopped

AbortDaq()

Acquiring

Acquiring

AbortDaq()

StopDaq() Stopping

Fig. 9.2: Data Acquisition state and transition overview

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 37 of 89

NotStarted

Starting

StartDaq()

Acquiring

Acquiring

Important: If StartDaq() does not succeed the user should clean up the failed data acquisition
by aborting it. This will abort any partially started acquisitions for the configured sources. If a data
source is not responding or otherwise report error, this will cause AbortDaq() to fail. For these cases
ForceAbortDaq() can be used to force the transition to Aborted.

9.2.3 Stopping

The following diagram show from which states StopDaq() and ForceStopDaq() is valid. The diagram
shows only StopDaq() but is valid also for ForceStopDaq().

Using ForceStopDaq() command the only difference is that the transition to Stopped is forcefully per-
formed even in the presence of errors from e.g. data sources.

Note: If StopDaq() fails the Data Acquisition remains in Stopping state. At this point it is possible to
retry StopDaq() or force it with ForceStopDaq().

Important: Since ForceStopDaq() stops a Data Acquisition even if data sources fail to stop, it means

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 38 of 89

that user might have to perform manual error recovery on the faulty components.

Acquiring

Stopping

StopDaq()

StopDaq()

Stopped

Stopped

9.2.4 Aborting

The following diagram show from which states AbortDaq() and ForceAbortDaq() is valid. The diagram
shows only AbortDaq() but is valid also for ForceAbortDaq().

Using ForceAbortDaq() command the only difference is that the transition to Aborted is forcefully
performed even in the presence of errors from e.g. data sources.

Note: If AbortDaq() fails the Data Acquisition remains in Aborting state. At this point it is possible to
retry AbortDaq() or force it with ForceAbortDaq().

Important: Since ForceAbortDaq() aborts a Data Acquisition even if data sources fail to abort, it
means that user might have to perform manual error recovery on the faulty components.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 39 of 89

NotStarted

Aborted

AbortDaq()

Starting

Stopping

Aborting

AbortDaq()

Acquiring

AbortDaq()

AbortDaq()

Aborted

AbortDaq()

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 40 of 89

9.3 StateMerging

This section documents the details of the top-level state StateMerging state of a Data Acquisition.
Compared to StateAcquiring the successful sequence is always autonomous and can complete unat-
tended. The exception to this is if the Data Acquisition should be aborted in which case the request
AbortDaq() can be sent to OCM, which will delegate to DPM if required.

If a failure occurs e.g. because of misconfiguration so that file transfer fails, DPM will
attempt again next time it is started. As a last resort manual recovery can be attempted.

Note: It is worth clarifying that clients are not required and are never expected to have to interact
directly with DPM.

9.3.1 Overview

9.3.2 NotScheduled

OCM will attempt to schedule Data Acquisition for merging. If DPM is offline or otherwise unreachable
it will remain in this state.

As Data Acquisition has not yet been scheduled it is possible to abort the Data Acquisition without a
connection to daqDpmServer .

9.3.3 Scheduled

Responsibility for completing the Data Acquisition is from this point on DPM and authoratitive Data
Acquisition status originates from DPM, but still published by OCM.

If a request to abort Data Acquisition is made the normal behaviour is to forward the request to DPM.
If DPM is offline the Data Acquisition can only be aborted with ForceAbortDaq(), but this will be
unknown to DPM:

Warning: There is a risk of Data Acquisition state inconsistency if Data Acquisition is forcibly
aborted. As DPM is offline or unreachable it may independently of OCM complete the merge
process. As such it is possible the Data Acquisition status is inconsistent or may change after new
information from DPM is available again.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 41 of 89

NotScheduled

Scheduled

Unspecified()

Aborting

AbortDaq()

Collecting

Merging

Collecting complete

AbortDaq()

Initiate

AbortDaq()

Releasing

Merge complete

AbortDaq()

AbortDaq()

Completed

Release complete

Aborted

Fig. 9.3: Data Acquisition state and transition overview for StateMerging
Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 42 of 89

9.3.4 Collecting

Files are collected from where they were created to the local daqDpmServer workspace. At this time
there is no optimization implemented for the case the file is available from local file system mount.

9.3.5 Merging

This is the state where the final Data Product is created from all the previously acquired data. An
overview of that process is provided in Data Product Creation.

9.3.6 Releasing

The completed Data Product is released to configured receivers (c.f. receivers in json-schema-
startdaqv2specification). If a transfer fails this is not treated as a fatal error and does not prevent
the completion of the Data Acquisition. Any such failure will result in an alert and the Data Acquisition
error flag is set in DaqStatus.error.

Note: If daqDpmServer is deployed on the same host as OLAS and host is empty, daqDpmServer
will try to create a hard link of the Data Product to the json-schema-olas-receiver path. If this fails
then a symlink will be created instead - if this also fails a copy will be attempted.

9.3.7 Completed

This is the end of the Data Acquisition life-cycle, no activities are performed in this state.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 43 of 89

10 Data Acquisition Guide

This guide demonstrates different Data Acquisition use-cases with focus on the interaction with OCM
to act as a guide when e.g. writing Sequencer templates/scripts. The provided examples use the
same simulators used in daqOcmServer and daqDpmServer integration tests. These provide limited
simulation capabilities but is useful in this case since they are easy to deploy.

For details on more realistic deployment please refer to section Deployment and sections for daqOcm-
Server and daqDpmServer .

Note: Although daqDpmServer is required to produce the final Data Product it is not a software com-
ponent the end user interacts with directly, rather it is daqOcmServer that commands the daqOcm-
Server . As such the guide does not contain any examples of how to interact with daqDpmServer ,
other than how to start and stop it.

10.1 Prerequisites

The guide below assumes the runtime environment has been configured and daqOcmServer and
optionally daqDpmServer has been deployed and is running. This section provide the minimal number
of steps to achieve that.

The following standard ICS Framework environment variables are expected to be defined:

$DATAROOT
Will be used by default by daqOcmServer and daqDpmServer for their respective workspaces:

• $DATAROOT/ocm

• $DATAROOT/dpm

$CFGPATH
Will be used to resolve configuration paths (see Config Path). To use configuration files when
building from source add the path $PREFIX/resource to $CFGPATH, where $PREFIX is the
installation prefix.

The examples further assume the following environment variables are defined. The endpoint URIs
should reflect what is in your configuration, and using the example configuration above it would be:

• OCM_REQUEST_EP=zpb.rr://127.0.0.1:12081 (replaces option --rep in daqOcmCtl)

• OCM_PUBLISH_EP=zpb.ps://127.0.0.1:12082 (replaces option --pep in daqOcmCtl)

• DCS_REQUEST_EP=zpb.rr://127.0.0.1:12090 (DCS simulator request endpoint)

• DCS_DAQ_EP=${DCS_REQUEST_EP}/rec (DCS service endpoint)

• FCF_REQUEST_EP=zpb.rr://127.0.0.1:12091 (FCF simulator request endpoint)

• FCF_DAQ_EP=${FCF_REQUEST_EP}/daq (FCF service endpoint)

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 44 of 89

Or as console commands:

$ export OCM_REQUEST_EP=zpb.rr://127.0.0.1:12081
$ export OCM_PUBLISH_EP=zpb.ps://127.0.0.1:12082
$ export DCS_REQUEST_EP=zpb.rr://127.0.0.1:12090
$ export DCS_DAQ_EP=$DCS_REQUEST_EP/rec
$ export FCF_REQUEST_EP=zpb.rr://127.0.0.1:12091
$ export FCF_DAQ_EP=$FCF_REQUEST_EP/daq

Note: Examples in this guide use the command line client daqOcmCtl provided with the ifw-daq
project. To facilitate use from scripts daqOcmCtl can provide return values in JSON format with the
--json option. Alternatively the MAL API daqif.OcmDaqControl may be used directly from e.g. Python
scripts.

Important: Many examples in this guide include references to components with names such as
“fcf1”, “fcf2”, or “dcs1” with MAL URIs such as “zpb.rr://insws:12345/daq”. These components are
assumed to be deployed and operational. This means that the examples must be modified to suit
your environment to instead reference your components.

10.2 Lifecycle Control

10.2.1 Startup

For testing purposes the default daqOcmServer sample configuration provided by the ifw-daq project
may be used (config/daqOcmServer/config.yaml)

The configuration is

cfg:
instrument_id: "UNDEF"
req_endpoint: "zpb.rr://127.0.0.1:12081/" # IP address and port used to accept requests
pub_endpoint: "zpb.ps://127.0.0.1:12082/" # IP address and port used to accept requests
oldb_conn_timeout: 2 # timeout in seconds when connecting to runtime DB
sm_scxml: "config/daqOcmServer/sm.xml"
log_properties: "config/daqOcmServer/log.properties"

DPM communication configuration
dpm:

req_endpoint: "zpb.rr://127.0.0.1:12083/"
pub_endpoint: "zpb.ps://127.0.0.1:12084/"

In which case the following steps can be performed to start daqOcmServer and simulators used for

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 45 of 89

demonstration purposes.

Start the servers using default configuration and export environment variables to simplify daqOcmCtl
interaction. The configuration must be found as a Config Path using $CFGPATH environment variable.

$ daqOcmServer -l DEBUG &
$ daqDpmServer -l DEBUG &

Additionally we start the simulators we can acquire data from:

$ daqSimMetadaqif fcf $FCF_REQUEST_EP &

The simulated DCS should be deployed in foreground mode to allow control when recording should
stop. This is done by sending a line break using Enter to stdin after recording has started.

$ daqSimRecif -v dcs $DCS_REQUEST_EP

Once started we bring daqOcmServer operational with:

$ daqOcmCtl std.init
"OK"
$ daqOcmCtl std.enable
"OK"

Note: To use a custom configuration create a new configuration file using with the help of sections
Configuration File and Configuration File. Then specify the configuration file when starting daqOcm-
Server and daqDpmServer with the --config PATH argument.

10.2.2 Shutdown

To shut daqOcmServer down the signal SIGINT (Ctrl-c) or the command Exit() can be sent using
e.g. the daqOcmCtl application:

$ daqOcmCtl std.exit

To shut daqDpmServer and the simulators down send signal SIGINT (Ctrl-c).

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 46 of 89

10.3 Observing Status Changes

To observe the published state changes in OCM it is possible to use daqOcmCtl without a command
with the --status option, in which case it will subscribe and remain running until stopped with Ctrl-c
while printing any received topic samples to stderr. This is an example of the output during a Data
Acquisition:

$ daqOcmCtl --status
no command provided -> will subscribe indefinitely
status: Operational;Active
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateAcquiring, substate=NotStarted, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateAcquiring, substate=Starting, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateAcquiring, substate=Acquiring, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateAcquiring, substate=Stopping, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateAcquiring, substate=Stopped, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateMerging, substate=NotScheduled, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateMerging, substate=Scheduled, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateMerging, substate=Collecting, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateMerging, substate=Merging, error=false, message=[]
daq: id=UNDEF.2023-11-22T10:36:32.078, file_id=UNDEF.2023-11-22T10:36:32.078, \
state=StateMerging, substate=Releasing, error=false, message=[]
status: Operational;Idle

Note: The status is published by OCM for any change, some of which are not caused by state
transitions. This may lead to the same status line being repeated multiple times.

The --status option can be passed when executing a command as well, but often the commands
complete before any topic samples are received. The exception to this is the daq.awaitstate which
only completes when the specified state is achieved or operation times out.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 47 of 89

10.4 Automatic Stop Sequence

Automatic stop is the typical scenario when a Data Acquisition includes one or more primary data
sources (usually detectors) that are configured with a fixed integration time. When all primary data
sources stop (also referred to as Completed or Stopped in recif) as observed by OCM, which monitors
all the sources, OCM will proceed and stop all metadata sources automatically. This condition can
then be awaited on to then trigger other activities such as configuring the instrument for the next Data
Acquisition.

Note: Multiple sources in each category are provided by space-separating each source, e.g:

"fcf1@zpb.rr://insws1:12345/daq fcf2@zpb.rr://insws2:12345/daq"

Data Acquisition is started with the daq.start command which takes two11 space separated lists of
sources or daq.startv2 which takes a JSON-encoded specification of the Data Acquisition to perform.
The second form is necessary if additional control is required.

The following example starts a new Data Acquisition with a single primary source named dcs1 and a
single metadata source named fcf1. The names are only used to give a friendly name to a possibly
anonymous URI and is so far not used for anything but logging activities.

$ daqOcmCtl --json daq.start "dcs1@${DCS_DAQ_EP}" "fcf1@${FCF_DAQ_EP}"
{

"id": "UNDEF.2023-11-22T12:33:53.856",
"error": false

}

Using the request daq.startv2 (StartDaqV2()) the following yields same results. To simplify the usage
the JSON specification is read from stdin as specified with @- and then provided using a bash Here
Document :

$ daqOcmCtl daq.startv2 @- <<EOF
{

"sources": [
{

"type": "primarySource",
"sourceName": "dcs1",
"rrUri": "${DCS_DAQ_EP}"

},
{

"type": "metadataSource",
"sourceName": "fcf1",
"rrUri": "${FCF_DAQ_EP}"

(continues on next page)

11 First list specify the primary sources and second list the metadata sources.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 48 of 89

(continued from previous page)

}
],
"mergeTarget": {

"sourceName": "dcs1"
}

}
EOF

{
"id": "UNDEF.2023-11-22T12:33:53.856",
"error": false

}

Since the DCS simulator will run until we ask it to stop the Data Acquisition will remain in state daqif.
DaqState.StateAcquiring and substate daqif.DaqSubState.Acquiring.

We can check the list of active Data Acquisitions using daq.getactivelist. We expect a single Data
Acquisition at this point:

$ daqOcmCtl --json daq.getactivelist
[

{
"error": false,
"fileId": "UNDEF.2023-11-22T12:33:53.856",
"id": "UNDEF.2023-11-22T12:33:53.856",
"message": "[]",
"result": "",
"state": "StateAcquiring",
"substate": "Acquiring",
"timestamp": 1700656433.8668084

}
]

Data Acquisition status can be checked with the daq.getstatus command by providing the Data Acqui-
sition id from the start command:

$ daqOcmCtl --json daq.getstatus UNDEF.2023-11-22T12:33:53.856
{

"error": false,
"fileId": "UNDEF.2023-11-22T12:33:53.856",
"id": "UNDEF.2023-11-22T12:33:53.856",
"message": "[]",
"result": "",
"state": "StateAcquiring",

(continues on next page)

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 49 of 89

(continued from previous page)

"substate": "Acquiring",
"timestamp": 1700656433.8668084

}

When dcs1 completes OCM will issue the equivalent of the StopDaq command to stop all metadata
sources. To await the completion of all FITS files the daq.awaitstate command is issued with states
daqif.DaqState.StateAcquiring / daqif.DaqSubstate.Stopped and then in the terminal running daqSim-
Recif simulating DCS hit Enter to simulate that it completed automatically. If performed within the
timeout the result would look similar to:

$ daqOcmCtl --json daq.awaitstate UNDEF.2023-11-22T12:33:53.856 StateAcquiring Stopped 60
Note: Setting request timeout to 62s due to await timeout exceeding request timeout
{

"status": {
"error": false,
"fileId": "UNDEF.2023-11-22T12:33:53.856",
"id": "UNDEF.2023-11-22T12:33:53.856",
"message": "[]",
"result": "",
"state": "StateAcquiring",
"substate": "Stopped",
"timestamp": 1700657163.9278564

},
"timeout": false

}

At this point the data sources are finished with their contribution and the merging process is started if
daqOcmServer can communicate with daqDpmServer . Since the simulated files are small it is likely
already complete.

Checking the status again reports Data Acquisition is in state daqif.DaqState.StateCompleted and
where the merged file is located:

$ daqOcmCtl --json daq.getstatus UNDEF.2023-11-22T12:33:53.856
{

"error": false,
"fileId": "UNDEF.2023-11-22T12:33:53.856",
"id": "UNDEF.2023-11-22T12:33:53.856",
"message": "[]",
"result": "/var/run/dataroot/dpm/result/UNDEF.2023-11-22T12:33:53.856.fits",
"state": "StateCompleted",
"substate": "Completed",
"timestamp": 1700657164.0261965

}

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 50 of 89

10.5 Manual Stop Sequence

Manual stop is used either when there is no fixed integration time on all primary data sources or when
no primary sources are used at all (in which case there is nothing to inform OCM when to stop except
for the user).

In this example data is acquired from fcf1 only, so user must decide when to stop manually.

$ daqOcmCtl --json daq.start "" "fcf1@${FCF_DAQ_EP}"
{

"id": "TEST.2021-03-09T18:48:05.967",
"error": false

}

Or using daq.startv2

$ daqOcmCtl --json daq.startv2 @- <<EOF
{

"sources": [
{

"type": "metadataSource",
"sourceName": "fcf1",
"rrUri": "${FCF_DAQ_EP}"

}
]

}
EOF

{
"id": "UNDEF.2023-11-22T12:56:47.200",
"error": false

}

At a later point the Data Acquisition can be stopped using daq.stop by specifying the id returned by
daq.start.

$ daqOcmCtl --json daq.stop UNDEF.2023-11-22T12:56:47.200
{

"id": "UNDEF.2023-11-22T12:56:47.200",
"error": false

}

If we check status we see that it is indeed stopped and likely completed if daqOcmServer can reach
daqDpmServer :

$ daqOcmCtl --json daq.getstatus UNDEF.2023-11-22T12:56:47.200
(continues on next page)

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 51 of 89

(continued from previous page)

{
"error": false,
"fileId": "UNDEF.2023-11-22T12:56:47.200",
"id": "UNDEF.2023-11-22T12:56:47.200",
"message": "[]",
"result": "/var/run/dataroot/dpm/result/UNDEF.2023-11-22T12:56:47.200.fits",
"state": "StateCompleted",
"substate": "Completed",
"timestamp": 1700657840.7738013

}

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 52 of 89

11 Observation Coordination Manager

11.1 Introduction

Fig. 11.1: Package and main components overview

The package OCM provides the application components daqOcmServer and daqOcmCtl .

daqOcmServer implements the following MAL request/reply interfaces:

MAL Interface URI Path Description
stdif.StdCmds /std Standard ICS interface for state control and supervision.
daqif.OcmDaqControl /daq Data Acquisition control interface. This interface is enabled

when OCM enters Operational state and is disabled when
OCM enters NotOperational.

OCM can control components implementing the following MAL ICDs:

MAL Interface Description
metadaqif12 Standard interface and assumed interface for Data Acquisition metadata

sources.
recif13 Standard interface used by ELT detector control software and is the as-

sumed interface for Data Acquisition primary data sources.

Caution:

The standard interface recif does not support concurrent recordings or in the following
commands which recording to operate on; it always apply to the current recording:

• recif.RecCmds.RecStop (used with command StopDaq)

12 https://gitlab.eso.org/ecs/ecs-interfaces/
13 https://gitlab.eso.org/ecs/ecs-interfaces/

Document Classification: Public

https://gitlab.eso.org/ecs/ecs-interfaces/
https://gitlab.eso.org/ecs/ecs-interfaces/

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 53 of 89

• recif.RecCmds.RecAbort (used with command AbortDaq)

• recif.RecCmds.RecWait (used with command StopDaq)

Since the commands always apply to the current recording, it means that if system state con-
sistency deviates for any reason, it may lead to undesirable consequences such as aborting the
wrong Data Acquisition.

11.2 Client

The provided command line client daqOcmCtl can interact with daqOcmServer which is described in
the following sections.

11.2.1 Environment Variables

$OCM_REQUEST_EP
Specifies the default OCM request/reply endpoint, e.g. zpb.rr://127.0.0.1:12345/.

$OCM_PUBLISH_EP
Specifies the default OCM publish endpoint, e.g. zpb.ps://127.0.0.1:12345/.

$DAQ_LOGS
Optionally specifies path where to create separate log file for daqOcmServer .

New in version 3.1.0.

11.2.2 Command Line Arguments

Exhaustive command line help is available under the option --help. The following list enumerates a
subset of common commands.

Synopsis:

daqOcmCtl [options] <command> [options] <command-args>...

Standard interface commands:

std.init
Sends the Init() command.

std.enable
Sends the Enable() command.

std.disable
Sends the Disable() command.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 54 of 89

std.exit
Sends the Exit() command.

std.setloglevel <logger> <level>
Sends the SetLogLevel() command with provided logger and level.

std.getstate
Sends the GetState() command.

std.getstatus
Sends the GetStatus() command.

std.getversion
Sends the GetVersion() command.

Data Acquisition commands:

daq.start [options] <primary-sources> <metadata-sources>
Sends the StartDaq() command with provided arguments.

daq.startv2 [options] <specification>
Sends the StartDaqV2() command with provided specification.

It is possible to read JSON from a file by prefixing path with @, e.g. @start.json.

To read from stdin the - convention is supported (/dev/stdin works as well) which can be used
with bash heredocs, e.g:

$ daqOcmCtl --json cmd.startv2 @- <<EOF
{

"sources": [
{

"type": "primarySource",
"sourceName": "dcs",
"rrUri": "zpb://10.127.50.10:4050/RecCmds"

},
{

"type": "metadataSource",
"sourceName": "tcs",
"rrUri": "zpb://10.127.50.15:5011/daq"

}
]

}
EOF

{
"id": "TEST.2023-02-21T17:26:46.440",
"error": false

}

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 55 of 89

daq.stop [options] <id>
Sends the StopDaq() command with provided arguments.

daq.forcestop [options] <id>
Sends the ForceStopDaq() command with provided arguments.

daq.abort [options] <id>
Sends the AbortDaq() command with provided arguments.

daq.forceabort [options] <id>
Sends the ForceAbortDaq() command with provided arguments.

daq.getstatus <id>
Sends the GetDaqStatus() command to query status of Data Acquisition identified by <id>.

daq.awaitstate <id> <state> <substate> <timeout>
Sends the AwaitDaqState() command with provided arguments.

<id>
Data Acquisition identifier.

<state>
Data Acquisition state to await.

<substate>
Data Acquisition state to await.

<timeout
Time in seconds to wait for state to be reached or unable to be reached anymore.

daq.updatekeywords <id> <keywords>
Sends the UpdateKeywords() command with provided arguments.

daq.getactivelist
Sends the GetActiveList() command.

11.3 Server

The main OCM application is daqOcmServer , which implements all the Data Acquisition control and
coordination features. The interface to control Data Acquisitions is covered in section The Data Ac-
quisition Process whereas the much simpler application state control is described in this section.

Changed in version 2.0.0: daqOcmServer interacts with daqDpmServer to execute the merge process
to create the final Data Product. daqOcmServer Stores and loads relevant Data Acquisition state in
its Workspace to be able to continue after application restart.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 56 of 89

11.3.1 State Machine

The daqOcmServer state machine is shown in Fig. 11.2 with states and transitions described below.

Fig. 11.2: Application statemachine implemented by daqOcmServer which satisfies the state machine
expected by stdif.

States

On
Application is running.

Off
Application is not running.

NotOperational
Composite state that means that daqOcmServer is running, is able to accept StdCmds requests,
but is not yet fully operational. For daqOcmServer it means in particular that the OcmDaqControl
interface is not registered and won’t accept any requests.

NotReady

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 57 of 89

This is the first non-transitional state. Current implementation has already loaded configuration
and has registered the stdif.StdCmds interface at this point.

Ready
Has no particular meaning for daqOcmServer .

Operational
In the transition to Operational daqOcmServer registered the OcmDaqControl interface and is
ready to perform Data Acquisitions.

Idle
Indicates that there are no active Data Acquisitions.

Active
Indicates that there is at least one active Data Acquisition.

Note: Active does not mean that daqOcmServer is busy and cannot handle additional requests.
It simply means that there is at least one Data Acquisition is not yet finished.

Since merging is not yet implemented the definition of active is up to the point the Data Acquisi-
tion is stopped or aborted.

Transitions

Init
Triggered by Init() request.

Enable
Triggered by Enable() request.

Disable
Triggered by Disable() request.

Stop
Triggered by Stop() request.

Note: The behaviour is currently unspecified if this request is issued if OCM is in state Active.

AnyDaqActive
Internal event that is created when any Data Acquisition becomes active.

AllDaqInactive
Internal event that is created when all Data Acquisitions are inactive.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 58 of 89

11.3.2 MAL URI Paths

The following tables summarize the request/reply service paths and topic paths for pub/sub.

Table 11.1: Data Acquisition Control URI paths.
URI Path Root URI Configuration Description
/std cfg/req_endpoint Standard control interface stdif.StdCmds.
/daq cfg/req_endpoint Data Acquisition control interface daqif.OcmDaqControl.

Table 11.2: Topic URI paths.
Topic Type URI Path Root URI Configura-

tion
Description

stdif.Status /std/status cfg/pub_endpoint Standard interface status topic pro-
viding information on OCM overall
state. Same information is provided
with the command GetStatus().

daqif.DaqStatus /daq/status cfg/pub_endpoint Data Acquisition status topic daqif.
OcmDaqControl. Same information
is provided with the command Get-
DaqStatus().

11.3.3 Command Line Arguments

Command line argument help is available under the option --help.

--proc-name ARG| -n ARG (string) [default: ocm]
Process instance name.

--config ARG| -c ARG (string) [default: config/daqOcmServer/config.yaml]
Config Path to application configuration file e.g. --config ocs/ocm.yaml (see Configuration File
for configuration file content).

--log-level ARG| -l ARG (enum) [default: INFO]
Log level to use. One of ERROR, WARNING, STATE, EVENT, ACTION, INFO, DEBUG, TRACE.

--db-host ARG| -d ARG (string) [default: 127.0.0.1:6379]
Redis database host address.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 59 of 89

11.3.4 Environment Variables

$CFGPATH
Used to resolve Config Path configuration file paths.

$DATAROOT
Specifies the default root path used as output directory for e.g. OCM FITS files and other state
storage. The data root can be overridden by the configuration key cfg/dataroot.

11.3.5 Configuration File

This section describes what the configuration file parameters are and how to set them.

The configuration file is currently based on YAML and should be installed to one of the paths specified
in $CFGPATH where it can be loaded using the Config Path and the command line argument --config
ARG.

If a configuration parameter can be provided via command line, configuration file and environment
variable the precedence order (high to low priority) is:

1. Command line value

2. Configuration file value

3. Environment variable value

Enumeration of parameters:

cfg/instrument_id (string)
ESO designated instrument ID. This value is also used as the source for FITS keyword IN-
STRUME.

cfg/dataroot (string) [default: $DATAROOT]
Absolute path to a writable directory where OCM will store files persistently. These are mainly
FITS files produced as part of a Data Acquisition. If directory does not exist OCM will attempt
to create it, including parent directories, and set permissions to 0774 (ug+rwx o+r).

cfg/daq/workspace (string) [default: {process name}]
Workspace used by daqOcmServer to store Data Acquisition state persistently and later restore
that state when starting up (see section Workspace for details). Default value is to use the
process name.

• Absolute paths are used as is (recommended).

• Relative paths are defined relative to cfg/dataroot.

New in version 2.0.0.

cfg/daq/stale_acquiring_hours (integer) [default: 14]
Parameter used to control when to archive (discard) stale Data Acquisitions from Workspace
during startup.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 60 of 89

Specifically it controls when a Data Acquisition in state daqif.State.StateAcquiring is automat-
ically archived when recovered from Workspace because it is considered stale (time duration
from time of creation to the time it is recovered).

New in version 2.0.0.

cfg/daq/stale_merging_hours (integer) [default: 48]
Parameter used to control when to archive (discard) stale Data Acquisitions from Workspace
during startup.

Specifically it controls when a Data Acquisition in state daqif.State.StateMerging is automatically
archived when recovered from Workspace because it is considered stale (time duration from
time of creation to the time it is recovered).

New in version 2.0.0.

cfg/log_properties (string)
Config Path to a log4cplus log configuration file. See also logging-configuration for important
limitations.

cfg/sm_scxml (string) [default: config/daqOcmServer/sm.xml]
Config Path to the SCXML model. This should be left to the default which is provided during
installation of daqOcmServer .

cfg/req_endpoint (string) [default: zpb.rr://127.0.0.1:12081/]
MAL server request root endpoint on which to accept requests. Trailing slashes are optional,
e.g. example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

cfg/pub_endpoint (string) [default: zpb.ps://127.0.0.1:12082/]
MAL server publish root endpoint on which to publish topics from. Trailing slashes are optional,
e.g. example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

cfg/oldb_uri_prefix (string) [default: cii.oldb:/elt/{process-name}]
Optional CII URI OLDB prefix that is prepended to all database keys in the form cii.oldb:/{path}.
By default the process instance name is used as path element.

Example: "cii.oldb:/elt/instrument-name/ocm"

New in version 2.0.0.

cfg/dictionaries (List[string]) [default: []]
List of FITS keyword dictionaries to load as paths relative to $CFGPATH.

Empty list disables keyword validation.

Example: ["dictionary/dit/stddid/primary.did.yaml"]

Warning: CII config service used to load dictionaries prevents use of absolute paths so
paths relative to $CFGPATH must be used.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 61 of 89

See also:

See Data Validation for description of functionality this enables.

New in version 3.1.0.

cfg/oldb_conn_timeout (integer) [default: 2]
Timeout in seconds to use when communicating with the CII OLDB server.

cfg/dpm/req_endpoint (string)
daqDpmServer request endpoint without service name.

Example: "zpb.rr://127.0.0.1:12345".

New in version 2.0.0.

cfg/dpm/pub_endpoint (string)
daqDpmServer publish endpoint without service name.

Example: "zpb.ps://127.0.0.1:12345".

New in version 2.0.0.

cfg/dpm/timeout_sec (integer) [default: 5]
MAL timeout used when sending requests to daqDpmServer .

New in version 2.0.0.

Full example:

cfg:
instrument_id: "TEST"
dataroot: "/absolute/output/path"
sm_scxml: "config/daqOcmServer/sm.xml"
req_endpoint: "zpb.rr://127.0.0.1:12340/"
pub_endpoint: "zpb.ps://127.0.0.1:12341/"
db_timeout_sec: 2
log_properties: "log.properties"

daq:
Relative paths are relative dataroot,
absolute paths are absolute.
workspace: "ocm"
Stale DAQ configuration (determines when they are automatically
archived at startup)
stale_acquiring_hours: 18
stale_merging_hours: 720

dpm:
DPM communication configuration
req_endpoint: "zpb.rr://127.0.0.1:12350/"

(continues on next page)

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 62 of 89

(continued from previous page)

pub_endpoint: "zpb.ps://127.0.0.1:12351/"
timeout_sec: 5

11.3.6 Workspace

New in version 2.0.0.

The daqOcmServer workspace is the designated file system area used to store Data Acquisition
state information persistently. The workspace location is controlled with the cfg/daq/workspace pa-
rameter and will be automatically initialized if directory does not exist. To prevent against accidental
misconfiguration daqOcmServer will refuse to use the directory if it has unexpected file contents.

Note: When daqOcmServer is not running it is safe to delete the complete workspace. Be aware
that if there are Data Acquisitions in progress this information will be lost.

The information stored in workspace is:

• List of known Data Acquisitions.

• For each Data Acquisition it stores the status, which contains the same information published
as daqif.DaqStatus.

• For each Data Acquisition it stores the context, which contains the necessary information to
be able to create the Data Product Specification. This includes data sources, FITS keywords
provided to daqOcmServer for example.

When daqOcmServer starts up it will load the stored information so it is possible to continue the
process. To avoid recovering completely obsolete Data Acquisitions there are two configuration pa-
rameters that are used to discard these, depending on whether the Data Acquisition was last known
to be in state daqif.DaqState.StateAcquiring or py:attr:daqif.DaqState.StateMerging:

• cfg/daq/stale_acquiring_hours

• cfg/daq/stale_merging_hours

Important: As offline changes are not reflected in the persistent state it may happen that the recov-
ered state is inaccurate. This is always a risk and currently daqOcmServer does not actively try to
correct this.

The structure is as follows:

/
Workspace root as configured via configuration file, environment variable or command line.

/list.json
List of Data Acquisitions, as an array of Data Acquisition identifiers.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 63 of 89

/in-progress/
Root directory containing files related to each Data Acquisition.

/in-progress/{id}-status.json
Contains persistent status for each Data Acquisition (where {id} is the Data Acquisition identi-
fier).

/in-progress/{id}-context.json
Contains persistent context for each Data Acquisition (where {id} is the Data Acquisition identi-
fier).

/archive/
When Data Acquisition is completed (transitions to state daqif.DaqState.StateCompleted) the
in-progress files are moved here.

Note: Files in this directory are safe to deleted. An operational procedure is foreseen to specify
when this should be done.

The following shows an example of files and directories in the workspace with an in progress Data
Acquisition.

.
archive/
in-progress/

TEST.2021-05-18T14:49:03.905-context.json
TEST.2021-05-18T14:49:03.905-status.json

11.3.7 Loggers

The following loggers are used (see logging-configuration for how to configure verbosity with log
properties file):

daq.ocm
General application logging.

daq.ocm.manager
Used by component that manages all controllers and certain other functions.

daq.ocm.manager.awaitstate
Logs details around the clients waiting for a particular state.

daq.ocm.controller
Used by the component that controls the Data Acquisition lifecycle.

daq.ocm.eventlog
Used to log events in a more structured manner than normal logs.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 64 of 89

11.4 Standard MAL API

Note: daqOcmServer hosts the standard commands stdif.StdCmds under URI path /std.

The standard interface is documented in the RAD User Manual and should be consulted for details
and only the brief is provided here.

11.4.1 Interfaces

class stdif.StdCmds
Standard command interface.

Stop() → str

Init() → str

Reset() → str

Enable() → str

Disable() → str

GetState() → str

GetStatus() → str

GetVersion() → str

Exit() → str

SetLogLevel(info: LogInfo) → str

11.4.2 Data Structures

class stdif.LogInfo

level: str

logger: str

class stdif.Status

status: str

source: str

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 65 of 89

12 Data Product Manager

12.1 Introduction

Fig. 12.1: DPM package contents

The package DPM provides the application components daqDpmServer and daqDpmMerge.

daqDpmServer is the server component that daqOcmServer communicates with to delegate the re-
sponsibility of creating the Data Product for each Data Acquisition. This separation is mainly done
to allow daqDpmServer be used without an fully operational ICS for e.g. daytime merging and to be
deployed on the same host as the OLAS interface for efficiency.

Key responsibilities:

• Provide interface to daqOcmServer .

• Transfer source files to local host.

• Validate source files prior to merging using keyword dictionaries (TBD).

• Execute daqDpmMerge to perform the merge using the now local files.

• Deliver result to specified recipients. If nothing is specified the file is delivered to OLAS.

daqDpmMerge is, under normal circumstances, executed as a subprocess of daqOcmServer and is
the component that create the final Data Product. This is a standalone command line tool designed
to be usable manually, without daqDpmMerge.

Key responsibilities:

• Execute the merge process to create final Data Product.

daqDpmServer implements the following request/reply interfaces:

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 66 of 89

MAL Interface URI Path Description
daqif.DpmControl /dpm Control interface for the server itself and those aspects unre-

lated to a Data Acquisition.
daqif.DpmDaqControl /daq Control interface for initiating, controlling and monitoring

Data Product creation life-cycle from Data Acquisitions.

12.2 Server (daqDpmServer)

The main DPM application is daqDpmServer , which coordinates the merging of Data Acquisition
source files to create the final Data Product.

Note: Interaction with daqDpmServer is mainly reserved for daqOcmServer .

12.2.1 State Machine

The daqDpmServer does not implement a state machine, when started it becomes operational auto-
matically.

12.2.2 MAL URI Paths

The following tables summarize the request/reply service paths and topic paths for pub/sub.

Table 12.1: daqDpmServer URI paths.
URI Path Root URI Configuration Description
/dpm cfg/req_endpoint DPM control interface daqif.DpmControl.
/daq cfg/req_endpoint DPM Data Acquisition control interface daqif.

DpmDaqControl.

Table 12.2: Topic URI paths.
Topic Type URI Path Root URI Configuration Description
daqif.DaqStatus /daq/status cfg/pub_endpoint Status updates to DAQ is pub-

lished as change occurs. It is
supp.

daqif.
StorageStatus

/dpm/
storage

cfg/pub_endpoint Storage status (importantly avail-
able space) is published at inter-
vals in this topic.

daqif.
InternalDaqStatus

internal/
daq/status

cfg/pub_endpoint Internal variant of /daq/status
topic used by daqOcmServer .
New in version 3.1.0.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 67 of 89

12.2.3 Command Line Arguments

Command line argument help is available under the option --help.

--proc-name ARG| -n ARG (string) [default: dpm]
Process instance name.

--config ARG| -c ARG (string) [default: config/daqDpmServer/config.yaml]
Config Path to application configuration file e.g. --config ocs/ocm.yaml (see Configuration File
for configuration file content).

--log-level ARG| -l ARG (enum) [default: INFO]
Log level to use. One of ERROR, WARNING, STATE, EVENT, ACTION, INFO, DEBUG, TRACE.

--workspace ARG (string) [default: dpm]
Workspace used by daqDpmServer to store source files before merging as well as the result
after merging is complete (see daqDpmServer workspace for details).

• Absolute paths are used as is.

• Relative paths are defined relative to cfg/dataroot.

--rr-uri ARG (string) [default: zpb.rr://127.0.0.1:12083/]
MAL server request root endpoint on which to accept requests. Trailing slashes are optional,
e.g. example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

Specifying endpoint as command line argument takes predecence over configuration file param-
eter cfg/req_endpoint.

--ps-uri ARG (string) [default: zpb.ps://127.0.0.1:12084/]
MAL publish root endpoint on which to publish topics from. Trailing slashes are optional, e.g.
example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

Specifying endpoint as command line argument takes predecence over configuration file param-
eter cfg/pub_endpoint.

--poll-once
Initiates operations once and then runs until there is no more work to do and then exits. Option
is provided for interactive use, e.g. with manual error recovery.

12.2.4 Environment Variables

$DATAROOT
If defined it specifies the default value for for cfg/dataroot. If the configuration parameter is
defined it takes precedence over $DATAROOT.

$DAQ_LOGS
Optionally specifies path where to create separate log file for daqDpmServer .

New in version 3.1.0.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 68 of 89

12.2.5 Configuration File

This section describes what the configuration file parameters are and how to set them.

The configuration file is currently based on YAML and should be installed to one of the paths specified
in $CFGPATH where it can be loaded using the Config Path and the command line argument --config
ARG.

If a configuration parameter can be provided via command line, configuration file and environment
variable the precedence order (high to low priority) is:

1. Command line value

2. Configuration file value

3. Environment variable value

Enumeration of parameters in the shorthand map/value where value is a map entry in map:

cfg/dataroot (string) [default: $DATAROOT]
IFW standard output directory.

cfg/log_properties (string)
Config Path to a log4cplus log configuration file. See also logging-configuration for important
limitations.

cfg/req_endpoint (string) [default: zpb.rr://127.0.0.1:12085/]
MAL server request root endpoint on which to accept requests. Trailing slashes are optional,
e.g. example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

cfg/pub_endpoint (string) [default: zpb.ps://127.0.0.1:12086/]
MAL server publish root endpoint on which to publish topics from. Trailing slashes are optional,
e.g. example: "zpb.ps://127.0.0.1:12345/" or "zpb.ps://127.0.0.1:12345".

cfg/daq/workspace (string) [default: dpm]
Workspace used by daqDpmServer to store source files before merging as well as the result
after merging is complete (see daqDpmServer workspace for details).

• Absolute paths are used as is (recommended).

• Relative paths are defined relative to cfg/dataroot.

cfg/limits/daq (integer) [default: 1]
Limits number of concurrent Data Acquisitions that daqDpmServer will process. Using 0 is
infinite.

cfg/limits/merge (integer) [default: 1]
Limits number of concurrent merge processes. Using 0 is infinite.

cfg/limit/net_receive (integer) [default: 0]
Limits number of network receive tranfers. Using 0 is infinite.

cfg/limits/net_send (integer) [default: 0]
Limits number of network send transfers. Using 0 is infinite.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 69 of 89

Note: The following parameters are provided but not expected to be modified.

cfg/bin_merge (string) [default: daqDpmMerge]
Merge application name.

cfg/bin_rsync (string) [default: rsync]
Rsync application name.

Example (partial) configuration:

cfg:
workspace: "/absolute/path/to/workspace"
req_endpoint: "zpb.rr://127.0.0.1:12085/"
pub_endpoint: "zpb.ps://127.0.0.1:12086/"
log_properties: "log.properties"

Concurrencly limits
limits:

daq: 2
merge: 2
net_receive: 5
net_send: 5

12.2.6 Workspace

The daqDpmServer workspace is the designated file system area used to store both intermediate
and final result of Data Acquisitions:

• Individual input files from data sources (i.e. FITS files).

• Data Product Specification that specifies how inputs are merged together.

• Various internal files used by DPM.

• Final Data Product when merged.

The structure is as follows:

/
Workspace root as configured via configuration file, environment variable or command line.

/queue.json
Queue of Data Acquisitions, as an array of Data Acquisition identifiers, that have been scheduled
but are not yet completed. The order is significant and are processed in FIFO order.

/result/
Directory containing Data Product results.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 70 of 89

For each Data Acquisition the Data Product result is produced in state Merging by daqDpm-
Merge and is guraranteed to be available from state Releasing.

The files follow the ICS name which is:

• {fileId}.fits

• {prefix}{fileId}.fits if a prefix has been chosen.

Note: Data Acquisition results are moved atomically into this directory and are then immutable.
daqDpmServer requires read access until Data Acquisition reach state StateCompleted.

Like files in /archive/ an operational procedure is foreseen that specifies when files should be
deleted. This procedure can e.g. ensure that Data Product has been successfully ingested and
backed up by OLAS.

/in-progress/
Root directory containing a directory for each Data Acquisition that has been queued for merging
but is not yet completed. The directories are named after Data Acquisition id.

/in-progress/id/
Contains persistent state for each Data Acquisition (where id is the Data Acquisition identifier).
Also referred to as the Data Acquisition Workspace.

sources/
Subdirectory containing Data Product source FITS files. They are renamed to avoid possi-
bility of name collisions but the origin data source is identifiable given the naming pattern:
{index}_{data source name}_{origin filename}.

logs/
May contain log files related to the merge operation.

specification.json
Data Product Specification specifying how to create Data Product. It is written and updated
by daqDpmServer and read by daqDpmMerge.

The file is produced in state Scheduled after parsing the received Data Product Specification
for source files.

sources.json
Specifies the source FITS files required to execute the merge. The JSON file specifies the
remote origin location as well as the local file path where it will be copied. daqDpmMerge
will use this as a source lookup.

The file is produced in state Scheduled after parsing the received Data Product Specification
for source files.

status.json
Internal merge status maintained by daqDpmServer , used to be able to resume an inter-
rupted merge process. The file is written for every state change.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 71 of 89

result
Symlink to result file. The file is produced in state Merging by daqDpmMerge and is guar-
anteed to be available from state Releasing.

/archive/
Subdirectory for StateCompleted Data Acquisitions. Files in this directory are no longer used
by daqDpmServer and can be removed.

/archive/id/
Subdirectory for each Data Acquisition. When Data Acquisition is completed it is moved from
/in-progress/id to /archive/id so structure is identical.

The following shows an example of files and directories in the workspace with one completed Data
Acquisition and two in progress of being merged:

.
archive/

TEST.2021-05-18T15:10:02.101/
result -> ../../result/TEST.2021-05-18T15:10:02.101.fits
sources/
logs/
sources.json
specification.json
status.json

in-progress/
TEST.2021-05-18T14:49:03.905/

sources/
0_dcs_TEST.2021-05-18T14:49:03.905-dcs.fits
1_fcs_TEST.2021-05-18T14:49:03.905-fcs.fits

logs/
sources.json
specification.json
status.json

TEST.2021-05-18T15:10:02.101/
sources/
logs/
sources.json
specification.json
status.json

result/
TEST.2021-05-18T15:10:02.101.fits

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 72 of 89

12.2.7 Loggers

The following loggers are used (see logging-configuration for how to configure verbosity with log
properties file):

daq.dpm
General application logging.

daq.dpm.scheduler
Schedules the execution of merges from the queue of Data Acquisitions.

daq.dpm.controller
Logs related to the controller which manages the execution of the merge, including transfer of
missing inputs.

daq.dpm.transfer
Dedicated logger for the FITS file input transfer.

daq.dpm.merger
Output from the daqDpmMerge subprocess.

12.3 Merger (daqDpmMerge)

Standalone application that creates the final Data Product from a specification and is normally exe-
cuted as a subprocess of daqDpmServer .

12.3.1 Command Line Arguments

Synopsis:

daqDpmMerge [options] <specification-file>

Where

<specification-file>
Data Product Specification file. To read from standard input use -. See Data Product Specifica-
tion for file format details.

Options:

--root DIR
Root directory DIR from which relative source paths in specification-file will be resolved.

By default the root directory will be set to:

1. The same directory that holds specification-file, if it is a regular file.

2. The current working directory, if specification-file is not a regular file.

--outfile FILE | -o FILE
FITS output file name, e.g. -o myfits.fits or –outfile=/path/to/myfits.fits`. By default the output

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 73 of 89

name will be derived using the specification-file fileId property: <fileId>.fits.

Relative paths are relative to the root directory.

--dry-run
Skips operations with visible side-effects. All inputs are opened in read-only mode. Some
operations are performed using in-memory FITS file.

Useful for validating arguments and other inputs.

--json
Print status messages to standard output in JSON format with one message per line. By default
status messages are printed in human readable form.

--logfile FILE | -l FILE
Specifies log file to create and append to. Relative paths are relative to the root directory.

--help
Show help and exit.

--version
Show version information and exit.

12.3.2 Environment Variables

TBD

12.3.3 Exit Codes

Table 12.3: daqDpmMerge exit codes
Code Description
0 Success
10x Problem with spec-file
100 spec-file not found.
101 Invalid JSON.
102 Invalid schema.
11x Problem with source file(s)
110 Referenced source file not found.
255 Internal error.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 74 of 89

12.4 Data Product Specification

For an introductory high-level overview of how data products are created see section Data Product
Creation.

The Data Product Specification is the primary input to daqDpmMerge and describes how the final
Data Product is created. All source files referenced in the specification must be locally accessible and
relative paths are relative to a single root path which is either the directory containing the specification
or an explicit root directory passed as an option to daqDpmMerge.

Merging can be done by creating a new file or to merge in-place. If no FITS file target is specified
using the property target/source described below, then a new empty file will be created automatically
into which the sources will be added.

Note: It is expected that daqDpmMerge will validate keywords against a set of keyword dictionaries.

12.4.1 Primary HDU keywords

There are two types of sources for primary HDU keywords:

1. Keywords in JSON format.

These keywords were provided directly to daqOcmServer using the available APIs.
These keywords are defined by the named JSON object FitsKeywordsSource.

2. Keywords copied from source FITS files.

Which keywords from the source primary HDU to copy to the target primary HDU are
derived using the keyword rules specified in the source.

All these keywords will be merged together:

• Value Keywords and ESO Keywords keyword collisions are resolved by keeping the keyword
from highest priority source.

• Commentary Keywords are appended in source priority order.

And then by default sorted as specified by DICD [RD1](section 3.1.1.3):

1. Value keywords are sorted by source order:

The individual order of value keywords from the same source (file or list of keywords)
is kept to not reorder keywords that belong together. For example it make sense to
keep RA and DEC together:

OBJECT = 'karma_cdfs_8_LP.cat' / Original target.
RA = 53.087446 / [deg] 03:32:20.9 RA (J2000) pointing
DEC = -27.84692 / [deg] -27:50:48.9 DEC (J2000) pointing

Rather than e.g. sorting alphabetically:

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 75 of 89

DEC = -27.84692 / [deg] -27:50:48.9 DEC (J2000) pointing
OBJECT = 'karma_cdfs_8_LP.cat' / Original target.
RA = 53.087446 / [deg] 03:32:20.9 RA (J2000) pointing

2. ESO hierarchical keywords are sorted by:

1. Category14 (DPR, OBS, TPL, GEN, TEL, ADA, INS, DET, any other)

2. Keyword name in alphabetic order.

12.4.2 HDU Extensions

The FITS HDU extensions are merged in order of descending priority:

1. Extensions from the in-place target, if any.

2. Extensions from other source files.

The source files in attribute sources are specified in descending priority. Like keywords the
relative order between extensions in the same file is kept.

12.4.3 JSON Description

See json-schema-dpspec-intro for detailed specification.

14 Category in an ESO hierarchical keyword is the first token in the logical keyword name. The category is TEL in the
logical keyword name TEL MOON RA. See also glossary ESO Keyword .

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 76 of 89

13 MAL Interface

This interface is hosted at https://gitlab.eso.org/ifw/ifw-daqif/.

The following sections document the MAL interface daqif [rd-daqif] in a language agnostic manner.
For data structures only the data members are documented, not the accessors generated by MAL.
The names are not fully qualified as it is different across the supported languages.

daqif are the domain specific interfaces implemented and used by daqOcmServer and daqDpm-
Server . daqOcmServer implements in addition the standard interface.

13.1 OCM Data Acquisition Control

Note: daqOcmServer hosts the Data Acquisition control interface daqif.OcmDaqControl under URI
path /daq.

class daqif.OcmDaqControl
OCM Data Acquisition control interface.

StartDaq(id, file_prefix, prim_sources, meta_sources, properties) → DaqReply
Create and start new data acquisition with v1 merge-heuristics. If id is not provided (left
empty) daqOcmServer will create a unique identifer automatically.

Heuristics

The following heuristics is used to determine how results are merged together. For more
control use StartDaqV2().

• If a single primary data source produce a single FITS file this will selected as the in-
place merge target. - Otherwise data sources produce multi-extension FITS files with
no data in primary HDU. - Data sources have the following relative priority:

Note: Order determines merge order of keywords and extensions.

1. Primary data sources in the order user specified in prim_sources.

2. Metadata sources in the order user specified to meta_sources.

• Each data source produce keywords that will be merged to Data Product primary HDU
returned via metadaqif or with FITS file primary HDU.

• There is currently no way to provide keyword rules that select and transforms keywords.
All keywords in user class will be merged.

Arguments

Document Classification: Public

https://gitlab.eso.org/ifw/ifw-daqif/

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 77 of 89

The format for prim_sources and meta_sources is a space separated list of sources in the
format: <name>@<rr-uri>, e.g. meta-source@zpb.rr://example:1234/daq.

There must be at least 1 data source.

Fail-fast

If any source fails to start the command will fail.

Parameters

• id (str) – Optional unique identifier of data acquisition.

• file_prefix (str) – Optional file name prefix.

• prim_sources (str) – List of primary data sources (e.g. detectors).

• meta_sources (str) – List of metadata sources (e.g. FCF Device Manager or
CCS).

• properties (str) – JSON properties (see json-schema-startdaqproperties).

Returns
If id was provided that is returned as an acknowledgement, otherwise the id
generated by daqOcmServer is returned.

Return type
DaqReply

Raises
DaqException – On fatal error.

StartDaqV2(specification) → DaqReply
New in version 2.1.0.

Create and start new data acquisition from JSON specification.

StartDaqV2() was introduced in to enable the capabilities of daqDpmMerge that was not
possible to express using StartDaq(). The decision was also made to use JSON to express
the specification to allow more flexible extensibility.

See json-schema-startdaqv2 for detailed documentation of the JSON schema.

Note: This version is strictly more capable than StartDaq() and is required when additional
control of the outcome is required. Unlike StartDaq() it also supports specifying how to
merge FITS files that already exist.

Fail-fast

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 78 of 89

If any source fails to start the command will fail.

Parameters
specification (str) – Serialized JSON document. See json-schema-
startdaqv2specification for details.

Returns
If id was provided that is returned as an acknowledgement, otherwise the id
generated by daqOcmServer is returned.

Return type
DaqReply

Raises
DaqException – On fatal error.

StopDaq(id) → DaqReply
Stops data acquisition and keep any data acquired.

Fail-Fast

If all data sources fail the command will report error by throwing DaqException. A par-
tially successful execution is reported using normal status reply (which includes information
about any partial failure). This is done because it is prioritized to create a partially complete
data product over discarding all acquired data.

Parameters
id (str) – Id of data acquisition to stop.

Return type
DaqReply

Raises
DaqException – On fatal error.

ForceStopDaq(id) → DaqReply
Like StopDaq() the command stops data acquisition and keeps any data acquired. The
only difference is that if non-fatal error occurs the Data Acquisition is marked as stopped
whereas StopDaq() would not.

Fail-slow

The command is resilient to non-fatal errors. If any non-fatal errors occur the error flag in
the reply is set but no exception is thrown. If fatal error occur DaqException is thrown.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 79 of 89

Warning: Any data source that failed to stop properly will not be able to provide data
to the Data Acquisition or the final Data Product.

Although daqOcmServer is always left in a consistent state, any data source that failed
to stop may not. Manual intervention may be necessary to restore a problematic data
source to a functional state.

Parameters
id (str) – Id of data acquisition to forcibly stop.

Return type
DaqReply

Raises
DaqException – On fatal error.

AbortDaq(id) → DaqReply
Aborts data acquisition and discards any data acquired.

Fail-fast

If any error occur DaqException is thrown and the DAQ state remains in Aborting.

Parameters
id (str) – Id of data acquisition to abort.

Return type
DaqReply

Raises
DaqException – On fatal error.

ForceAbortDaq(id) → DaqReply
Like AbortDaq() the command aborts data acquisition and discards any data acquired. The
only difference is that if non-fatal error occurs the Data Acquisition is marked as aborted
whereas AbortDaq() would not.

Fail-slow

The command is resilient to non-fatal errors. If any non-fatal errors occur the error flag in
the reply is set but no exception is thrown. If fatal error occur DaqException is thrown.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 80 of 89

Warning: Although daqOcmServer is always left in a consistent state, any data source
that failed to abort may not. Manual intervention may be necessary to restore a prob-
lematic data source to a functional state.

Parameters
id (str) – Id of data acquisition to forcibly abort.

Return type
DaqReply

Raises
DaqException – On fatal error.

UpdateKeywords(id: str, keywords: str) → DaqReply
Update keywords for specified Data Acquisition. For each keyword:

• If it already exist15, it is updated with the provided value,

• otherwise it is added.

Fail-fast

Command will not make any attempt to be robust against errors. Failures are treated as
fatal and DaqException will be thrown.

Parameters

• id (str) – Id of data acquisition to update.

• keywords (str) – JSON encoded set of keywords. Refer to JSON keywords
schema for details.

Return type
DaqReply

Raises
DaqException – On fatal error.

AwaitDaqState(id, state, substate, timeout) → AwaitDaqReply
Replies when Data Acquisition reaches the requested state or when this state is impossible
to reach. This is mainly used to support sequencing of higher level coordination activities.

The command will reply when condition is fulfilled or times out. When it times out this is
indicated in the reply with AwaitDaqReply.timeout set to true.

Condition is fulfilled if Data Acquisition either:

1. Enters requested state. In this case the current state in reply is the same as the

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 81 of 89

requested state.

2. Enters or is already in a state such that there is no valid transition to the requested
state. In this case the current state in reply will not be the same as the requested state.

Note: If Data Acquisition is archived the request will reply if condition is already fulfilled
otherwise exception will be raised.

Parameters

• id (str) – Id of Data Acquisition to await.

• state (DaqState) – State of Data Acquisition to await.

• substate (DaqSubState) – Substate of Data Acquisition to await.

• timeout (float) – Duration in seconds to wait for condition to be fulfilled. Must
be > 0.

Returns
Current Data Acquisition status and indication if operation timed out.

Return type
AwaitDaqReply

Raises
DaqException – On fatal error (e.g. invalid arguments).

GetStatus(id) → DaqStatus
Get status of a Data Acquisition.

Note: If Data Acquisition has completed daqOcmServer will try to reply with status from
most recently archived Data Acquisition with the same id.

Parameters
id (str) – Id of Data Acquisition to get status for.

Return type
DaqStatus

Raises
DaqException – On fatal error.

GetActiveList() → List[DaqStatus]
Get list of active Data Acquisitions (i.e. not in daqif.DaqState.StateCompleted).

Returns
List of active Data Acquisitions.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 82 of 89

Return type
List[DaqStatus]

Raises
DaqException – On fatal error.

13.2 DPM Control

Interface for application control. It has a similar role as stdif but limited to operations supported by
daqDpmServer .

Note: This interface is reserved for daqOcmServer and is not meant to be used by end-users.

daqDpmServer hosts the interface daqif.DpmControl under URI path /dpm.

class daqif.DpmControl
DPM control interface for non-DAQ related commands.

QueryStorageStatus() → StorageStatus
Queries disk space usage and availability on the file system used by daqDpmServer
workspace.

Return type
StorageStatus

Raises
RuntimeError – On fatal error.

Exit() → str
Terminates application in a controlled manner.

Note: Reply is sent before application terminates, but there is no guaranteed delivery.

Return type
str

Raises
DaqException – On fatal error.

15 OCM will compare keyword name as provided, while considering if it’s an ESO hiearchical keyword or standard FITS
keyword.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 83 of 89

13.3 DPM Data Acquisition Control

Interface for Data Acquisition control.

Note: This interface is reserved for daqOcmServer and is not meant to be used by end-users.

daqDpmServer hosts the interface daqif.DpmDaqControl under URI path /daq.

class daqif.DpmDaqControl
DPM control interface for initiating, monitoring and controlling Data Product creation life-cycle
of Data Acquisitions.

QueueDaq(specification) → DaqReply
Add Data Acquisition to queue for merging.

Parameters
specification (str) – JSON encoded string following schema in Data Product
Specification specifying how to create the Data Product.

Return type
DaqReply

Raises
DaqException – On fatal error.

AbortDaq(id) → DaqReply
Aborts merging.

Fail-fast

If any error occur DaqException is thrown and the DAQ state remains in Aborting.

Parameters
id (str) – Id of data acquisition to abort.

Return type
DaqReply

Raises
DaqException – On fatal error.

GetDaqStatus(id) → DaqStatus
Query Data Acquisition status. If no Data Acquisition has previously been queued with
QueueDaq() or is archived (in a completed state) an exceptional reply is returned.

Parameters
id (str) – Id of data acquisition to get status for.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 84 of 89

Return type
DaqStatus

Raises
DaqException – On fatal error.

GetActiveDaqs() → List[DaqStatus]
Get list of active Data Acquisitions (i.e. not in daqif.DaqState.StateCompleted).

Returns
List of active Data Acquisitions.

Return type
List[DaqStatus]

Raises
DaqException – On fatal error.

GetInternalDaqStatus(id) → InternalDaqStatus
Internal version of GetDaqStatus().

New in version 3.1.0.

Parameters
id (str) – Id of data acquisition to get status for.

Return type
InternalDaqStatus

Raises
DaqException – On fatal error.

13.4 Data Structures

This section contains the data structures that are used by the daqif interfaces daqif.OcmDaqControl,
daqif.DpmControl and daqif.DpmDaqControl or used as pub/sub topic type.

class daqif.DaqState
Enumeration of top-level Data Acquisition states, see The Data Acquisition Process for addi-
tional details.

StateAcquiring
State that span the initial point it is created in OCM through the phase where data is ac-
quired until all inputs for the Data Product have been created. See also StateAcquiring.

StateMerging
State that spans not where a Data Product is created from the acquired data. Phase where
Data Product is created. See also StateMerging.

StateCompleted
Data Acquisition is completed.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 85 of 89

StateUndefined
Only used for technical reasons. This is not an expected state.

class daqif.DaqSubState
Enumeration of possible Data Acquisition sub-states, see The Data Acquisition Process for
additional details.

Note: Only a subset of the listed states are possible/valid in each DaqState.

NotStarted
Data Acquisition is created but not yet started.

Starting
Transitional state where Data Acquisition is being started. Some data sources might al-
ready be acquiring data. When all sources have started the Data Acquisition transitions to
Acquiring.

Acquiring
Data is being acquired.

Stopping
Transitional state to Stopped. Some data sources might still be acquiring data and are
about to be stopped. When all data sources have stopped the Data Acquisition transitions
to Stopped.

Stopped
All data has been acquired.

Aborting
Transitional state where Data Acquisition remains while it is in the process of being aborted.

Aborted
If a Data Acquisition has errors or otherwise needs to be aborted the Data Acquisition also
include the Aborted state.

NotScheduled
Before Data Acquisition is acknowledged by DPM it remains in NotScheduled.

Scheduled
Data Acquisition is acknowledged by DPM and is scheduled for merging (i.e. the Data
Acquisition is in the backlog).

Collecting
Inputs for Data Product are being collected to DPM host in preparation for merging.

Merging
Data Product is being created by merging input files together.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 86 of 89

Releasing
Data Product is being released to specified receivers, which in the normal case is OLAS.

Completed
Nominal final state for a Data Acquisition (i.e. final state when Data Acquisition is not
aborted).

Undefined
Only used for technical reasons. This is not an expected state.

class daqif.DaqException
Exception used by OcmDaqControl.

id: str
Data Acquisition identifier.

message: str
Exception message.

class daqif.RuntimeError
Exception used when there is no Data Acquisition.

message: str
Exception message.

class daqif.DaqStatus
Contains the Data Acquisition status reply.

id: str
Data Acquisition identifier.

fileId: str
A unique OLAS compatible file id is assigned by daqOcmServer when Data Acquisition is
started. This is also used as a basis for the Archive File Name and recoded as ARCFILE
FITS keyword with only the addition of the FITS extension: {fileId}.fits[RD7].

See also:

Archive File Name

state: DaqState
Data Acquisition state at the time the reply was sent.

substate: DaqSubState
Data Acquisition sub-state at the time the reply was sent.

timestamp: double
Timestamp of last status update.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 87 of 89

error: boolean
A derived property that if set indicates that there is one or more issues with Data Acquisi-
tion. This is also the main mechanism for communicating asynchronous errors that cannot
be communicated as part of a command reply. Attribute message contains the details.

message: str
Contains message related to current status. This is currently mainly used to provide infor-
mation about active alerts.

result: str
Once Data Product has been created successfully in state Merging this property will con-
tain the file path.

To ensure that result is available synchronize to substate Releasing or Completed.

New in version 2.0.0.

class daqif.DaqReply
Basic reply type that also indicate non-fatal errors.

id: str
Data Acquisition identifier.

error: boolean
When True this indicates Data Acquisition has one or more issues which can be read from
DaqStatus.message.

class daqif.AwaitDaqReply

timeout: boolean
Indicates if the await request timed out before condition was fulfilled.

status: DaqStatus
Data Acquisition status when reply was sent.

class daqif.StorageStatus
Provides storage status information.

capacity: int
Partition size in number of bytes.

free: int
Free space on the file system in number of bytes.

available: int
Free space available to daqDpmServer , if non-privileged, in number of bytes. This may be
less or equal to free.

class daqif.InternalDaqStatus
Structure used for internal communication between daqOcmServer and daqDpmServer . It is
left undocumented on purpose and should not be used by end-users.

Document Classification: Public

ELT ICS Framework Data Acquisition
User Manual

Doc. Number: ESO-396401

Doc. Version: 3

Released on: 2024-12-11

Page: 88 of 89

New in version 3.1.0.

See also:

If you are looking for the MAL URI endpoints c.f.:

• OCM Server

• DPM Server

Document Classification: Public

Python Module Index

d
daqif, 76

s
stdif, 64

89

	Introduction
	Scope
	Acronyms
	Definitions

	Related Documents
	Reference Documents

	Style Conventions
	Interactive Shell Sessions
	JSON Data Structures

	ELT for VLT Developer
	Components
	Software Context
	Deployment
	Reference
	Deployment Constraints

	Overview
	Introduction
	Stylistic Conventions
	Conceptual Model

	Control and Data Flow
	Control Flow
	Data Flow

	Data Product Creation

	The Data Acquisition Process
	Introduction
	Stylistic Conventions
	Process Overview
	Data Validation

	StateAcquiring
	Overview
	Starting
	Stopping
	Aborting

	StateMerging
	Overview
	NotScheduled
	Scheduled
	Collecting
	Merging
	Releasing
	Completed

	Data Acquisition Guide
	Prerequisites
	Lifecycle Control
	Startup
	Shutdown

	Observing Status Changes
	Automatic Stop Sequence
	Manual Stop Sequence

	Observation Coordination Manager
	Introduction
	Client
	Environment Variables
	Command Line Arguments

	Server
	State Machine
	MAL URI Paths
	Command Line Arguments
	Environment Variables
	Configuration File
	Workspace
	Loggers

	Standard MAL API
	Interfaces
	Data Structures

	Data Product Manager
	Introduction
	Server (daqDpmServer)
	State Machine
	MAL URI Paths
	Command Line Arguments
	Environment Variables
	Configuration File
	Workspace
	Loggers

	Merger (daqDpmMerge)
	Command Line Arguments
	Environment Variables
	Exit Codes

	Data Product Specification
	Primary HDU keywords
	HDU Extensions
	JSON Description

	MAL Interface
	OCM Data Acquisition Control
	DPM Control
	DPM Data Acquisition Control
	Data Structures

	Python Module Index

