/* $Id: cpl_math_const.h,v 1.6 2007/09/14 09:46:54 llundin Exp $ * * This file is part of the ESO Common Pipeline Library * Copyright (C) 2001-2004 European Southern Observatory * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * $Author: llundin $ * $Date: 2007/09/14 09:46:54 $ * $Revision: 1.6 $ * $Name: $ */ #ifndef CPL_MATH_CONST_H #define CPL_MATH_CONST_H #include CPL_BEGIN_DECLS /** * @defgroup cpl_math Fundamental math functionality * * This module provides fundamental math constants. * * Source: On-Line Encyclopedia of Integer Sequences (OEIS) * pi: http://www.research.att.com/~njas/sequences/A000796 * e: http://www.research.att.com/~njas/sequences/A001113 * ln(2): http://www.research.att.com/~njas/sequences/A002162 * ln(10): http://www.research.att.com/~njas/sequences/A002392 * * The derived constants have been computed with the * GNU Multiple-Precision Library v. 4.2.2. * * The constants are listed with a precision that allows a one-line definition. * * @par Synopsis: * @code * #include * @endcode */ /**@{*/ /*----------------------------------------------------------------------------- Defines -----------------------------------------------------------------------------*/ /* The base of the exponential function */ #define CPL_MATH_E 2.7182818284590452353602874713526624977572470936999595 /* The ratio of a circles circumference to its diameter */ #define CPL_MATH_PI 3.1415926535897932384626433832795028841971693993751058 /* The natural logarithm of 2 */ #define CPL_MATH_LN2 0.6931471805599453094172321214581765680755001343602553 /* The natural logarithm of 10 */ #define CPL_MATH_LN10 2.3025850929940456840179914546843642076011014886287730 /* Derived constants */ /* 2pi */ #define CPL_MATH_2PI 6.2831853071795864769252867665590057683943387987502116 /* pi/2 */ #define CPL_MATH_PI_2 1.5707963267948966192313216916397514420985846996875529 /* pi/4 */ #define CPL_MATH_PI_4 0.7853981633974483096156608458198757210492923498437765 /* 1/pi */ #define CPL_MATH_1_PI 0.3183098861837906715377675267450287240689192914809129 /* 2/pi */ #define CPL_MATH_2_PI 0.6366197723675813430755350534900574481378385829618258 /* 4/pi */ #define CPL_MATH_4_PI 1.2732395447351626861510701069801148962756771659236516 /* sqrt(2pi) */ #define CPL_MATH_SQRT2PI 2.5066282746310005024157652848110452530069867406099383 /* 2/sqrt(pi) */ #define CPL_MATH_2_SQRTPI 1.1283791670955125738961589031215451716881012586579977 /* sqrt(2) */ #define CPL_MATH_SQRT2 1.4142135623730950488016887242096980785696718753769481 /* sqrt(3) */ #define CPL_MATH_SQRT3 1.7320508075688772935274463415058723669428052538103806 /* sqrt(1/2) */ #define CPL_MATH_SQRT1_2 0.7071067811865475244008443621048490392848359376884740 /* log2(e) */ #define CPL_MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859 /* log10(e) */ #define CPL_MATH_LOG10E 0.4342944819032518276511289189166050822943970058036666 /* 180/pi */ #define CPL_MATH_DEG_RAD 57.295779513082320876798154814105170332405472466564322 /* pi/180 */ #define CPL_MATH_RAD_DEG 0.0174532925199432957692369076848861271344287188854173 /* FWHM per Sigma, 2.0*sqrt(2.0*log(2.0)) */ #define CPL_MATH_FWHM_SIG 2.3548200450309493820231386529193992754947713787716411 /* Sigma per FWHM, 0.5/sqrt(2.0*log(2.0)) */ #define CPL_MATH_SIG_FWHM 0.4246609001440095213607514170514448098575705468921770 /**@}*/ CPL_END_DECLS #endif