= DL

External
Development
Guide

IDL Version 5.4
RE S EARC H September, 2000 Edition
SYST EMS Copyright © Research Systems, Inc.
‘ All Rights Reserved

oooooooooooooooo

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research SystemsInc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software = Vision ~ is atrademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities

Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-

ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

OVEIVIBW ettitiiiee ettt e e e e e e e e e e e e e e et eeaebaa e e e e e e eeeeeeeeeeeeeneennnns 11
ADOUL thiSIMBNUEL ...ttt st e e e e sne e 12
Supported Inter-Language Communication Techniquesin IDLcccccevevvveeieevieseenne. 13
Dynamic Linking Terminology and Dynamic Linking CONCEPLScccevererererieneenns 20
When isit Appropriate to Combine External Code With IDL?ccceevevieveieeviesienen, 22
Skills Required to Combine External Code With IDLcccoviviieieeierineneeeeseseeseene 23
Recommended REBAINGc.coviiiieii ettt sreere s 26
DL OrganIZALIONcoeiueieeeeieereriesseieeesie e ee e se e e sr e s se e e s sre s e e e e s s snesnennens 28
EXternal DEfINITIONSccceiriiirierieieses e 30
LiNKING DELAIIScoveiviieeeeeieses et sn e nn e 31
Chapter 2:

USING SPAWN L.t e e e aa e e e eene 33
The SPAWN PrOCEAUIEocueiiiieieeee ettt sttt sne e 34
INteractive USE Of SPAWNooioeece ettt st e e nne e 35

External Development Guide 3

Noninteractive UsSe Of SPAWN ...t 37
Avoiding the Shell Under UNEX ..o 39
Communicating Through the Use of a UNIX Child Processccoccevvveeeevnieseeiennne 40
Chapter 3:

IDLDrawWidget ActiveX CONErol ... 43
L@ = V= SRR 44
Creating an Interface and Handling EVENLSccocveiiii et 46
WOrking With IDL ProCEAUIEScccooirierieinieriesiesee ettt se e s 52
AdvanCed EXAMPIESccueceiiiecc et e e e n e 55
Copying and Printing IDL GraphiCScccvirirerieienesieseesieseeesesie s seeeenesnens 56
XLoadCT Functionality Using Visual BaSICcccceevevieiieniee e 60
XPalette Functionality USiNg Visual BaSICc.ccceieririenienieieeesesesiesee e 61
Integrating Y our Object Graphics by Utilizing Visual BaSiCccccccceveeeecienecieceennn, 62
Sharing a Grid Control Array With IDLcooiiiiieeeresereeeeesese e 63
Handling Events within Visual BaSICcccccveiiiiiiecicnecceece e 64
Distributing Y our ActiveX APPHICALIONccccvvirierieeeenesesie e 65
Chapter 4:

IDL ActiveX Control Command Referenceccccvviiiviiiiiiiinieeeeeeenn, 67
I = VATV o Lo 68
=T L 69
Do Methods (RUNLIME ONIY) ..o te et re b e reesreenre e 77
PrOPEITIES ..ttt et a et e et b e et e nns 79
e 0 MO0 A e o] o= o = 83
AULO EVENE PrOPEITIES ...ttt e 85
BVENES et bbb bbb he e b e beenreenreea 87
Chapter 5:

APPIESCIIPT SUPPOTT ottt 89
W o= ot] = o I 0 P 20
BasiC APPIESCIIPE SUPPOITocveeeeeieeieriesieee et 91
Using IDL Commands Via APPIESCIIPL ..c.veiveeeeeieiiceeees et s 92
Moving Data To @nd From IDLccoiiiiiieencneree e 93
Controlling Other APPIICALIONSc.eccueiieiieeeese st erre et sreeae e 94
DL APPIE EVENLS ...ttt 96
REFEIBINCES ...ttt bbb e e e ne s 101

Contents External Development Guide

Chapter 6:

Remote Procedure CallS ... 103
IDL and Remote Procedure CallS ... s 104
USING IDL @S 8N RPC SEIVEY ..ot 105
ClIENt VarialES ...ttt 106
Linking to the CHENt LIDrary ... 107
Compatibility with Older IDL COOEccceevierieiiieiese et 109
THE IDL RPC LIBIAY ..ovcveieieieieisiec e e sttt e e s s saesenennas 111
T Ol = 1 0o =S 136
Chapter 7:

CALL _EXTERNAL oot e e e e e e 137
IDL and CALL _EXTERNAL ..ottt st st s srae e e 138
The CALL_EXTERNAL FUNCLONooveuiiieiieeisieiesieesie st neenas 139
Handling DIfferent Data TYPESccecveerirerieeeese st sre s 149
CALL_EXTERNAL UNAer UNIX ...ocoiieiiieirieisieesesiesesesesseesseesse e e sessesassesessenensas 155
CALL_EXTERNAL Under OpeNVMSoooviiieiern e see st ssae e snees 156
CALL_EXTERNAL UNder WINGOWSc.coueereeirieirinieresenesseessesessesessesesessessssensssensnses 164
CALL_EXTERNAL 0onthe MacintOShcccoevieiieiiccececceestee et 165
Chapter 8:

IDL INterNalsS: TYPES .ot 167
LN 0L 0o == 168
MapPiNg Of BASIC TYPESovueriirieieirieriesie ettt b st b e e 170
IDL_MEMINT and IDL_FILEINT TYPES .eovveereererireresreeseeesseeseesesessesessesessasessesees 172
Chapter 9:

IDL Internals: Variables ... 173
IDL and Internal VariablSooeveiririniesieesesese st 174
The IDL_VARIABLE SITUCLUIEcviieieieieeeiee et st e st sas e nennas 175
SCAAN VATADIES ... 178
ATTAY VAITADIES ... 179
SHUCTUIE VaTBDIES ...t 181
HEAD VAITADIES ... e 186
TeMPOrary VariablEScoviiiieiece ettt sttt sreenees 187
Creating an Array from EXiSting Dataccoceeeeoeririnereieneseseseeesese e 192
Getting DYNAMIC IMEMOIYccviiiecieeiesiesiesie ettt te e ste st s se e st snaesresreennenaesreeneas 194

External Development Guide Contents

ACCESSING VaiaDI@ DaAceevecveeeeie sttt st nne s 196
CopYING VATADIES ...t 197
StOriNG SCAAr VAIUESc.veeieeieie ettt st b e sae e e s 198
Obtaining the Name of aVariable ..o 200
Looking Up Main Program VariableScccceceiieieeiiiesiese st 201
Looking Up Variablesin CUrrent SCOPEcccvvrerrereeiereresseseeesesee e seeesnens 202
Chapter 10:

IDL Internals: Keyword ProCesSingccccccvveeeeeeeiiiiiiiiiiiiciiiivvvveeee 203
IDL and KeyWOrd PrOCESSINGccveerreriinieineniesiesieseeesiesseseesessesseseessesessessessssesssenessens 204
Creating Routines that ACCEPt KEYWOITScccvvvreerieriiieereseeee e 205
The IDL_KW _PAR SHUCLUIEocvieieceeie e eee et ceese e ae e s ee e re e saaennesresreennennens 206
The IDL_KW_ARR_DESC SITUCLUIEoivveieriisieeiesie e seeeesie s eeessessesseesaeseesseensessens 209
Keyword Processing OPLIONSccceeceieieeieese s et sieseesseste e eae e sresssessesresnsenessees 210
ProCessing KEYWOITScuiiiririeieinieriesieeee sttt ne e s 211
(@< 101 1o LU o TS 213
KeyWOrd EXAMPIES ..ottt 214
Chapter 11.:

IDL Internals: String ProCesSiNgccoovveriiiiiiiiiiieiiiiier e 219
String Processing @nd IDLooiieiieie et 220
ACCESSING IDL_STRING VEAIUESceiiriiiiieieriesie ettt 221
(00 10 TS 1 e 222
DEIEIING SIMNGS ..cvevieeieieieriese ettt e b b e s e ene s 223
Setting @n IDL_STRING VAUEcccooeeieeeese st 224
Obtaining a String of a GIVEN Length ... 225
Chapter 12:

IDL Internals: Error Handlingeeeoiiiiiiiic e 227
MESSAOE BIOCKS ..ottt e 228
ISSUING EITOr MESSAGEScuviviceeeie i cteete e eee e st e st st saeste s te e besreeneensesresneeeeseas 230
Specifying errnO EXPlICITIYoeeeeiiieecee e 234
1SSUING OPENVIMS MESSAGESeeveieirieiesiesieeeestesreseesse e sseestestesteenaesbesreeseensessesnseneeses 235
Looking Up A Message Code Dy NaIMEcccoiierieiiriniseneseeese s 236
(0o (T g0 AN o 1010101 | S 237

Contents External Development Guide

Chapter 13:

IDL Internals: Type CONVEISIONccuuuvuueeiiiiiiieeeeeeeeeeeeeeeaneeinnnnnee e 239
Converting ArgumentSto C SCAlArScccveverieieeiese st s et re e sae e erees 240
General TYPE CONVEISIONcveueriiirerieeeesiesre s et sre s e s sresr e e se s sse s 241
Converting tO SPECITIC TYPES .uvvivieeeesie ettt aesreeneas 242
Chapter 14:

IDL Internals: Files and INput/Outputccooeveeeiiiiiiiiiei e 243
IDL and INPUL/OULPUL FITESveieeeeeie et 244
FIle INFOMMELIONooviiiiiiiccees et s r e e 245
OPENING FlES ...t n e b e 250
(O 01T oo 1 =SSR 253
Preventing File ClOSING ..ot 254
CheCKiNng FilE SEALUScvecveeieie ettt sttt s re e e aesreereas 255
Allocating and Freaing FIlE@ UNITS ... s 257
D= o= o gTo =l gTo o1 = R 259
Flushing BUFfEred Dalaccerveeeeniriisienieeeese st 260
Reading aSiNgle CharaCler ..ottt s 261
Output Of IDL VAITADIESceeeeieiieieeeeeiereeee e 262
Adding to the JOUrNal Fileceoeeiii e 263
Chapter 15:

IDL Internals: SigNalS ...cccooooeeiiiiiieeeerr e s 265
0TI To 1S T = S 266
SIGNAl HBNAIELS ...ttt st enae e eneas 269
Establishing a Signal Handler ... 270
Removing aSignal Handler ...t s 271
UNIX SIGNal IMASKS ...ttt st b e e 272
Chapter 16:

IDL INterNals: TIMEIS oot 277
0TI Vo I 0 1= £ S 278
MaKing TiMEr REQUESESccveiviieieiesie ettt ettt st sa et s reeneeaentesae s 279
Canceling Asynchronous Timer REQUESEScccccvririrereeiereseseeseeeeeses e 281
BIOCKING UNIX TIMELS ..ouvieieiectiee ettt sttt st re et s reereenne st sne s 282

External Development Guide Contents

Chapter 17:

IDL Internals: Miscellaneous Informationcccooeeiiiiiiiiiiiinnnnnee. 285
Y= 0 Tl /= 01T R 286
T =T 288
(LS 1 1=] o] £ 289
Functions for Returning System Variables ..o 290
Terminal INFOrMELIONc.coeiiiiiee e et 291
ENSUNNG UNIX TTY SEBE ...eoiviieeieeereei et 292
TYPE INFOIMBLIONvivieeeeie e sttt s e s te st e e e e aesresreennenrens 293
(WS g0 T 7= o o 295
CONSLANES ...ttt bbb bt b e bbbt e e e b e b e e ae e b e sbesb e et e b e saeeneeeene 296
= o3 {01 U 297
IDL Global DataUnder VAX/OPENVIMSooiiiicecese ettt 298
Chapter 18:

Adding SyStem ROULINESuuiiiiiiiiiiiiiiiiiiaee e 299
IDL and SysStem ROULINESccerueeririeriiieeeesies sttt sne e e ene s 300
The System ROULINE INLEITECEocuiieceee e e 301
Example: HEIO WOTTA ... 302
Example: Doing aLittle More (MULTZ2) ...cvcveiiiiceeriececeee e 303
Example: A Complete Numerical Routine Example (FZ_ROOTS2)ccccocvvereeiennne 306
Example: An Example Using Routine Design Iteration (RSUM)cccovevevvveceenenne. 314
REGISIENING ROULINES ...ttt n e 324
Enabling and Disabling SyStem ROULINESccoviireevienieceese et 327
I N S 1Y 7N 335
Dynamically Loadable MOAUIEScceiiiieiiiece et 337
Chapter 19:

(@2 =1 o] 1= | 5 SRS 345
Calling IDL @S @ SUDIOULINEcoiiiriiieieieriese ettt 346
When is Callable IDL APPIrOPHatE?ccceveeieeiie e e seeseeseesesseesreesreesressreesnessneesneas 347
Licensing Issues and Callable IDLcooeeerininiiieenesese e 350
USING CaAllADIE IDL ...ttt ene s 351
TRz o] o 353
[T AVZ< g (] g To T 0 G T 14 o | 357
EXECULING IDL SEAEMENTSveieiieeeieeierieieee ettt s 359
Runtime IDL and Embedded IDL ... e 361

Contents External Development Guide

(O T o TSRS 362
Issues and Examples: UNIX and VIMS ... 363
Issues and Examples: Microsoft WIiNAOWScccccvveeeerieii st 378
Issues and Examples: MaCiNtOSNcccvviverieierinerenee e 388
Chapter 20:

Adding External Widgets t0 IDLcoovvvvviiiiiiiiieeeeeeeeeeeeeee e 395
IDL and EXternal WIAQELScceciieiiiiiiesie ettt st st s sre s 396
WIDGET _STUB .ottt sttt e et s e e nee e st e e s nte e st e e sneeeneeenreas 397
WIDGET_CONTROL/WIDGET_STUBceiiiiriiniinieerese e seens 398
Functions for Use With SIUD WIAQELSccoeieieririneceeeresee e 400
Internal Callback FUNCLIONScoeiieiiiiinie e 403
OpenVMS With WIDGET_STUBooiiiee e 405
Appendix A:

Obsolete Internal INterfaces ..o 409
Interfaces Obsoleted IN IDL 5.3 ...t 410
Simplified ROULINE INVOCELIONcoeieirieiirieeeeeese s 413
Obsolete Error Handling AP ...t ettt e 420
Compatibility With Versions2 and 3cocooeveininenineinese e 421
IDL Version 1 CompatibDilityccccoecveieiieiiiiie e cee st s e s sne e s e 422
180 =G 425

External Development Guide Contents

10

Contents External Development Guide

Chapter 1:

Overview

This chapter discusses the following topics:

About thisManual 12
Supported I nter-Language Communication
TechniquesinIDL 13

Dynamic Linking Terminology and Dynamic
LinkingConcepts 20
When isit Appropriate to Combine External

External Development Guide

Skills Required to Combine External Code

WithIDL ... 23
Recommended Reading 26
IDL Organization 28
External Definitions 30
Linking Details 31

11

12 Chapter 1: Overview

About this Manual

Thismanual describestheinternal implementation of IDL in sufficient detail to allow
the user to write code in other languages and link it with IDL. It explains how to write
code that will be called directly from IDL (CALL_EXTERNAL), how to add built-in
system routines and functions (LINKIMAGE), and how to call IDL as a subroutine
from other programs (“Callable IDL").

Using this Document with Previous Versions of IDL

This document describes the interface to the IDL internals introduced with IDL
version 4.0. Those using CALL_EXTERNAL or LINKIMAGE with previous
versions of IDL should consult Appendix A, “Obsolete Internal Interfaces” for
compatibility information.

About this Manual External Development Guide

Chapter 1: Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports anumber of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of thislist over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — there is a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendationsto help you decide which approach to take.
By comparing this list with the requirements of the problem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using ahigh level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
is simple enough to trandate to IDL,, thisis the best way to go. You should
investigate the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wish to access IDL abilities from alarge program written in some other
language.

SPAWN

The simplest (but most limited) way to access programs external to IDL isto use the
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified
command. Under UNIX, VMS, and Microsoft Windows, the output from SPAWN

External Development Guide Supported Inter-Language Communication Techniques in IDL

14

Chapter 1: Overview

can be captured in an IDL string variable. Under UNIX, IDL can communicate with a
child process through a bi-directional pipe using SPAWN. More information about
SPAWN can be found in Chapter 2, “Using SPAWN” or in the documentation for
SPAWN in the IDL Reference Guide.

Advantages
e Simplicity
» Allows use of existing standal one programs.

* Under UNIX, data can be sent to and returned by the program via a pipe,
making sophisticated inter-program communication possible quickly and
eadlly.

Disadvantages

* Non-UNIX hosts are unable to use the pipe facility to communicate with the
program. Data can only be sent to the command via arguments to SPAWN,
and data can only be returned by writing it to atemporary file which IDL
subsequently opens and reads.

» Macintosh or Windows systems are unable to capture returned data via the
Result parameter, further reducing flexibility.

Recommendation

SPAWN isthe easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

ActiveX

IDLDrawWidget is an OLE custom control (OCX) built around IDL for Windows
that provides an easy mechanism for integrating IDL with Microsoft Windows 95
and NT applications written in languages such as C, C++, Visua Basic, Fortran,
Delphi, and others. Thisisthe most natural way to combine IDL with such
environments, and is therefore the easiest option under Windows. For more
information, see Chapter 3, “IDL DrawWidget ActiveX Control”.

Advantages

* Integrates easily with an important interprocess communication mechanism
under Windows 95/98 and NT.

« Higher level than the function call interfaces supported by the remaining
options.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 15

» Uses native syntax in languages such as Visua Basic, Visual C++, and Delphi.
Disadvantages

» Only supported under Microsoft Windows.
Recommendation

Usethe IDL ActiveX control if you are writing a Windows-only application written
in alanguage that supports ActiveX and you wish to use IDL to perform computation
or graphics within aframework established by this other application.

AppleScript

On the Macintosh, IDL can act as an AppleScript server or client.

Advantages

* Integrates easily with standard Apple interprocess communication mechanism
on the Macintosh.

e Higher level than the function call interfaces supported by the remaining
options.

» Far more capable than SPAWN on the Macintosh, alowing remote control of
any scriptable application, the system, and finder.

e Allowsimport/export of datafrom IDL.
Disadvantages
* Only supported on the Macintosh.

* Not possible to integrate graphics from IDL into another program’s drawing
area

Recommendation

AppleScript is excellent for scripting operations, more sophisticated than what
SPAWN allows, but less capable than the IDL ActiveX control available under
Microsoft Windows.

Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun asan RPC server and your own program
isrunasaclient. IDL's RPC functionality is documented in Chapter 6, “Remote
Procedure Calls’.

External Development Guide Supported Inter-Language Communication Techniques in IDL

16

Chapter 1: Overview

Advantages

» Code executes in a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

* APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

» Possihility of overlapped execution on a multi-processor system.
Disadvantages
» Complexity of managing RPC servers.
» Bandwidth limitations of network for moving large amounts of data.
e Only supported under UNIX.
Recommendation

Use RPC if you are coding in a distributed UNIX-only environment and the amount
of data being moved is reasonable on your network. CALL_EXTERNAL might be
more appropriate for especially simple tasks, or if the external code is not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL's CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL ismuch easier to use than either LINKIMAGE or Callable IDL
and is often the best (and simplest) way to communicate with other programs.
CALL_EXTERNAL isaso supported on al IDL platforms.

While many of the topicsin this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
7,"CALL_EXTERNAL” and the documentation for CALL_EXTERNAL inthelDL
Reference Guide.

Advantages
» Allowscalling arbitrary code written in other languages.
* Requireslittle or no understanding of IDL internals.
Disadvantages

e Errorsin coding can easily corrupt the IDL program.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 17

* Requires understanding of system programming, compiler, and linker.

e Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

« System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call codewritten for general use in another language (i.e.
without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functionswithin special IDL procedures or functions that do
error checking of the inputs and return values. In this way, you can reduce the risks of
corruption and give your callers an appropriate IDL-like interface to the new
functionality.

If you lack knowledge of IDL internals, CALL_EXTERNAL isthe best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, Dynamically Loadable
Modules)
It is possible to merge routines written in other languages with IDL at run-time. Such
routines are dynamically linked, aswith CALL_EXTERNAL. They are more

difficult to write, but more flexible and powerful. LINKIMAGE provides access to
variables and other objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL using LINKIMAGE. Especially important is Chapter 18, “Adding System
Routines’. Additional information about LINKIMAGE can be found in Chapter 7,
“CALL_EXTERNAL” and in the documentation for LINKIMAGE in the IDL
Reference Guide.

Advantages

» Thisisthe most fully integrated option. It allows writing IDL system routines
that are indistinguishable from those written by RSI.

e Inuse, system routines are very robust and fault tolerant.

« Allowsdirect accessto IDL user variables and other important data structures.

External Development Guide Supported Inter-Language Communication Techniques in IDL

18

Chapter 1: Overview

Disadvantages

» All the disadvantages of CALL_EXTERNAL.

* Requiresin depth understanding of IDL internals.
Recommendation

Use LINKIMAGE if you require the highest level of integration of your codeinto the
IDL system. UNIX users with RPC experience should consider using RPCsto get the
benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL for Windows, IDL for UNIX, and IDL for VMS are packaged in a shareable
form that allows other programsto call IDL as a subroutine. This shareable portion of
IDL can be linked into your own programs. Thisuse of IDL iscalled “Callable IDL”
to distinguish it from the more usual case of calling your code from IDL via
CALL_EXTERNAL or LINKIMAGE. IDL for Macintosh supports “cals’ to IDL
via AppleScript.

This book contains the information necessary to successfully call IDL from your own
code.

Advantages
» Supported on almost al systems.
» Allows extremely low level accessto IDL.
Disadvantages
» All the disadvantages of CALL_EXTERNAL or IDL system routines.

* IDL imposes some limitations on programming techniques that your
program can use.

* Not available on the Macintosh.
Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows 95 or NT users should consider the ActiveX control. UNIX
users should consider using the IDL RPC server. Macintosh users do not have
Callable IDL available and should use AppleScript. If these options are not

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: Overview 19

appropriate for your task and you wish to call IDL from another program, then use
Calable IDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

20

Chapter 1: Overview

Dynamic Linking Terminology and Dynamic
Linking Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into a form which is loadable by
programs at run time aswell aslink time. The ability to load them at run time iswhat
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

* Macintosh: Code Fragments

* UNIX: Sharable Libraries

* VMS: Sharable Libraries and Sharable Executables
* Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbols).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
this manual. If you intend to use any of these techniques, you should first be sureto
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as built in system routines,

Dynamic Linking Terminology and Dynamic Linking Concepts External Development Guide

Chapter 1: Overview 21

Callable IDL

Most of IDL isbuilt asasharable library. The actual IDL program that implements
the standard interactive IDL program links to this library and usesit to do its work.
Since IDL isasharable library, it can be called by other programs.

Remote Procedure Calls (RPCs)

The IDL RPC server is aprogram that linksto the IDL sharable library. The IDL
RPC client side library is aso a sharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.

External Development Guide Dynamic Linking Terminology and Dynamic Linking Concepts

22

Chapter 1: Overview

When is it Appropriate to Combine External
Code with IDL?

IDL isan interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides access to system abilities at arelatively high level of
abstraction. The large majority of IDL users have no need to understand its inner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

It is often best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviors to it, and incur the ongoing maintenance costs of supporting it.

IDL may be largely suitable for a given task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats:

Research Systems attempts to keep the interfaces described in this document
stable, and we endeavor to minimize gratuitous change. However, we reserve
the right to make any changes required by the future evolution of the system.
Code linked with IDL is more likely to require updates and changes to work
with new releases of IDL than programs written in the IDL language.

The act of linking compiled code to IDL isinherently less portable than use of
IDL at the user level.

Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctions in the program are clearly the fault of Research
Systems, and given a reproducible bug report, we attempt to fix them
promptly. A program that combines IDL with other code makes it difficult to
unambiguously determine where the problem lies. The level of support
Research Systems can provide in such troubleshooting is minimal. The
programmer is responsible for locating the source of the difficulty. If the
problemisin IDL, asimple program demonstrating the problem must be
provided before we can address the issue.

When is it Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: Overview 23

Skills Required to Combine External Code
with IDL

Thereis alarge difference between the level at which atypical user sees IDL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL is alarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the
following areas:

ActiveX

To usethe IDL ActiveX control, you should be familiar with the programming
environment in which you will be using the control (e.g. Visual Basic). A lower level
understanding of ActiveX and COM is not necessary, but might be useful.

RPC

To use IDL as an RPC server, a knowledge of Sun RPC (Also known as ONC RPC)
isrequired. The Sun documentation on this subject should be sufficient.

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a compl ete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions

Itispossibleto link IDL directly with code written in compiled languages other than
C athough the detail s differ depending on the machine, language, and compiler used.
It isthe programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: Overview

for Research Systems to actively support them all. ANSI C is a standard system
programming language on all systems supported by IDL, so it isusualy
straightforward to combine it with code written in other compiled languages. You
need to understand:

» The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

* Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or ends of names of functions and
globa data.

e Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs some initialization work and then calls your main() function. Here
are someissues to consider. Usually these issues have been addressed by the
system vendor, who has alarge interest in allowing such inter-language usage:

« If you cal IDL from aprogram written in alanguage other than C, has the
necessary initialization occurred?

» If youuselIDL to call code written in alanguage other than C, do you need to
take steps to initialize the runtime system for that language?

» Arethetwo runtime systems compatible?

Alternatives to direct linking (Active X, AppleScript) exist on some systems that
simplify the details of inter-language linking.

Operating System Features And Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL isrunning in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of 32-bit
applications, WIN32, and DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: Overview 25

OpenVMS

You should understand system services, the Run Time Libraries, file 1/0, and
processes.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: Overview
Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisistheoriginal C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.
Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applicationsthat call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows 95. Redmond, Washington: Microsoft
Press, 1996. ISBN 1-55615-676-6

Richter, Jeffery. Advanced Windows, Third Edition. Redmond, Washington:
Microsoft Press, 1997. 1-57231-548-2

Microsoft, 1993. Win32 Programmers Reference Volumes 1-5. Redmond,
Washington: Microsoft Press, 1993. ISBN 1-55615-515-8 (v.1), ISBN 1-55615-516-
6 (v.2), ISBN 1-55615-517-4 (v.3), ISBN 1-55615-518-2 (v.4), ISBN 1-55615-519-0
(v.5),

Microsoft, 1997. Microsoft Visual C++ Reference Volumes 1-4. Redmond
Washington: Microsoft Press, 1997. ISBN 1-57231-518-0 (v.1), ISBN 1-57231-519-
9 (v.2), ISBN 1-57231-520 (v.3), ISBN 1-57231-521-0 (v.4).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts. Addison Wesley, 1992. ISBN 0-201-56317-7. Thisis the definitive
reference for UNIX system programmers. It coversall the important UNIX concepts
and covers the major UNIX variants in complete detail.

Raochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, New Jersey:
Prentice Hall, 1985. ISBN 0-13-011818-4. Thisvolume is aso extremely well

Recommended Reading External Development Guide

Chapter 1: Overview 27

written and does an excellent job of explaining and motivating the UNIX concepts
that underlie the UNIX system calls. This book suffersin comparison to the Stevens
book in that it discusses older UNIX systems rather than current systems and lacks
discussion of networking. However, what it does cover is correct and very readable,
and it is much shorter than Stevens.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

OpenVMS

The standard OpenVMS reference manuals published by Digital Equipment
Corporation cover the material needed by OpenVMS programmers; of special
importance are the System Services, Run Time Libraries, C Language, and Linker
documentation.

X Windows

The X Windows series by O’ Reilly & Associates contains all the information needed
to program for the X Window system. There are severa volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutorial aswell as reference information. This book is primarily useful for
those using XL IB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)

External Development Guide Recommended Reading

28 Chapter 1: Overview
IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about itsinternal operation. This section isintended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statenments remnaining) {
Get next statenment.
Perform | exi cal analysis and parse statenent.
Execut e statenent.

}

This description is accurate at a conceptual level, and most early interpreters did their
work in exactly thisway due to its simplicity. However, this scheme isinefficient for
the reasons stated bel ow.

* The meaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

e Since each statement is considered in isolation, any statement that requires
jumping to adifferent location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
The interpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command is issued, or when any other command requires a new routine to
be executed. Oncethe IDL routineis compiled, the original versionisignored, and all
references to the routine are to the compiled version. Some of the advantages of this
organization are:

* The expensive compilation process is only performed once, no matter how
often the resulting code is executed.

» Statements are not considered in isolation, so the compiler keeps track of the
information required to make jJumping to a new location in the program fast.

* Thebinary interna form is much faster to interpret than the original form.

IDL Organization External Development Guide

Chapter 1: Overview 29

e Theinterna formis compact, leading to better use of main memory, and
allowing more code to fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which areimplemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure” on page 175). Pointersto IDL_VARIABLEs are
referred to asIDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to the resulting IDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of argumentsis specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up therequested routinein the internal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does all the work related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing aresult.

External Development Guide IDL Organization

30 Chapter 1: Overview
External Definitions

Thefileexport. h, foundintheext er nal subdirectory of the IDL distribution,
supplies all the IDL-specific definitions required to write code for inclusion with
IDL. As such, thisfile defines the interface between IDL and your code. It will be
worth your while to examine this file, reading the comments and getting a general
idea of what is available. If you are not writing in C, you will have to trandate the
definitions in this file to suit the language you are using.

Warning
expor t . h contains some declarations which are necessary to the compilation
process, but which are still considered private to Research Systems. Such
declarations are likely to be changed in the future and should not be depended on.
In particular, many of the structure data types discussed in this document have more
fields than are discussed here—such fields should not be used. For this reason, you
should alwaysinclude expor t . h rather than entering the type definitions from
this document. Thiswill also protect you from changes to these data structuresin
future releases of IDL. Anything inexport . h that is not explicitly discussed in
this document should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#i ncl ude <stdio. h>
#i ncl ude "export.h"

External Definitions External Development Guide

Chapter 1: Overview 31
Linking Details

Once you've written your code, you need to compile it and link it into IDL before it

can be run. Information on how to do thisis available in the various subdirectories of
theext er nal subdirectory of the IDL distribution. Referencesto filesthat are useful
in specific situations are contained in this book.

In addition:

* ThelDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

e TheUNIX IDL distribution hasabi n subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with thesefilesisaMakef i | e that shows how to build IDL from the
shareable libraries present in the directory. Thelink linein this makefile should
be used as a starting point when linking your code with Callable IDL—simply
omit mai n. o and include your own object files, containing your own main
program.

* A more detailed description of the issuesinvolved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL" on page 363.

External Development Guide Linking Details

32 Chapter 1: Overview

Linking Details External Development Guide

Chapter 2:

Using SPAWN

This chapter discusses the following topics:

The SPAWN Procedure 34 Avoiding the Shell Under UNIX 39
Interactive Useof SPAWN 35 Communicating Through the Use of a UNIX
Noninteractive Useof SPAWN 37 ChildProcess 40

External Development Guide 33

34 Chapter 2: Using SPAWN
The SPAWN Procedure

The SPAWN procedure spawns a child process to execute a command or series of
commands. The result of calling SPAWN depends on the platform on which it is
being used:

e Under UNIX, the shell used (if any) is obtained from the SHELL environment
variable. The NOSHELL keyword can be used to execute a command directly
as achild process without starting a shell process.

e Under VMS, the DCL command language interpreter is used.

* Under Windows 95/98, a DOS window is opened. Under Windows NT, a
Command Shell is opened. The NOSHELL keyword can be used to execute
the specified command directly without starting an intermediate command
interpreter shell.

e Onthe Macintosh, SPAWN opens specified files or applications.
On all platforms, IDL execution suspends until the spawned process terminates.

If SPAWN is called without arguments, an interactive command interpreter process
is started, in which you can enter one or more operating system commands. While
you use the command interpreter process, IDL is suspended.

For a complete description of the SPAWN procedure, see SPAWN in the IDL
Reference Guide.

The SPAWN Procedure External Development Guide

Chapter 2: Using SPAWN 35
Interactive Use of SPAWN

If SPAWN is called without arguments, an interactive command interpreter process
is started. The user can enter one or more operating system commands. While you
use the command interpreter process, IDL is suspended. When you exit the child
process, control returnsto IDL, which resumes at the point where it |eft off. The IDL
session remains exactly asyou left it.

It should be noted that using SPAWN in this manner is equivalent to using the IDL $
command. The difference between these two isthat $ can only be used interactively
while SPAWN can be used interactively or in IDL programs.

UNIX Command Interpreter

UNIX offers many shells. The two most common are the Bourne shell (/ bi n/ sh)
and the C shell (/ bi n/ csh). Rather than force use of agiven shell, IDL follows the
UNIX convention of using the shell specified by the UNIX environment variable
SHELL. If SHELL does not exist, the Bourne shell is used.

Under UNIX, theinteractive form of SPAWN is provided primarily for users of the
Bourne shell and for compatibility with VMS. Shells that offer process suspension
(e.g.,/ bi n/ csh) offer amore convenient and efficient way to get the same effect.

The following statements demonstrate the interactive use of SPAWN on a UNIX
system:

| DL> SPAVWN

% dat e

Fri Aug 26 13:55:00 MDT 1998
% exit

VMS Command Interpreter

Under VMS, the command interpreter used is always DCL. If you specify the
NOWAIT keyword to SPAWN, the IDL processis not suspended until the spawned
process completes. The following statements demonstrate the interactive use of
SPAWN under VMS:

| DL> SPAWN

> SHOW TI ME
29-JAN-1998 16: 32: 23
$ LOcoUT

External Development Guide Interactive Use of SPAWN

36 Chapter 2: Using SPAWN

Windows Command Interpreter

Under Windows, calling SPAWN with no arguments starts the command interpreter.
The following statements demonstrate the interactive use of SPAWN under
Windows:

| DL> SPAVWN

$ date/t

Wed 08/ 09/ 2000
$ exit

Macintosh

Because the Macintosh does not have a command interpreter or shell, interactive use
of SPAWN is not supported on the Macintosh.

Interactive Use of SPAWN External Development Guide

Chapter 2: Using SPAWN 37
Noninteractive Use of SPAWN

If SPAWN is called with a single argument, that argument is taken as a command to
be executed. In this case, IDL starts a child command interpreter process and passes
the command to it. The argument should be a scalar string. The shell executes the
command and exits, at which point IDL resumes operation. Thisform of operation is
very convenient for executing single commands from IDL programs. For example, it
is sometimes useful to create atemporary scratch file. SPAWN can be used as
demonstrated in the following program fragment. First, open a scratch file. Use the
GET_LUN keyword to allocate afile unit.

OPENW UNIT, 'scratch.dat', /GET_LUN
;... DL commands go here.

;Deal locate the file unit and close the file.
FREE LUN, UNIT

; Use the ! VERSI ON system variable to determine the proper file
;del etion command for the current operating system Since this
;operation is not supported on the Macintosh, junp to an error
; message.
CASE ! VERSON. CS OF

"virs' © CMD = ' DELETE

"W ndows': CWVD = ' DEL'

"MacOsS' : GOTO, NOTSUP

ELSE: CVMD = 'rni
ENDCASE

;Delete the file using SPAVN
SPAWN, CMD + 'scratch. dat'

; Junp to the end of the procedure.

GOTO, DONE

NOTSUP: PRI NT, 'This operation is not supported on the Macintosh'
DONE:

END

Note that the DELETE keyword to the OPEN procedures is a more efficient way to
handle this job. The above example should serve only to demonstrate use of the
SPAWN procedure.

Macintosh

You can specify one or more file names when invoking SPAWN on the Macintosh.
Each file specified is opened by the application that created it, unless the first file

External Development Guide Noninteractive Use of SPAWN

38 Chapter 2: Using SPAWN

name isthat of an application. In this case, the application is used to open the
remaining files. IDL suspends execution until all spawned applications have
terminated. The user can regain control of IDL before a spawned application
terminates by issuing the Command Period escape sequence.

Capturing Output

On the Macintosh, it is not possible to capture output from a spawned command to an
IDL variable.

Under UNIX, VMS, and Windows console applications, the default is that any output
generated by a spawned command is sent to the standard output, which is usually the
terminal. It is possible to capture this output in an IDL string array by calling
SPAWN with a second argument. If this second argument, called Resullt, is present,
all output from the child processis put into a string array, one line of output per array
element, and is assigned to Result. For example, the following IDL statements can be
used to give asimplistic count of the number of users logged onto a computer
running either UNIX or VMS:

;Use the ' VERSI ON system variable to determ ne the command to use.
IF (!'VERSION. OS EQ ' VM5') THEN CVD=' SHOW USERS' ELSE CMD=' who'

;1ssue the command, catch the result in a string array.
SPAWN, cnd, users

; Count how many |ines of output came back. Under UNI X, this is the
;nunber of users | ogged in.
N = N_ELEMENTS(users)

; VMS outputs five extra header lines that are not actual users.
IF ('!"VERSION.OS EQ 'VM5') THENN= N - 5

;Print the result.
PRI NT, 'There are ', N,' users |ogged on.'

See SPAWN in the IDL Reference Guide for further information.

Noninteractive Use of SPAWN External Development Guide

Chapter 2: Using SPAWN 39
Avoiding the Shell Under UNIX

As mentioned above, SPAWN usually creates a shell process and passes the
command to this shell, instead of simply creating a child processto directly execute
the command. This default action is taken because the shell provides useful actions
such as wildcard expansion and argument processing. Although thisis usually
desirable, it has the drawback of being slower than necessary. It simply takes longer
to start ashell. However, it is possible to avoid using the shell by using the
NOSHELL keyword.

When SPAWN is called with the NOSHEL L keyword set, the command is executed
asadirect child process, avoiding the extra overhead of starting ashell. Thisisfaster;
but since thereis no shell to break the command into separate arguments, the user has
todoit. Every UNIX program is called with a series of arguments. When you issue a
shell command, you separate the arguments with white space (blanks and tabs). The
shell then breaks up the command into an array of arguments and calls the command
(the first word of the command), passing it the array of arguments.

In this case, the Command argument should be a string array. The first element of the
array is the name of the command to use, and the following elements contain the
arguments.

For example, consider the command,
SPAWN, ' ps ax'

that uses the UNIX ps command to show running processes on the computer. To
issue this command without a shell, you would write it as follows:

SPAWN, ['ps', 'ax'], /NOSHELL

External Development Guide Avoiding the Shell Under UNIX

40 Chapter 2: Using SPAWN

Communicating Through the Use of a UNIX
Child Process

Using SPAWN in the above examples, the IDL process waited until the child process
was finished before continuing. It is also possible to start a child process and
immediately continue without waiting for it to finish. In this case, IDL attaches a
bidirectional pipe to the standard input and output of the child process. This pipe
appearsinthe IDL process asanormal logical file unit.

Once a process has been started in thisway, the normal IDL input/output facilitiesare
used to communicate with it. The ability to use a child processin this manner alows
you to solve specialized problems using other languages and to take advantage of
existing programs.

In order to start such a process, the UNIT keyword is used with SPAWN to specify a
named variable into which the logical file unit number will be stored. Once the child
process has done its work, the FREE_LUN procedure is used to close the pipe and
delete the process.

When using a child process in this manner, it isimportant to understand the following
points:

» Closing thefile unit causes the child processto be killed. Therefore, do not
close the unit until the child process completes its work.

* A UNIX pipeissimply abuffer maintained by the operating system. It has a
fixed length and can therefore become completely filled. When this happens,
the operating system puts the process that isfilling the pipe to sleep until the
process at the other end consumes the buffered data. The use of a bidirectional
pipe can lead to deadl ock situations in which both processes are waiting for the
other. This can happen if the parent and child processes do not synchronize
their reading and writing activities.

* Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situationswhere IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function as the first statement of the child
program to eliminate such buffering.

(voi d) setbuf(stdout, (char *) 0);

Communicating Through the Use of a UNIX Child Process External Development Guide

Chapter 2: Using SPAWN 41

It isimportant that this statement occur before any output operation is executed;
otherwise, it may not have any effect.

Example: Communicating with a Child Process Under UNIX

The C program shown in the following example (t est _pi pe. ¢) accepts floating-
point values from its standard input and returns their average on the standard output.
In actual practice, such atrivia program would never be used from IDL. It issimpler
and more efficient to perform the calculation within IDL. However, it does serve to
illustrate the method by which significant programs can be called from IDL.

In the interest of brevity, some error checking that would normally be included in
such a program has been omitted. For example, areal program would need to check
the non-zero return valuesfromf r ead(3) andf wri t e(3) to ensurethat the
desired amount of data was actually transferred.

©CO~NOODWNPE
-~

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

mai n()

float *data, total = 0.0;

char *err_str;

int i, n

/* Make sure the output is not buffered */
set buf (stdout, (char *) 0);

/* Find out how many points */
if (!fread(&n, sizeof(n), 1, stdin)) goto error;

/* Get nenory for the array */
if (!(data = (float *) malloc(n * sizeof(*data)))) goto error;

/* Read the data */
if (!fread(data, sizeof(*data), n, stdin)) goto error;

/* Cal cul ate the average */
for (i=0; i <n; i++) total += data[i];
total /= (float) n;

/* Return the answer */
if (!fwite(&otal, sizeof(*data), 1, stdout)) goto error;

return;
error:
err_str = strerror(errno);
if (lerr_str) err_str = "<unknown error>";

fprintf(stderr, "test_pipe: %\n", err_str);

Table 2-1: testpipe.c

External Development Guide Communicating Through the Use of a UNIX Child Process

42

Chapter 2: Using SPAWN

This program performs the following steps:

1. Readsalong integer that tells how many data points to expect, becauseit is
desirable to be able to average an arbitrary number of points.

2. Obtains dynamic memory viathe malloc() function, and reads the datainto it.
3. Calculates the average of the points.
4. Returnsthe answer as a single floating-point value.

Since the amount of input and output for this program is explicitly known and
becauseit reads all of itsinput at the beginning and writes al of its results at the end,
adeadlock situation cannot occur.

Thefollowing IDL statements use test_pipe to determine the average of the values O
to 9:

;Start test_pipe. The use of the NOSHELL keyword is not necessary,
; but speeds up the start-up process.
SPAWN, 'test_pipe', UNIT = UNIT, /NOSHELL

; Send the nunber of points followed by the actual data.
WRI TEU, UNIT, 10L, FI NDGEN(10)

; Read t he answer.
READU, UNI T, ANSVER

; Announce the result.
PRI NT, "Average = ", ANSVER

;Close the pipe, delete the child process, and deall ocate the
;logical file unit.
FREE_LUN, UNIT

Executing these statements gives the result:
Aver age = 4.50000

This mechanism provides the UNIX IDL user asimple and efficient way to augment
IDL with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred. For example, the above example
can be performed entirely in IDL using a simple statement such as the following:

PRINT, 'Average = ', TOTAL(FI NDGEN(10))/10.0

Communicating Through the Use of a UNIX Child Process External Development Guide

Chapter 3:

IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVEIVIEW . .o 44
Creating an Interface and Handling Events 46
Working with IDL Procedures 52
Advanced Examples 55
Copying and Printing IDL Graphics 56

XLoadCT Functionality Using Visual Basic 60

External Development Guide

XPalette Functionality Using Visua Basic . 61
Integrating Your Object Graphics by Utilizing

Visud Basic 62
Sharing a Grid Control Array withIDL 63
Handling Events within Visual Basic
Distributing Your ActiveX Application 65

43

44 Chapter 3: IDLDrawWidget ActiveX Control

Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is a set of
technol ogies that enables software componentsto interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

» ThelDL ActiveX control makesit possibleto display IDL direct and object
graphics within an OLE container that supports ActiveX controls;

* ThelDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itsdlf;

e ThelDL ActiveX control greatly simplifies the process of moving data to and
from IDL and an external program;

* Andfinaly, the interface to the IDL ActiveX control appears native to the
external application.

Other issues to note regarding the ActiveX control are:

« ThelDL ActiveX control isintended primarily for use in applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visua Basic-style
datatypes to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’s VARI ANT and SAFEARRAY
types. A discussion of how to usethe IDL ActiveX control with these
languages is beyond the scope of this manual.

e ThelDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have access to
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.
For an example, see“XLoadCT Functionality Using Visual Basic” on page 60.

The ActiveX interfaceto IDL consists of asingle control called | DL DrawWidget.
When this control isincluded in a project, it exposes the features of IDL through its

Overview External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 45

properties and methods. The | DL DrawWidget can also trigger events. The
properties and methods of the | DL DrawWidget are listed in Chapter 4, “IDL
ActiveX Control Command Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visual Basic. These techniques begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisua Basic
window.

External Development Guide Overview

46 Chapter 3: IDLDrawWidget ActiveX Control
Creating an Interface and Handling Events

The goal of thisfirst exampleisvery simple: to create a user interface in Microsoft
Visua Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

% Compiled module: DIST. =]
2 40 4 1600

|

Figure 3-1: A simple example showing the IDLDrawWidget and
text returned by IDL

Asthe figure shows, our first example program consists of two buttons (“Plot Data”
and “Exit"), agraphics area, and atext box. All of these elements reside on top of
what iscalled aform in Visua Basic parlance. (A formin Visual Basicissimilarto a
top level basein IDL.) Clicking the “Plot Data” button causes IDL to produce the

Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control

47

surface plot shown. Clicking “Exit” causes IDL and the Visual Basic program to free

memory and exit.

1fPrivate Sub Form Load()
2 n = | DLDr awW dget 1. | ni t | DL(For niL. h\Wd)
3 If n <=0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End | f
7 | DLDr awW dget 1. Cr eat eDr awW dget
8 | DLDr awW dget 1. Set Qut put Wid (| DL_CQut put _Box. hwhd)
9QEnd Sub
VIS‘.JaI 10fPrivate Sub Plot_Button_Cdick()
Basic 11 | DLDr awW dget 1. ExecuteStr ("Z = SHI FT(DI ST(40), 20, 20)")
12 | DLDr awW dget 1. ExecuteStr ("Z = EXP(-(Z/ 10)"2)")
13 | DLDr awW dget 1. Execut eStr (" SURFACE, Z")
14 | DLDr awW dget 1. ExecuteStr ("PRINT, SIZE(Z)")
15 End Sub
16Private Sub Exit_Button_CQick()
17 | DLDr awW dget 1. DoExi t
18 End
19 End Sub

External Development Guide

Table 3-1: Source code for a simple example

Drawing the Interface

Begin building the first example by creating anew Visual Basic project, adding the
IDL ActiveX control, and drawing the interface components. Launch Microsoft
Visual Basic and create a new project.

1. AddthelDL ActiveX component to the project. Visual Basic displaysalist of
al available components when you select the Components from the Project
menu.

Components
Contrals | Desigrers | Inzertable Objects |

ritrol module” T

[10LSplashkit
[11E Chart
TT1E Popup Menu

Figure 3-2: List of Available Components

Creating an Interface and Handling Events

48 Chapter 3: IDLDrawWidget ActiveX Control

Components window. Visual Basic will display the IDLDrawWidget'siconin
the toolbar, as shown to the | eft.

Select the “IDLDrawX2 ActiveX Control module” check box and close the

2. Begin drawing the interface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display areawas created with | DL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we how have access to
IDL DrawWidget's properties and methods. Use the | dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capabilities. Refer to Chapter 4, “IDL
ActiveX Control Command Reference” for acomplete list of the properties and
methods to | DL DrawWidget.

1. UseVisua Basic's Properties window to select the IDL DrawWidget. All of
the IDL DrawWidget’s properties can be set using the Properties window.
Many properties can also be set within the source code. These distinctions are
noted in Chapter 4, “IDL ActiveX Control Command Reference’.

Properties - IDLDrawWidget1]

|IDLDrawwidget1 IDLDrawwidget =1
Alphabetic ICategUrized I

(Custam) -
DL Drawiwidget1

BackColor [&He000000Fs:

EaselMame IDLDrawitidget1 Base

Borderstyle 0 - Mone

Bufferld -1

Causesialidation | True

Draglcon {Mone)

Dragtode 0 - vbManual

Drawividgetiarme IDLDrawiwidget 1

Enable True

Enabled True

GetYalusMame

GraphicsLevel 1

Height 2415

HelpContextID |0

IdiPath hd
(Name)
Reeturns the name used in code to identify an
object.

Figure 3-3: Visual Basic Properties window

Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 49

2. Locate the I dIPath property and enter the directory path to your IDL
installation. If you installed IDL in its default location, this path will be:

c:\rsi\idl 54

3. Locatethe GraphicsL evel property and set it equal to 1. ThisselectsIDL's
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the | DL DrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form Load()
End Sub

Visua Basic’'s Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needsto beinitialized before Visual Basic can interact with the

IDL DrawWidget. Thisis done with the InitI DL method. InitIDL takesthe hwnd
of the form containing the | DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can beinitialized with the following statement.

n = | DLDr awW dget 1. | ni t | DL(For mL. hWhd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed to initialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End If

External Development Guide Creating an Interface and Handling Events

50 Chapter 3: IDLDrawWidget ActiveX Control

Creating the Draw Widget

When abox is drawn with the “IDL DrawWidget” icon in the toolbar, an OCX frame
iscreated. Thisisacontainer for the IDL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisisaccomplished with the CreateDrawWidget method, as shown in the
following statement:

| DLDr awW dget 1. Cr eat eDr awW dget
Directing IDL Output to a Text Box

The example program displays any output returned by IDL in atext box created in
Visua Basic. Thisis accomplished with the SetOutputWnd method of the
IDLDrawWidget. The SetOutputWnd method takes the hWnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

| DLDr awW dget 1. Set Qut put Whd (| DL_Qut put _Box. hWhd)

Note
Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to I nitI DL to get standard IDL version information printed.

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visual Basicisto let Visual Basic manage the
events and passinstructionsto IDL. Recall that our example program contains two
buttons: “Plot Data’ and “Exit”. When you double-click on “Plot Data’, Visual Basic
automatically creates the following subroutine:

Private Sub Pl ot_Button_dick()
End Sub

Visua Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

IDL DrawWidget. The ExecuteStr method takes a string as an argument. This string
ispassed to IDL for execution asif it were entered at the IDL command line. The five
statements which follow instruct IDL to produce the surface plot shown in the figure
above.

| DLDr awW dget 1. Execut eStr
| DLDr awW dget 1. ExecuteStr
| DLDr awW dget 1. Execut eStr
| DLDr awW dget 1. Execut eStr

"Z = SHIFT(DI ST(40), 20, 20)")
"Z = EXP(-(Z/10)"2)")

" SURFACE, Z")

"PRINT, SIZE(Z)")

~ A~~~

Creating an Interface and Handling Events External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 51

Cleaning Up and EXxiting

This project exits when the user clicks " Exit”. Exiting is atwo step process. IDL is
given achance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.

Private Sub Exit_Button_d i ck()
| DLDr awW dget 1. DoExi t
End

End Sub

External Development Guide Creating an Interface and Handling Events

52 Chapter 3: IDLDrawWidget ActiveX Control
Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, aVisual Basic program passing
instructionsto IDL isidentical to entering the same instructions at the IDL command
line. In this example Visual Basic isonly used to create the user interface and
dispatch events. The data resides in memory controlled by IDL. IDL isused for al
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and resides in the
exanpl es\ doc\ Act i veX\ SecondExanpl e directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open |
=

Scale Original

IBIack #whhite VI

Roberts |
Exit |

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B LINEAR

*% Compiled module: APPLYROBERTS. J

Figure 3-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the | eft will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Working with IDL Procedures External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 53

Creating the Interface

Initi

Theinterfaceis created asit wasin the first example, by drawing the interface
componentsin Visual Basic. Two | DL DrawWidgets are created. Set the path
(c:\rsi\idl54) and graphicslevel properties (type 1) of both.

alizing IDL

Although there are two I DL DrawWidget objects, only one instance of the ActiveX
control needsto beinitialized. Both of the | DL DrawWidget objects do need to be
created, however.

Thisis done with the two statements below:

| DLDr awW dget 1. Cr eat eDr awW dget
| DLDr awW dget 2. Cr eat eDr awW dget

Compiling the IDL Code

This example uses IDL procedures contained ina. pr o file named

SecondExanpl e. pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visual Basic, SecondExanpl e. pr o needsto be compiled.
Thisassumesthat the . pr o file residesin the same directory as the Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, '" + App.Path + """
| DLDr awW dget 1. Execut eStr (Wor ki ngDi rect ory)

The. pr o can then be compiled. A conditional statement is used to exit the program
if IDL was unableto locatethe. pr o file.

Dispatching Button Events to IDL

Because Visual Basic is used primarily for the user interface components of the
application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

IDL DrawWidget, as caled in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.

Visual
Basic

Private Sub Open_Button_dick(lndex As |nteger)
| DLCommand = "OpenFile, " + Str(Basel D)
| DLDr awW dget 1. Execut eStr (| DLConmand)

End Sub

Table 3-2: User Interface of Example Project

External Development Guide Working with IDL Procedures

54 Chapter 3: IDLDrawWidget ActiveX Control

OpenFileisauser procedure that utilizes IDL's DIALOG_PICKFILE function to
enabl e the user to select afile for display within the IDL DrawWidget.

Cleaning Up and Exiting

Like the first example, this program exits when the user clicks “Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn’'t necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the | DL DrawWidget during program execution use this

method.

1JPRO OpenFile, TLB

2 W DGET_CONTRCL, TLB, GET_UWVALUE = ptr

3 Pat hNane = DI ALOG Pl CKFI LE(TI TLE = $

4 "Select a JPEG file', FILTER = '*.jpg")

5 I F (PathNanme NE '') THEN BEG N

6 DEVI CE, DECOVPOSED = 0

7 READ_JPEG, Pat hNane, Data, Col orTable
IDL 8 (*(*ptr).Original ArrayPTR) = Data

9 (*(*ptr). OigCol or MapPTR) = Col or Tabl e

10 TVLCT, (*(*ptr).OigCol or MapPTR)

11 TV, (*(*ptr).Oiginal ArrayPTR)

12 ENDI F ELSE BEG N

13 Result = DI ALOG MESSACGE(' No JPEG file selected' , /ERROR

14 ENDEL SE

15§ END

Table 3-3: The Open File Procedure

Working with IDL Procedures External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 55

Advanced Examples

Each of the following examples builds on the concepts that you've already learned in
this chapter.

The user interface and projects for each of the examples have been created and can be
found in the distribution in the exanpl es\ doc\ Act i veX\ proj ect directory
where project is the name of the example. These examples assume that you are
aready familiar with the following concepts:

Creating anew project in Visual Basic;

Adding the IDL DrawWidget control to the VB control toolbar;

Drawing the | DL DrawWidget on your form;

Initializing IDL with InitIDL;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL . pr o code to respond to auto-events within the | DL DrawWidget;
Setting properties for the | DL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics

XLoadCT Functionality Using Visual Basic

XPalette Functionality Using Visual Basic

Integrating Your Object Graphics by Utilizing Visual Basic
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

External Development Guide Advanced Examples

56 Chapter 3: IDLDrawWidget ActiveX Control
Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphics to print the contents of an | DL DrawWidget window.

This example illustrates the following concepts:
* Opening an existing project in Visual Basic;

» Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

» Executing IDL user routines,
* Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

change to the exanpl es\ docs\ Act i veX\ VBCopyPri nt directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

New Project HEB

Mew Esisting |Hecent|

Lok in: 4 B CopyPrint
O rsi
B CopyPY 0153
] examples
1 dec
] Activex
e
g2 E_Diive [E))
g2 F_Drive [F) -
File name: | Open I
Files of type: [Project Files [*.vbp.*mak * vbg] =l Cancel
Help

™ Don't show this dialog in the futurs

Figure 3-5: Opening the VBCopyPrint project

Copying and Printing IDL Graphics External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 57

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

IDL Frint

B Print

il

Figure 3-6: VBCopyPrint example

Copying IDL Graphic to the clipboard

To copy the graphic, click on “Copy”. The code for “ Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as showninline
6 of the following table.

Private Sub cmdCopy_dQ i ck()

| DLDr awW dget 1. CopyW ndow

Screen. MousePoi nter = vbDefaul t

MsgBox "W ndow copied to clipboard.”
End Sub

1 ' Copy the direct graphics windowto the clipboard
2 Scr een. MousePoi nter = vbHour gl ass
. 3 'Erase anything currently on the clipboard

Visual 4] dipboard. C ear

Basic 5 ' Copy the draw widget to the clipboard
6
7
8

Table 3-4: Copy button Source Code

External Development Guide Copying and Printing IDL Graphics

58

Chapter 3: IDLDrawWidget ActiveX Control

Printing the IDL Graphic using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The“IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

IDL

10 ;Create a Printer object and draw the graphic to it
11 oPrinter = OBJ_NEW (' IDLgrPrinter')

13 ;Display a print dialog box
14 Result = DI ALOG_PRI NTERSETUP(oPri nt er)

18 oPrinter->Draw, oView

22 END ; VBPr i nt W ndow

PRO VBPri nt Wndow, Draw d

; Get the V\jndowindex of the drawable to be printed
W DGET_CONTROL, Drawl d, Get_Val ue=I ndex

©COoO~NOUIAWN P

Table 3-5: IDL VBPrintWindow Code

Executing IDL user routines with Visual Basic

The VBCopyPrint example executes a user routine, written in I1DL, to support the
printing of the | DL DrawWidget window. Thisis done with the ExecuteStr method,
as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDL DrawWidget.

Visual
Basic

OO WNE

Private Sub cmdPrint1DL_COick()
"Print the current drawabl e wi dget's w ndow contents
'using | DL object graphics
Screen. MousePoi nter = vbHour gl ass
| DLDr awW dget 1. ExecuteStr "VBPri nt W ndow, " &
St r$(| DLDr awW dget 1. Dr awl d)
Screen. MousePoi nter = vbDef aul t
MsgBox "W ndow sent to printer."
End Sub

Table 3-6: Print Button Source Code

Copying and Printing IDL Graphics External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 59

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

1fPrivate Sub cndPrintVB dick()
2 CommonDi al ogl. Cancel Error = True
3 On Error GoTo ErrHandl er
4 CommonDi al ogl. ShowPri nt er
5] -- Copy the window s contents to the clipboard
6 'Erase anything currently on the clipboard
7 d i pboard. d ear
Visual 8 | DLDr awW dget 1. Copy W ndow
. 9 '-- Send the picture |ocated on the clipboard,
Basic 10 ‘to the printer
11 Printer.PaintPicture Cipboard. GetData, 0, O
12 Printer. EndDoc 'Send it to the printer
13Exit Sub
14 Er r Handl er:
15
16 Exit Sub
17§End Sub

Table 3-7: VBPrint Command

External Development Guide Copying and Printing IDL Graphics

Chapter 3: IDLDrawWidget ActiveX Control

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality using aVB
interface. The VBL0oadCT. pr o source code isafunctional duplicate of XLOADCT
with procedure callsreplacing the x| oadct _event procedure aswell asIDL
widgets being replaced by VB controls. See the following figure for more
information. In addition, this example extends XLOADCT by adding the following
features:

» Options menu by clicking the right mouse button on a color;
e Useof IDL syntax to create separate functions for red, blue and green;
» Ability to save user created color tables.
This example illustrates the following concepts:
* Modifying existing IDL library code for use with the | DL DrawWidget;

 |DL to Visua Basic color table conversion.

&, VBLoadCT M=l E3
Eile Edit
B LIMNEAR -
BLUEAWHITE
GRMN-RED-BLUAWHT
RED TEMPERATURE
BLUE/GREEN/REDAYELLOW
STD GAMMA-
1] FRISM
RED-PURFLE
4 3
J—I J GREEMAWHITE LINEAR
Stretch Bottom GRNAWVHT EXPOMENTIAL
100 GREEN-PINK
. » BLUE-RED
l L+ 16 LEVEL
Stretch Top RAIMB W
1 STEPS
STERM SPECIAL
4 »
J —I J Haze LI

Gamma Corection

Figure 3-7: VBL0oadCT example

XLoadCT Functionality Using Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 61
XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using a Visua Basic interface. The VBPal et t e. pr o fileisafunctional duplicate
of the XPalette source with the event procedure and IDL widgets replaced with auto-
event procedures and VB controls.

This example illustrates the following concepts:
* Modifying existing IDL library code for use with the IDL DrawWidget;

e Converting an IDL event procedure to the | DL DrawWidget auto-event
procedures.

&, VBPalette [_ (O] =]

File Palstls

50 100 150 200 250 300

Green

50 100 150 200 250 300

' Blue
Calor Indes | 115 D LINEAR .
GAN-RED-BLU-WHT
B 5 RED TEMPERATURE
BLUE/GREEN/RED/YELLOW
Gieen |75 STD GAMMAII
FRISM <
Elue 250 RED-PURPLE 50 100 150 200 250 300
1 colors].thl
Create a Color Function
Start Index 1L Function Output Window
-
Red = 0 |bylscl[sm[mdgen[ZSE]‘.WD]] Feset Red J
Green = 0 |hylscl[sm[mdgan[ZEE]"DE]] Reset Green
Blue = - Reset Bl
I 0 |hylscl[sm[mdgan[255] 028)) eset Blue j

Figure 3-8: VBPalette Example

External Development Guide XPalette Functionality Using Visual Basic

62 Chapter 3: IDLDrawWidget ActiveX Control

Integrating Your Object Graphics by Utilizing
Visual Basic

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The | DL DrawWidget
can also use IDL's abject graphics sub-system by changing the
IDLDrawWidget.GraphicsL evel property as demonstrated with the VBObj Graph
example in the following figure.

This example illustrates the following concepts:
e Setting the GraphicslL evel property to create an object graphics window;
» Trandlating a graphics object using VB controls.
» Using IDL DrawWidget auto-events.

geul Graphiney Esganple

- vl 5
: Eie Edi

D lelt-dek s =rac nn sarla-e ncnk=he

Figure 3-9: VBObjGraph example

Integrating Your Object Graphics by Utilizing Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 63
Sharing a Grid Control Array with IDL

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the IDL DrawWidget object. The datais
presented to the user in aVisual Basic grid control enabling the user to edit the data
and see theresultsin real time. See the following figure:

This example illustrates the following concepts:

» Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

« Demonstrates how to convert (x,y) VB coordinatesinto IDL data coordinates,
to give the cursor location in data values relative to the current plot.

» Demonstrates how to use a VB grid control to edit data values that are
reflected in the IDL plot after each keystroke.

%, VBShareld O] x|

Move the cursor over the plot. and type a number to edit the current
value, or click on the cell to edit.

10F
0.5

oo =
-0.5F =
10k -

o 20 40 &0 &80 100

000 841 09 14 - 757 -959 -279 57 989 412

-544 -1.000 -537 420 591 B50 -288 - 961 - 751 150
13 837 -003 - 546 -132 7E3 956 71 - BE4

-988 -404 551 1.000 529 -428 -992 - 44 296 964
745 -159 917 - 832 18 851 a02 124 - 768 - 954

-262 670 987 296 - 559 -1.000 -522 436 993 B37

-305 - 966 -739 167 520 827 -027 - 856 -898 -115
774 (951 254 -E77 -985 -288 56 1.000 514 - 444

-994 - 530 A3 968 73 -176 -923 -g22 035 BE0
894 106 - 779 -948 - 245 683 954 380 -573 -999

Reset | IblCoords

Figure 3-10: VBSharelD

External Development Guide Sharing a Grid Control Array with IDL

64 Chapter 3: IDLDrawWidget ActiveX Control
Handling Events within Visual Basic

The VBPaint example uses direct graphics to create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:

This example illustrates the following concepts:
» Converting from aVB pixel coordinate system to the IDL coordinate system;

e Converting aVB color representation (long) into an IDL color representation
(RGB);

* Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

» Processing mouse events within VB to draw into an IDL window.

. Exampled M[=] E3
Hold Left button to draw, Right button to erase

Calaor...

Clear

Color
Basic colors:

B T O
__ il i |
[
i 0
EEEEEN
RN .

i
I
H =

LCustom colors:

I
FEEEE...

Define Custom Colors > |

Cancel |

Figure 3-11: VBPaint example

Handling Events within Visual Basic External Development Guide

Chapter 3: IDLDrawWidget ActiveX Control 65
Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 13, “Creating IDL Projects’ in the Building IDL Applications
manual.

External Development Guide Distributing Your ActiveX Application

66 Chapter 3: IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application External Development Guide

Chapter 4:

IDL ActiveX Control

Command

This chapter describes the following topics:

Reference

IDLDrawWidget 68
Methods. 69
Do Methods (RuntimeOnly) 77
Properties, 79

External Development Guide

Read Only Properties 83
Auto Event Properties 85
Bvents....... .o 87

67

68 Chapter 4: IDL ActiveX Control Command Reference
IDLDrawWidget

The IDL DrawWidget isan ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visua
Basic, Fortran, Delphi, etc. Methods and properties of the | DL DrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the | DL DrawWidget:

* Methods

* Do Methods (Runtime Only)
* Properties

* Read Only Properties

e Auto Event Properties

e Events

IDLDrawWidget External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 69
Methods

In ActiveX terminology, methods are special statements that execute on behalf of an
object in aprogram. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on abutton in a Visua
Basic program. The syntax of amethod statement is:

obj ect. net hod val ue
where

* Object isthe name of an object you want to control, for example an
IDL DrawWidget.

« Method is the name of the method you want to execute.
e Valueisan optional parameter used by the method. The various methods to the
I DL DrawWidget may require zero, one, or multiple parameters.

Note
When a method returns aBOOL, the value TRUE is equal to 1 and FALSE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.

Remarks

This function returns an array reference that islocal to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

CopyWindow

This method copies the contents of the | DL DrawWidget window to the Windows
clipboard.

External Development Guide Methods

70 Chapter 4: IDL ActiveX Control Command Reference

Parameters

None.

Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an | DL DrawWidget in an ActiveX control frame. When you
drag and drop the | DL DrawWidget, you are creating the frame that will contain the
actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters
None.
Returns

LONG: Thewidget ID of the created draw widget or -1 in the event of an error.
DestroyDrawWidget

This method destroys the | DL DrawWidget, but not the ActiveX control frame.
Parameters

None.

Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

After all IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoEXxit to allow the ActiveX control to shutdown IDL gracefully and
free any resourcesin use.

Parameters

None.

Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 71

Returns
None.
Remarks

In spite of the name, DoEXit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoEXxit is called, you are not alowed to call methods or set properties within
the IDL ActiveX control from the currently running EDE application, regardless of
which I DL DrawWidget the method was called on. Attempting to do so will result
in aruntime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.
Parameters

BSTR: A string containing the command that IDL will execute.
Returns

LONG: O if successful or the IDL error code if it fails.
Remarks

Most IDL commands that are executed with ExecuteStr run in the main level.
GetNamedData

This method returns the IDL data val ue associated with the named variable.
Parameters

BSTR: A string containing the name of an IDL variable.

Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

External Development Guide Methods

72

Methods

Chapter 4: IDL ActiveX Control Command Reference

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT data types.

IDL Type Variant Type
IDL_TYP_BYTE VT_UI1
IDL_TYP_INT VT_12

IDL_TYP_LONG VT 14
IDL_TYP FLOAT | VT R4
IDL_TYP DOUBLE | VT _R8
IDL_TYP_STRING | VT_BSTR

Table 4-1: Supported IDL data types and the corresponding
VARIANT data types

InitIDL

Thismethod initializes IDL. IDL only needs to beinitialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL iscaled with the hwnd of the main window for the container
application. If thisvalue is null, the ActiveX control uses the hwnd of the ActiveX
control frame.

Returns
LONG: Long value indicating status of IDL

Value Meaning
1 Successful
0 Failure

Table 4-2: Status of IDL

External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 73

Value Meaning
-1 IDL ActiveX control is
not licensed
-2 IDL is unlicensed (demo)

Table 4-2: Status of IDL (Continued)

If your application contains more than asingle | DL DrawWidget (e.g.
IDLDrawWidget1 and | DL DrawWidget2) the I nitl DL method should only be
called on one of the objects, not both.

The DL ActiveX control relieson IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The IdIPath property can be set so the
control can find avalid IDL distribution (thei dl 32. dI |). If avalid distribution is
not found in either the path as set in the | dIPath property or the current directory, a
dialog will be displayed giving the user the opportunity to specify the location of his
IDL distribution. This behavior may be overridden at runtime by locating and
specifying the path to the IDL distribution prior to calling either the Initl DL or
SetOutputWnd methods.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of the window at screen resolution (72-96 dpi) with a Direct Graphics
window. For information about controlling print resolution of an object graphics
window, see the Bufferld property.

Parameters

XOffset: The X offset to print the graphic in 0.01 of a millimeter.
YOffset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of a millimeter.

The X offset plus the width should be less than or equal to the width of asingle page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of apage. If these values
are set to 0, the ActiveX control will print a graphic in the upper left corner of the
page with the size of the graphic approximating the size of the image on the screen.

External Development Guide Methods

74

Chapter 4: IDL ActiveX Control Command Reference

Returns
BOOL: TRUE if printing succeeded.

RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn’t set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding all events
1 Forward mouse move events
2 Forward mouse button events
4 Forward view scrolled events
8 Forward expose events

Table 4-3: Forwarding Events

Returns
BOOL: TRUE if successful.

SetNamedArray

Methods

This method creates anamed IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters
BSTR: Name of array variableto createin IDL.
VARIANT: Array datato be shared with IDL.

BOOL: Trueif IDL should free a shared array when IDL releases its reference, false
if not.

External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 75

Returns
WORD: 1 if successful, O if set failed.
Remarks

Because SetNamedArray creates an array whose datais shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

The array parameter of SetNamedArray must have alifetime beyond the calling
function. Thus, in Visua Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT_UI1 - unsigned char IDL_TYP_BYTE
VT_I1 - signed char IDL_TYP BYTE
VT_I2 - signed short IDL_TYP_INT
VT_l4 - signed long IDL_TYP_LONG
VT_RA4 - float IDL_TYP_FLOAT
VT_RS8 - double IDL_TYP_DOUBLE

Table 4-4: Accepted Variant Types and the Corresponding IDL Types

SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used
to change the value of an existing IDL variable.

Parameters
BSTR: Name of the variable to createin IDL.

VARIANT: Datato be copied in IDL. If the datais an array, the SetNamedArray
method will be called.

External Development Guide Methods

76 Chapter 4: IDL ActiveX Control Command Reference

Returns
WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hwnd of the edit control that will receive the output.
Returns

None.

Note
SetOutputWnd isthe only method that can be called prior to acall to InitIDL.

Methods External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 77
Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress

This method calls the IDL procedure specified in the OnButtonPr ess property.
Parameters

None.

Returns

None.
DoButtonRelease

This method calls the IDL procedure specified in the OnButtonRelease property.
Parameters

None.

Returns

None.
DoExpose

This method calls the IDL procedure specified in the OnExpose property.
Parameters

None.

Returns

None.

DoMotion

This method callsthe IDL procedure specified in the OnM otion property.

External Development Guide Do Methods (Runtime Only)

78 Chapter 4: IDL ActiveX Control Command Reference

Parameters
None.
Returns

None.

Do Methods (Runtime Only) External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 79
Properties

Properties are used to specify the various attributes of an | DL DrawWidget, such as
its color, width and height. Most properties may be set at design time by configuring
the properties sheet in Visual Basic, or at runtime by executing statements in the
program code.

The syntax for setting a property in the code is:
obj ect. property = val ue
where

» Object isthe name of the object you want to change, e.g. | DL DrawWidgetn
where n isthe number Visual Basic assigned to the | DL DrawWidget.

» Property isthe characteristic you want to change.
* Valueisthe new property setting.
Note

All properties relating to window size and/or position arein pixel units unless
otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. Back Color may be
specified at design time or runtime.

BaseName

This property names avariable that IDL will use for the pseudo base. If this property
isset, the IDL DrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not
destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

Default=1DL DrawWidgetBase
Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

External Development Guide Properties

80 Chapter 4: IDL ActiveX Control Command Reference

1. A valueof -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A vaueof Owill cause the graphicsto print at roughly two times the screen
resolution. Thisformat is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisisthe default.

3. A value greater then O will be construed as an IDLgrBuffer object reference
whose datawill be used for printing. This format allows the programmer to
control the resolution of the output of the image.

For more information, see IDLgrBuffer in the IDL Reference Guide.
Note

You must set the GRAPHICS _TREE property of the IDLgrWindow object for these
print options to work.

The following example shows how to use the new Bufferld property:

;Create an I DLgrBuffer with di mensions of 1280x1024
| DLDr awW dget 1. Execut eStr (" buf f er=OBJ_NEW | DLgr Buf fer, $
di mensi ons=[1280, 1024])")

; Get the object reference of the buffer we just created
buf f er =1 DLDr awW dget 1. Get NanedDat a(" buffer")

;Set the buffer IDto the object reference
| DLDr awW dget 1. Buf f er | d=buf f er

;Increase the size of the buffer to maxi num buffer di nmensions
| DLDr awW dget 1. Execut eSt r (" buf f er - >Set Propert y(di mensi ons = $
[1600, 1200])")

Tip
Remember to destroy the IDLgrBuffer object after it is no longer needed for
printing purposes.

DrawWidgetName

Returns or setsavariable that IDL will use for the draw widget. If this property is set,
the IDL DrawWidget will create an IDL variable with this name that containsthe ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to acall to CreateDrawWidget.

Default=I DL DrawWidget

Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 81

Enabled

Returns or sets avalue that determines whether aform or control can respond to user-
generated events such as mouse events.

Default=TRUE
GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal valuesare 1 or 2.
If you set the GraphicsL evel = 1 and call the CreateDrawWidget method, the
procedure will create an IDL direct graphics window. GraphicsL evel = 2 resultsin
an IDL object graphics window. The GraphicsL evel property can be set at design
time or at runtime prior to acall to CreateDrawWidget.

Default=1
IdIPath

This property specifies the fully qualified path to the IDL32.DLL. The IdIPath
property can be set at design time or at runtime prior to acall to InitIDL or
SetOutputWnd.

Default=NULL

Renderer

This property specifies either the software or hardware renderer for object graphics
windowsisto be used. It has no effect if the GraphicsLevel property isset to 1. Vaid
values are:

* 0= Platform native OpenGL
e 1=IDL’s software implementation

By default, the setting in your IDL preferencesis used.

External Development Guide Properties

82 Chapter 4: IDL ActiveX Control Command Reference

Retain (Runtime/Design time)

This property setsthe retain mode of the IDLDrawWidget: 0, 1, or 2. The retain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifiesthat IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

Default=1
Visible (Runtime/Design time)

Shows or hides the IDL DrawWidget. When Visible is TRUE the IDLDrawWidget is
shown, when FAL SE the IDL DrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
Default=TRUE
Xsize (Design time)

Virtual width of IDL DrawWidget. If thisvalue is greater than the Xviewport value,
scroll bars will be added. The Xsize property can be set at runtime prior to acall to
CreateDrawWidget.

Ysize (Design time)

Virtual height of IDL DrawWidget. If thisvalueis greater than the Yviewport value,
scroll barswill be added. The Y size property can be set at runtime prior to acall to
CreateDrawWidget.

Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 83

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Basel d property isnot valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget ID of the created draw widget. The Drawld property is not valid until a call
to CreateDrawWidget has been made.

hwWnd (Runtime)

Window handle of the ActiveX control. The hWnd property isnot valid until acall to
CreateDrawWidget has been made.

LastldIError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

Trueif the widget will contain scroll bars.
Default=FALSE

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present Xviewport will include the width of the
scroll bars.

Yoffset

Set at design time when the control is dropped or moved. Represents the y offset of
the draw widget within the parent application.

External Development Guide Read Only Properties

84 Chapter 4: IDL ActiveX Control Command Reference

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll barsare present Y viewport will include the height
of the scroll bars.

Read Only Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 85
Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An IDL procedure that will be called when a mouse button is pressed. The procedure
must bein the form:

pro button_press, drawld, button, xPos, yPos

Default=NULL
OnButtonRelease

An DL procedurethat will be called when amouse button isreleased. The procedure
must be in the form:

pro button_rel ease, drawid, button, xPos, yPos

Default=NULL
OnDblClick

An IDL procedure that will be called when amouse button is double clicked within
the draw widget. The procedure must be in the form:
pro button_dblclick, drawid, button, xPos, yPos

The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid
values are:

+ 1 — Left mouse button.
+ 2 — Middle mouse button.
* 4 — Right mouse button.

Table 4-5: OnDblClick Parameters

External Development Guide Auto Event Properties

86 Chapter 4: IDL ActiveX Control Command Reference

Parameter Description
xPos The horizontal position of the mouse when the button was
clicked.
yPos The vertical position of the mouse when the button was
clicked.

Table 4-5: OnDblClick Parameters (Continued)
Default=NULL

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, draw d

Default=NULL
Onlinit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawid, baseld

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

Default=NULL
OnMotion

AnIDL procedure that will be called when the mouse is moved over the draw widget
while amouse button is pressed. The procedure must be in the form:

pro notion, drawd, button, xPos, yPos

Default=NULL

Auto Event Properties External Development Guide

Chapter 4: IDL ActiveX Control Command Reference 87

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, | DL DrawWidget can respond to the following standard Visual Basic
events:

e MouseDown
¢ MouseMove
e MouseUp

OnViewScrolled

OnViewScrolled isan DL DrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the
Scroll property is TRUE.

Note
You must call Register For Events passing the flags to indicate the events you want
to process. Neglecting this step will send the eventsto IDL for processing.

External Development Guide Events

88 Chapter 4: IDL ActiveX Control Command Reference

Events External Development Guide

Chapter 5:

AppleScript Support

This chapter describes the following topics:

AppleScriptand IDLl 90 Controlling Other Applications 9
Basic AppleScript Support 91 IDL AppleBvents 96
Using IDL CommandsviaAppleScript ... 92 References 101
Moving DataToand FromIDL 93

External Development Guide 89

90 Chapter 5: AppleScript Support
AppleScript and IDL

IDL for Macintosh provides support for AppleScript, allowing IDL to control, and be
controlled by, other applications running on the Macintosh. See Apple’'s AppleScript
documentation for information on the basics of using AppleScript.

AppleScript and IDL External Development Guide

Chapter 5: AppleScript Support 91
Basic AppleScript Support

IDL for Macintosh supports the four basic AppleScript commands that all
applications are required to support. These allow you to launch and quit IDL, and to
open and print documents.

Launching IDL

To launch IDL from AppleScript, use the AppleScript command:
tell application "IDL" to activate

Quitting IDL

To cause IDL to quit, use the AppleScript command:
tell application "IDL" to quit

Opening Documents

To have IDL open the text document t est . pr o onthedisk Maci nt osh HD, use
the AppleScript command:

tell application "IDL" to open file "Macintosh HD:test.pro”
Printing Documents

To have IDL print the text document t est . pr o on thedisk Maci nt osh HDuse
the AppleScript command:

tell application "IDL" to print file "Macintosh HD:test. pro”

External Development Guide Basic AppleScript Support

92

Chapter 5: AppleScript Support

Using IDL Commands via AppleScript

IDL for Macintosh supports the AppleScript do script command. IDL responds to
arbitrary text passed to it via AppleScript asif the text were entered at the IDL
command prompt. Note that IDL must be waiting for input from the command line to
accept the do script command from AppleScript.

For example, to instruct IDL to create an array of floating-point integers with the
value of each element equal to itsindex and plot the array, use the following
AppleScript command:

tell application "IDL" to do script "plot, findgen(20)"

Note
IDL executes commandsit receives from AppleScript in the context of the currently
active routine. Normally, thisisthe MAIN routine when IDL iswaiting for input
from the command line. If, however, IDL has stopped inside ancther routine (if a
routine is active in the debugger, for example), the do script command will be
executed in that routine's context.

Using IDL Commands via AppleScript External Development Guide

Chapter 5: AppleScript Support 93
Moving Data To and From IDL

IDL supports the AppleScript get, set, and copy commands to move data to and from
IDL variables. To retrieve the value of avariable with the get or copy commands, the
variable must already exist in the currently active routine. When setting the value of a
variable with the set or copy commands, the variable will be created automatically in
the currently active routine if it does not already exist.

For example, the following AppleScript command retrieves the value of the IDL
variable “v” and savesit in the AppleScript variable “ v”:

tell application "IDL" to get variable "v"

The following AppleScript command sets the value of the IDL variable “v” to the
array [1, 2, 3]. If the IDL variable “v” does not exigt, it is created.

tell application "IDL" to set variable "v" to {1, 2, 3}

The following AppleScript command copiesthe array [1, 2, 3] into the IDL variable
“v”. If the IDL variable “v” does not exigt, it is created.

tell application "IDL" to copy { 1, 2, 3} to variable "v"
Notes

* IDL cannot get datafrom or move datato single- or double-precision complex
variables or structure variables.

e InIDL, arrays are indexed in row-major format, meaning that the linear order
of the references to data el ements proceeds from the first element of the first
row through the last element of the first row before beginning on the second
row, and so on. AppleScript indexes arrays in column-major format, which
means that the linear order of the references to data elements proceeds from
thefirst element in the first column through the last element in the first column
before beginning on the second column, and so on. Usethe IDL routine
TRANSPOSE to reverse the indexing order before passing the data using
AppleScript.

e Passing large arrays using AppleScript is very inefficient, and is not
recommended. In most casesit is more efficient to pass datain afile.

e Sinceitisnot possible to determine what routine in IDL is executing from
outside IDL, we recommend that you use the get, set and copy commands by
executing an AppleScript script from within IDL, using the
DO_APPLE_SCRIPT procedure.

External Development Guide Moving Data To and From IDL

94 Chapter 5: AppleScript Support
Controlling Other Applications

IDL can execute arbitrary AppleScript scripts using the DO_APPLE_SCRIPT
routine.

Importing Data into IDL

The following example shows how to use IDL to get data from a Microsoft Excel
spreadsheet and plot it using IDL’s surface command.

script = ["tell application "Mcrosoft Excel"', $
'get value of range "RICl: R5C5" of worksheet 1', $
"end tell"']

DO _APPLE_SCRI PT, script, RESULT = a

SURFACE, a

Exporting Data from IDL

The next example shows how to copy datafrom an IDL variable to Microsoft Excel.
Once again, we work within IDL (using the DO_APPLE_SCRIPT procedure) so
thereis no confusion asto what routine context the variable comes from.

a=1[1 2, 3, 4, 5]

script = ["tell application "IDL" to copy variable "a" intot', $
"tell application "Excel"', $
"copy t to value of range "R1Cl: R5C1" of worksheet 1', $
"end tell"']

DO _APPLE_SCRI PT, scri pt
Controlling Other Applications

This example shows how to control the Metrowerks CodeWarrior application from
within IDL. Note that afile name can be built in IDL and passed to another
application using AppleScript.

First, use IDL to build a path name:

exanple = $
FI LEPATH(' Cal | _Demo_PPC. proj', subdir = ['External', $
' Exanpl es', 'SharelLib'])

Build an AppleScript script to run Metrowerks CodeWarrior:

script = $
"with tineout of 600 seconds', $
tell application "MWC/ C++ PPC 1.2.1"', $
activate', $
open file "' + exanple + '"', $
make project', $

Controlling Other Applications External Development Guide

Chapter 5: AppleScript Support 95

close project', $
quit', $
end tell', $
"end tinmeout']
Execute the script:

DO_APPLE_SCRI PT, scri pt

External Development Guide Controlling Other Applications

96

IDL Apple Events

Chapter 5: AppleScript Support

Application programs can communicate directly with IDL using Apple events. It is
beyond the scope of this document to discuss how to write programs that use Apple
events. For adiscussion of this topic refer to Inside Macintosh: Interapplication
Communication and Apple Event Registry: Sandard Suites. This section discusses

the three Apple events that IDL accepts.

Note

IDL understands the Apple events that support the get, set, copy, and do script
AppleScript statements. In most cases, it is easier to use AppleScript as described
above than to use the underlying Apple events. Note also that the copy AppleScript
statement isimplemented (by AppleScript) using the Get Data and Set Data Apple
events. Thereisno Copy Data Apple event.

Do Script

The Do Script Apple event isused to ask IDL to perform actions specified in a script.
IDL executes the specified text asif it were typed at the command line.

Event Class kAEMiscStandards
Event ID KAEDoScript
Parameters

keyDirectObject
Description:
Descriptor type:

Required or Optional:

Reply Parameters

keyErrorNumber
Description:
Descriptor Type:
Required or Optional:
keyErrorString

Description:
Descriptor Type:

IDL Apple Events

The script to execute
typeChar
Required

The error code
typeL onglnteger

Optional (Only returned if an error
occurred)

A character string describing the error
typeChar

External Development Guide

Chapter 5: AppleScript Support

Notes

Result Codes

Get Data

97

Required or Optional: Optional (Only returned if an error

occurred)

IDL only accepts the text version of this Apple event. It does
not accept an alias record for specifying afile to execute.

IDL Interpreter busy
IDL statement too long

The Get Data Apple event retrieves datafrom a specified IDL variable. Note that the
specified variable must exist in the currently executing IDL routine, or in the MAIN
context if no routine is executing.

Event Class
Event ID
Parameters
keyDirectObject

keyAEKeyForm

keyAEKeyData

Reply Parameters
keyAEResult

External Development Guide

kAECoreSuite
kAEGetData

Description:
Descriptor Type:

Required or Optional:

Description:

Descriptor Type:

Required or Optional:

Description:
Descriptor Type:

Required or Optional:

Description:
Descriptor Type:

The name of the variable
typeObj ectSpecifier
Required

The type of object specifier (must be
of type formName)

typeEnumerated
Required

The actual variable name
typeChar
Required

The variable's data

Either a single descriptor type or
typeAEList

IDL Apple Events

98

keyErrorNumber

keyErrorString

Notes

Result Codes

IDL Apple Events

Chapter 5: AppleScript Support

Required or Optional: Required

Description: The error code

Descriptor Type: typel onglnteger

Required or Optional: Optional (Only returned if an error
occurred)

Description: A character string describing the error

Descriptor Type: typeChar

Required or Optional: Optiona (Only returned if an error
occurred)

IDL only accepts an object specifier record that specifies the
variable by name.

IDL cannot return data from single- or double-precision
complex variables or structure variables.

IDL indexes data in row-major format. See note under “Do
Script” on page 96 for details.

Passing large arrays using AppleScript is very inefficient, and
is not recommended. In most casesit is more efficient to pass
datain afile.

Sinceit is not possible to determine what routinein IDL is
executing from outside IDL, we recommend that you use the
get, set and copy commands by executing an AppleScript script
from within IDL, using the DO_APPLE_SCRIPT procedure.
See “Controlling Other Applications’ on page 94 for further
information.

IDL does not support the optional parameter
keyAERequestedType (‘rtyp’). Thereturned datatypeis
always the closest match to the IDL variable's data type.

errAECoercionFail (- Couldn't convert variableto

1700) AppleScript type

memFullErr (-108) Not enough memory to get variable
-2 Variable not specified by name

-1 Invalid variable name

3 Variable undefined

External Development Guide

Chapter 5: AppleScript Support

Set Data

99

The Set Data Apple event copies datato a specified IDL variable in the currently
executing routine, or in the MAIN context if no routine is executing.

Event Class KAECoreSuite
Event ID KAEGetData
Parameters
keyDirectObject
Description:
Descriptor Type:
Required or Optional:
keyAEKeyForm
Description:
Descriptor Type:
Required or Optional:
keyAEKeyData
Description:
Descriptor Type:
Required or Optional:
keyAEData
Description:

Descriptor Type:

Required or Optional:
Reply Parameters
keyErrorNumber
Description:
Descriptor Type:
Required or Optional:
keyErrorString
Description:

Descriptor Type:

Required or Optional:

External Development Guide

The name of the variable
typeObj ectSpecifier
Required

The type of object specifier (must be
of type formName)

typeEnumerated
Required

The actual variable name.
typeChar
Required

The data to be copied into the variable

Either a single descriptor type or
typeAEList
Required

The error code

typel onglnteger

Optional (Only returned if an error
occurred)

A character string describing the error
typeChar

Optional (Only returned if an error
occurred)

IDL Apple Events

100

Notes

Result Codes

IDL Apple Events

Chapter 5: AppleScript Support

IDL only accepts an object specifier record that specifies the
variable by name.

IDL cannot return data from single- or double-precision
complex variables or structure variables.

IDL indexes datain row-major format. See note under “Do
Script” on page 96 for details.

Passing large arrays using AppleScript is very inefficient, and
is not recommended. In most casesit is more efficient to pass
datain afile.

Sinceit is not possible to determine what routinein IDL is
executing from outside IDL, we recommend that you use the
get, set and copy commands by executing an AppleScript script
from within IDL, using the DO_APPLE_SCRIPT procedure.
See “Controlling Other Applications’ on page 94 for further
information.

errAECoercionFail (- Couldn’t convert variable to

1700) AppleScript type

memFullErr (-108) Not enough memory to get variable

-2 Variable not specified by name

-1 Invalid variable name

3 Couldn't create variable (variable
undefined)

External Development Guide

Chapter 5: AppleScript Support 101

References

Schneider, Derrick. The Tao of AppleScript. Carmel, IN: Hayden Books, 1993. ISBN
1-56830-075-1

The following books, available from Apple Computer, may also be of interest:
Inside Macintosh: Interapplication Communication

Apple Event Registry: Standard Suites

External Development Guide References

102 Chapter 5: AppleScript Support

References External Development Guide

Chapter 6:

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote ProcedureCdlls 104
Using IDL asan RPC Server 105
ClientVariables 106

Linking to the Client Library

External Development Guide

Compatibility with Older IDL Code 109
ThelDL RPCLibrary 111
RPCExamples 136

103

104 Chapter 6: Remote Procedure Calls
IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) alow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries alow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routinesisincluded to handle communication between client programs
and the IDL server.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to berun asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL’s RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the APl used by
callable IDL. See “Compatibility with Older IDL Code” on page 109 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 6: Remote Procedure Calls 105

Using IDL as an RPC Server

The IDL RPC Directory

All of thefiles related to using IDL’'s RPC capabilities are found in ther pc
subdirectory of theext er nal subdirectory of the main IDL directory. Themain IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

Touse IDL asan RPC server, run IDL in server mode by using thei dlI r pc
command. The RPC server can be invoked one of two ways:

idlrpc
or

idlrpc -server=server_nunber

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number is not supplied, IDL uses the default,
IDL_RPC DEFAULT ID, defined inthefileidldir/ ext ernal / rpc/idl _rpc. h.
Thisvalueisoriginally set to 0x2010CAFE.

External Development Guide Using IDL as an RPC Server

106 Chapter 6: Remote Procedure Calls
Client Variables

The IDL RPC client API uses the same data structure as IDL to represent avariable,
namely an IDL_VARIABLE structure. By not using a unigue data structure to
represent avariable, the IDL RPC client API can follow aformat that is similar to the
API of CalableIDL.

When avariable is created by the IDL RPC client APl (when avariableis returned
from the IDL_RPCGetMainVariable function, for example) dynamic memory is
alocated for the variable and for its value. These dynamic variables are similar to
temporary variableswhich are used in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routines follow the same format
asthe Callable IDL API and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, usethe IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 6: Remote Procedure Calls 107

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:

Include thefilei dl _rpc. h in your application.

Have acopy of export . h in the link include path when you compile the
client application.

Link your client application to the IDL client shared object library
(1'i bidl _rpc).

If the client library is linked as a shared object, you must set the shared
object search path environment variable so that it includes the directory
that containsthe IDL client library.

The name of thisvariableisnormally LD _LIBRARY_PATH, except on
HP and IBM systems, where the variable names are:

HP: SHLIB_PATH
IBM: LIBPATH

If this variable is not set correctly, an error message will be issued by the
system loader when the client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -0 exanple $(PRE_FLAGS) exanple.o -lidl _rpc

$(POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file

rpc_link. txt,locatedintheinther pc subdirectory of theext er nal subdirectory of
themain IDL directory.

Example of IDL RPC Client API

Tousethe IDL client side API, execute the following sequence of steps:
1. Cdl IDL_RPCInit() to connect to the server

2. Perform actions on the server—get and set variables, run IDL commands, etc.

3. Cadl IDL_RPCCleanup() to disconnect from the server.

External Development Guide Linking to the Client Library

108 Chapter 6: Remote Procedure Calls
The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
belinked against the supplied shared library | i bi dI _r pc. Thiscodeisincluded inthe
ididir/ ext er nal / r pc directory asexanpl e. c.

1Q§#include "idl _rpc.h"

2Qint nain()

31

4 CLI ENT *pCient;

5 char cmdBuf fer[512] ;

6 i nt result;

7

8] /* Connect to the server */

9 if((pdient = IDL_RPCInit(0, (char*)NULL)) == (CLIENT*)NULL){
10 fprintf(stderr, "Can't register with IDL server\n");
11 exit(1l);

12
13
C 14Q/* Start a loop that will read commands and then send themto idl */
15 for(;;){
16 printf("RMIIDL> ");
17 cmdBuffer[0]="\0";
18 gets(cndBuffer);
19 if(cndBuffer[0] == '\n'" || crmdBuffer[0] == '\0")
20 br eak;
21 result = I DL_RPCExecuteStr(pCient, cndBuffer);
22 }
23
24Q /* Now disconnect fromthe server and kill it. */
25 i f(!IDL_RPCO eanup(pCient, 1))
26 fprintf(stderr, "IDL_RPCO eanup: failed\n");
27 exit(0);
28

Table 6-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking to the Client Library” on page 107. Once this exampleis compiled, execute

it using the following commands:
% i dlrpc
Then, in another process:

% exanpl e

Linking to the Client Library

External Development Guide

Chapter 6: Remote Procedure Calls 109

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’'s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

« Thenew API mirrorsthe Callable IDL API.

* TheRPC client-sidelibrary is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

* The RPC server-side executable, i di r pc, is built using Callable IDL,
providing an example of how Callable IDL can be used.

» Sourcecodeis provided for both the Server and Client side programs, alowing
you to enhance IDL's RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. Thislayer is contained in the files
idl _rpc_obsolete.candidl _rpc_obsol ete. h.

To use the compatibility routines, include thefileli b_r pc_obsol et e. h in your
application and use the following link statement as a template:

% cc -0 ol d_exanpl e $(PRE_FLAGS) ol d_exanple.o \
idl _rpc_obsolete.o -lidl _rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 107.

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

External Development Guide Compatibility with Older IDL Code

110 Chapter 6: Remote Procedure Calls

e idl_server_interactive: Thisfunction isno longer supported.

» get_idl_variable: Thefollowing return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz", “#a’,
“IDEVICE")
-3 Variable not transportabl e (for example, the variable
isastructure or associated variable)

Table 6-2: get _idl variable Unsupported Values

« set idl_timeout: thetv_usec field of the timeval struct isignored.
o idl_set_verbosity(): Thisfunction isno longer supported.
All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 6: Remote Procedure Calls 111
The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are;

» IDL_RPCCleanup * IDL_RPCSetMainVariable
» IDL_RPCDeltmp » IDL_RPCSetVariable

* |DL_RPCExecuteStr » IDL_RPCStoreScalar

» IDL_RPCGetMainVariable » IDL_RPCStrDelete

* |DL_RPCGettmp * IDL_RPCStrDup

e IDL_RPCGetVariable « IDL_RPCStrEnsurel ength
* IDL_RPCImportArray * IDL_RPCStrStore

* IDL_RPCInit » IDL_RPCTimeout

e IDL_RPCMakeArray e |DL_RPCVarCopy

¢ |DL_RPCOutputCapture ¢ |DL_RPCVarGetData

» |IDL_RPCOutputGetStr » Variable Accessor Macros

External Development Guide The IDL RPC Library

112 Chapter 6: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence
int |DL_RPCC eanup(CLIENT *pClient, int iKill)
Description

Use this function to release the resources associated with the given CLIENT structure
or to kill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or O on failure.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 113

IDL_RPCDeltmp

Calling Sequence
void | DL_RPCDel t mp(| DL_VPTR vTnp)

Description

Usethisfunction to de-allocate all dynamic memory associated withthe I DL_VPTR
that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters
vimp
The variable that will be de-allocated.

Return Value

None.

External Development Guide The IDL RPC Library

114

Chapter 6: Remote Procedure Calls

IDL_RPCExecuteStr

Calling Sequence

int | DL_RPCExecuteStr(CLIENT *pdient, char * pConmand)

Description

Use this function to send IDL commands to the IDL RPC server. The command is
executed just asif it had been entered from the IDL command line.

Thisfunction cannot be used to send multiple line commands and will return an error
if a“$” isdetected at the end of the command string. It will also return an error if “$”
isthe first character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand
A null-terminated IDL command string.
Return Value
This function returns the following values:
1 — Success.
0 — Invalid command string.

For all other errors, the value of 'ERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 115

IDL_RPCGetMainVariable

Calling Sequence
| DL_VPTR | DL_RPCGet Mai nVari abl e(CLI ENT *pd ient, char *Nane)
Description

Call thisfunction to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetMainVariable will then
return apointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variableto find.

Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked as tempor ary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 106.

External Development Guide The IDL RPC Library

116 Chapter 6: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence
I DL_VPTR | DL_RPCGet t np(voi d)
Description

Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDdtmp() to free any memory alocated by the variable.

Parameters
None.
Return Value

On success, thisfunction returnsan IDL_VPTR. On failure, it returns NULL.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 117

IDL_RPCGetVariable

Calling Sequence
| DL_VPTR | DL_RPCGet Var i abl e(CLI ENT *pdient, char *Nane)
Description

Use this function to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.

Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as tempor ary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 106.

External Development Guide The IDL RPC Library

118 Chapter 6: Remote Procedure Calls

IDL_RPCImportArray

Calling Sequence

IDL_VPTR I DL_RPCl mport Array(int n_dim |IDL_MEM NT dinf],
int type, UCHAR *data, |DL_ARRAY_FREE_CB free_ch)

Description

Use this function to create an IDL array variable whose data the server supplies,
rather than having the client API alocate the data space.

Parameters

n_dim

The number of dimensionsin the array.

dim

Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 168.

data
A pointer to your array data.
free_cb

If non-NULL, free cb isapointer to afunction that will be called whenthe IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing areference
to the imported array. This function returns NULL if the operation was unsuccessful.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 119

IDL_RPClnit

Calling Sequence
Client *IDL_RPCInit(long Serverld, char* pHostnane)
Description

Usethisfunction to initialize an IDL RPC client session.

Theclient program isregistered asaclient of the IDL RPC server. The server that the
client is registered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program isto be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisisthe name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value

A pointer to the new CLIENT structure is returned upon successful completion. This
opague data structure is then later used by the client program to perform operations
with the server. Thisfunction returns NULL if the operation was unsuccessful.

External Development Guide The IDL RPC Library

120 Chapter 6: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * | DL_RPCWVakeArray(int type, int n_dim IDL_MEMNT dinfi],
int init, IDL_VPTR *var)

Description

Thisfunction creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “ Type
Codes’ on page 168.

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY _DIM defines
the upper limit of this value.

dim

A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init

This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

* |IDL_ARR_INI_NOP — Noinitiaization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

* |IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof anIDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 121

Return Value

On success, this function returns a pointer to the data area of the allocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated viathis
function must be de-allocated using IDL_RPCDeltmp() when the variable isno
longer needed.

External Development Guide The IDL RPC Library

122 Chapter 6: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence
int | DL_RPCCQut put Capture(CLIENT *pdient, int n_lines)
Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save this information so that the client program
can request the lines sent to the output buffer.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueislessthan or equal to zero, no output lines will be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lines will be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 123

IDL_RPCOutputGetStr

Calling Sequence

int | DL_RPCQutput GetStr(CLIENT *pdient, |IDL_RPC_LINE_ S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before thisroutineis caled.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointertoavalid IDL_RPC_LINE_S structure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flags field will be
set to one of the following (from export . h):

e« IDL_TOUT_F STDERR — Send the text to stderr rather than stdout, if that
distinction means anything to your output device.

 IDL_TOUT_F_NLPOST — After outputting the text, start a new output line.
On atty, thisis equivalent to sending anew line (‘\ n) character.

first

If first is set equal to anon-zero value, thefirst lineis popped from the output buffer
on the IDL RPC server (the output buffer istreated like a stack). If first isset equal to
zero, thelast lineis de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A true value (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide The IDL RPC Library

124 Chapter 6: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

int | DL_RPCSet Mai nVari abl e(CLIENT *pClient, char *Naneg,
I DL_VPTR pVar)

Description

Use thisroutine to assign avalueto amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not aready exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables’ on page 106.

Return Value

This function returns 1 on success, or O on failure.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 125

IDL_RPCSetVariable

Calling Sequence

int | DL_RPCSetVariable(CLIENT *pdient, char *Nane,
| DL_VPTR pVar)

Description

Use thisroutineto assign avalueto an IDL variablein the IDL RPC server session
referred to by pClient. If the variable does not already exist, anew variable will be
created. Unlike IDL_RPCSetM ainVariable(), this routine sets the variable in the
current IDL program scope.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

A pointer to the null-terminated name of the variable, which must be in upper-case.

pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see “Client Variables’ on page 106.

Return Value

Thisfunction returns 1 on success, or 0 on failure.

External Development Guide The IDL RPC Library

126 Chapter 6: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

voi d | DL_RPCSt or eScal ar (1 DL_VPTR dest, int type,
I DL_ALLTYPES *val ue)

Description

Use this function to store ascalar value into an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters

dest
AnIDL_VPTR totheIDL_VARIABLE in which the scalar should be stored.

type
The type code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 168.

value
The addressof an IDL_ALLTY PES union that contains the value to store.

Return Value

None.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 127

IDL_RPCStrDelete

Calling Sequence
void | DL_RPCStrDel ete(I DL_STRING *str, |DL_MEM NT n)
Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings’ on page 223.

External Development Guide The IDL RPC Library

128 Chapter 6: Remote Procedure Calls

IDL_RPCStrDup

Calling Sequence
void | DL_RPCSt rDup(1 DL_STRING *str, |IDL_MEM NT n)
Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings’ on page 222.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 129

IDL_RPCStrEnsureLength

Calling Sequence
voi d | DL_RPCSt r Ensur eLengt h(1 DL_STRI NG *s, int n)
Description

Use this function to check the length of a string. See the description of
IDL_StrEnsurel ength() in “Obtaining a String of a Given Length” on page 225.

External Development Guide The IDL RPC Library

130 Chapter 6: Remote Procedure Calls

IDL_RPCStrStore

Calling Sequence
void IDL_RPCStrStore(IDL_STRING *s, char *fs)
Description

Use this function to store a string. See description of IDL_StrStorein “ Setting an
IDL_STRING Vaue' on page 224.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 131

IDL_RPCTimeout

Calling Sequence
int | DL_RPCTi neout (|1 ong | Ti meCut)
Description

Use this function to set the timeout val ue used when the RPC client makes requests of
the server.

Parameters

ITimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

Thisfunction returns 1 on success, or 0 on failure.

External Development Guide The IDL RPC Library

132 Chapter 6: Remote Procedure Calls

IDL_RPCVarCopy

Calling Sequence
voi d | DL_RPCVar Copy(| DL_VPTR src, |DL_VPTR dst)
Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-all ocated before the source dataiis copied.
This function emulates the callable IDL function IDL_Var Copy().

Parameters

Src

The source variable to be copied. If this variable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic data will be moved rather than
copied to the destination variable.

dst
The destination variable that src is copied to.

Return Value

None.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 133

IDL_RPCVarGetData

Calling Sequence

void | DL_RPCVar Cet Dat a(| DL_VPTR v, | DL_MEM NT *n, char **pd,
i nt ensure_sinple)

Description

Use this function to obtain a pointer to a variable's data, and to determine how many
data elements the variable contains.

Parameters

%

The variable for which datais desired.

n

The address of a variable that will contain the number of elementsin v.
pd

The address of avariable that will contain a pointer to v's data, cast to be a pointer to
pointer to char (e.g. (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe ENSURE_SIMPL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, EXCLUDE_FILE iscalled,
because file variables have no data area to return.

Return Value

On exit, IDL_RPCVar GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

External Development Guide The IDL RPC Library

134 Chapter 6: Remote Procedure Calls

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are defined ini dl _rpc. h.

All of these macros accept a single argument, v, of type IDL_VPTR.
IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.
IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.
IDL_RPCGetArrayNumbDims(v)

This macro returns the number of dimensions of the array.
IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of acomplex variable.
IDL_RPCGetVarComplexR(v)

This macro returns the real field of a complex variable.
IDL_RPCGetVarComplexl(v)

This macro returns the imaginary field of acomplex variable.
IDL_RPCGetVarDComplex(v)

Thismacro returnsthe value (asastruct, hot apointer) of adouble precision, complex
variable.

IDL_RPCGetVarDComplexR(v)

This macro returns the real field of a double-precision complex variable.
IDL_RPCGetVarDComplexI(v)

This macro returns the imaginary field of a double-precision complex variable.
IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

The IDL RPC Library External Development Guide

Chapter 6: Remote Procedure Calls 135

IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.
IDL_RPCGetVarint(v)

This macro returns the value of a 2-byte integer variable.
IDL_RPCGetVarLong(v)

This macro returns the value of a 4-byte integer variable.
IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.
IDL_RPCVarlsArray(v)

This macro returns non-zero if visan array variable.
IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as a char*).
IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes’ on page 168.

IDL_RPCGetVarUint(v)

This macro returns the value of an unsigned 2-byte integer variable.
IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.
IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer value.

External Development Guide The IDL RPC Library

136 Chapter 6: Remote Procedure Calls

RPC Examples

A number of examplefilesareincluded inthe RSI _Di r ect ory/ ext ernal / r pc

directory. A Makefi | e for these examplesis aso included. These short C programs
demonstrate the use of the IDL RPC library.

Sourcefilesfor thei di r pc server program are located in the

RSI _Directory/ external / rpc directory. Note that you do not need to build the
i dl rpc server; itispre-built and included in the IDL distribution. Thei dl r pc
server source files are provided as examples only.

RPC Examples External Development Guide

Chapter 7:

CALL_EXTERNAL

This chapter discusses the following topics:

IDL and CALL_EXTERNAL 138
The CALL_EXTERNAL Function 139
Handling Different Data Types 149
CALL_EXTERNAL Under UNIX 155

External Development Guide

CALL_EXTERNAL Under OpenVMS. .. 156
CALL_EXTERNAL Under Windows 164
CALL_EXTERNAL on the Macintosh . .. 165

137

138 Chapter 7: CALL_EXTERNAL

IDL and CALL_EXTERNAL

IDL allowsyou to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL’s internal system routine table:

« TheCALL_EXTERNAL function allows you to call external functions
(written in C or Fortran, for example) from your IDL programs.

* Anadlternativeto CALL_EXTERNAL istowritean IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL'sinternal system routine table and are available in the same manner as
IDL built-in routines. Thistechnique is discussed in Chapter 18, “Adding
System Routines’.

This chapter coversthe basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX, OpenVMS, Windows, and
Macintosh versions of IDL.

IDL and CALL_EXTERNAL External Development Guide

Chapter 7: CALL_EXTERNAL 139
The CALL_EXTERNAL Function

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same process address space.
Because of this, CALL_EXTERNAL avoids the overhead of process creation of the
SPAWN routine. In addition, the shareable object library is only loaded the first time
it isreferenced, saving overhead on succeeding calls.

CALL_EXTERNAL ismuch easier to use than the LINKIMAGE routine. Unlike
LINKIMAGE, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errorsin the external routine are likely to result in
corrupted data (either in theroutine or in IDL) or to cause IDL to crash.

For more information and examples, see one of the following sections:
e “CALL_EXTERNAL Under UNIX" on page 155.
« “CALL_EXTERNAL Under OpenVMS’ on page 156.
o “CALL_EXTERNAL Under Windows” on page 164.
e “CALL_EXTERNAL onthe Macintosh” on page 165.
e CALL_EXTERNAL inthe IDL Reference Guide.

ThelDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can simplify the
building of sharable libraries to be used with CALL_EXTERNAL.

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_M essage(). Performing input/output from
code external to IDL, especially to the user console or tty (e.g. st di n or st dout),
may generate unexpected results.

Memory Cleanup

IDL does not perform any memory cleanup calls on the values returned from the
CALL_EXTERNAL routine. Because of this, any dynamic memory returned to IDL
will not be returned to the system, which resultsin a memory leak. Users should be
aware of this behavior and design their CALL_EXTERNAL routinesin such a
manner as not to return dynamically allocated memory to IDL. See “Dynamic
Memory” on page 286 for more information.

External Development Guide The CALL_EXTERNAL Function

140 Chapter 7: CALL_EXTERNAL

Calling Convention and Parameter Passing

IDL callsroutinesin a shareable object using the C calling convention (ar gc, ar gv).
Any routines called by CALL_EXTERNAL should be defined with a prototype
similar to the following:

return_type exanple(int argc; void *argv[])

wherer et ur n_t ype is one of the datatypeswhich CALL_EXTERNAL may return.
If thisreturn_type isnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL cal toindicate the type of the result.

The parameter ar gc isthe count of optional parametersin the CALL_EXTERNAL
call, and ar gv isan array of the parameters. Parameters are passed either by value or
by reference. Parameters passed by value are copied directly into the ar gv array,
with the exception of scalar strings, which place a pointer to a null-terminated string
inargv[i].All arraysare passed by reference. Scalar items passed by reference (the
default) place a pointer to thedatum inar gv[i] . Stringsand string arrays passed by
reference place a pointer to a STRING structurein ar gv[i] . Thisstructureis
defined asfollows:

typedef struct {

unsi gned short slen; /* Length of string */
short stype; [/* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} I DL_STRING

See CALL_EXTERNAL inthe IDL Reference Guide for additional details about
passing parameters by value. See the following Fortran example for a description of
how to implement the (argc, argv) prototype in Fortran.

It isimportant to note that IDL integer variables correspond to a 16-bit integer (aC
si gned short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A=5 ;default type of integer, not LONG

The variable could then be passed by referencein a CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be;

short *g;
a = (short *) argv[O];

The corresponding type in Fortran would be INTEGER* 2.
Platform-Specific Information

For more information about calling conventions and parameter passing, see

The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL

VMS: “Calling Convention and Parameter Passing” on page 156,
Windows: “ Calling Convention and Parameter Passing” on page 164.
Macintosh:“ Calling Convention and Parameter Passing” on page 165

Example: Passing Parameters by Reference to IDL

The following routine, si npl e_vars. c, acceptsal of IDL's basic datatypes as

141

parameters. The parameters are passed in by reference and the new squared values of
the numbers are passed back to IDL.

©CO~NOUIDAWNPE

#i ncl ude <stdio. h>
#i ncl ude "export.h" /* I DL external definitions */

/* make sure that this routine is exported on the Macintosh */
#i f defined(__PONERPC__)

__decl spec(export) int sinple_vars(int argc,void* argv[]);
#endi f

int sinmple_vars(int argc,void* argv[])

{

}

char *byte_var;
short *short_var;
/* IDL long variables don't map cleanly to a C type on
all conpilers. The | DL_LONG nmacro gives you a 32bit
signed integer on all platforns. It is defined in export.h */
I DL_LONG *1l ong_var;
float *float_var;
doubl e *doubl e_var;

/* Ensure that the correct nunber of argunents were passed in */
if(argc '=5) return 0;

/* Cast the pointer in argv to the pointer variables */

byte_var = (char *) argv[0];

short_var = (short *) argv[1];

long_var = (I DL_LONG *) argv[2];

float_var = (float *) argv[3];

doubl e_var = (double *) argv[4];

/* Square each variable. */

*fl oat _var
*doubl e_var
return 1;

*fl oat _var;
*doubl e_var;

*byte_var *= *pyte_var;
*short _var = *short _var;
= *| ong_var;

*
*| ong_var *
*
*

Table 7-1: Passing Parameters by Reference to IDL — simple_vars.c

External Development Guide

The CALL_EXTERNAL Function

142 Chapter 7: CALL_EXTERNAL

You can call si npl e_vars. ¢ from IDL using the following statements:

B=2B & 1=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL('sinple_vars.so’,’sinple_vars’',B,1,L,F, D

Example: Calling a C routine

You can add aroutine that returns the sum of afloating point array, similar to the
TOTAL function in IDL. The following isthe exanpl e. ¢ routine:

#i ncl ude <stdio. h>

float sumarray(argc, argv)
int argc;

void *argv[];

float *fp, s = 0.0; int n;

for(n = *(int *) argv[1], fp = (float *) argv[O]; n--;)
s += *fp++

return(s);

@]
=
QOWO~NOUAWNE
—_~

Table 7-2: Calling a C routine — example.c

You can use the following statements to compile and link exanpl e. ¢ to produce a
shareable object library for the Solaris operating system. For more information on
compiling and linking, see “UNIX Compilation and Linking” on page 155.

cc -1 RSI-Directory/I1DL-Directory/external -c -kpic exanple.c
cc -G -0 exanpl e.so exanple.o

where RSI - di r ect or y isthe name of the main installation directory and | DL-
Di r ect ory indicates the version of IDL installed (for example. i dl _5. 3).

The compiled routine resides in the shared library exanpl e. so, so it can be called
by the following IDL code.

Note
Under some operating systems, an underscore character must be added before or
after the function namein order to match the entry point name in the object file. The
entry point name is generated by the compiler according to the rules of the system
linker, and may be different for different operating systems or compilers.

; Make an array.

X = FI NDGEN(10)

S = CALL_EXTERNAL(' exanple.so', $
"sumarray’ X, N_ELEMENTS(X), /F_VALUE)

The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 143

In this example, exanpl e. so isthe name of the sharableimagefile, sum array is
the name of the entry point, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The F_VALUE keyword specifies that the returned valueis a
floating-point number rather than an IDL_L ONG.

Example: Calling a Fortran Routine Using a C Interface
Routine

Cdlling Fortran is similar to calling C, with the restriction that Fortran expects all
arguments to be passed by reference. This means that the addr ess of the argument is
passed rather than the argument itself.

A Cinterface routine can easily extract the addresses of the arguments from the ar gv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointersthat are being passed by value. Fortran expects al argumentsto
be passed by reference, i.e. it expects al arguments to be addresses. If C passes a
pointer (an address) by value, Fortran will interpret it correctly as an address of an
argument. The following code segmentsillustrate this. The exanpl e_c2f . c file
contains the C interface routine, which would be compiled asillustrated above. The
exanpl e. f file contains the Fortran routine that actually sums the array.

Asin the above example, we assume that the routines are being compiled under
Solaris. The object name of the Fortran subroutine will be sum array1_ to match
the output of the Solaris Fortran compiler. The following are the contents of
exanpl e_c2f.c andexanpl e. f:

©CO~NOOUIAWNPF

#i ncl ude <stdio. h>
void sumarray(int argc, void *argv[])
{
extern void sumarrayl ();/* Fortran routine */
int *n;
float *s, *f;
f = (float *) argv[O]; /* Array pntr */
n = (int *) argv[1]; /* Get # of elements */
s = (float *) argv[2]; /* Pass back result a paraneter */
sumarrayl (f, n, s); /* Conpute sum */

}

Table 7-3: C Wrapper Used to Call Fortran Code (example_c2f.c)

External Development Guide The CALL_EXTERNAL Function

144 Chapter 7: CALL_EXTERNAL

1fc This subroutine is called by SUM ARRAY and has no | DL-specific code.
2fc
3 SUBRQOUTI NE sumarrayl(array, n, sum
481 NTEGER*4 n
S5QREAL*4 array(n), sum
6
7fsun¥0.0
c 8JDO i=1,n
9fsum = sum + array(i)
10§PRINT *, sum array(i)
11 § ENDDO
12
13 RETURN
14 END

Table 7-4: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in RSI - Di rect ory/ | DL- Di rect ory/

external / fortran. Thisdirectory also contains a makefile, which builds this
example on UNIX platforms. To call the example program from within IDL:

; Make an array.

X = FI NDGEN(10)

;A floating result

SUM = 0.0

S = CALL_EXTERNAL(' exanple.so', $
"sumarray', X, N_ELEMENTS(X), sum

In this example, exanpl e. so isthe name of the sharable imagefile, sum array is
the name of the entry point, and X and N_ELEMENTS(X) are passed to the called routine
as parameters. The returned value is contained in the variable sum

When passing C null-terminated character strings into a Fortran routine, the C
function should also passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not appear in the Fortran
routine.

For example, in C:

char * str1= "IDL';

char * str2= "RS|';

int |enl=3;

int | en2=3;

doubl e data, info;

/* Call a Fortran sub-routine named exanpl el */
exanmpl el (strl, data, str2, info, lenl, |en2)

The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 145

In Fortran:

SUBROUTI NE EXAMPLEL(STR1, DATA, STR2, | NFQ
CHARACTER* (*) STR1, STR2
DOUBLE PRECI S| ONDATA, | NFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Calling Fortran is similar to calling C, with the restriction that Fortran expects all
argumentsto be passed by reference. Thismeansthat theaddr ess of theargument is
passed rather than the argument itself.

A Fortran interface routine can be written to extract the addresses of the arguments
fromthear gv array and pass them to the actual routine which will compute the sum.
Passing the contents of each ar gv element by value has the same effect as converting
the parameter to a normal Fortran parameter.

This method uses the OpenVM S Extensions to Fortran, %L OC and %VAL. On IBM
AlX, the LOC function is an intrinsic operator. The syntax of the call, which differs
from that used on different platforms, is:

y=l oc(x)

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file exanpl el. f are shown in the following figure. This
example is compiled, linked, and called in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained inRSI -Di rect ory/ | DL- Di rect ory/

ext ernal / fortran. Thisdirectory also contains a makefile, which builds this
example on UNIX platforms.

External Development Guide The CALL_EXTERNAL Function

146 Chapter 7: CALL_EXTERNAL

SUBROUTI NE SUM ARRAY(argc, argv) !Called by IDL
I NTEGER*4 argc, argv(*) I'Argc and Argv are integers

j = LOC(argc) I bt ai ns the nunmber of arguments (argc)
| Because argc is passed by VALUE.

c Call subroutine SUM ARRAY1, converting the |DL paraneters
c to standard Fortran, passed by reference argunents:

O©CoO~NOUTAWNE

10QCALL SUM ARRAY1(W/AL(argv(1)), WAL(argv(2)), WAL(argv(3)))
11 JRETURN
12 JEND

frr Bl _ _
14Qc This subroutine is called by SUM ARRAY and has no
15fc I DL specific code.

c
17 SUBROUTI NE SUM ARRAY1(array, n, sum
18I NTEGER*4 n

19 REAL*4 array(n), sum

21fsun¥0. 0

22DO i=1,n

23fsum = sum + array(i)
24 §ENDDO

25 RETURN

26 END

Table 7-5: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FI NDGEN(10) ; Make an array.

sum= 0.0

S = CALL_EXTERNAL(' exanplel.so', $
"sumarray_', X, N_ELEMENTS(X), sum

In this example, exanpl el. so isthe name of the sharableimagefile, sum array_
is the name of the entry point, and X and N_ELEMENTS(X) are passed to the called
routine as parameters. The returned value is contained in the variable sum

Note
The entry point name generated by the Fortran compiler may be different than that
produced by the C compiler. One of the best ways to find out what name was
generated isto use the UNIX nmutility on the object file. See your system’s man
page for nmfor details.

The CALL_EXTERNAL Function External Development Guide

Chapter 7: CALL_EXTERNAL 147

Further Examples

A number of example routines, along with makefiles for the various systems that
support CALL_EXTERNAL, arelocated in the ext er nal / cal | _ext er nal
directory of the IDL distribution. The README filein that directory contains
instructions for building the examples.

Wrapper routines

CALL_EXTERNAL routines are often very sensitive to the arguments they receive.
In many cases, calinga CALL_EXTERNAL routine with the wrong number of
arguments or with arguments of the wrong type can cause IDL to crash. For this
reason, it is often good to have awrapper routine (written in IDL) to ensure that the
arguments that are passed to the external code are always correct. The following IDL
procedure is one example of awrapper for the si npl e_var s routine.

IDL

©CoO~NOUA_WNPEF

PRO sinple_vars, b,i, I, f,d, DEBUG=debug
i f NOT(KEYWORD_SET(debug)) THEN ON_ERROR, 2
; type checki ng:
;any mssing (undefined) argunents will be set to a default
;value. Al arguments will be forced to a scalar of the appropriate
;type, which nay cause errors to be thrown if structures are passed in.
b = (SI ZE(b,/ TNAME) EQ 'UNDEFINED) ? 2b : byte(b[O0])
i = (SIZE(i,/TNAVE) EQ 'UNDEFINED) ? 3 : fix(i[0])
| = (SIZE(l,/TNAME) EQ 'UNDEFINED) ? 4L : long(I[0])
f = (SIZE(f,/ TNAME) EQ 'UNDEFINED) ? 5.0 : float(f[0])
d = (Sl ZE(d,/ TNAME) EQ 'UNDEFINED) ? 6.0D : doubl e(d[0])
PRINT, Cal l'ing sinple_vars with the follow ng argunents:’
HELP, b,i,I,f,d
| F (CALL_EXTERNAL(Ili b_nane(’ cal |l _exanples’),’sinple_vars’,/PORTABLE, $
b,i,l,f,d) EQ1) then BEG N
PRI NT, " After calling sinple_vars:’
HELP, b,i,I,f,d
ENDI F ELSE MESSAGE, ' External call to sinple_vars failed
END

Table 7-6: Wrapper Routine — simple_vars.pro

Theroutinesi npl e_var s. pr o usesthe system routine SIZE() to examine the
arguments that are passed in by the user to the si npl e_var s routine. If one of the
argumentsis undefined, adefault value will be used in the call to the external routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

External Development Guide The CALL_EXTERNAL Function

148

Note

Chapter 7: CALL_EXTERNAL

Thel i b_nane function (line 16 in the preceding figure) returns its argument with
the proper shareable library suffix for the target platform (for example. a, . dl |,

.s0,.sl)

The following table lists the IDL supported data types and the corresponding C data

types:

IDL C
BYTE char or unsigned char
INT short
UINT unsigned short
LONG IDL_LONG
ULONG IDL_ULONG
LONG64 IDL_LONG64
ULONG64 IDL_ULONG64
FLOAT float
DOUBLE double
STRING IDL_STRING
STRUCT C structure with the same layout

Table 7-7: Data type mapping between IDL and C

The CALL_EXTERNAL Function

External Development Guide

Chapter 7: CALL_EXTERNAL 149
Handling Different Data Types

This section describes how to convert complex IDL datatypes such as stringsto C
data types, and how to use C datatypesin IDL.

Strings

IDL represents stringsinternally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 9, “IDL Internals: Variables’ and Chapter 11, “IDL
Internals: String Processing”. These descriptors are defined in the C language as:

typedef struct {
unsi gned short slen;
unsi gned short stype;
char *s;

} IDL_STRING

To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.
To pass a string by value the string pointer (the sfield of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

» Cadlled code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

» Thesl en field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

* Thestype fiedisusedinternally by IDL to keep track of how the memory for
the string was obtained, and should be ignored by CALL_EXTERNAL users.

» s isthepointer tothe actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

Returning a String Value

When returning a string value, a function must allocate the memory used to hold it.
On return, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

Note
IDL will not free dynamically-allocated memory for this use.

External Development Guide Handling Different Data Types

150 Chapter 7: CALL_EXTERNAL

Example

The following figure is an exampl e that demonstrates how to handle string variables
in external code. Thisroutine takes a string or array of strings asinput and returns a
copy of the longest string that it received. It isimportant to note that this routine uses
astatic char array asits return value, which avoids the possibility of a memory lesk.

#i ncl ude <stdio. h>
#i ncl ude "export.h"
/* IDL_STRING is declared like this:
typedef struct {
unsi gned short slen; Length of string, O for null
short stype; type of string, static or dynamc
char *s; Addr of string
} IDL_STRING

O©CoO~NOUITSA WNE

10gHowever, you should rely on the definition in export.h instead
11jof declaring your own string structure.

12*/

13Q#i ncl ude <string. h>

15Q/* make sure that this routine is exported on the Macintosh */
16#i f defined(__PONERPC _
17)__decl spec(export) char* string_array(int argc,void* argv[]);

18 J#endi f
19
20
C 21fchar* string_array(int argc,void* argv[])
22
23 | DL_STRI NG*str_descr;
24 IDL_LONG n;/* nunber of elenents in array*/
25
26 int max_index; /* index of |ongest string */
27 int max_sofar; /* length of |ongest string*/
28 int i;

29Q/* IDL will neke a copy of the string that is returned (if it is not NULL).
30fSo, to avoid a nenory |eak the return value should be a pointer to a stat-
31Qic buffer containing a null terminated string. */

32f#define MAX_QUT_LEN 511 /*any string longer than this will be truncated*/
33fstatic char result[MAX_ OUT_LEN +1]; /*leave a space for a '\0" on the

341 ongest string */

35/ * nmake sure there are the correct # of argunents.

36 IDL will convert the NULL into an empty string ('’'). */
37 if (argc !'= 2) return((char *)NULL);

38

39 /* Cast the pointers in argv to local variables. */

40 str_descr= (I DL_STRING *) argv[O0];
41 n= *(int*) argv[1];

Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 151

/* Check the size of the array passed in. n should be > 0.*/

if (n < 1) return (char*)NULL;

max_i ndex = O;

max_sofar = 0;

for(i=0; i < n; i++) {

if (str_descr[i].slen > max_sofar) {
max_i ndex = i;
max_sofar = str_descr[i].slen;

}

}

/* if all strings in the array are enpty, the |ongest
will still be a NULL string */

if (str_descr[max_index].s == NULL) return (char*) NULL;

/* copy the longest string into the buffer. Since result was decl ared
static, it will initially be filled with zeros. And, since the buffer
is 1 byte |longer than MAX_ QUT_LEN, the |last byte of the buffer should
already be a '\0’. This is inmportant, because if the input string
to strncpy() is longer than MAX_QUT_LEN, strcpy() will _not_ wite
a’'\0 .*/

strncpy(resul t, str_descr[max_i ndex].s, MAX_QUT_LEN);

return(result);

#undef MAX_QOUT_LEN
}

Figure 7-1: Handling String Variables in External Code — string_array.c

Arrays

When you pass an IDL array into a CALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to pass this
information as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needsto know the size of the array at
compile time. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensional arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array[x, y]

could be represented in a CALL_EXTERNAL routine as:

array_ptr[x + x_size*y];

External Development Guide Handling Different Data Types

152 Chapter 7: CALL_EXTERNAL

The program shown in the following figure cal culates the sum of a subsection of a
two dimensional array:

1Q#i ncl ude <stdio. h>
2Q#i ncl ude "export.h"
3
4Q/* make sure that this routine is exported on the Maci ntosh */
S5Q#i f defined(__PONERPC)
6f__decl spec(export) double sum 2d_array(int argc,void* argv[]);
7 §#endi f
8
9fdoubl e sum 2d_array(int argc,void* argv[])
10{
11 /* since we didn’t know the dinmensions of the array
12 at conpile tinme, we nust treat the input array
13 as if it were a one dinensional vector. */
14 doubl e* arr;
15 I DL_LONG x_start, x_end, x_size,y_start,y_end, y_size, x,y;
16
17 doubl e result = 0.0;
18
19 if (argc !'= 7) return 0.0;
20
21 arr = (doubl e*)argv[O0];
C 22 x_start = *(int*)argv[1];
23 x_end = *(int*)argv[2];
24 X_size = *(int*)argv[3];
25 y_start = *(int*)argv[4];
26 y_end = *(int*)argv[5];
27 y_size = *(int*)argv[6];
28
29 /* make sure that we don’t go outside the array.
30 strictly speaking, this is redundant since identical
31 checks are performed in the | DL w apper routine.

32 IDL_M N() and I DL_MAX() are nacros from export.h */

33 x_start = I DL_MAX(x_start,0);

34 y_start = I DL_MAX(x_start, 0);

35 x_end = I DL_M N(x_end, x_si ze-1);
36 y_end = IDL_M N(y_end, y_si ze-1);
37

38 /* 1oop through the subsection */
39 for (y = y_start;y <= y_end;y++)
40 for (x = x_start;x <= x_end; x++)
41 result += arr[x + y*x_size]; /* build the 2d index: arr[x,y] */
42

43 return result;

a4y

Table 7-8: Adding the Elements of a 2D IDL Array — sum_2d_array.c
The System Routine interface provides much more support for the manipulation of

IDL array variables. See Chapter 18, “Adding System Routines’ for more
information.

Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 153

Structs

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
aslong asthe layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout as the IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = { ASTRUCTURE, zer o0: 0B, one: OL, two: 0. ,three: OD, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsi gned char zero;
| DL_LONG one;
float two;
doubl e three;
short four[2];
} ASTRUCTURE;

Then, cast the pointer from ar gv to the structure type, as follows:

ASTRUCTURE* nystructure;
mystructure = (ASTRUCTURE*) argv[O0];

The following example increments each field of an IDL structure of type
ASTRUCTURE:

External Development Guide Handling Different Data Types

154 Chapter 7: CALL_EXTERNAL

#i ncl ude <stdio. h>

#i ncl ude "export.h"

/*

** Cdefinition for the structure that this

** routine accepts. The corresponding |DL

** structure definition would | ook like this:
s = {zero:0B,one: OL,two: 0.,three: 0D, four: intarr(2)}

*/

typedef struct {

10 unsi gned char zero;

11 | DL_LONG one;

12 float two;

13 doubl e three;

14 short four[2];

15§} ASTRUCTURE;

O©CoO~NOUTAWNE

174/ * make sure that this routine is exported on the Maci ntosh */
18J#if defined(__POWNERPC
19)_ decl spec(export) int incr_struct(int argc,void* argv[]);

20§ #endi f
C 21
22fint incr_struct(int argc, void *argv[])
23
24 ASTRUCTURE* nystructure;
25 | DL_LONG n;
26
27 int i;
28 if (argc !'=2) return O;
29 nystructure = (ASTRUCTURE*) argv[O0]; /* 1lst arg is structure array */
30 n =*(int*) argv[1]; /* 2nd arg is nunber of elenents */
31
32 /* for each structure in the array, increnent every field */
33 for (i = 0;i<n;i++ mystructure++)
34 {
35 nystructure->zer o++;
36 nmyst ruct ure->one++;
37 nystruct ure- >t wo++;
38 nmystruct ure->t hree++;
39 nystruct ure->four [0] ++;
40 nmystructure->four[1] ++;
41
42 return 1;

Table 7-9: Accessing an IDL Structure from a C Routine — incr_struct.c

It is not possible to access structures with unknown layouts or nested structures using
the CALL_EXTERNAL interface. The System Routine interface does provide
support for determining the layout of a structure at runtime and for accessing nested
structures. See CALL_EXTERNAL in the IDL Reference Guide for more
information.

Handling Different Data Types External Development Guide

Chapter 7: CALL_EXTERNAL 155
CALL_EXTERNAL Under UNIX

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries.

An important advantage to calling external routineswith CALL_EXTERNAL, as
opposed to spawning child processes and passing parameters by pipe, isthat IDL and
the called routine share the same memory and data space. CALL_EXTERNAL

avoids the overhead of process creation and parameter passing. In addition, the
shareable object file containing the called routine is only loaded the first timeitis
referenced.

UNIX Compilation and Linking

Each UNIX system has different compilation and link statements for producing a
shareable object suitable for usage with CALL_EXTERNAL. Also, the name of the
entry point in the object may be different, because compilers may add leading or
trailing underscores to the name of the source routine.

Compilation and linking statements for the UNIX platforms supported by IDL are
collected inthefilecal | ext _uni x. t xt intheexternal /call _external /C
subdirectory of the main IDL directory. The statementsin thisfile can be used to
compile the example routines above. They also show the correct flags to use for any
set of C routines. Additional libraries may be added to the link lines by using the - L
and - | flags, except on certain systems noted bel ow, where the name of the library
must be specified explicitly.

ThelDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can simplify the
building of sharable libraries to be used with CALL_EXTERNAL.

External Development Guide CALL_EXTERNAL Under UNIX

156 Chapter 7: CALL_EXTERNAL
CALL_EXTERNAL Under OpenVMS

By default under VMS, the CALL_EXTERNAL function loads and calls routines
contained in shareable images that adhere to the OpenVM S calling standard using the
LIB$CALLG() runtime library function. It is aso possible to use the portable
convention available on the other platforms (discussed in “CALL_EXTERNAL
Under UNIX” on page 155) by specifying the PORTABLE keyword to
CALL_EXTERNAL.

Alpha/OpenVMS Restrictions

IDL usestheLl B$CALLG) function toimplement CALL_EXTERNAL under
OpenVMS. The ALPHA/OpenVMS procedure calling specification states that
certain floating values are passed in certain registers and not on the stack as with the
VAX. LI BSCALLGE) cannot put these arguments into the correct location because its
interface does not tell it the types of the argumentsiit is passing. Accordingly, under
Alpha/OpenVMS, CALL_EXTERNAL isrestricted in the following ways:

* A single- or double-precision floating-point argument can only be passed by
valueif it isone of the first six arguments to the function.

» Single- and double-precision complex arguments cannot be passed by value.
Calling Convention and Parameter Passing

IDL callsroutinesin the shareable image object with the parameters that were passed
to CALL_EXTERNAL. Unlike UNIX routines that are called using the C calling
convention ar gc and ar gv, OpenVMS routines are called with a parameter list. Any
routine called by CALL_EXTERNAL should be defined in the following manner:

InIDL:

status = CALL_EXTERNAL(i mage, 'exanple', pl, p2, p3, pd)
InC:

return_type exanpl e(pl, p2, p3, p4)

wherer et ur n_t ype isone of the typeswhich CALL_EXTERNAL may return. If
thistypeisnot IDL_LONG, then akeyword must be used inthe CALL_EXTERNAL
call to indicate the type of the result.

Arrays are passed by reference. By default, scalars are passed by reference also. See
CALL_EXTERNAL inthe DL Reference Guide for additional details about passing
parameters by value.

CALL_EXTERNAL Under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 157

It isimportant to note that IDL integer variables correspond to a C short integer. For
example, an integer variable could be defined in an IDL routine as follows:

I DL> A=5

The variable could then be passed by referencein aCALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
The declaration in a called Fortran routine should be:

| NTEGER*2 A
Example: Calling a C routine

Assume you wish to add a routine that returns the sum of afloating-point array,
similar to the TOTAL function in IDL. This routine accepts a pointer to the array

(f _arr), apointer to the number of elements (n_el e), and it passes back afloating
point sum as a parameter (sun). It does not pass back areturn value. Even though the
return value is unused, the CALL_EXTERNAL cal in IDL must be made asa
function call. In this case, the return value should be assigned to a dummy value.

The following figure shows the contents of the exanpl e. ¢ file. See“OpenVMS
Compilation and Linking” on page 163 for details on compiling and linking the code
on your platform.

1Q#i ncl ude <stdio. h>
2
3Qvoid sumarray(float *f_arr, long *n_ele, float *sum
41{
5 float s;
C 6
7 for(s=0.0; *n_ele--;) /* Conpute the sum*/
8 s += *f_arr++;
9
10 *sum = s;
114}

Table 7-10: Returning the Sum of a Floating-Point Array — sum_array

External Development Guide CALL_EXTERNAL Under OpenVMS

158 Chapter 7: CALL_EXTERNAL
Assuming the compiled routine residesin the executable fileexanpl e. exe, it can be
called with the following IDL code.

; Make an array.
X = FI NDGEN(10)
;Define a variable to hold the result.
sum = 0.0
S = CALL_EXTERNAL(' [pat h] exanpl e. exe', $
"exanpl e’ X, N_ELEMENTS(X), sum
Inthisexample, [pat h] exanpl e. exe isthefull path name of the linked executable
file, exanpl e isthe name of the entry point, and X, N_ELEMENTS(X) , and sumare
passed to the called routine as parameters. Note that the result is returned in the
variable sum which must be defined as the proper data type (single-precision
floating-point in this case) before calling the external routine. You may find it hel pful
toreplace [pat h] exanpl e. exe with an OpenVMS logical name. For example:
$ DEFI NE | DL_EXAMPLE [pat h] exanpl e. exe
Example: Calling a Fortran Routine
Calling Fortran is similar to calling C, with the restriction that Fortran expects all
argumentsto be passed by reference. Thismeansthat the addr ess of theargument is
passed rather than the argument itself.
To compute the sum of afloat array using Fortran you would use the Fortran
subroutine such as that shown in the following figure (file exanpl e. f) . See
“OpenVMS Compilation and Linking” on page 163 for details on compiling and
linking the code on your platform.
1 SUBROUTI NE EXAMPLE(F_ARR, N_ELE, SUM
2
3JI NTEGER* 4N_ELE
4
5 |REAL* 4F_ARR(N_ELE)
6 | REAL* 4SUM
7
8JJI NTEGER |
fr7 9
10fsum = 0.0
11
12fpo 1=1, NELE
13fSUM = SUM + F_ARR(1)
14END DO
15
16 |RETURN
17 |END

Table 7-11: Fortran Version of sum_array()

CALL_EXTERNAL Under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 159

Example: Calling the TPU Editor

A simple example uses CALL_EXTERNAL to invoke the TPU text editor directly
from IDL. The TPU editor is provided as a shareable, callable image in thefile
SYS$SHARE: TPUSHR. EXE. Its entry point is named TPUSEDI T. The statement

status = CALL_EXTERNAL('tpushr', 'tpu$edit', 'test.pro', ''")

calsTPUto edit thefilet est . pr o. TPUSEDI T requires two parameters: the file to
be edited and an output file. In this case, the output file is a zero-length string
denoting that the output file is the same as the input.

A procedure named EDIT is easily written to accept afilename parameter, verify that
itisascalar string, and call TPU:

;Edit file using TPU.
PROEDT, file

;1s the paraneter defined? Print error message.
I F N_ELEMENTS(file) EQ O THEN BEG N
BAD PAR. PRINT, "Usage: EDIT, 'filenane'"

RETURN

ENDI F

; Val i date paraneter.
S = SIZE(file)

;1s the string scalar?
IF (S(0) NE 0) OR (S(1) NE 7) THEN GOTO, BAD_PAR

:Call the editor.

STATUS = CALL_EXTERNAL(' tpushr', 'tpu$edit', 'file', '")
END

Example: Calling a Runtime Library Function

This example presents a procedure called GETMSG that returns the error message
text given an OpenVMS error message number.

The OpenVMs Run-Ti nme Li brary routine LI BSSYS_GETMSGis used. Briefly,
parametersto LI B$SYS_GETMSG are:

LI B$SYS GETMSG(MSG | D, MSG LEN, DEST STRING, FLAGS)

External Development Guide CALL_EXTERNAL Under OpenVMS

160 Chapter 7: CALL_EXTERNAL

where
* MSG_I Disthe message identification code, alongword passed by reference.

* MBG_LENisthe returned message length, alongword integer passed by
reference.

e DEST_STRI NGisthe string into which the message is placed, passed by
reference to its string descriptor.

* FLAGS isalongword integer, passed by reference, of flag bits that determine
message content (default value 0).

The code of the procedure GETMSG is asfollows:

;Return the text to the OpenVMS nessage MSA D.
FUNCTI ON GETMSG, nsgid

;Destination string length, initialize to | ongword.
len = OL

;Destination string, initialize to a string containing 100 bl anks.
msg = STRI NG REPLI CATE(32B, 100))

;Call lib$sys_getnsg; flags paraneter is O.
istat = CALL_EXTERNAL('Ilibrtl', 'lib$sys getnsg', $
LONG(nsgid), len, nsg, OL)

;Truncate the string using the returned | ength.
nmsg = STRM D(nsg, 0, |en)

; Return the string.
RETURN, nsg
END

This example illustrates one method of returning a string from an external routine.
The function creates a 100-character, blank-filled string called MSG, which is passed
by reference to its descriptor to LI BESYS_GETMSG. The descriptor

LI B$SYS_CGETMSGfills the memory pointed to by this descriptor with the result,
which can be up to 100-characters long, and returns the actual string length in the
variable len. The call to STRMID is hecessary to truncate the string MSG to the
length of the returned string.

Calling a VMS Fortran Subroutine

This example calls asimple VMS Fortran function that returns the mean of a
floating-point array:

CALL_EXTERNAL Under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 161

MEAN = CALL_EXTERNAL(/F_VALUE, 'MY_AVG EXE', 'W_AVG, $
FI NDGEN(10), 10L)

The F_VALUE keyword indicates that the called function returns a single-precision,
floating value.

Theentry MY_AVG, inside a shareable image pointed to by the logical name

MY _AVG_EXE, iscaled. The two parameters passed to the routine are a 10-
element, floating-point vector and the element count, passed as along integer. The
Fortran routine, in file MY_AVG.FOR, is shown in the following figure.

f77

©CoO~NOUIA_WN P

REAL * 4 FUNCTION MY_AVGE YV, N)
REAL*4 V(*)
MY_AVG = 0.0
DO =1, N
MY_AVG = MY_AVG + V(1)
END DO
MY_AVG = MY_AVG / N
RETURN
END

Table 7-12: Returning the Mean of a Floating-Point Array Using Fortran— my_avg.for

The OpenVMS DCL commandsto compile, link, and setup the logical name are as
follows:

$ FORTRAN MY_AVG

$ LINK MY_AVG SYS$I NPUT/ OPT/ SHARE

UNI VERSAL = MY_AVG

$ DEFI NE MY_AVG _EXE dduu: [xxx] MY_AVG EXE

The OpenVMS Alpha DCL commands to compile, link, and setup the logical name
are asfollows:

$ FORTRAN MY_AVG

$ LINK MY_AVG SYS$I NPUT/ OPT/ SHARE
SYMBOL_VECTOR = [MY_AVG=PROCEDURE]

$ DEFI NE MY_AVG _EXE dduu: [xxx] MY_AVG EXE

Passing Parameters by Value

Scalar parameters can be passed by value or by reference. The optional VALUE
keyword parameter is a byte array in which nonzero elements indicate the respective
scalar parameter isto be passed by value. Parameters are passed by referenceif the
VAL UE parameter is not present or the respective element is zero.

For example, if the above routine, MY_AVG, iswritten in the C language and declared
asfollows:

float nmy_avg(float *, int)

External Development Guide CALL_EXTERNAL Under OpenVMS

162

Chapter 7: CALL_EXTERNAL

The call from IDL becomes:

MEAN = CALL_EXTERNAL(/F VALUE, VALUE = [OB, 1B], $
"MY_AVG EXE', 'MY_AVG , FINDGEN(10), 10L)

causing the second parameter, the number of elements, to be passed by val ue rather
than by reference.

Note
Under Alpha/OpenVMS:

A single- or double-precision floating-point argument can only be passed by value
if it isone of thefirst six arguments to the function.

Single- and double-precision complex arguments cannot be passed by value.

See “Alpha/OpenVM S Restrictions’ on page 156 for a more detailed discussion of
these restrictions.

Using CALL_EXTERNAL with Fortran Common Blocks

In Fortran language routines, common blocks are declared as writeable, shareable
PSECTS. This can cause the following error messages:
LI B-E-ACT: error activating inmage: inmage.exe

SYSTEM F- NOTI NSTALL: writeabl e shareabl e i nrages nust be installed
UCALL_EXTERNAL: error in called routine

If this occurs, place aline like the following in the linker options file for each
common block:

PSECT_ATTR = com bl ock_nane, noshr

where com bl ock_nane isthe name of the common block in your Fortran routine.
These lines must be added for each common block in the routines that you call using
CALL_EXTERNAL.

Further Examples

A number of example routines, along with makefiles, are located in the
external/cal | _ext er nal directory of the IDL distribution. To compile the
examples into a shareable object and then run IDL procedures, see the README
fileslocated in either RSI - Di rectory/ | DL- Di rect ory/ ext ernal / Cor RSI -
Directory/IDL-Directory/ external/fortran.

CALL_EXTERNAL Under OpenVMS External Development Guide

Chapter 7: CALL_EXTERNAL 163

OpenVMS Compilation and Linking

Compilation and linking statements for OpenVMS are collected in the file

cal l ext _vns. txt inthecal | _ext er nal subdirectory of the ext er nal
subdirectory of themain IDL directory. The statementsin thisfile can be used for the
example routines above.

ThelDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can simplify the
building of sharable libraries to be used with CALL_EXTERNAL.

External Development Guide CALL_EXTERNAL Under OpenVMS

164 Chapter 7: CALL_EXTERNAL
CALL_EXTERNAL Under Windows

You can use CALL_EXTERNAL to call your own Win32 Windows-compatible
DLLs.

There are some difficulties in creating Windows-compatible DLLs and we suggest
that you obtain some additional information on thistopic (such as Charles Petzold’s
book, Programming Windows 95) before attempting to write one.

TheIDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can simplify the
building of sharable libraries to be used with CALL_EXTERNAL.

Calling Convention and Parameter Passing

All DLLscaled with CALL_EXTERNAL must use an ar gc-ar gv caling
convention described in “CALL_EXTERNAL Under UNIX” on page 155. The
parameters you specify in the call to CALL_EXTERNAL are trandlated into the
ar gv vector.

Parameters can be passed by value or by reference. See CALL_EXTERNAL in the
IDL Reference Guide for additional details about specifying how parameters areto be
passed.

DLL procedures can return long integers, floating-point integers, or strings by value.
They can return any sort of information by reference.

Examples

Example DLL code, amakefile, and an IDL procedure calling the newly-created
DLL arelocated intheext er nal / cal | _ext er nal directory of the IDL
distribution. To compile the exampleinto a DLL, issue the following command:

C.\RSI\ | DL\ EXTERNAL\ CALL_EXTERNAL> nnake /f makefil e_w n. mak

The makefile uses the correct options for the Microsoft C compiler. If you use a
different compiler, you may need to change the compilation or link flags. See the
makefile for details on the compiler used.

CALL_EXTERNAL Under Windows External Development Guide

Chapter 7: CALL_EXTERNAL 165
CALL_EXTERNAL on the Macintosh

You can use CALL_EXTERNAL to call your own Macintosh shared library files.
Calling Convention and Parameter Passing

IDL callsroutinesin a shared library using the C calling convention (ar gc, ar gv)
described in “CALL_EXTERNAL Under UNIX” on page 155. Any routines called
by CALL_EXTERNAL should be defined with a prototype similar to the following:

return_type resFunction(int argc, void *argv[])

wherer et ur n_t ype isoneof thedatatypeswhich CALL_EXTERNAL may return.
If thisr et urn_t ype isnot IDL_LONG, a keyword must be used in the
CALL_EXTERNAL call to indicate the type of the resuilt.

When you build ashared library, you must tell the linker which symbols are exported.
You can use any of the following methods:

1. Usea__declspec(export) declaration in your code. Thisis the easiest method
if the number of exported symbolsissmall, and is the method used in this
manual. See the example in the following figure for an example of this
approach.

2. Supply an export file to the linker. Thisisthe best option if the number of
symbolsislarge.

3. Specify that the linker export all symbols.

The details of how to use the linker depend on which development environment you
are using (MPW, Code Warrior, and so on) and are not discussed in this manual.
Consult your system documentation for details.

Example: Calling a C Routine on a PowerPC Macintosh

CALL_EXTERNAL on the PowerMac expects native PowerPC code to be stored in
the data fork of ashared library file. It loads the code with the routine
GetDiskFragment(), and finds the requested routine using FindSymbol(). Because
of this, you may put multiple routines in the same shared library file and even share
global variables amongst them. The library is only loaded once, and is freed when
IDL exits.

Consult your compiler manual on how to create a shared library file. Consult the
Code Fragment Manager of Inside Macintosh: PowerPC System Software to learn
about GetDiskFragment() and FindSymbol().

External Development Guide CALL_EXTERNAL on the Macintosh

166 Chapter 7: CALL_EXTERNAL
This example is aroutine that returns the sum of an integer array (similar to the
TOTAL function in IDL) accepts a variable length argument list where the first
parameter is the number of arguments and the second is an array of pointersto the
arguments. The function then returns a long integer which is the sum of itsinputs.
The exanpl e. c file contains the code shown in the following figure. You must link
the program as a shared library. In Metrowerks CodeWarrior, thisis done using a
popup menu in the “Project” section of the “ Preferences’ dialog.

1Q#if defined(__PONERPC)

2 __decl spec(export) long sumarray(int argc, void *argv[]);
3f#endi f

4

5§l ong sumarray(int argc, void *argv[])
6{

7 | ongretval;

8 short*arrl nd;

9 inti;

10

11 retval = 0OL;

12

13 if (argc == 2) {

14 /*

C 15 * |DL integer arrays are arrays of shorts so get the pointer
16 * to the array (arrays are always passed to CALL_EXTERNAL by
17 * reference
18 *|
19 arrind = (short *) argv[O0];

20

21 /*

22 * then just sumthe array

23 x|

24 for (i =0; i <*(int *)argv[1]; i++)
25 retval += *arrl| nd++;

26 1}

27

28 return(retval);

29

300} /* end of sumer routine */

CALL_EXTERNAL on the Macintosh

Table 7-13: Returning the Sum of an Integer Array — sumarray

To use the above example in IDL, enter:
IDL> testarr = | NDGEN(10)

IDL> total = CALL_EXTERNAL("exanple", "sumarray", testarr,

10L)

External Development Guide

Chapter 8:

IDL Internals:
Types

This chapter describes the following topics:

TypeCodescovvvvvinnn.. 168 IDL_MEMINT and IDL_FILEINT Types. 172
Mapping of Basic Types 170

External Development Guide 167

168

Chapter 8: IDL Internals: Types

Type Codes

Type Codes

Every IDL variable has a data type. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will aways have the value zero.

Although it is unlikely, the number of types could change someday. Therefore, you
should always use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Eveninthecaseof IDL_TYP_UNDEF, using the symbolic
name will add clarity to your code. Note that al IDL structures are considered to be
of asingletype (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
are made at adifferent level. There are afew constants that can be used to make your

code easier to read and less likely to break if/when theexpor t . h file changes.

These are:

e IDL_MAX_TYPE—Thevalue of the largest type.

* IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM _TYPESisonegreater than IDL_MAX_TYPE.

Name Type C Type
IDL_TYP_UNDEF Undefined <None>
IDL_TYP BYTE Unsigned byte UCHAR
IDL_TYP_INT 16-hit integer short
IDL_TYP LONG 32-hit integer IDL_LONG
IDL_TYP_FLOAT Single precision floating | float
IDL_TYP_DOUBLE Double precision floating | double
IDL_TYP_COMPLEX Single precision complex | IDL_COMPLEX
IDL_TYP_STRING String IDL_STRING
IDL_TYP_STRUCT Structure See* Structure Variables’

on page 181

IDL_TYP_DCOMPLEX

Double precision
complex

IDL_DCOMPLEX

Table 8-1: IDL Types and Mapping to C

External Development Guide

Chapter 8: IDL Internals: Types

169

Name Type C Type
IDL_TYP_PTR 32-bit integer IDL_ULONG
IDL_TYP_OBJREF 32-hit integer IDL_ULONG
IDL_TYP_UINT Unsigned 16-bitinteger | IDL_UINT
IDL_TYP_ULONG Unsigned 32-bitinteger | IDL_ULONG
IDL_TYP_LONG64 64-bit integer IDL_LONG64
IDL_TYP_ULONG64 Unsigned 64-bit integer | IDL_ULONG64

Table 8-1: IDL Types and Mapping to C (Continued)

Type Masks

There are some situationsin which it is necessary to specify typesin the form of abit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than asingle type. For any given type, the bit mask value

can be computed as:

Mask = 2

TypeCode

ThelDL_TYP_MASK preprocessor macro is provided to calcul ate these masks.
Given atype code, it returns the bit mask. For example, to specify a bit mask for all

the integer types:

I DL_TYP_MASK(1 DL_TYP_BYTE)| | DL_TYP_MASK(| DL_TYP_I NT) |
| DL_TYP_MASK(| DL_TYP_LONG

Specifying all the possible types would require along statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_ B ALL constant is provided.

External Development Guide

Type Codes

170

Chapter 8: IDL Internals: Types

Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR is defined to be unsigned char in export . h.
Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in expor t . h.
Long Integer Data

IDL long integers are defined to be 32-bitsin size. The C long data typeis not correct
on all systems because C compilersfor 64-bit architectures usualy define long as 64-
bits. Hence, the IDL_L ONG typedef, declared in expor t . h isused instead.

Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-bit data type and is defined in export . h.
64-bit Integer Data

IDL_LONG64 represents the 64-bit datatype and is defined in export . h.
Unsigned 64-bit Integer Data

IDL_ULONGB64 represents the unsigned 64-bit datatype and is defined in
export. h.

Complex Data

ThelDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX datatypes are defined
by the following C declarations:

typedef struct { float r, i; } |DL_COWPLEX;
typedef struct { double r, i; } |DL_DCOWLEX;

Mapping of Basic Types External Development Guide

Chapter 8: IDL Internals: Types 171

Thisisthe same mapping used by Fortran compilersto implement their complex data
types, which allows sharing binary data with such programs.

String Data

ThelDL_TYP_STRING datatypeisimplemented by a string descriptor:

typedef struct {
unsi gned short slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */
} I DL_STRI NG,

Thefields of the IDL_STRING struct are defined as follows:
slen

The length of the string, not counting the null termination. For example, the
string “Hello” has 5 characters.

stype

If stypeis zero, the string pointed at by s (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero, s points at a string
alocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 286
and “ Getting Dynamic Memory” on page 194.

S
If den isnon-zero, sisapointer to a null-terminated string of slen characters.
If dlen is zero, s should not be used. The use of a string pointer to memory
located outside the IDL_STRING structureitself allows IDL strings to have
dynamically-variable lengths.

Note

Strings are the most complicated basic data type, and as such, are at the root of
more coding errors than the other types. See “IDL Internals: String Processing” on
page 219.

External Development Guide Mapping of Basic Types

172 Chapter 8: IDL Internals: Types
IDL_MEMINT and IDL_FILEINT Types

Most of the IDL-supported operating systems limit memory and file lengthsto a
signed 32-bit integer (approximately 2.3 GB). These limitations may change
dramatically in the future: some systems have 64-bit memory capabilities and others
support files longer than 231-1 bytes. IDL internals use two special types,
IDL_TYP_MEMINT (datatypeIDL_MEMINT) and IDL_TYP_FILEINT (datatype
IDL_FILEINT) to represent memory and file length limits. Use these special typesto
ease the evolutionary move to larger memory and files.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappings to the IDL types discussed in “Mapping of Basic Types’ on

page 170. IDL is currently limited to 32-bit signed (231-1) bytes of memory, meaning
that IDL_TYP_MEMINT is currently mapped to IDL_TYP_LONG. On some
systems, IDL allows access to files larger than 32-bits; IDL_TYP_FILEINT is
mapped to IDL_TYP_LONG64. On other systems, IDL_TYP_FILEINT is mapped
to IDL_TYP_LONG.

Asan IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on all systems, use them in the appropriate places without special
interpretation. These types can be used anywhere that anormal IDL type can be used,
such asin keyword processing.

Programmers should be aware of the IDL_MEMINTScalar() and
IDL_FILEINTScalar() functions, described in “Converting Argumentsto C Scalars”
on page 240.

IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 9:

IDL Internals:

Variables

This chapter discusses the following topics:

IDL and Internal Variables 174
TheIDL_VARIABLE Structure 175
Scalar Variadbles 178
Array Variables 179
Structure Variables 181
Heap Variables 186
Temporary Variables 187

Creating an Array from Existing Data ... 192

External Development Guide

Getting DynamicMemory 194
Accessing VariableData 196
Copying Variables 197
Storing Scalar Values 198
Obtaining the Name of aVariable 200
Looking Up Main Program Variables201
Looking Up Variablesin Current Scope .. 202

173

174 Chapter 9: IDL Internals: Variables
IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

32-bit Assoc offset

IDL_MEMINT et _len
IDL_MEMINT arr_len
IDL_MEMINT n_elts
Imported Data g UCHAR *data
Normal UCHAR n_dim
UCHAR type orm UCHAR flags
UCHAR flagd case short file_unit
- IDL_ARRAY_DIM dim
IDL_ALLTYPESvaug <union> IDL_ARRAY_FREE CB free cb
IDL_FILEINT offset
UCHAR c ! IDL_LONG data_guard
short i
UINT ui Usually, datafollowed by a
IDL_LONG I trailing data guard.
IDL_ULONG ul
IDL_LONG64 164 A
IDL_ULONG ul64
float f
double d
IDL_COMPLEX <struct>
cmp float r
float i
IDL_DCOMPLEX <struct>
demp double r
double i
IDL_STRING <struct>
str unsigned short dlen
short stype
char *s
IDL_ARRAY *ar |
IDL_HVID hvid
IDL_SREF S <struct>
IDL_ARRAY *arr —
IDL_STRUCTURE *sdef —
Structures and object
definitions (opague)

Figure 9-1: Structure of an IDL variable

IDL and Internal Variables External Development Guide

Chapter 9: IDL Internals: Variables 175
The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE isasfollows:

typedef struct {
UCHAR type;
UCHAR f | ags;
| DL_ALLTYPES val ue;
} I DL_VARI ABLE;

AnIDL_VPTR isapointer toan IDL_VARIABLE structure:
typedef |DL_VARI ABLE *| DL_VPTR
TheDL_ALLTYPESunionis defined as:

typedef union {

UCHAR c; /* Scalar |IDL_TYP_BYTE */

short i; /* Scalar IDL_TYP_INT */

I DL_UI NT ui; /* Unsigned short integer value */
I DL_LONG | ; /* Scalar | DL_TYP_LONG */

| DL_ULONG ul ; /* Unsigned | ong val ue */

| DL_LONG64 | 64; /* 64-bit integer value */

| DL_ULONG64 ul 64; /* Unsigned 64-bit integer value */
float f; /* Scalar | DL_TYP_FLOAT */

doubl e d; /* Scalar |IDL_TYP_DOUBLE */

| DL_COMPLEX cnp; /* Scalar |DL_TYP_COMPLEX */
| DL_DCOVPLEX dcnp; /* Scal ar | DL_TYP_DCOMPLEX */

| DL_STRI NG str; /* Scalar | DL_TYP_STRI NG */

| DL_ARRAY *arr; /* Pointer to array descriptor */
| DL_SREF s; /* Structure descriptor */

I DL_HVI D hvi d; /* Heap variable identifier */

}1 DL_ALLTYPES;

The basic scalar types are contained directly in thisunion, while arrays and structures
are represented by the IDL_ARRAY and I DL_SREF structures that are discussed
later in this chapter. The typefield of the IDL_VARIABLE structure contains one of
the type codes discussed in “ Type Codes’ on page 168. When avariable isinitialy
created, it isgiven thetype code IDL_TYP_UNDEF, indicating that the variable
contains no value.

Theflagsfield isabit mask that specifiesinformation about the variable. As a
programmer adding code to the IDL system, you will rarely need to set bitsin this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of

External Development Guide The IDL_VARIABLE Structure

176

Chapter 9: IDL Internals: Variables

your routine (see “ Checking Arguments’ on page 237). The defined bits in the mask
are:

IDL_V_CONST

If thisflag is set, the variable is actually a constant. This means that storage for the
IDL_VARIABLE resides inside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABLEswhen an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A

causes the compiler to generate a constant for the “23”. You must not change the
value of thistype of “variable’.

IDL_V_TEMP

If thisflag is set, the variable is atemporary variable. IDL maintains a pool of
nameless IDL_VARIABL Es that can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3
will cause the interpreter to go through a sequence of events similar to:
1. Push aconstant variable for the 2 on the stack.
2. Push aconstant variable for the 3 on the stack.

3. Allocate atemporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.
5. Cadll the PRINT system procedure specifying one argument.

6. Remove the argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are aso used inside user procedures and functions. See
“Temporary Variables” on page 187.

IDL_V_ARR

If thisflag is set, the variable is an array, and the value field of the IDL_VARIABLE
points to an array descriptor.

The IDL_VARIABLE Structure External Development Guide

Chapter 9: IDL Internals: Variables 177

IDL_V_FILE
If thisflag is set, the variable is afile variable, as created by IDL’s ASSOC function.
IDL_V_DYNAMIC

If thisflag is set, the memory used by thisIDL_VARIABLE isdynamically
alocated. Thisbit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced via the string pointer is
dynamic).

IDL_V_STRUCT

If thisflag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are al'so arrays, so IDL_V_STRUCT asoimpliesIDL_V_ARR.
Therefore, it isimpossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their typefield set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bit is redundant. It exists for efficiency reasons.

External Development Guide The IDL_VARIABLE Structure

178

Scalar Variables

Chapter 9: IDL Internals: Variables

A scalar IDL_VARIABLE isdistinguished by not having the IDL_V_ARR bit set
initsflagsfield. A scalar variable must have one of the thirteen basic datatypes (IDL
structures are never scalar). The datafor ascalar variable is stored in the
IDL_VARIABLE itself, using the IDL_ALLTYPES union. The following table
gives the relationship between the data type and the field used.

Scalar Variables

Scalar Data Type

Field that Stores

Data
IDL_TYP_UNDEF None.
IDL_TYP BYTE value.c
IDL_TYP_INT vaue.
IDL_TYP_UINT vaue.ui
IDL_TYP_LONG valuell
IDL_TYP_ULONG value.ul
IDL_TYP_LONG64 value.l64
IDL_TYP_ULONG64 value.ul64
IDL_TYP_FLOAT value.f
IDL_TYP_DOUBLE value.d
IDL_TYP_COMPLEX value.cmp
IDL_TYP_DCOMPLEX value.dcmp
IDL_TYP_STRING value.str

Table 9-1: Scalar Variable Data Locations

External Development Guide

Chapter 9: IDL Internals: Variables 179
Array Variables

Array variables have the IDL_V_ARR bit of their flags field set, and the value.arr
field points to an array descriptor defined by the IDL_ARRAY structure:

typedef struct {
I DL_VEM NT elt_Ilen;
IDL_MEM NT arr_|en;
IDL_VEM NT n_elts;
char *dat a;
UCHAR n_di m
UCHAR f | ags;
short file_unit;
| DL_ARRAY_DI M di m
} |1 DL_ARRAY;

The meaning of the fields of an array descriptor are:
elt_len

The length of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data along required boundaries. On a given platform, IDL creates structures the same
way a C compiler does on that platform. As aresult, you should not assume that the
size of astructure isthe sum of the sizes of the structure fields, or that the field offsets
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts
The number of elementsin the array.
data

A pointer to the data areafor the array. Thisisaregion of dynamically allocated
memory arr_len bytes long. This pointer should be cast to be a pointer of the correct
type for the data being manipulated. For example, if the array variable being

External Development Guide Array Variables

180

Chapter 9: IDL Internals: Variables

processed ispointed at by an IDL_VPTR named v and contains IDL_TYP_INT
data:

short *data; /* Declare a pointer variable */
data = (short *) v->val ue. arr->dat a;

n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

flags

A bit mask that specifies characteristics of the array. Currently, only one bit value is
defined for thisfield:

IDL_A_FILE — Thisflag indicates that the array is afile variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The datafield of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

file_unit

WhentheDL_A_FILE bitissetin theflagsfield, file_unit containsthe IDL
Logical Unit Number associated with the variable.

dim

An array that contains the dimensions of the IDL variable. There can be up to

IDL_MAX_ARRAY_DIM dimensions. The number of dimensionsin the current
array isgiven by then_dim field.

Array Variables External Development Guide

Chapter 9: IDL Internals: Variables 181
Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They aso have the
IDL_V_STRUCT bit set in their flags field. The value.sfield of such avariable
contains a structure descriptor defined by the IDL _SREF structure:

typedef struct {

| DL_ARRAY *arr; /* ~ to | DL_ARRAY containing data */
voi d *sdef; /* ™ to structure definition */
} |1 DL_SREF;

Thearr field points at an array block, as described on page 179. It is worth noting
that in the definition of the IDL_ALLTY PES union (described on page 175), thearr
fieldisapointer to IDL_ARRAY, whilethe sfieldisan IDL_SREF, astructure that
contains apointer to IDL_ ARRAY asits first member.

The resulting definition looks like:

uni on {
| DL_ARRAY arr;
struct {
| DL_ARRAY arr;
voi d *sdef;
} s;
} val ue;

Dueto theway C laysout fieldsin structs and unions, value.arr will have the same
offset and size within the value union as value.s.arr. Therefore, it is possible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because
itisnot strictly correct usage and because Research Systems reserves the right to
changethe I DL _SREF definition in away that could cause the memory layout of the
ALLTY PES union to change.

Creating Structures

The actual structure definition is accessed through the sdef field, which isapointer to
an opaque IDL structure definition. Although the implementation of structure
definitionsis not public information, they can be created using the
IDL_MakeStruct() function from a structure name and alist of tags:

void *1 DL_MakeStruct (char *nane, |DL_STRUCT_TAG DEF *tags)
name

The name of the structure definition, or NULL for anonymous structures.

External Development Guide Structure Variables

182

Chapter 9: IDL Internals: Variables

tags
Anarray of IDL_STRUCT_TAG_DEF elements, one for each tag.

The result from this function can be passed to IDL_ImportArray() or
IDL_ImportNamedArray(), as described on page 192.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *nane;
I DL_LONG *di 1rs;
void *type;
UCHAR f I ags;
} | DL_STRUCT_TAG DEF;

name
Null-terminated uppercase name of the tag.
dims

An array that contains information about the dimensions of the structure. The first
element of this array is the number of dimensions. Following elements contain the
size of each dimension.

type

Either a pointer to another structure definition, or asimple IDL type cast to void (e.g.,
(void *) IDL_TYP_BYTE).

flags

Thisfield isreserved to RSI, and must be set to 0.

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL language is:

{TAGL: OL, TA®R: FLTARR(2,3,4), TAG3: STRARR(10)}
It can be created with IDL_MakeStruct() asfollows:

static | DL_LONG one = 1;
static | DL_LONG tag2_di s
static | DL_LONG tag3_dins
static | DL_STRUCT_TAG DEF s_tags[] =
{ "TAGL", 0, (void *) IDL_TYP_LONG,
{ "TAR", tag2_dinms, (void *) |DL_TYP_FLOAT},
{ "TA&", tag3_dinms, (void *) IDL_TYP_STRI NG,
{

(1 ={3 3, 4}
(1 ={1 10 };

BN

0}
}

Structure Variables External Development Guide

Chapter 9: IDL Internals: Variables 183

typedef struct data_struct {
| DL_LONG tagl_dat a;
float tag2_data [2] [3] [4];
I DL_STRING tag_3_data [10];
} DATA_STRUCT;
static DATA STRUCT s_dat a;
void *s;
I DL_VPTR v;

/* Create the structure definition */
s = | DL_MakeStruct (0, s_tags);
/* Inmport the data area s_data into an |IDL structure,
note that no data are noved. */
v = IDL_ImportArray(1l, &one, |DL_TYP_STRUCT,
(UCHAR *) &s data, 0, s);

Accessing Structure Tags

Given an opague IDL structure definition, you can determine the offset of the data
and a description of its size and form (scalar, array, etc) for a given tag.
IDL_StructTagl nfoByName() returns this information given the name of the tag.
IDL_StructTagl nfoByl ndex() does the same thing, given the numeric index of the
tag. They are essentially the same routine, although IDL _StructTagl nfoByl ndex()
is dightly more efficient:

LDL_LO\IG I DL_Struct Tagl nf oByNane(I DL_Struct Def Ptr sdef, char
e int msg_action, |DL_VPTR *var)

| DL_LONG | DL_Struct Tagl nf oByl ndex(1 DL_Struct Def Ptr sdef, int
i ndex, int msg_action, IDL_VPTR *var)

where:

sdef

Structure definition for which offset is needed.

name (IDL_StructTaginfoByName)

Name of tag for which information is required.

index (IDL_StructTaginfoByIndex)

Zero based index of tag for which information is required.

msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

External Development Guide Structure Variables

184 Chapter 9: IDL Internals: Variables

var

NULL, or the address of an IDL_VPTR to befilled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
call to IDL_Message() returnsto the caller, a-1isreturned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual datafor that tag.

If thetag is successfully located and the var argument isnon-NULL, theIDL_VPTR
it points at isfilled in with a pointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It isimportant to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the IDL_VARIABL E description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition hasin order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int I DL_StructNunTags(|DL_StructDef Ptr sdef)
where:
sdef
Structure definition for which offset is needed.

Determining the Names Of Structures and their Tags

The IDL_StructTagNameByI ndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *1DL_Struct TagNameByl ndex(1 DL_Struct Def Ptr sdef, int index,
int neg_action, char **struct_nane)

where:

sdef

Structure definition for which name information is needed.
index

Zero based index of tag within the structure.

Structure Variables External Development Guide

Chapter 9: IDL Internals: Variables 185

msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to befilled in with a pointer to
the name of the structure. If the structure is anonymous, the string
“<Anonynous>" isreturned.

On success, apointer to the tag name is returned. On error, if the resulting call to
IDL_Message() returns to the caller, aNULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caller.

External Development Guide Structure Variables

186 Chapter 9: IDL Internals: Variables

Heap Variables

Direct access to pointer and object reference heap variables (typesIDL_TYP_PTR
and IDL_TYP_OBJREF, respectively) is not allowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) inaregular IDL variable at the IDL user level. Accessthe datain the regular
variable, then store the results back in the heap variable (viathe pointer or object
reference) when done.

Note
You can use IDL's TEMPORARY function to avoid making copies of the data.

Heap Variables External Development Guide

Chapter 9: IDL Internals: Variables 187
Temporary Variables

Asdiscussed previously, IDL maintains a pool of nhameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from evaluating expressions, and are also used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
atemporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

» All temporaries, when initially allocated, are of type IDL_TYP_UNDEF.
» Temporary variables do not have a name associated with them.

* Routinesthat check out temporaries must either check them back in or return
them as the result of the function. Once you return atemporary variable, you
cannot accessit again.

» Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If the interpreter is exiting because an
error was detected, allocated temporaries are expected, and are reclaimed
quietly. Hence, your routines need only return temporaries on normal return,
not beforeissuing errors. See “IDL Internals: Error Handling” on page 227.

The interpreter uses temporary variables to hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRI NT, MAX(FI NDGEN(100))
causes the interpreter to perform the following steps:
1. Push aconstant variable with the value 100 onto the stack.
2. Call the system function FINDGEN, passing it one argument.

3. FINDGEN returns atemporary variable which is a 100-element vector with
each element set to the value of itsindex.

4. Theinterpreter removes the arguments to FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.

External Development Guide Temporary Variables

188 Chapter 9: IDL Internals: Variables

5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX findsthe largest element in its argument (99), places that value into a
temporary scalar variable, and returns that temporary variable as its resuilt.

7. Theinterpreter removes the argument to MAX from the stack. Thiswas the
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX isthen pushed onto the
stack.

8. ThePRINT system procedureis called with asingle argument, which isthe
temporary scaar variable from MAX. It prints the value of the variable and
returns.

9. Theinterpreter removes the argument to PRINT from the stack, and returns it
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained viathe IDL_Gettmp() function:
IDL_VPTR I DL_GCett np(void);

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to atemporary
variable. This variable must be returned to the pool of temporary variables (with a
call toIDL_Deltmp()) or be returned as the val ue of a system function before control
returns to the interpreter, or an error will occur.

Creating a Temporary Array

Temporary array variables can be obtained viathe IDL_M akeTempArray()
function:

char *1DL_MakeTenpArray(int type, int n_dim IDL_MEMNT dinf],
int init, IDL_VPTR *var)

where:

type

The type code for the resulting array. See “ Type Codes’ on page 168.
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of this value.

Temporary Variables External Development Guide

Chapter 9: IDL Internals: Variables 189
dim

Anarray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

 IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functions isimplemented using
this feature.

* IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be left
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING datais zeroed when
IDL_ARR_INI_NOP is specified.

* IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

Thedataareaof anarray IDL_VARIABLE isaccessiblefromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
access the data area, IDL_MakeTempArray() returns the data area pointer as its
value. Aswith IDL_Gettmp(), the variable allocated via | DL_MakeTempArray()
must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempVector () function:

char *1DL_MakeTenpVector(int type, IDL_MEMNT dim int init,
I DL_VPTR *var)

External Development Guide Temporary Variables

190 Chapter 9: IDL Internals: Variables

where:

type, init, var

These arguments are the same asfor IDL_MakeTempArray().
dim

The number of elements in the resulting vector.

Creating a Temporary Structure

TheIDL_MakeTempStruct() allows you to create an IDL structure variable using
memory allocated by IDL, in much the same way that IDL_M akeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained viathe
IDL_MakeTempStruct() function:

char *1DL_MakeTenpStruct (I DL_StructDefPtr sdef, int n_dim
IDL_MEM NT dinf], IDL_VPTR *var, int zero)

where:

sdef

A pointer to the structure definition.

n_dim

The number of structure dimensions. The constant IDL_ MAX_ARRAY_DIM
defines the upper limit of thisvalue.

dim

A Carray of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensionsin the array is given by the n_dim argument.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

The dataareaof an array IDL_VARIABLE isaccessiblefromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_MakeTempStruct() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated vial DL _M akeTempStruct()
must be returned to the pool of temporary variables (with acall to IDL_Deltmp()) or

Temporary Variables External Development Guide

Chapter 9: IDL Internals: Variables 191

be returned as the value of a system function before control returns to the interpreter,
or an error will occur.

Zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unless the caller intends to immediately copy avalid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempStructVector () function:

char *1DL_MakeTenpStructVector (I DL_StructDef Ptr sdef, |DL_MEM NT di m
I DL_VPTR *var, int zero)

where:

sdef, var, zero

These arguments are the same asfor IDL_MakeTempStruct().
dim

The number of elements in the resulting vector.

Freeing A Temporary Variable

Use IDL_Detmp() to free atemporary variable:
void I DL_Del t mp(1 DL_VPTR p)

wherep isan IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated atemporary
variable, you may not accessit again. Thereisaso amacro named IDL_DELTMP
which checksits argument to make sure it’'s atemporary, and if so, calls
IDL_Déeltmp() to return it.

External Development Guide Temporary Variables

192 Chapter 9: IDL Internals: Variables
Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns atemporary variable, while
IDL_ImportNamedArray() returns anamed variablein the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions smply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL_VPTR IDL_InportArray(int n_dim IDL_MEMNT dini], int type,
UCHAR *data, |DL_ARRAY _FREE CB free_ch, void *s)

I DL_VPTR | DL_I nport NanedArray(char *nane, int n_dim
IDL_MEM NT dinf], int type, UCHAR *data,
| DL_ARRAY_FREE_CB free_ch, void *s)

typedef void (* | DL_ARRAY_FREE CB) (UCHAR *);

where:

name

The name of the variable to be created or modified.

n_dim

The number of dimensionsin the array.

dim

Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type
The IDL type code describing the data. See“ Type Codes’ on page 168.
data

A pointer to your array data. Your datawill not be modified unless the user explicitly
modifies elements of the array using subscripts.

Creating an Array from Existing Data External Development Guide

Chapter 9: IDL Internals: Variables 193

Thetemporary variable returned by IDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also be
assigned to alonger-lived variable using IDL_Var Copy().

Note
IDL frees only the memory that it allocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described below.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when IDL freesthe
array. Thisfeature givesthe caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept asits argument a (uchar *), whichisa
pointer to the memory to be freed.

S

If the type of thevariableisIDL_TYP_STRUCT, s pointsto the blind structure
definition, as returned by IDL_MakeStruct().

External Development Guide Creating an Array from Existing Data

194 Chapter 9: IDL Internals: Variables

Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL providesits own memory allocation routines
(see “Dynamic Memory” on page 286). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that thereis aneed for 100 IDL_L ONG integers:
char *c;

c = (char *) IDL_MemAl | oc((unsigned) (sizeof(IDL_LONG * 100)
(char *) 0, IDL_MSG RET);

if (sone_error_condition) |DL_Message(.., |DL_MSG LONGIMP, .));

| DL_Menfree((void *) ¢, (char *) 0, |IDL_MSG RET);

In the normal case, the allocated memory is returned exactly asit should be.
However, if an error causes the | DL _M essage() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.

The IDL_GetScratch Function

To solve this problem, use atemporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will
reclaim the temporary variable and no dynamic memory will be lost. This frequently-
needed operation is provided by the IDL _GetScratch() function:

char *1DL_GetScratch(IDL_VPTR *p, IDL_MEMNT n_elts,
| DL_MEM NT el t_si ze)

where:

p

The address of an IDL_VPTR that should be set to the address of the temporary
variable alocated.

Getting Dynamic Memory External Development Guide

Chapter 9: IDL Internals: Variables 195

n_elts

The number of elements for which memory should be allocated.
elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
| DL_VPTR v;

c = IDL_GetScratch(&, 100L, (IDL_LONG sizeof (IDL_LONG);

if (sone error condition) |DL_Message(..., MSG LONGIMP, .. .);

I DL_Del t np(V);

Using the IDL_GetScratch() and IDL_Deltmp() functionsis similar to using
IDLMemAlloc() directly. Infact, IDL uses| DL_MemAlloc() and IDL_MemFreg()
internally to implement array variables. The important difference is that dynamic
memory doesn’'t leak when error conditions occur.

To avoid losing dynamic memory, always use the IDL_GetScratch() function in
preference to other ways of allocating dynamic memory, and use IDL_Deltmp() to
return it.

External Development Guide Getting Dynamic Memory

196 Chapter 9: IDL Internals: Variables
Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
thereare. IDL_Var GetData() can be used to obtain this information:

void | DL_Var GetData(l DL_VPTR v, |IDL_MEM NT *n, char **pd,
int ensure_sinple)

where:

Y

The variable for which datais desired.

n

The address of a variable that will hold the number of elements.
pd

The address of variable that will hold a pointer to data, cast to be apointer to a pointer
to a character (for example (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe I DL_ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit, IDL_Var GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

Accessing Variable Data External Development Guide

Chapter 9: IDL Internals: Variables 197
Copying Variables

To copy the contents of one variable to another, use the IDL _Var Copy() function:
voi d | DL_Var Copy (I DL_VPTR src, |DL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() usesthe following rules when copying variables:

e If the destination variable already has a dynamic part, this dynamic part is
released.

» The destination becomes a copy of the source.

« If the sourceisatemporary variable, IDL_Var Copy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. Thisisthe equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
specia case occurs frequently.

External Development Guide Copying Variables

198 Chapter 9: IDL Internals: Variables
Storing Scalar Values

TheIDL_StoreScalar () function setsan IDL_VARIABLE to ascalar value:

void I DL_StoreScal ar (I DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

where:

dest

AnIDL_VPTR totheIDL_VARIABLE inwhich the scalar should be stored.
type

The type code for the scalar value. See “ Type Codes’ on page 168.

value

The address of the IDL_ALLTY PES union that contains the value to store.

If dest isalocation that cannot be stored into (for example, atemporary variable,
constant, and so on), an error isissued and control returns to the interpreter.
Otherwise, any dynamic part of dest is freed and valueis stored into it.

The DL _StoreScalar Zero() function is a specialized variation of
IDL_StoreScalar (). It stores azero scalar value of any specified type into the
specified variable:

void | DL_StoreScal ar Zero(| DL_VPTR dest, int type,
| DL_ALLTYPES *val ue)

where:

dest

AnIDL_VPTRto the IDL_VARIABLE in which the scalar zero should be stored.
type

The type code for the scalar zero value. See “Type Codes’ on page 168.

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, | DL _StoreScalar () and
IDL_StoreScalar Zero() have two very useful side effects:

1. Storing ascalar value in avariable causes IDL to free any dynamic memory
currently used by that variable.

Storing Scalar Values External Development Guide

Chapter 9: IDL Internals: Variables 199

2. Theseroutines do the required error checking to make sure the variable allows
anew valueto be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returnsto its caler, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checking is
done, and you've improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

| DL_St oreScal ar Zero(&v, IDL_TYP_LONG;

Error handling is discussed further in “IDL Internals: Error Handling” on page 227.

External Development Guide Storing Scalar Values

200 Chapter 9: IDL Internals: Variables
Obtaining the Name of a Variable

The I DL _Var Name() function returns the name of avariable, constant, or expression
given its address. If theitem isanamed variable, it must be in the currently active
program unit:

char *1DL_Var Name(| DL_VPTR v)

Obtaining the Name of a Variable External Development Guide

Chapter 9: IDL Internals: Variables 201
Looking Up Main Program Variables

TheIDL_GetVar Addr () function returns the address of amain program variable,
given its name:

| DL_VPTR | DL_GCet Var Addr (char *nane)
name
Points to the null terminated name of the variable, which must be in upper case.

Thereturn value is NULL if the variable does not exist, otherwise the pointer to the
variableis returned.

Alternatively, IDL_GetVar Addr 1() will enter anew variable into the symbol table
of the main program if called with the parameter ienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation isthe same as
IDL_GetVar Addr(). Note that new variables cannot be created if a user procedure
or functionis active. IDL_GetVar Addr 1() is called as shown following:

| DL_VPTR | DL_Get Var Addr 1(char *nane, int enter)
name
Points to the null-terminated name of the variable, which must be in upper case.
ienter
Set this parameter to TRUE to create the variable if it does not already exist.

If ienter is TRUE and the specified variable name does not already exist, it will be
added to the symbol table of the main program. If ienter is FALSE,
IDL_GetVar Addr1() isequivalent to IDL_GetVar Addr ().

Note that new variables can only be created at the MAIN level. Make sure that no
user procedures or functions are active when you call these function.

External Development Guide Looking Up Main Program Variables

202 Chapter 9: IDL Internals: Variables
Looking Up Variables in Current Scope

The IDL_FindNamedVariable() function returns the address of avariable in the
current execution scope given its name:

I DL_VPTR | DL_Fi ndNanmedVari abl e(char *name, int ienter)
name
Name of the variable to find.
ienter
Set this parameter to TRUE to create the variable if it does not already exist.

If the variableisfound (or created if ienter is TRUE), itsIDL_VPTR isreturned.
Otherwise, NULL isreturned.

Note

Evenif ienter is TRUE, thisroutine can return NULL if creating the variable is not
possible due to memory constrain.

Looking Up Variables in Current Scope External Development Guide

Chapter 10:

IDL Internals:
Keyword Processing

This chapter discusses the following topics:

IDL and Keyword Processing 204
Creating Routines that Accept Keywords . 205
TheIDL_KW_PAR Structure 206

TheIDL_KW_ARR_DESC Structure ... 209

External Development Guide

Keyword Processing Options 210
Processing Keywords 211
CleaningUpt 213
Keyword Examples 214

203

204 Chapter 10: IDL Internals: Keyword Processing

IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They allow a multitude
of options to be specified to aroutine in a straightforward, easily understood way.
The price of this added power isthat it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is

well worth it.

IDL and Keyword Processing External Development Guide

Chapter 10: IDL Internals: Keyword Processing 205
Creating Routines that Accept Keywords

Asdescribed in “Adding System Routines’ on page 299, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments by OR-ing the constant
IDL_SYSFUN_DEF KEYWORDS nto theflagsfidd of the
IDL_SYSFUN_DEF2 struct passed to IDL_SysRtnAdd(), or by setting the
KEYWORDS keyword in acall to LINKIMAGE.

Routines defined in this way must be designed to handle keyword processing. A
routine that does not allow keyword processing knows that its ar gc argument gives
the number of positional arguments, and ar gv contains only those positional
arguments. In contrast, a routine that accepts keywords receives an ar gc that gives
the total number of positional and keyword arguments, and these arguments are
delivered in argv mixed together.

The function IDL_KW GetParams() is used to process keywords and separate the
positional and keyword arguments. It is passed an array of IDL_KW _PAR structures
that give information about the allowed keywords and their attributes. Finally, the
IDL_KWCleanup() function is used in certain circumstances to clean up.

More information about these routines and structures can be found in the following
sections.

External Development Guide Creating Routines that Accept Keywords

206 Chapter 10: IDL Internals: Keyword Processing
The IDL_KW_PAR Structure

The IDL_KW_PAR struct provides the basic specification for keyword processing.
The IDL_KWGetParams() function is passed a null-terminated array of these
structures. IDL_KW_PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.
IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW_PAR is:

typedef struct {
char *keyword;
UCHAR t ype;
unsi gned short nask;
unsi gned short fl ags;
int *specified;
char *val ue;

} | DL_KW PAR;

where;
keyword

A pointer to a null-terminated string. This is the name of the keyword, and must be
entirely upper case. The array of IDL_KW _PAR structures passed to
IDL_KWGetParams() must be lexically sorted by the strings pointed to by this
field. Thefinal element inthe array is signified by setting the keyword field to NULL
((char *) 0).

type

IDL_KWGetParams() automatically converts the keywords to a specified type.
Thisfield specifies the desired type code. For scalars, the only allowable types are
IDL_TYP_LONG, IDL_TYP_FLOAT, IDL_TYP_DOUBLE, and
IDL_TYP_STRING. Any type can be specified for arrays, or for no conversion,
IDL_TYP_UNDEF (0).

mask

The enable mask. Thisfield is ANDed with the mask argument to
IDL_KWGetParams() and if the result is non-zero, the keyword is accepted. If the
result is 0, the keyword isignored. This ability allows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.

The IDL_KW_PAR Structure External Development Guide

Chapter 10: IDL Internals: Keyword Processing 207

For example, the IDL graphics and plotting routines have alarge number of
keywordsin common. In addition, each routine has afew keywords that are unique to
it. Keywords are implemented using asingle shared array of IDL_KW _PAR with
appropriate values of the mask field. This technique dramatically reduces the amount
of datathat would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

Thisfield specifies specia processing instructions. It is a bit mask made by ORing
the following values:

IDL_KW_ARRAY — Set this hit to specify that the keyword must be an array.
Otherwise, ascalar isrequired.

IDL_KW_OUT — Set this bit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routine is going to change the val ue of the keyword argument,
as opposed to the more usual case of ssimply reading it. The address of the
IDL_VARIABLE will beplacedinthe IDL_VPTR pointed to by the value
field (discussed below). IDL_KW_OUT implies that no type checking or
processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for positional
arguments.

A standard approach to find out if an IDL_KW_OUT parameter ispresentina
call to asystem routine isto specify IDL_TYP_UNDEF (0) for the typefield
andIDL_KW_OUT |IDL_KW_ZERO for flags. TheIDL_VPTR pointed to
by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

IDL_KW_VIN — Set this bit to indicate that the keyword parameter isan
input parameter passed by reference. The address of the IDL_VARIABLE or
expression is stored in the value field aswith IDL_KW_OUT. Expressions
and/or constantsarevalid. If IDL_KW _VIN isspecified, IDL_KWCleanup()
must be called withalDL_KW_MARK parameter before
IDL_KWGetParams() iscalled. IDL_KWCleanup() must be called with a
IDL_KW_CLEAN parameter before your routine exits to properly return
temporary variables that may have been alocated by IDL_ KW GetParams().

IDL_KW_ZERO — Set this bit in order to zero the C variable pointed to by
the value field before parsing the keywords. This means that the object pointed
to by value will always be zero unless it was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

External Development Guide The IDL_KW_PAR Structure

208

Chapter 10: IDL Internals: Keyword Processing

 IDL_KW_VALUE — If thishit is set and the specified keyword is present and
non-zero, the low 12 bits of thisfield (flags) will be bitwise ORed with the
longword pointed to by the value field. Note that thisimplies the
IDL_TYP_L ONG type code, and isincompatible with the
IDL_KW_ARRAY and IDL_KW_OUT flags.

specified

The address of a C int variable that will be set to TRUE (non-zero) or FALSE (0)
based on whether the routine was called with the keyword present. This field should
be set to NULL ((int *) 0) if thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield is a pointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONGS64, IDL_ULONGS4, float,
double, or IDL_STRING).

In the case of aread-only array, valueisapointer toan IDL_KW_ARR_DESC,
whichisdiscussedin“The IDL_KW_ARR_DESC Structure” on page 209. In the
case of an output variable (i.e., theIDL_KW_OUT flag isset), thisfield should point
toan IDL_VPTR that will befilled by IDL_KW GetParams() with the address of
the keyword argument.

The IDL_KW_PAR Structure External Development Guide

Chapter 10: IDL Internals: Keyword Processing 209
The IDL_KW_ARR_DESC Structure

When akeyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct {
char *dat a;
int nmn;
int nmax;
int n;
} 1 DL_KW ARR_DESC;
where:
data

The address of a C array to receive the data. This array must be of the C type mapped
into by thetypefield of theIDL_KW_PAR struct. For example, IDL_TYP_LONG
mapsinto aC IDL_L ONG. There must be nmax elementsin the array.

nmin

The minimum number of elements allowed.
nmax

The maximum number of elements allowed.
n

The number of elements actually present. Unlike the other fields, thisfield is set by
IDL_KWGetParams().

External Development Guide The IDL_KW_ARR_DESC Structure

210 Chapter 10: IDL Internals: Keyword Processing
Keyword Processing Options

The following cases occur in keyword processing:
Scalar Input-Only

For scalar, input-only keywords, the user never seesthe IDL_VARIABLE passed as
the keyword argument. Instead, the value of the I DL _VARIABLE is converted to the
type specified by the type field of the IDL_KW_PAR struct and is placed into the C
variable specified by the value field.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field pointstoan IDL_KW_ARR_DESC struct that supplies the added information
required to convert the passed array elements to the specified type and place them
into aC array for easy access. As part of this process, the number of array elements
passed is checked to be within the range specified in the IDL_KW_ARR_DESC
struct, and if no error results, the number is written into the n field of that struct.

It isworth noting that input-only array keywords don’t pass information about the
number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

Thiscase occursif theIDL_KW_OUT or IDL_KW _VIN flagissetinthe
IDL_KW_PAR struct. In this case, you receive the IDL_VPTR to the actua
keyword argument, and you must do all error checking and type conversion yourself,
just like with positional arguments. Thisis certainly the most flexible method.
However, the other two cases are much easier to use, and are suitable for the vast
majority of keywords.

Keyword Processing Options External Development Guide

Chapter 10: IDL Internals: Keyword Processing 211
Processing Keywords

ThelDL_KWGetParams() function is used to process keywords.
IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

« Verify that the keywords passed to the routine are all alowed by the routine.
e Carry out the type checking and conversions required for each keyword.

« Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in argv and copy them in order into the plain_args array.

¢ Return the number of plain arguments copied into plain_args.
IDL_KWGetParams() has the form:

int | DL_KWeet Parans(int argc, |DL_VPTR *argv, char *argk,

| DL_KWPAR *kw_|ist, IDL_VPTR plain_args[], int mask)
where:
argc
The number of arguments passed to the caller. Thisisthefirst parameter to al system
routines.
argv

The array of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisis the third
parameter to all system routines that accept keyword arguments.

kw_list

An array of IDL_KW_PAR structures (see “The IDL_KW_PAR Structure” on
page 206) that specifies the acceptable keywords for thisroutine. Thisarray is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

plain_args

Anarray of IDL_VPTR intowhichthelDL_VPTRsof the positional argumentswill
be copied. This array must have enough elements to hold the maximum possible

External Development Guide Processing Keywords

212

Chapter 10: IDL Internals: Keyword Processing

number of positional arguments, asdefinedin IDL_SYSFUN_DEF2. See
“Registering Routines’ on page 324.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_KW GetParams() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and value fields
with IDL_KW_ZERO set), can become significant, especially when more than afew
keyword array elements (e.g., 5to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN asthe first keyword array
element. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KWGetParams() into a more efficient form the first time
it isused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static I DL_KWPAR kw pars[] = {

{ "DOUBLE', IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) },
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KWZERO 0, CHARA(f) },
{ NULL }

b

To use fast scanning, it would be written as:

static IDL_KWPAR kw pars[] = {

| DL_KW FAST_SCAN,

{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, & _there, CHARA(d) },
{"FLOAT", IDL_TYP_FLOAT, 1, |DL_KWZERO, 0, CHARA(f) },
{ NULL }

b

Processing Keywords External Development Guide

Chapter 10: IDL Internals: Keyword Processing 213
Cleaning Up

TheIDL_KW(Cleanup() function is necessary if the keywords allowed by a system
routine include any input-only keywords of type IDL_TYP_STRING, or if the
IDL_KW_VIN flag is used by any of the keyword IDL_KW _PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that must be
cleaned up after they’ve outlived their usefulness. Call IDL_KWCleanup() as
follows:

voi d | DL_KWO eanup(int fcn)

where fcn specifies the operation to be performed, and must be one of the following
values:

IDL_KW_MARK
Mark the stack by placing the statement:
| DL_KWC eanup(| DL_KW MARK) ;

abovethecall to IDL_KWGetParams(). In addition, you will need to make a call
with IDL_KW_CLEAN at the end.

IDL_KW_CLEAN

Clean up fromthe last call to IDL_KWGetParams() by placing the line:
| DL_KWC eanup(| DL_KW CLEAN) ;
just above the return statement.

External Development Guide Cleaning Up

214

Chapter 10: IDL Internals: Keyword Processing

Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changes the value of READWRITE to 42 if itis
present, and returns. Each lineis numbered to make discussion easier. These numbers
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in asimple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 35-39.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
C 15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#i ncl ude <stdio. h>
#i ncl ude <export. h>

voi d keyword_deno(int argc, |IDL_VPTR *argv, char *argk)
{
int i;
| DL_ALLTYPES newval ;

static int d_there, s_there, arr_there;

static | DL_LONG I;

static float f;

static double d;

static | DL_STRI NG s;

static I DL_LONG arr_data[10];

static | DL_KWARRAY_DESC arr_d = {(char *) arr_data, 3, 10, 0};
static | DL_VPTR var;

static | DL_KWPAR kw pars[] = { | DL_KW FAST_SCAN,

{ "ARRAY", IDL_TYP_LONG 1, |DL_KWARRAY, &arr_there,
| DL_CHARA(arr_d) 1},

{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, |DL_CHARA(d) },

{ "FLOAT", IDL_TYP_FLQAT, 1, IDL_KWZERO 0, IDL_CHARA(f) 1},

{ "LONG', IDL_TYP_LONG 1, IDL_KWZERQ IDL_KW VALUE| 15, O,
I DL_CHARA(I) 1},

{ "READWRI TE", |DL_TYP_UNDEF, 1, |DL_KWQUT| I DL_KW ZERO,
0, | DL_CHARA(var) 1},

{ "STRING', TYP_STRING 1, 0, &s_there, |DL_CHARA(S) },

{ NULL }

b

Keyword Examples External Development Guide

Chapter 10:

IDL Internals: Keyword Processing

215

30
31
32
33
34
35
36
37
38
39
40
41
42
43
C 44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

I DL_KWC eanup(1 DL_KW MARK) ;

(void) I DL_KWGet Parans(argc, argv, argk, kw pars, NULL, 1);

printf("LONG <%present>\n", | ?2 "": "not ");
printf("FLOAT: %\n", f);

printf("DOUBLE: <¥%spresent>\n", d_there ? "": "not ");
printf("STRING %\n", s _there ? |IDL_STRI NG STR(&s)

printf("ARRAY: "):

if (arr_there)
for (i =0; i <arr_d.n; i++)
printf(" %", arr_datali]);
el se
printf("<not present>");
printf("\n");
printf("READWRI TE: ");

if (var) {
IDL_Print(1, &var, (char *) 0);
newal .| = 42;
I DL_StoreScal ar(var, TYP_LONG &newal);
} else {
printf("<not present>");
}
printf("\n");
I DL_KWO eanup(| DL_KW CLEAN) ;
}

"<not present>");

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the output:

LONG <not present>
FLCAT: 0.000000

DOUBLE: <not present>
STRING <not present>
ARRAY: <not present>
READWRI TE: <not present>

Executing it again with keywords specified:

A = 56
KEYWORD DEMO, /LONG FLOAT=2, DOUBLE=34, $

STRI NG="hel | 0", ARRAY=FI NDGEN(10), READWRI TE=A
PRINT, 'Final Value of Al ', A

External Development Guide

Keyword Examples

216

Chapter 10: IDL Internals: Keyword Processing

gives the output:

LONG <present>

FLOAT: 2. 000000

DOUBLE: <present >

STRING hello

ARRAY: 012345673829
READVRI TE: 56

Fi nal Val ue of A 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

7

The DL _StoreScalar () function used on line 51 requires the scalar to be provided in
an IDL_ALLTYPES struct.

9

These variables are used to determine if agiven keyword is present. Note that all the
keyword-related variables are declared static. Thisis hecessary so that the C compiler
can build the IDL_KW _PAR structure at compile time.

10-13

C variables to receive the scalar read-only keyword values.
14

C array to be used for the ARRAY read-only array keyword.
15

The array descriptor used for ARRAY. arr_data is the address where the array
contents should be copied. The minimum number of elements alowed is 3, the
maximum is 10. The value set in the last field (0) is not important, because the
keyword processing routine never readsits value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword usesthe IDL_KW_OUT flag, so the routine receives an
IDL_VPTR instead of aprocessed value.

18

The keyword definition array. Notice that all of the keywords are ordered lexically
(ASCII) and that thereisa NULL entry at the end (line 28). Also, al of the mask
fieldsareset to 1, asisthe mask argument to IDL_ KW GetParams() on line 33. This
means that all of the keywords in the list are to be considered valid in this routine.

Keyword Examples External Development Guide

Chapter 10: IDL Internals: Keyword Processing 217

ThelDL_KW_FAST_SCAN macro is used to define the first keyword array element,
speeding the processing of along IDL_KW_PAR list.

19-20

ARRAY is defined to be aread-only array keyword of IDL_TYP_LONG. The
arr_there variable will be set to non-zero if the keyword is present. In that case, the
array contentswill be placed in the variable arr_data and the number of elements
will beplacedintoarr_d.n.

21

DOUBLE isascalar keyword of IDL_TYP_DOUBLE. It usesthe variabled_there
to know if the keyword is present.

22

FLOAT isanIDL_TYP_FLOAT scaar keyword. It does not use the specified field
of theIDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it usesthe IDL_KW_ZERO flag to make sure that the variable f is always
zeroed. If the keyword is present, the value will be written into f, otherwise it will
remain 0. The important point isthat the routine can’t tell the difference between the
keyword being absent, or being present with a user-supplied value of zero. If this
distinction doesn’'t matter, such as when the keyword is to serve as an on/off toggle,
use this method. If it does matter, use the specified field as demonstrated with the
DOUBLE keyword, above.

23-24

LONG isascaar keyword of IDL_TYP_LONG. It setsthe IDL_KW_ZERO flag
to get the variable | zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable .

25-26

ThelDL_KW_OUT flag indicates that the routine wants getsthe IDL_VPTR for
READWRITE if it ispresent. Since IDL_KW _ZERO is aso set, the variable var
will be zero unless the keyword is present. The specification of IDL_TYP_UNDEF
here indicates that there is no type conversion or processing applied to
IDL_KW_OUT keywords.

27
This keyword is included here to force the need for IDL_KWCleanup() on line 58.

External Development Guide Keyword Examples

218

Chapter 10: IDL Internals: Keyword Processing

28

Every array of IDL_KW_PAR structs must end with a NULL entry.

31

Mark the stack in preparation for the IDL_KW Cleanup() call on line 58.
33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35
Thel variable will be 0 if LONG isnot present, and 1 if itis.
36

Thef variable will always have some usable value, but if it is zero thereis no way to
know if the keyword was actually specified or not.

37-38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Vaues’ on page 221.

39-45

Accessing the ARRAY keyword issimple. Thearr_there variable indicates if the
keyword is present, and arr_d.n gives the number of elements.

47 - 55

Sincethe READWRITE keyword is accessed viatheargument’'sIDL_VPTR, weuse
theIDL_Print() function to print its value. This has the same effect as using the user-
level PRINT procedure when running IDL. See“Output of IDL Variables’ on

page 262. Then, we changeitsvalue to 42 using IDL_StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of thistype of output (printf and
IDL_PRINT()) in your own code.

57

Theuse of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, whichisof IDL_TYP_STRING.

Keyword Examples External Development Guide

Chapter 11:

IDL Internals:
String Processing

This chapter discusses the following topics:

String Processingand IDL 220 DdetingStrings 223
Accessing IDL_STRING Values 221 SettinganIDL_STRING Value 224
CopyingStrings. 222 Obtaining a String of aGiven Length 225

External Development Guide 219

220 Chapter 11: IDL Internals: String Processing
String Processing and IDL

A number of functions exist to simplify the processing of IDL_STRING descriptors.
By using these functions instead of doing your own string management, you can
eliminate a common source of errors.

String Processing and IDL External Development Guide

Chapter 11: IDL Internals: String Processing 221
Accessing IDL_STRING Values

It isimportant to realize that the sfield of an IDL_STRING struct does not contain a
valid string pointer in the case of anull string (i.e., when slen is zero). A common
error that can cause IDL to crash isillustrated by the following code fragment:

void print_str(IDL_STRI NG *s)
{

printf("%", s->s);

}

The problem with this code is that it fails to consider the case where the argument s
describes a null string. The proper way to write this code is as follows:

void print str(lIDL_STRI NG *s)

{
printf("%", |IDL_STRING STR(S));
}

Themacro IDL_STRING_STR takes asitsargument apointer toan IDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated string,
otherwise it returns the string pointer from the struct. Consistent use of this macro
will avoid the most common sort of error involving strings.

External Development Guide Accessing IDL_STRING Values

222 Chapter 11: IDL Internals: String Processing
Copying Strings

It is often necessary to copy one string to another. Assume, for example, that there are
two string descriptors s src and s_dst, and that s_dst contains garbage. It would
almost suffice to simply copy the contentsof s srcinto s dst. The reason thisis not
guite correct isthat both descriptors would then contain a pointer to the same string.
This aliasing can cause some strange effects, or even cause IDL to crash if one of the
two descriptorsis freed and the string from the other is accessed.

IDL_StrDup() takes care of this problem by allocating memory for a second copy of
the string, and replacing the string pointer in the descriptor with a pointer to the fresh
copy. Naturally, if the string descriptor is for anull string, nothing is done.

void IDL_StrDup(lI DL_STRING *str, |DL_MEM NT n)
where:
str

Pointer to one or more IDL_STRING descriptors which need their strings
duplicated.

n
The number of descriptors.
The proper way to copy astring is:

s_dst = s_src; /* Copy the descriptor */
I DL_StrDup(&s_dst, 1L); /* Duplicate the string */

Copying Strings External Development Guide

Chapter 11: IDL Internals: String Processing 223
Deleting Strings

Beforean IDL_STRING can be discarded or re-used, it isimportant to rel ease any
dynamic memory it might be using. The IDL _Str Delete() function should be used to
delete strings:

void IDL_StrDel ete(l DL_STRI NG *str, |DL_MEM NT n)
where:
str
Pointer to one or more IDL_STRING descriptors which need their contents freed.
n
The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by the IDL_STRINGs. The
descriptors contain garbage once this has been done, and their contents should not be
used.

TheIDL_Detmp() function automatically calls IDL_StrDelete() when returning
temporary variables of type IDL_TYP_STRING, so it isnot necessary or desirable
tocal IDL_StrDelete() explicitly in this case.

External Development Guide Deleting Strings

224 Chapter 11: IDL Internals: String Processing
Setting an IDL_STRING Value

The IDL_StrStore() function should be used to store a null-terminated C string into
an IDL_STRING descriptor:

void IDL_StrStore(l DL_STRING *s, char *fs)
where;

S

Pointer to an IDL_STRING descriptor. This descriptor is assumed to contain
garbage, so call IDL_StrDelete() on it first if thisis not the case.

fs
Pointer to the null-terminated string to be copied into s.

IDL_StrStore() isuseful for placing astring valueinto an IDL_STRING. This
IDL_STRING does not need to be acomponent of a VARIABL E, which makesthis
function very flexible.

One often needs atemporary, scalar VARIABLE of typeIDL_TYP_STRING with
agiven value. Thefunction IDL_Str ToOSTRING() fills this need:

I DL_VPTR I DL_Str ToSTRI NG char *s)
where:

S

Pointer to the null-terminated string to be copied into the resulting temporary
variable.

Setting an IDL_STRING Value External Development Guide

Chapter 11: IDL Internals: String Processing 225
Obtaining a String of a Given Length

Sometimes you need to make sure that the string in an IDL_STRING descriptor has
aspecific length. The IDL_StrEnsurel ength() function can be used in this case:

void I DL_StrEnsureLength(lDL_STRING *s, int n)
where:
S
A pointer to the IDL_STRING that will have its length checked.
n

The number of characters the string must be able to contain, not including the
terminating null character.

If the I DL_STRING passed already has enough room for the specified number of
characters, it is not re-allocated. Otherwise, the existing string is freed and a new
string of sufficient length is allocated. In either case, the slen field of the
IDL_STRING will be set to the requested length.

If anew dynamic string is allocated, it will contain garbage val ues because
IDL_StrEnsurel ength() only alocates memory of the specified size, it does not
copy avalueinto it. Therefore, the calling routine must copy a null-terminated string
into the new dynamic string.

External Development Guide Obtaining a String of a Given Length

226 Chapter 11: IDL Internals: String Processing

Obtaining a String of a Given Length External Development Guide

Chapter 12:

IDL Internals:
Error Handling

This chapter discusses the following topics:

MessageBlocks 228 Issuing OpenVMSMessages 235
Issuing Error Messages 230 Looking Up A Message Code by Name .. 236
Specifying errno Explicitly 234 Checking Arguments 237

External Development Guide 227

228

Chapter 12: IDL Internals: Error Handling

Message Blocks

IDL maintains messages in opague data structures known as Message Blocks. A
message block contains all the messages for alogically related area.

When IDL starts, there is only one defined block named IDL_MBLK_CORE,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DL Ms) each define amessage block for their error messages when
they are loaded (See“Dynamically Loadable Modules’ on page 337 for adescription
of DLMs).

There are often two versions of IDL message module functions. Those with names
that end in FromBlock require an explicit message block. The versions that do not
end in FromBlock usethe IDL_MBLK_CORE message block.

To define a message block, you must supply an array of IDL_M SG_DEF structures:

typedef struct {
char *nane;
char *format;
} | DL_MSG _DEF;

where:
name

A string giving the name of the message. We suggest that you adopt a consistent
unique prefix for all your error codes. All message codes defined by Research
Systems start with the prefix IDL_M _. You should not use this prefix when naming
your blocksin order to avoid unnecessary name collisions.

format

A format string, in printf(3) format. There is one extension to the printf formatting
codes: If the first two letters of the format are “%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message is issued. For example:

IDL> print, undefined_var
% PRI NT: Variable is undefined: UNDEFI NED VAR

The IDL_M essageDefineBlock () function is used to define a new message block:

| DL_MSG BLOCK | DL_MessageDef i neBl ock
(char *block_nane, int n, |DL_MSG DEF *defs)

The argumentsto | DL_M essageDefineBlock () are as follows:

Message Blocks External Development Guide

Chapter 12: IDL Internals: Error Handling 229

block_name

Name of the message block. This can be any string, but it will be case folded to upper
case. We suggest a single word be used. It isimportant to pick names that are
unlikely to be used by any other application. All blocks defined by Research Systems
start with the prefix IDL_MBLK _. You should not use this prefix when naming your
blocksin order to avoid unnecessary confusion.

n
of message definitions pointed at by defs.
defs

An array of message definition structs, each one supplying the name and format
string for amessage in printf(3) format. The memory used for this array, including
the strings it points at, must be in permanently allocated read-only storage. IDL does
not copy this memory, but simply usesit in place.

If possible, the new message block is defined and an opague pointer to it is returned.
This pointer must be supplied to subsequent calls to the “FromBlock” message
modul e functions to identify the message block agiven error isbeing issued from. If
it is not possible to define the message block, this function returns NULL.

The message functions require a message block pointer and the negative index of the
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preprocessor
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contains
two messages:

static | DL_MSG DEF nmsg_arr[] =
{
#define M. TM_|I NPRO 0
{ "M.TM.I NPRO', "ONThis is froma | oadabl e nodul e procedure."
b
#define M.TM I NFUN -1
{ "M_TM.I NFUN", "OWNThis is froma | oadabl e nodul e function."
},
s

msg_bl ock = | DL_MessageDefi neBl ock(" Test nodul e",

si zeof (nmsg_arr)/sizeof (nmsg_arr[0]),
nsg_arr);

External Development Guide Message Blocks

230 Chapter 12: IDL Internals: Error Handling
Issuing Error Messages

Errors are reported using the IDL_M essage() or | DL_M essageFromBlock ()
functions. These functions are patterned after the standard C library printf() function.

void | DL_Message(int code, int action, ...)
voi d | DL_MessageFronBl ock(| DL_MSG BLOCK bl ock, i nt code,int action,

)
The arguments to are as follows:

block

Pointer to the IDL message block from which the error should beissued. If block isa
NULL pointer, the default IDL core block (IDL_MBLK_CORE) is used.

code

Thisisthe error code associated with the error message to be issued. There are two
error codesthat are available to programmers adding system routinesto IDL. The use
of these codesis described below. See“IDL_M_GENERIC” on page 233 and
“IDL_M_NAMED_GENERIC” on page 233.

action

IDL_M essage() can take a number of different actions after issuing the error
message. The action to take is specified by the action argument:

IDL_MSG_RET

Use this argument to make | DL _M essage() return to the caller after issuing
the error message. In this case, the calling routine can either continue or return
to the interpreter asit seesfit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is smply
informational in nature. The message is output and DL _M essage() returnsto
the caller. Normally, IDL_M essage() setsthe values of IDL's
IERROR_STATE system variables, but not in this case.

IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message isissued.
This code should never be used in a system function or procedure—it is
intended for use in other sections of the system.

Issuing Error Messages External Development Guide

Chapter 12: IDL Internals: Error Handling 231

IDL_MSG_LONGJIMP

Use this argument to cause | DL _M essage() to exit directly back to the
interpreter after issuing the message. In this case, IDL_M essage() does not
returntoitscaller. It isan error to use this action code in code not called by the
IDL interpreter since the resulting call to longjmp() will be invalid.

IDL_MSG_IO_LONGJIMP

Thisaction codeis exactly likeIDL_MSG_LONGJIMP, except that itis
issued in response to an input/output error. This code is only used by the I/O
module. User written system routines should use the existing I/O routines, so
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code.
They modify the normal behavior of IDL_M essage():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything elsein the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the Unix more command to display the output. This
option exists primarily for use by the IDL compiler, and is unlikely to be of
interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL _M essage() prefixes the output message with the string
contained in IDL’s'M SG_PREFI X system variable.
IDL_MSG_ATTR_NOPREFI X suppresses this prefix string.

IDL_MSG_ATTR_QUIET

If the IDL_MSG_INFO action has been specified and this bit mask has been
included, and the IDL user has IDL's !QUIET system variable,
IDL_M essage() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE

Set this code to inhibit the traceback portion of the error message.
IDL_MSG_ATTR_BELL

Set this code to ring the bell when the message is output.

External Development Guide Issuing Error Messages

232 Chapter 12: IDL Internals: Error Handling

IDL_MSG_ATTR_SYS

IDL_Message() always issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file’, while the underlying system reason
for the error is“no such directory”.

The Unix system provides a global variable named errno for communicating
such system level errors. The OpenVMS Standard C Library (stdio) also
providesthisvariable. Whenever acall to asystem function fails, it returnsal,
and puts an error code into errno that specifies the reason for the failure. Other
functions, such as those provided by the standard C library, do not set errno.
Note that the OpenVMS stdio contains emulations of the Unix system callsin
addition to the functions normally found in the Unix stdio. These functions do
set errno.

Specifying IDL_MSG_ATTR_SYStellsIDL_Message() to check errno,
and if it is non-null, to issue a second line containing the text of the system

€rror message.

Specify IDL_MSG_ATTR_SYSonly if you are calling IDL_M essage() as
the result of afailed Unix system call. Under OpenVMS, this applies to those
functions that emulate the Unix system calls. Otherwise, errno might contain
an unrelated garbage value resulting in an incorrect error message.

The Macintosh and Microsoft Windows operating systems have errno for
compatibility with the expectations of C programmers, but typically do not set
it. On these operating systems, it is possible to specify
IDL_MSG_ATTR_SYS, but it has no effect.

The message format string (specified by the code argument) specifies aformat
string to be used for the error message. Thisformat string is exactly like those
used by the standard C library printf() function. Any arguments following
action are taken to be arguments for this format string.

Issuing Error Messages External Development Guide

Chapter 12: IDL Internals: Error Handling 233

Error Codes

As mentioned above, Research Systems has reserved two error codes for use by
writers of system routines. They are:

IDL_M_GENERIC

This message code simply specifies aformat string of “%s’. The first argument after
action istaken to be a null-terminated string that is substituted into the format string.
For example, the C statement:

| DL_Message(| DL_M GENERI C, | DL_MSG LONGIMP, “Error! Help!")
causes IDL to abort the current routine and issue the message:

% Error! Hel p!
IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name of the
system routinein front of the error string. For example, assuming that the name of the
routineisMY_PROC, the C statement:

| DL_Message(| DL_M NAMED_CGENERI C, | DL_MSG LONGIMP,
"Error! Help!")

causes DL to interrupt the current routine and issue the message:
% My PROC. Error! Hel p!

Choosing an Error Code
The choice of which code to use depends on the context in which the messageis
issued, but IDL_M_NAMED_GENERIC isusualy preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into a temporary
buffer, and then supply the buffer asthe argument to IDL_M essage(). For example,
executing the code:

char buf[128];
int unit = 23;

sprintf(buf, "Help! Error nunber %.", unit);
| DL_Message(| DL_M GENERI C, | DL_MSG LONGIMP, buf);

interrupts the current routine and issues the message:
% Hel p! Error nunber 23.

External Development Guide Issuing Error Messages

234 Chapter 12: IDL Internals: Error Handling
Specifying errno Explicitly

There are times when specifying the IDL_M SG_ATTR_SY S modifier code in the
action argument to | DL_M essage() isinadequate. This situation usually occurs when
your code attempts to perform some cleanup operation when an operating system call
fails before calling IDL_M essage() and this cleanup code might alter the value of
errno. In such cases, it is preferable to use the IDL M essageErrno() or
IDL_MessageErrnoFromBlock() functions to issue the message:

void | DL_MessageErrno(int code, int errno, int action, .)
voi d | DL_MessageErrnoFr onBl ock(| DL_MSG BLOCK bl ock, int code, int
errno, int action, ...)

These function differs from IDL_M essage() in two ways:

1. Thereisan additional argument used to specify the value of errno. See the
discussion of errnoin“IDL_MSG_ATTR_SYS’ on page 232 for additional
information about errno and its use.

2. ThelDL_MSG_ATTR_SY S modifier code for the action argument is
ignored.

Specifying errno Explicitly External Development Guide

Chapter 12: IDL Internals: Error Handling 235
Issuing OpenVMS Messages

The IDL_Message() function is used when issuing genera errors, or issuing Unix-
specific errors. Thisincludes those errors reported by standard C library functions
under any operating system, as such libraries generally emulate the Unix
functionality reasonably well. However, IDL_Message() is not adequate for
reporting errors that come from OpenV MS system routines (System Services and
Run-Time Library). Therefore, OpenVM S-specific errors are reported using the
IDL_MessageVM () or IDL_M essageVM SFromBlock() function.

The DL _MessageVM () function is only available under OpenVMS, and should
only be used in code that can’t work under other operating systems due to system
dependencies. In cases where either would work, always use IDL_M essage().

IDL_MessageVM () isvery smilar to IDL_M essage():

void | DL_MessageVMS(int code, int errl, int err2, int action, .)
voi d | DL_MessageVMSFr onBl ock(| DL_MSG BLOCK bl ock, int code, int
errl, int err2, int action, ...)

The arguments are identical to those for IDL_M essage() (see “Issuing Error
Messages’ on page 230) with the following exceptions:

errl

IDL_MessageVM () always issues asingle line error message that describes the
problem from the IDL point of view. The err 1 argument is used to specify that a
second line containing a system error message should also be issued, alowing the
user to get a complete picture of what went wrong. If this argument is 0, no system
error isissued. Otherwise, it should be set to the OpenVMS status code for the failed
operation.

err2

Some OpenV M S system routines return 2 error codes. For example, RM S often does
this. If there are 2 error codes, err 2 should be used to report the second one. If this
argument is 0, no second system error is issued.

External Development Guide Issuing OpenVMS Messages

236 Chapter 12: IDL Internals: Error Handling
Looking Up A Message Code by Name

Given amessage block pointer and the name of a message from that block, the
IDL_M essageNameToCode() function returns the message code that corresponds to
it. Thisis especially useful for dynamically loadable modules that need to throw
errors from the IDL core block. The actual error codes are subject to change between
IDL releases, so looking them up thisway at run-time allows a given DLM to work
with different IDL versions.

int | DL_MessageNaneToCode(| DL_MSG BLOCK bl ock, char *nane)

where:
block

Message block name should be trandated against, or NULL to use the default core
IDL block.

name

The message name for which the code is desired. Name is case sensitive, and should
usually be specified as uppercase.

IDL_M essageNameToCode () returns the message code, or O if it is not found.

Looking Up A Message Code by Name External Development Guide

Chapter 12: IDL Internals: Error Handling 237
Checking Arguments

IDL allows auser to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for avalid number of arguments, but the
routine itself must check the validity of types. Thistask consists of examining the
argv argument to the routine checking the type and flags field of each argument for
suitability. The IDL_StoreScalar () function (see“ Storing Scalar Values’ on

page 198) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question. The
macros check for adesired condition and use the IDL _M essage() function with the
IDL_MSG_LONGJIMP action to return to the interpreter if an argument type
doesn’'t agree. Some of these macros overlap, and some are contradictory. You should
select the smallest set that covers your requirements for each argument. For an
example that uses one of these macros, see “ Example: A Complete Numerical
Routine Example (FZ_ROOTS2)" on page 306.

IDL_EXCLUDE_UNDEF

The argument must not be of type IDL_TYP_UNDEF. This condition is usually
imposed if the argument is intended to provide some input information to the routine.

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or atemporary variable (i.e., the argument must
be a named variable). Specify this condition if you intend to return avalue in the
argument. Returning avalue in atemporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causing it
to be freed for re-use.

The IDL_VarCopy() and IDL_StoreScalar () functions automatically check their
destination and issue an error if it is an expression. Therefore, if you are using one of
these functions to write the new value into the argument variable, you do not need to
perform this check first.

External Development Guide Checking Arguments

238

Chapter 12: IDL Internals: Error Handling

IDL_EXCLUDE_FILE

The argument cannot be afile variable (as returned by the IDL ASSOC) function.
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check isaso handled by the IDL_ENSURE_SIMPLE
macro, which also excludes structure variables.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.
IDL_EXCLUDE_COMPLEX

The argument cannot be IDL_TYP_COMPLEX.
IDL_EXCLUDE_STRING

The argument cannot be IDL_TYP_STRING.
IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.
IDL_ENSURE_ARRAY

The argument must be an array.
IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.
IDL_ENSURE_PTR

The argument must be a pointer heap variable.
IDL_ENSURE_SCALAR

The argument must be a scalar.
IDL_ENSURE_STRING

The argument must be IDL_TYP_STRING.
IDL_ENSURE_SIMPLE

The argument cannot be afile variable, a structure variable, a pointer heap variable,
or an object reference heap variable.

IDL_ENSURE_STRUCTURE
The argument must be IDL_TYP_STRUCT.

Checking Arguments External Development Guide

Chapter 13:

IDL Internals:
Type Conversion

This chapter discusses the following topics:

Converting Argumentsto C Scalars 240 Converting to Specific Types
General Type Conversion 241

External Development Guide

239

240

Chapter 13: IDL Internals: Type Conversion

Converting Arguments to C Scalars

TheIDL_L ongScalar () and IDL_DoubleScalar () functions convert the value of
their argument to a C scalar. In addition, IDL_MEMINT Scalar () and
IDL_FILEINT Scalar () exist for processing memory and file sizes. The converted
value is returned as the function value. The functions are defined as:

IDL_LONG | DL_LongScal ar (1 DL_VPTR p)

doubl e | DL_Doubl eScal ar (| DL_VPTR p)

I DL_MEM NT | DL_MEM NTScal ar (1 DL_VPTR p)

I DL_FI LEI NT | DL_FI LEI NTScal ar (| DL_VPTR p)

If these functions are unable to perform the conversion (e.g., the argument is afile
variable, an array, etc.), they issue adescriptive error and jump back to the interpreter.
By using these functions, you avoid having to do any of the type checking described
in “Checking Arguments’ on page 237. |DL_DoubleScalar () works exactly like
IDL_L ongScalar () except that it returns a double-precision, floating-point value.

For example, the following IDL system function (named PRINT _LONG) prints the
value of itsfirst argument, converted to long integer:

I DL_VPTR print_long(int argc, |DL_VPTR argv[], char *argk)
{

}
Executing it as:

printf("%\n", IDL_LongScal ar(argv[0]));

PRI NT_LONG, 23D
gives the output:
23
as expected, while the statement:
PRI NT_LONG, FI NDGEN(10)
causes the error:

% PRI NT_LONG. Expression nust be a scalar in this context:
<FLQAT Array(10)>
% Execution halted at $MAIN$.

because it is not possible to convert an array (the result of FINDGEN) to a scalar.

Converting Arguments to C Scalars External Development Guide

Chapter 13: IDL Internals: Type Conversion 241
General Type Conversion

TheIDL_BasicTypeConversion() function provides general purpose type

conversion:
| DL_VPTR | DL_Basi cTypeConversion(int argc, |DL_VPTR argv][]
int type)
where:
argc

The number of IDL_VPTRs contained in argv.
argv
An array of pointersto VARIABL E arguments.

type
The desired type code of the result. See “Type Codes’ on page 168.

If argcis, thisfunction returns apointer to atemporary VARIABL E containing the
value of argv[0] converted to the type specified by the type argument. If the variable
is aready of the correct type, the variable itself is returned.

If argv isgreater than 1, argv[1] istaken to be an offset into the variable specified by
argv[0], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy the
reguirements of the dimensions given. This second form does not work for variables
of type string, so an error isissued in that case.

The IDL BYTE and STRING system routines (implemented by the IDL_CvtByte()
and IDL_CvtString() functions, described below) treat conversions between
variables of type byte and string in aspecia way. IDL_BasicTypeConver sion() does
not handle this special case. Instead, it smply performs a straightforward type
conversion between those types.

External Development Guide General Type Conversion

242 Chapter 13: IDL Internals: Type Conversion
Converting to Specific Types

A series of functions exist to convert VARIABL Es to specific types:

IDL_VPTR I DL_CvtByte(int argc, IDL_VPTR argv[])

IDL_VPTR I DL_CvtBytscl (int argc, |IDL_VPTR argv[], char *argk)
IDL_VPTR I DL_Cvt Fi x(int argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtUnt(int argc, IDL_VPTR argv[])

IDL_VPTR I DL_Cvt Lng(int argc, IDL_VPTR argv[])

IDL_VPTR I DL_Cvt ULng(int argc, |IDL_VPTR argv[])

I DL_VPTR I DL_Cvt Lng64(int argc, |DL_VPTR argv[])

I DL_VPTR I DL_Cvt ULng64(int argc, |IDL_VPTR argv[])

IDL_VPTR IDL_CvtFIt(int argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtDbl (int argc, IDL_VPTR argv[])

I DL_VPTR | DL_Cvt Conpl ex(int argc, IDL_VPTR argv[])

I DL_VPTR | DL_Cvt DConpl ex(int argc, IDL_VPTR argv[])

IDL_VPTR IDL_Cvt String(int argc, |IDL_VPTR argv[], char *argk)

When calling these functions, you should set the ar gk argument to NULL.

These functions are the direct implementations of the IDL commands BY TE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functionsin
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functionsisthe same as|DL_BasicTypeConversion() except
when converting between bytes and strings. Calling IDL_CvtByte() with asingle
argument of string type causes each string to be converted to a byte vector of the
same length as the string. Each array element is the character code of the
corresponding character in the string. Calling IDL_CvtString() with asingle
argument of IDL_TYP_BY TE has the opposite effect.

Converting to Specific Types External Development Guide

Chapter 14:

IDL Internals: Files
and Input/Output

This chapter discusses the following topics:

IDL and Input/Output Files............ 244
Filelnformation 245
OpeningFiles 250
ClosingFiles 253
Preventing FileClosing 254
Checking FileStatus 255

External Development Guide

Allocating and Freeing File Units 257
DetectingEndof File................. 259
Flushing BufferedData 260
Reading aSingle Character 261
Output of IDL Variables 262
Adding tothe Journa File 263

243

244 Chapter 14: IDL Internals: Files and Input/Output
IDL and Input/Output Files

On most platforms supported by IDL, file handling is built on the standard C library
stream package. For OpenVMS thisistrue only in the case of stream files—RMSis
used in al other cases.

Most system routines should not do Input/Output directly. It is amost always better
to write afunction or procedure that returns aresult, which a user can then print in
any format supported by the IDL 1/O subsystem. For this reason, only minimal I/O
abilities are available. Most stream file abilities are present, but accessto RM S files
isonly marginally supported.

If your application must perform 1/0, it is best to use stream files. Using stream files
gives your application the best chance of working with all operating systems
supported by IDL. Most of the routines associated with the standard C library 1/0
package can be used in the normal manner. Note, however, that the C library routines
listed in the following table should not be used; use the IDL-specific functions

instead.

C Library Function IDL Function
fclose() IDL_FileClos()
fdopen() IDL_FileOpen()
feof () IDL_FileEOK()
fflush() IDL_FileFlushUnit()
fopen() IDL_FileOpen()
freopen() IDL_FileOpen()

Table 14-1: Disallowed C Library Routines and Their IDL Counterparts

Note
In order to access afile opened using IDL_FileOpen() in this manner, you must
ensure that it is stdio compatible by specifying IDL_F_STDIO as part of the flag
argument to IDL_FileOpen(). Failure to do thiswill cause your code to fail to
execute as expected.

IDL and Input/Output Files External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 245
File Information

IDL maintains afiletable in which it keeps afile descriptor for each file opened with
IDL_FileOpen(). Thistableisindexed by thefile Logical Unit Number, or LUN.
These are the same LUNs IDL users use.

The IDL_FileStat() function is used to get information about afile.
IDL_FileStat()

void IDL_FileStat(int unit, |IDL_FILE STAT *stat_bl k)
unit

Thelogical unit number (LUN) of the file unit to be checked. This function should
only be called on file units that are known to be open.

stat_blk

A pointer to an IDL_FILE_STAT struct to be filled in with information about thefile.
The information returned is valid only as long as the file remains open. You must not
accessthefieldsof an IDL_FILE STAT oncethefile it refers to has been closed.
This struct has the definition:

typedef struct {
char *nane;
short access;
| DL_LONGG4 fl ags;
FILE *fptr;
struct {
unsi gned short nrs;
} rms;
} I DL_FI LE_STAT;

Warning
InIDL versions prior to IDL 5.3, the flagsfield of the IDL_FILE STAT struct was
a 32-bit number. In IDL 5.3, flags has been widened to a 64-bit number. All user
code that callsthe IDL_FileStat() function must be recompiled.

The fields of this struct are listed bel ow:
name

A pointer to a null-terminated string containing the name the file was opened with.

External Development Guide File Information

246

access

Chapter 14: IDL Internals: Files and Input/Output

A bit mask describing the access allowed to the file. The alowed bit values are listed

in the following table:

Bit Value Description
IDL_OPEN R Thefileis open for input.
IDL_OPEN W Thefileis open for output.

IDL_OPEN_TRUNC | Thefilewastruncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain thefile (thefileis open for

appending).

Table 14-2: Bit values for the access field

flags

A bit mask that gives specia information about the file. The defined bits are listed in

the following table:

Bit Value Description
IDL_F ISATTY Thefileisaterminal.
IDL_F _ISAGUI ThefileisaGraphical User Interface.

IDL_F _NOCLOSE

The CLOSE command will refuseto closethe
file.

IDL_F_MORE

If thefileisaterminal, output is sent through
apager similar to the UNIX nor e command.
Details on this pager are not included in this
document, and it is therefore not available for
general use.

IDL_F_XDR

Thefile is read/written using XDR (eXterna
Data Representation).

IDL_F_DEL_ON_CLOSE

Thefile will be deleted when it is closed.

Table 14-3: Bit values for the flags field

File Information

External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 247
Bit Value Description
IDL_F SR Thefileisa SAVE/RESTORE file.
IDL_F STDIO Use the C standard 1/O library (stdio) to

perform 1/O on thisfile instead of any other
native OS API that might be otherwise used.
If you intend to access IDL filesviayour own
code, specify thisflag to access the file from
the external code as a stdio stream.

IDL_F_SWAP_ENDIAN

The file has opposite byte order than that of
the current system.

IDL_F_VAX_FLOAT

Binary float and double arein VAX F and D
format.

IDL_F_COMPRESS

Thefileisin compressed gzip format. If
IDL_F SRisset (thefileisa
SAVE/RESTORE file), the file contains zlib
compressed data.

IDL_F_UNIX_F77

Thefile is read/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_UNIX_PIPE

Thefileisabi-directional data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No stdio buffering will be performed for the
file and all datatransfers will go directly to
the operating system for processing. Note that
setting this bit does not guarantee that data
will be written to the file immediately,
because the operating system may buffer the
data. This bit value was formerly called
IDL_F_UNIX_NOSTDIO.
IDL_F_UNIX_RAWIOQO isthe preferred
value, but both values are supported.

Table 14-3: Bit values for the flags field (Continued)

External Development Guide

File Information

248

Chapter 14: IDL Internals: Files and Input/Output

Bit Value

Description

IDL_F_UNIX_SPECIAL

ThefileisaUNIX device specid file, most
likely apipe. Thisdiffersfrom

IDL_F _UNIX_PIPE becauseit appliesto any
file, not only those opened with the SPAWN
procedure.

IDL_F_VMS FIXED

The file has fixed-length records.

IDL_F VMS VARIABLE

The file has variable-length records.

IDL_F VMS SEGMENTED

The file has VMS Fortran segmented records.

IDL_F_VMS STREAM

Thefileistreated asaVMS stream file,
opened viathe standard C library, just like
under UNIX. VMS attempts to convert non-
stream files into alogical stream in order to
mask the fact that thefile is not really a
stream file.

IDL_F_VMS _STREAM_STRICT

Thefileistreated asaVMS stream file,
opened viathe standard C library, just like
under UNIX. In the case of non-stream files,
no attempt is made to convert the file contents
to alogical stream.

IDL_F VMS RMSBLK

Thefileis open for RMS block mode access.
New files are created with fixed-length 512-
byte records.

IDL_F_VMS RMSBLKUDF

Thefileisopen for RMS block mode access.
New files are created with the UNDEFINED
record type. One result of thisisthat most
VMS utilitieswon't be able to read thisfile.

IDL_F_VMS _INDEXED

The file has indexed organi zation.

IDL_F_VMS PRINT

Thefile will be sent to the VM S system
printer SY S3PRINT when it is closed.

IDL_F_VMS SUBMIT

The file will be sent to the standard VM S
system batch queue SY S$BATCH whenit is
closed.

Table 14-3: Bit values for the flags field (Continued)

File Information

External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 249

Bit Value Description

IDL_F VMS TRCLOSE When closed, thefile allocation is truncated
to the amount actually used.

IDL_F VMS CCLIST Thefile has carriage return carriage control.

IDL_F VMS CCFORTRAN Thefile has Fortran-style carriage control.

IDL_F VMS CCNONE The file data contains explicit carriage
control.

IDL_F VMS _SHARED Shared accessto thefile is allowed.

IDL_F VMS_SUPERCEDE Supersede existing version on open.

IDL_F DOS BINARY Thefileisin binary mode.

Table 14-3: Bit values for the flags field (Continued)

IDL_F_STDIO

Use the C standard I/0 library (stdio) to perform 1/0 on thisfile instead of any other
native OS API that might be otherwise used. People intending to access IDL filesvia
their own code should specify thisflag if they intend to access the file from their
external code as a stdio stream.

fptr

The stream file pointer to the file. Thisfield can be used with standard library
functions to perform 1/0. Thisfield is always valid under non-VMS operating
systems although you shouldn’t useiit if thefileisan XDR file. You can check for
thisby looking for the IDL_F XDR bit in the flagsfield. Under VMS, the stream file
pointer isonly valid if thefileis open for stream access. In this case the
IDL_F VMS _STREAM bit will be set in the flags field.

If thefileisnot opened with the IDL_F_STDIO flag, fptr will often be returned as an
unusable NULL pointer, reflecting the fact that IDL is not using stdio to perform I/O
onthefile. If accessto avalid fptr isimportant to your application, you should be
sureto specify IDL_F _STDIO to the extra_flags argument to IDL_FileOpen, or use
the STDIO keyword to OPEN if opening the file from the IDL user level.

rms.mrs
For RMS (VMS) record oriented files, this field contains the record length.

External Development Guide File Information

250 Chapter 14: IDL Internals: Files and Input/Output
Opening Files

Files are opened using the IDL_FileOpen() function.

Warning
InIDL versions prior to IDL 5.3, the extra_flags argument to the IDL_FileOpen()
function was a 32-bit number. In IDL 5.3, extra_flags has been widened to a 64-bit
number. All user code that callsthe IDL_FileOpen() function must be recompiled.

IDL_FileOpen()

int IDL_FileOpen(int argc, |IDL_VPTR *argv, char *argk,
int access_node, |DL_LONG64 extra_fl ags,
int longjnp_safe, int msg_attr)
argc
The number of argumentsin argv. This value should aways be 2.
argv

The argumentsto IDL_File Open(). argv[0] should be a scalar integer value giving
the file unit number (LUN) to be opened. argv[1] isascalar string giving the file
name.

argk
Keywords. Set this argument to NULL.
access_mode

A bit mask that specifies the access to be allowed to the file being opened. The
allowed bit values are listed in the following table:

Bit Value Description
IDL_OPEN R Thefileis open for input.
IDL_OPEN_ W Thefileis open for output.

Table 14-4: Bit Values for the access_mode Argument

Opening Files External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 251

Bit Value Description

IDL_OPEN_TRUNC | Thefilewastruncated when it was opened. Thisimplies
that IDL_OPEN_W is also set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain thefile (thefileis open for

appending).

Table 14-4: Bit Values for the access_mode Argument (Continued)

It isimportant that conflicting bits not be set together (for example, do not specify
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of
IDL_OPEN_READ and IDL_OPEN_WRITE must always be specified.

extra_flags

Used to specify additional file attributes using the flags defined in the description of
the flags field of the IDL_FILE_STAT struct (see “File Information” on page 245).
Note that it makes no senseto set the IDL_F_ISATTY bit in this mask.

If you intend to use the opened file as a C standard /O (stdio) stream file, you must
specify the IDL_F_STDIO flag when calling IDL_FileOpen(). Otherwise, IDL may
choose not to use stdio.

Warning
InIDL versions prior to IDL 5.3, the extra_flags argument to the IDL_FileOpen()
function was a 32-bit number. In IDL 5.3, extra_flags has been widened to a 64-bit
number. All user code that calls the IDL_FileOpen() function must be recompiled.

longjmp_safe

If set to TRUE, IDL_FileOpen() is being called in a context where an
IDL_MSG_LONGJIMP IDL_Message action code is okay. If set to FALSE, the
routinewon’t | ongj np() .

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise. Of course, if longimp_safeis TRUE, the usual courseisto jump back to
the IDL interpreter, in which case the routine won't return.

msg_attr

A zero (0), or any combination of the IDL_MSG_ATTR_ flags, used to fine tune the
error handling specified by thel ongj np_saf e argument. Note that you must not

External Development Guide Opening Files

252 Chapter 14: IDL Internals: Files and Input/Output

specify any of thebase IDL_MSG _ codes, but only the attributes. The base code (e.g.
IDL_MSG _LONGIMP) are controlled by | ongj np_saf e. For adiscussion of the
IDL_MSG_ATTR_ flags, see“Issuing Error Messages’ on page 230.

Special File Units

There are threefiles that are always open. Under VMS, these units are open as both
stream and RM S files—each unit is opened twice, once as a stream and again as an
RM S variable length record file. This meansthat you can always refer to the fptr field
for these units without checking the IDL_F VMS_STREAM bit of the flagsfield.
These are the only three units for which thisistrue. Finaly, the constant
IDL_NON_UNIT aways has avalue which is not avalid file unit. The three units
are:

e IDL_STDIN_UNIT — Unit O (zero) isthe standard input for the IDL process.
e IDL_STDOUT_UNIT — Unit -1 isthe standard output.
« |IDL_STDERR_UNIT — Unit -2 isthe standard error.

Opening Files External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 253
Closing Files

Files are closed using the IDL_FileClose() function.
IDL_FileClose()

void IDL_FileCd ose(int argc, |IDL_VPTR *argv, char *argk)
argc
The number of argumentsin argv.
argv

The arguments to the close function. These should be scalar integer values giving the
Logical Unit Numbers of the file units to close.

argk
Keywords. Set this argument to NULL.

External Development Guide Closing Files

254 Chapter 14: IDL Internals: Files and Input/Output

Preventing File Closing

Usethe IDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F _NOCLOSE bit in the flags field of the file descriptor
(see “File Information” on page 245). This feature is used primarily in graphics
driversfor printers. For example, the PostScript driver uses this feature to prevent the
user from closing the plot data file prematurely.

IDL_FileSetClose()

void IDL_FileSetd ose(int unit, int allow)
unit

The Logical Unit Number (LUN) of thefile in question. The file must be open for
this function to have effect.

allow

Set thisfield to TRUE if users are allowed to close thefile. Set to FALSE if users
should be prevented from closing the file.

There are two macros provided to make preventing/enabling of this bit easy:

* |IDL_FILE_NOCLOSE(unit) — Given thefile LUN, this macro sets the
IDL_F_NOCLOSE hit.

e IDL_FILE CLOSE(unit) — Given thefile LUN this macro clears the
IDL_F _NOCLOSE hit.

When IDL exits, it only closes open files that do not have the IDL_F_NOCLOSE bit
set. Fileswith closeinhibited are simply left alone. Often, you will want to declare an
exit handler which takes care of closing such files.

Preventing File Closing External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 255
Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() for
this.

IDL_FileEnsureStatus()

int IDL_FileEnsureStatus(int action, int unit, int flags)
action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (see
“Issuing Error Messages’ on page 230). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG _LONGJIMPB, or
IDL_MSG_IO_LONGIMP.

unit
The Logical Unit Number of the file to be checked.
flags

IDL_FileEnsureStatus() always checksto make sure unit isavalid logical file unit. In
addition, flagsis a bit mask specifying the file attributes that should be checked. The
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS USER The file must be a user unit. This means that the
fileis not one of the three special files, stdin,
stdout, or stderr.

IDL_EFS IDL_OPEN Thefile unit must be open.

IDL_EFS CLOSED The file unit must be closed.
IDL_EFS READ Thefile unit must be open for input.
IDL_EFS WRITE Thefile unit must be open for output.
IDL_EFS NOTTY The file unit cannot be a tty.

Table 14-5: Bit Values for the flags Argument

External Development Guide Checking File Status

256

Chapter 14: IDL Internals: Files and Input/Output

Bit Value

Description

IDL_EFS NOGUI

Thefile unit cannot be a Graphical User Interface.

IDL_EFS NOPIPE

Thefile unit cannot be a pipe.

IDL_EFS NOXDR

The file unit cannot be a XDR file.

IDL_EFS ASSOC

Thefile unit can be ASSOC' ed. Thisimplies
IDL_EFS USER, IDL_EFS OPEN,

IDL_EFS NOTTY, IDL_EFS NOPIPE, and
IDL_EFS_NOXDR, in addition to other operating
system specific concerns.

IDL_EFS NOT_NOSTDIO

The file was not opened with
IDL_F_UNIX_NOSTDIO attribute under UNIX.

Table 14-5: Bit Values for the flags Argument (Continued)

Note

Some of these values are contradictory. The caller must select a consistent set.

If thefile unit meetsthe desired conditions, IDL_FileEnsureStatus() returns TRUE. If
it does not meet the conditions, and action was IDL_MSG_RET, then it returns

FALSE.

Checking File Status

External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 257
Allocating and Freeing File Units

System routines must allocate and deallocate file unitsin order to avoid conflicts.
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are used.
When writing system-level routines, you can access the same routines by calling
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to alocate file units:
IDL_FileGetUnit()
void IDL_FileGetUnit(int argc, |IDL_VPTR *argv)
argc
argc should aways be 1.
argv

argv[Q] containsan IDL_VPTR tothe IDL_VARIABLE that will befilled in with the
resulting unit number.

Use IDL_FileFreeUnit() to freefile units:
IDL_FileFreeUnit()

void IDL_FileFreeUnit(int argc, |DL_VPTR *argv)
argc
argc gives the number of elementsin argv.
argv

argv should contain scalar integer values giving the Logical Unit Numbers of thefile
units to be returned.

Read the description of GET_LUN and FREE_LUN in the IDL Reference Guide for
additional details about these functions. The following code fragment demonstrates
how these functions might be used to open and close afilenamed j unk. dat :

| DL_VPTR argv[2];

| DL_VARI ABLE uni t;
| DL_VARI ABLE nane;

External Development Guide Allocating and Freeing File Units

258

Chapter 14: IDL Internals: Files and Input/Output

/* Allocate a file unit. */
argv[0] = &unit;

unit.type = TYP LONG
unit.flags = 0;
IDL_FileGetUnit(1l, argv);

/* Set up the file name */
name. type = TYP STRI NG
nane. fl ags = V CONST;

name. val ue. str.s = "junk.dat";
name. val ue. str.slen = sizeof ("junk.dat")

name. val ue. str. stype = 0;
argv[1l] = &nane;

IDL_FileOpen(2, argv, (char *) 0, IDL_OPEN R, IDL_F VM5 STREAM 1);

/* Performany required actions.

/* Free the file unit. This will also close the file. */

IDL_Fil eFreeUnit (1, argv);

Allocating and Freeing File Units

External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 259

Detecting End of File

IDL_FileEOF()

The IDL_FileEOR() function returns TRUE if the file specified by the Logical Unit
Number unit is at EOF, and FAL SE otherwise:

int IDL_FileEOF(int unit)
unit

The Logical Unit Number (LUN) of thefilein question.

External Development Guide Detecting End of File

260 Chapter 14: IDL Internals: Files and Input/Output

Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered data for the file

specified by the Logical Unit Number unit to be written out:
int IDL_FileFlushUnit(int unit)

unit

The Logical Unit Number (LUN) of the file in question.

Flushing Buffered Data External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 261

Reading a Single Character

IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int 1DL_GetKbrd(int should_wait)
should_wait

Set thisargument to TRUE if IDL_GetKbrd() should wait for a key to be struck,
FALSE otherwise.

If should_wait is FALSE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waits until akey is struck (if necessary)
and then returnsits ASCII value. Thisfunction will generate an error and return to the
interpreter if IDL_STDIN_UNIT isnot aterminal.

External Development Guide Reading a Single Character

262 Chapter 14: IDL Internals: Files and Input/Output

Output of IDL Variables

IDL_Print() and IDL_PrintF()

The IDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLEs.
IDL_Print() smply outputsto IDL_STDOUT_UNIT, while IDL_PrintF() outputs to
a specified unit:

void IDL_Print(int argc, IDL_VPTR *argv, char *argk)
void IDL_PrintF(int argc, IDL_VPTR *argv, char *argk)

argc

The number of argumentsto argv.

argv

IDL_VPTRsof the IDL_VARIABLEsto be outpuit.
argk

Keywords. Set thisargument to NULL ((char *) 0).

These functions are the implementation of the built-in IDL system procedures PRINT
and PRINTF. See PRINT/PRINTF inthe IDL Reference Guide for information on the
available arguments and the order in which you must specify them.

Output of IDL Variables External Development Guide

Chapter 14: IDL Internals: Files and Input/Output 263

Adding to the Journal File

IDL_Logit()
The IDL_Logit() function can be used to add lines of output to the journal log file:
void IDL_Logit(char *s)
S
A pointer to aNULL terminated string to be added to the journal log file.

If ajournal logfileis currently open, thisfunction writes the specified stringtoit on a
new line. If no journal fileisopen, IDL_Logit() returns quietly. The only way to open
or closethejournal file is viathe user-system-level JOURNAL procedure.

External Development Guide Adding to the Journal File

264 Chapter 14: IDL Internals: Files and Input/Output

Adding to the Journal File External Development Guide

Chapter 15:

IDL Internals:
Signals

This chapter discusses the following topics:

IDLandSignals 266 RemovingaSignal Handler 271
SignadHandlers 269 UNIX SignaMasks.................. 272
EstablishingaSignal Handler 270

External Development Guide 265

266

Chapter 15: IDL Internals: Signals

IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programmer.
Although seemingly simple, they are atough portability problem because there are
severa variants, and their semantics are subtle, inconvenient, and easily confused.
IDL has always done whatever is necessary with signalsin order to get itsjob done,
but its signal assumptions can also affect user written code linked to it. Although this
discussion refers primarily to UNIX IDL, signals are used in minimal ways under
other operating systems supported by IDL.

Thefollowingisabrief list of problems and contradictionsinherent in UNIX signals.
For a more compl ete description, see Chapter 10 of External Programming in the
UNIX Environment by W. Richard Stevens.

IDL and Signals

Posix signals (sigaction) promise to unify and simplify signals, but not al
platforms support them fully. Also, some platforms that do support Posix
signalsfail to provide needed information for SIGFPE and SIGTRAP, which
are very important to IDL’s exception handling.

You can only have one signal handler function registered for each signal. This
means that if one part of a program uses asignal, the rest of the program must
leave that signal aone.

In order to meet the needs of programs originally developed under different
UNIX systems (AT& T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, a given program
isrestricted to one of these libraries. If a programmer using
CALL_EXTERNAL, LINKIMAGE, or Callable IDL chooses alibrary
different from that used by IDL itself, unexpected results may occur.

The number and exact semantics of some signals differ in different versions.
Details of signal blocking differ.

Some System V implementations of signals are unreliable, meaning that
signals can occur in a process and be missed.

Some older System V systems reset the handling action to SIG_DFL before
calling the handler. This opens awindow in time where two signalsin arow
can cause the process to be killed. Also, the signal handler must re-establish
itself every timeitiscalled.

External Development Guide

Chapter 15: IDL Internals: Signals 267

On most platforms, if asignal is generated more than once whileit is blocked,
the second and subsequent occurrences are lost. In other words, most UNIX
implementations do not queue signals.

Most systems provide extrainformation for SIGFPE and SIGTRAP that
alow the program to deduce what type of arithmetic problem occurred and
continue execution. The format of thisinformation differs widely. The details
of continuing execution are highly OS- and hardware-dependent, and are often
undocumented.

These are among the reasons that most libraries avoid signals, and leave their use to
the end programmer. IDL, however, must use sighalsto function properly. In order to
alow usersto link their codeinto IDL whileusing signals, IDL providesasigna API
built on top of the signal mechanism supported by the target platform. The IDL signal
API has the following attributes:

It disallows use of SIGTRAP and SIGFPE. These signals are reserved to
IDL.

It disallows use of SIGALRM. Most usesfor SIGALRM are provided by the
IDL timer API.

It works with al other signals, including those IDL doesn’t currently use, so
the interface won’t change over time.

It allows multiple signal handlers for each signal, so IDL and other code can
use the same signal simultaneously.

It unifies the signal interface by supplying a constant set of definitions and
routines, and by handling details like re-establishing handlers.

It keeps IDL in charge of which signal package is used and how.

Thisis not a perfect solution, it is acompromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstraction is
sufficient, but it does have the following limitations:

The calling program must not attempt to catch SIGTRAP or SIGFPE, either

directly or through library routines that use these signals to achieve their ends.
Furthermore, the IDL signal abstraction does not allow the caller to catch these
signal's, so your program must leave exception handling to IDL.

The caller loses control over signal package choice and some minor signal
abilities.

Having multiple signal handler routinesfor agiven signal opens the possibility
that one handler might do something that causes problems for the others (like

External Development Guide IDL and Signals

268 Chapter 15: IDL Internals: Signals

change the signal mask, or longjmp()). To minimize such problems, user code
linked into IDL must not call the actual system signal routines, and must not
longjmp() out of signal handlers—atactic that is usualy allowed, but which
would seriously damage IDL's signal state.

» Sincethere may be more than one signal handler registered for agiven signal,
thesignal dispositionsof SIG_IGN and SIG_DFL arenot directly availableto
the caller as they would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances are
your code is not compatible with IDL and should be executed in a separate process.
We then encourage you to consider running IDL in a separate process and to use an
interprocess communication mechanism such as RPC.

IDL and Signals External Development Guide

Chapter 15: IDL Internals: Signals 269
Signal Handlers

IDL signal handler functions are defined as:
typedef void (* IDL_Signal Handler_t) (int signo);

When asignal is delivered to the process, all registered signal handlers are called.
si gno isthe integer number of the signal delivered, as defined by the C language
header filesi gnal . h (foundin/ usr/i ncl ude/ si gnal . h on most UNIX
systems). si gno can be used by a signal handler registered for more than one signal
to tell which signal called it.

External Development Guide Signal Handlers

270 Chapter 15: IDL Internals: Signals
Establishing a Signal Handler

To register asignal handler, use the IDL_SignalRegister () function:

int 1DL_Signal Register(int signo, |IDL_Signal Handl er_t func,
int neg_action)

where:

signo

The numeric value of the signal to register for, as defined in si gnal . h.
func

The signal handler to be called when the signal specified by si gno israised.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
registering the signal handler, this action codeis passed to IDL_M essage() to direct
itsrecovery action. Note that it isincorrect to use any of the message codes that cause
IDL_Message() to longjmp() back to the IDL interpreter if your codeisrunningina
context where the IDL interpreter is not active—specifically as part of using Callable
IDL.

If f unc issuccessfully registered for si gno, this routine returns TRUE. Otherwise,
FALSE isreturned and IDL_Message() is called with nsg_act i on to control its
behavior. Note that there are values of neg_act i on that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has no
additional effect—the handler will only be called once.

Establishing a Signal Handler External Development Guide

Chapter 15: IDL Internals: Signals 271
Removing a Signal Handler

To remove asignal handler, use the IDL_SignalUnregister () function:

export int IDL_Signal Unregister(int signo, |IDL_Signal Handl er_t func,
int neg_action)

where:

signo

The signal to unregister.

func

The handler to be unregistered.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
removing the signal handler, thisaction codeis passedto IDL_M essage() to direct its
recovery action.

Once IDL_SignalUnregister () has been called, func is unregistered and will no
longer be caled if the signal israised. IDL_SignalUnregister () returns TRUE for
success, FALSE for failure. Requests to unregister a function that has not been
previously registered are ignored.

External Development Guide Removing a Signal Handler

272 Chapter 15: IDL Internals: Signals
UNIX Signal Masks

UNIX processes contain a signal mask that defines which signals can be delivered
and which are blocked from delivery at any given time. When asignal arrives, the
UNIX kernel checksthe signal mask: If the signal isin the process mask, it is
delivered, otherwise it is noted as undeliverable and nothing further is done until the
signal mask changes. Sets of signals are represented within IDL with the opague type
IDL_SignalSet_t. UNIX IDL provides several functions that manipulate signal sets
to change the process mask and allow/disallow delivery of signals.

IDL_SignalSetlnit()

IDL_Signal Setlnit() initializes asignal set to be empty, and optionally setsit to
contain one signal.

void I DL_Signal Setlnit(lDL_Signal Set_t *set, int signo)
where:
set
The signal set to be emptied/initialized.
signo

If non-zero, asignal to be added to the new set. Thisis provided as a convenience for
the large number of cases where a set contains only one signal. Use
IDL_SignalSetAdd() to add additional signalsto a set.

IDL_SignalSetAdd()
IDL_Signal SetAdd() adds the specified signal to the specified signal set:

voi d | DL_Si gnal Set Add(1 DL_Si gnal Set _t *set, int signo)
where:
set

The signal set to be added to. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be added to the signal set.

UNIX Signal Masks External Development Guide

Chapter 15: IDL Internals: Signals 273

IDL_SignalSetDel()

IDL_SignalSetDel() deletes the specified signal from asignal set:
void I DL_Signal SetDel (I DL_Si gnal Set _t *set, int signo)

where:

set

The signal set to delete from. The signal set must have been initialized by
IDL_Signal Setl nit().

signo
The signal to be removed from the signal set.
IDL_SignalSetlsMember()

IDL_Signal Setl sM ember () tests asignal set for the presence of a specified signal,
returning TRUE if the signal is present and FAL SE otherwise:

int |1 DL_Signal SetlsMenber (I DL_Signal Set _t *set, int signo)
where:
set

The signal set to test. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.
IDL_SignalMaskGet()

IDL_SignalM askGet() setsasignal set to contain the signals from the current
process sighal mask:

voi d | DL_Si gnal MaskGet (1 DL_Si gnal Set _t *set)
where:
set
The signal set in which the current process signal mask will be stored.

External Development Guide UNIX Signal Masks

274

Chapter 15: IDL Internals: Signals

IDL_SignalMaskSet()

IDL_SignalM ask Set() sets the current process signal mask to contain the signals
specified in asignal mask:

voi d | DL_Si gnal MaskSet (1 DL_Si gnal Set _t *set,
I DL_Si gnal Set _t *omask)

where:

set

The signal set from which the current process signal mask will be set.
omask

If omask isnon-NULL, the unmodified process signal mask isstored init. Thisis
useful for restoring the mask later using | DL _SignalM ask Set().

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

IDL_SignalMaskBlock()

IDL_SignalM askBlock() adds signals to the current process signal mask:

voi d | DL_Si gnal MaskBl ock(| DL_Si gnal Set _t *set,
| DL_Signal Set _t *oset)

where:
set

The signal set containing the signals that will be added to the current process signal
mask.

oset

If oset isnon-NULL, the unmodified process signal mask isstored init. Thisisuseful
for restoring the mask later using IDL_SignalM ask Set().

There are some signals that cannot be blocked. This limitation is silently enforced by
the operating system.

UNIX Signal Masks External Development Guide

Chapter 15: IDL Internals: Signals 275

IDL_SignalBlock()

IDL_SignalBlock() doesthe same thing asIDL_SignalM askBlock () except it
accepts asingle signal number instead of requiring a mask to be built:

voi d I DL_Si gnal Bl ock(int signo, IDL_Signal Set_t *oset)
where:
signo
The signal to be blocked.

There are some signal s that cannot be blocked. This limitation is silently enforced by
the operating system.

IDL_SignalSuspend()

IDL_SignalSuspend() replaces the process signal mask with the onesin set and then
suspends the process until asignal is delivered. On return, the original process signal
mask is restored:

voi d |1 DL_Si gnal Suspend(1DL_Si gnal Set _t *set)
where:
set

The signal set containing the signals that will be added to the current process signal
mask.

External Development Guide UNIX Signal Masks

276 Chapter 15: IDL Internals: Signals

UNIX Signal Masks External Development Guide

Chapter 16:

IDL Internals:
Timers

This chapter discusses the following topics:

IDLand Timers.covvnnn.. 278 Canceling Asynchronous Timer Requests . 281
Making Timer Requests 279 BlockingUNIX Timers 282

External Development Guide 277

278 Chapter 16: IDL Internals: Timers

IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors’ of UNIX, for
example). IDL’stimer moduleisintended to provide a constant interface to the rest of
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’s timer module performs a more important function. UNIX
processes contain a single timer that must be shared by all users. When the timer
fires, it raises the SIGALRM signa which must be caught and handled by the
process. The IDL timer routines transparently multiplex this single timer to provide
multiple virtual timers.

Under UNIX and VMS, IDL provides both blocking and non-blocking timers.
Blocking timers put the calling process to sleep until they go off. Non-blocking
timers are delivered asynchronously when they fire.

Under Microsoft Windows and Macintosh OS, only the blocking form of timer
requests are supported.

IDL and Timers External Development Guide

Chapter 16: IDL Internals: Timers 279
Making Timer Requests

The IDL_Timer Set() function registers atimer request. IDL timer requests are one-
shot timers. If you wish to have atimer go off repeatedly, your callback function must
make a new request each timeit is called to set up the next timer.

void I DL_TimerSet(length, callback, fromcallback, context)

where:
length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system can
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX and VMS, if callback isnon-NULL, the timer request is queued
and I DL_Timer Set() returnsimmediately. When the alarm is due, the function
pointed at by callback iscalled. If callback isNULL (and not
from_callback), the request is queued and I DL_Timer Set() blocks until the
requested time expires.

Under Windows and the Macintosh OS, callback should always be NULL.
IDL_Timer Set() does not support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if thisinvocation is from a callback function
previously set up viaacall to IDL_Timer Set(). Set thisargument to FALSE if
thisisthefirst invocation. In other words, this argument should only be TRUE
if youcal IDL_Timer Set() from within atimer callback.

context

Thisargument isapointer to avariable of typeIDL_TIMER_CONTEXT, an
opaque IDL datatype that uniquely identifies atimer request. If thisisatop
level request (if from_callback is FALSE), the context pointed at will be
assigned a unique value that identifies the request.

If this request is coming from within atimer callback in order to make another
reguest on the same timer, the context pointed at should contain the value from
the previous reguest.

External Development Guide Making Timer Requests

280 Chapter 16: IDL Internals: Timers
If context isNULL, no context valueis returned.
Note

It is an error to queue more than one request using the same callback. The results
are undefined.

For the timer module to perform adequately, the time request must be large compared
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.

Making Timer Requests External Development Guide

Chapter 16: IDL Internals: Timers 281
Canceling Asynchronous Timer Requests

Under UNIX and OpenVMS, IDL_Timer Cancel() can be used to cancel atimer
reguest that has not yet been delivered:

voi d | DL_Ti nmer Cancel (cont ext)
where:
context
A timer request context returned by aprevious call to IDL_Timer Set().

External Development Guide Canceling Asynchronous Timer Requests

282 Chapter 16: IDL Internals: Timers
Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such as SIGALRM (used to
manage timers) can cause system calls to be interrupted. In such cases, the system
call returnsastatus of -1 and the global errno variableisset tothevalue EINTR. Itis
the caller’s responsibility to check for this result and restart the system call when it
occurs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfacesin libraries (even those provided by the system, such
asl i bc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. Thereis very little that the end user can do
about such libraries except take steps that prevent signals from being raised during
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it isinevitable
that the delivery of SIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of the
timer signal. This can be used to provide a window in which no timer will fire. This
routine should always be called in pairs, so the timer doesn’t get turned off
permanently. It isimportant to be sureal ongj np() (such as caused by calling
IDL_Message() with the IDL_MSG_L ONGJM P action code) doesn’t happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery isthat the UNIX SIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will not
be delivered until timers are unblocked. At that time, the timer module resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitrarily
delayed from being queued and processed. Clearly, excessive blocking of the timer
can lead to poor timer performance and should only be performed when necessary
and on the smallest possible critical section of code. Of course, the act of blocking
and unblocking signals requires a context switch into the UNIX kernel and back,
making them relatively computationally expensive operations. It istherefore better to
block alonger section of code rather than block and unblock around every critical
library call.

It has been our experience that some UNIX platforms have more problem with this
issue than others. You should let experience guide you in deciding when to block
signals and when to let them go. Input/Output to device specia files under HP-UX
and SGI IRIX are known to be especially vulnerable.

voi d | DL_Ti ner Bl ock(st op)

Blocking UNIX Timers External Development Guide

Chapter 16: IDL Internals: Timers 283

where:
stop
TRUE if the timer should be suspended, FAL SE to restart it.

External Development Guide Blocking UNIX Timers

284 Chapter 16: IDL Internals: Timers

Blocking UNIX Timers External Development Guide

Chapter-17:

IDL Internals:
Miscellaneous
Information

This chapter discusses the following topics:

DynamicMemory 286
Exit Handlers

User Interrupts
Functions for Returning System Variables 290
Terminal Information 291
Ensuring UNIX TTY State 202

External Development Guide

Typelnformation 293
User Information 295
Constantsccuuininn.. 296
Macros ... 297

IDL Global Data Under VAX/OpenVMS . 298

285

286 Chapter 17: IDL Internals: Miscellaneous Information
Dynamic Memory

IDL provides access to the dynamic memory alocation routines it usesinternally.
Use these routines rather than system-provided routines such as malloc()/free() when
possible.

Please note that system routines (routines added to IDL using LINKIMAGE or
CALL_EXTERNAL) should not use the IDL dynamic memory routines. Instead, use
IDL_GetScratch() (see “Getting Dynamic Memory” on page 194) which prevents
memory from being lost under error conditions.

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.
void *I DL_MemAl | oc(I DL_MEM NT n, char *err_str, int action)
where;
n
The number of bytesto allocate.
err_str
NULL, or anull terminated text string describing the memory being allocated.
action

An action parameter to be passed to IDL_Message() if IDL_MemAlloc() isunable
to allocate the desired memory and err_str isnon-NULL.

IDL_MemAlloc() attempts to allocate the desired amount of memory. If the
requested amount is alocated, a pointer to the memory is returned. The memory is
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory failsand err_str isnon-NULL, IDL_Message() is
caled as:

| DL_Message(M CNTGETMEM action| | DL_MSG ATTR_SYS, err_str)

If IDL_Message() returns, or if err_str isNULL and IDL_Message() is hot called,
IDL_MemAlloc() returnsa NULL pointer indicating its failure.

Dynamic Memory External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 287

IDL_MemFree()

Memory allocated vial DL_MemAlloc() should only be returned via
IDL_MemFreg():

voi d | DL_Menfree(REG STER void *m char *err_str, int action)
m
A pointer to memory previously allocated vial DL _MemAlloc().
err_str
NULL, or anull terminated text string describing the memory being freed.
action

An action parameter to be passed to IDL_Message() if unable to free memory and
err_str isnon-NULL.

IDL_MemFree() attempts to free the specified memory. If the attempt to free
memory failsand err_str isnon-NULL, IDL_Message() iscalled as:

| DL_Message(M _CNTFREMEM action| | DL_MSG ATTR_SYS, err_str)
The following actions have undefined consequences, and should not be done:
¢ Returning memory allocated from a source other than IDL_MemAlloc().
* Freeing the same allocation more than once.

« Dereferencing memory once it has been freed.
IDL_MemAllocPerm()

Another memory allocation routine, IDL_MemAllocPer m(), exists to allocate
dynamic memory that will not be returned for reuse. IDL_MemAllocPerm()
allocates memory in moderately large units and carves out pieces of these blocks to
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

void *I DL_MemAl | ocPerm(1 DL_MEM NT n, char *err_str, int action)

IDL_MemAllocPerm() takes the same arguments as I DL_MemAlloc(), differing
only in that the memory allocated will not be freed until the process exits. Do not
attempt to free memory alocated by IDL_MemAllocPerm(). The results of such an
action are undefined.

External Development Guide Dynamic Memory

288 Chapter 17: IDL Internals: Miscellaneous Information

Exit Handlers

IDL maintains alist of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to itsinitial state. Exit handlers
accept no arguments and return no value.

A typical declaration would be:

void my_exit_handl er (voi d)

{
/* C eanup Code Here */

}
IDL_ExitRegister()

To register an exit handler, usethe IDL_ExitRegister () function:
voi d | DL_Exit Regi ster (I DL_EXI T_HANDLER _FUNC)

where IDL_EXIT_HANDLER_FUNC is defined as:
typedef void(* | DL_EXI T_HANDLER FUNC) (voi d);

proc

IDL will call procjust beforeit exits.

The order in which exit handlers are called is undefined, and you should not depend
on any particular ordering. If you have several exit handlers and the order in which
they are called isimportant, you should register asingle handler that calls al the
othersin the required order.

Note
Under some operating systems, it is possible that the IDL processwill diein an
abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly viathe kill(1) command) will cause the
processto dieimmediately. IDL aways calls exit handlers when possible, so thisis
rarely asignificant problem.

Exit Handlers External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 289
User Interrupts

IDL catches certain operating system signals including SIGINT, which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution of the
program to stop at the next sequence statement. The interpreter clears this variable
every time it isinvoked, and checksto seeiif it has been set before it executes each
statement. This means that when the user presses the interrupt character, the current
statement must complete before the interpreter checks the value of the variable and
halts execution.

Typical statements do not take long to complete, so this delay is not noticeable.
However, some system routines take along time to complete, and the user can be
fooled by the long delay into thinking that IDL isignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interruptsisthe only
way to maintain acceptable performance in the usual case where no interrupt is
pending. Therefore, it isthe responsibility of system routines that take along time to
complete to check the value of thisinternal variable and to clean up and return if
SIGINT isseen. IDL's Input/Output and FFT routines, among others, do this.

IDL_BailOut()

The IDL_BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed,
otherwise FAL SE.

int IDL_Bail Qut(int stop)
where:
stop

Set to FAL SE to sense the state of the keyboard interrupt flag without changing its
value. Set to TRUE to set the keyboard interrupt flag.

External Development Guide User Interrupts

290 Chapter 17: IDL Internals: Miscellaneous Information
Functions for Returning System Variables

The following functions return the values of certain system variables. Note that these
values should be considered READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer to the 'VERSION.ARCH system variable.
IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer to the !'VERSION.OS system variable.
IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer to the 'VERSION.OS FAMILY system variable.
IDL_STRING *IDL_SysvVersionRelease(void)

This function returns a pointer to the ! VERSION.REL EASE system variable.
IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer to the |DIR system variable.

IDL_STRING *IDL_SysvVErrStringFunc(void)

This function returns a pointer to the 'ERROR_STATE.MSG system variable.
IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer to 'ERROR_STATE.SYS_MSG system variable.
IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of the '[ERROR_STATE system variable.
IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of the 'ORDER system variable.

For moreinformation on IDL system variables, see Appendix D, “System Variables’
in the IDL Reference Guide.

Functions for Returning System Variables External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 291
Terminal Information

The global variable IDL _FileTerm isastructure of type IDL_TERMINFO:

typedef struct {

char *nane; /* Name O Terminal Type */

char is_tty; [* True if stdinis a termnal */
int |ines; /* Lines on screen */

int colums; /* Wdth of output */

} I DL_TERM NFO

Note

Under operating systems that do not support the concept of aterminal (the
Macintosh OS and Microsoft Windows) the name and is _tty fields are not present.

IDL_FileTerm isinitialized when IDL is started. Few, if any, user routines will need
this information, because user routines should not do their own I/O. User routines
that must do their own 1/0 should use this variable instead of making assumptions
about the output device.

Functions for Returning IDL_FileTerm Variable Values

The following functions can be used to return values from the IDL_FileTerm
variable. They return the same information contained in the global variable, but in a
functional form.

char *IDL_FileTermName(void)

Thisfunction returns the value of IDL_FileTerm.name. This function is only
available under UNIX and OpenVMS.

int IDL_FileTermlsTty(void)

Thisfunction returnsthe value of IDL_FileTerm.is_tty. Thisfunctionisonly
available under UNIX and OpenVMS.

int IDL_FileTermLines(void)
Thisfunction returnsthe value of IDL_FileTerm.lines.
int IDL_FileTermColumns(void)

Thisfunction returns the value of IDL_FileTerm.columns.

External Development Guide Terminal Information

292 Chapter 17: IDL Internals: Miscellaneous Information
Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the usersterminal in araw mode,
required to implement command line editing. On these platforms, externally linked
code that performs output to the terminal will find that the output does not appear as
expected. A usual symptom of thisisthat newline characters ('\n') do not move the
cursor to the left margin of the screen, and commands such as more(1) (perhaps
started via the C runtime library system() function) do not control the screen

properly.

Thisisnot anissue for IDL routines such as SPAWN that start sub-programs,
because they are written to be aware of thisissue and to ensurethe TTY isin the
correct state before they do their work. Externally linked code can call the
IDL_TTYReset() function to do the same thing:

void | DL_TTYReset (voi d)

Thisfunction is available under all operating systems. On systems where such an
operation is not needed, it isastub. On platforms that requirethe TTY to be managed
in this way, this operation ensures that the terminal isreturned to its standard
configuration.

Ensuring UNIX TTY State External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 293
Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not available; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointersto character strings. IDL_OutputFor mat isindexed by type
code, and specifies the default output formats for the different data types (see “ Type
Codes’ on page 168). The default formats are used by the PRINT and STRING built-
in routines as well asfor type conversions.

IDL_OutputFormatLen

An array of integers. IDL_OutputFor matL en gives the length in characters of the
corresponding elements of IDL_OutputFor mat.

IDL_TypeSize

An array of long integers. IDL_TypeSize isindexed by type code, and givesthe size
of the data object used to represent each type.

IDL_TypeName

An array of pointersto character strings. IDL_TypeName isindexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in afunctional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that type.
Thisis equivaent to accessing the IDL_OutputFormat array.

int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, this function returns the default output format length for that
type. Thisis equivaent to accessing the I DL_OutputFormatL en array.

External Development Guide Type Information

294 Chapter 17: IDL Internals: Miscellaneous Information

int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. Thisis equivalent to accessing the IDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as anull
terminated character string. Thisis equivalent to accessing the IDL_TypeName

array.

Type Information External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information

User Information

295

Usethe IDL_GetUserInfo() function to get information about the current session.
Thisisthe sort of information that can be used in the header of files produced by

graphics drivers. It is used, for example, by the PostScript driver:
void I DL_Get Userl nfo(lDL_USER_I NFO *user _i nf 0)
wherethe IDL_USER_INFO struct is defined as:

typedef struct {

char *I| ognane; /* User’s login nanme */

char host[64]; /* Machi ne name */

char wd[| DL_MAX_PATH ; /* Working Directory */
char dat e[25]; [* Current System Time */

} 1 DL_USER | NFO

External Development Guide

User Information

296 Chapter 17: IDL Internals: Miscellaneous Information
Constants
Preprocessor constants defined intheexpor t . h file should be used in preference to
hardwired values. To accommodate the needs of various operating systems, some of
these constants have different values in different versions of IDL. Those constants
that are not discussed elsewhere in this book are listed below.
IDL_TRUE
A more readable alternative to the constant 1.
IDL_FALSE
A more readable aternative to the constant O.
IDL_REGISTER
Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, many C compilers
won't put any variables into registers unless register definitions are used. Our
solutionistouse IDL_REGISTER to declare variables we feel should be placed
into registers. For machines that we feel have a good register alocation scheme, we
define IDL_REGI STER to be anull macro. For lesser compilers, it is defined.
IDL_MAX ARRAY_DIM
The maximum number of dimensions an array can have.
IDL_MAXIDLEN
The maximum number of characters IDL allowsin an identifier (variable names,
program names, and so on).
IDL_MAXPATH
The maximum number of characters allowed in afilepath.
Constants External Development Guide

Chapter 17: IDL Internals: Miscellaneous Information 297

Macros

The macros defined in expor t . h handle recurring small jobs. Those macros not
discussed elsewhere in this book are covered here.

IDL_MIN(x,y) and IDL_MAX(X,y)

The arguments can be of any numeric C type aslong asthey are compatible with each
other. IDL_MIN() and IDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than once, so
be careful to avoid unwanted side effects, and for efficiency do not call them with an
expression.

IDL_ABS(x)

IDL_ABS() acceptsasingle argument of any numeric C type, and returnsits absol ute
value. IDL_ABS() evaluates its argument more than once, so do not call it with an
expression.

IDL_ROUND_UP(x, m)

IDL_ROUND_UP() returns the value of x rounded up modulo m. m must be a
power of 2. This macro is useful for extending data regions out to a specified
alignment.

IDL_CHAR(ptr)

IDL_CHAR() castsits argument to be a pointer to char. It is used to convert an
existing pointer into a generic pointer to amemory location.

IDL_CHARA (addr)

IDL_CHARA() takes the address of its argument and castsit to be a pointer to char.
It is used to get a generic pointer to a memory location.

External Development Guide Macros

298 Chapter 17: IDL Internals: Miscellaneous Information

IDL Global Data Under VAX/OpenVMS

Under VAX/OpenVMS, IDL’s global variables are available as linker UNIVERSAL
symbols. However, the locations of these symbols within the IDL sharable image
change from release to release. Therefore, if your program directly accesses these
symbols, you must re-link your application every time you install anew IDL
distribution.

However, it is possible to minimize the problem of re-linking with each IDL release
by using the functions—described in “ Functions for Returning System Variables’ on
page 290, “Functions for Returning IDL_FileTerm Variable Vaues’ on page 291,
and “Functions for Returning Data Type Variable Values’ on page 293—that also
provide accessto global data. These functions are found in the IDL.EXE transfer
vector. Therefore, if the functions are used, no re-linking is needed between releases
as long as the transfer vector is not changed. Although Research Systems cannot
always avoid changing the transfer vector, it islesslikely to change than the locations
of UNIVERSAL symbols.

Under ALPHA/OpenVMS, global variables are found in the SYMBOL_VECTOR
just like the exported functions, so the previously-described VAX/OpenVMS
problem does not occur with ALPHA/OpenVMS. Under ALPHA/OpenVMS,
accessing the global variable is equivalent to using the function.

IDL Global Data Under VAX/OpenVMS External Development Guide

Chapter 18:

Adding System

Routines

This chapter discusses the following topics:

IDL and System Routines 300
The System Routine Interface 301
Example: Hello World
Example: Doing a Little More (MULT2) . 303

Example: A Complete Numerical Routine
Example (FZ_ROOTS2) 306

External Development Guide

Example: An Example Using Routine Design

Iteration (RSUM) 314
Registering Routines 324
Enabling and Disabling System Routines . 327
LINKIMAGE 335
Dynamically Loadable Modules 337

299

300 Chapter 18: Adding System Routines

IDL and System Routines

An IDL system routineisan IDL procedure or function that is written in a compiled
language and linked into IDL, instead of being written in the IDL language itself. The
best way to create an IDL system routine isto compile and link the routine into a
sharable library and then to add the routine to IDL at runtime using either the
LINKIMAGE procedure or by making your routines part of aDynamically Loadable
Module (DLM).

This chapter explains how to write a system routine, including several examples, and
discusses the various options for adding such routinesto IDL.

IDL and System Routines External Development Guide

Chapter 18: Adding System Routines 301
The System Routine Interface

All system routines must supply the same calling interface to the system, differing
only in that system functions must return an IDL_VPTR to the IDL_VARIABLE
that contains the result while system procedures do not return anything. Typical
system routine definitions are:

I DL_VPTR ny_function(int argc, IDL_VPTR argv[], char *argk)
void my_procedure(int argc, |IDL_VPTR argv[], char *argk)

System routines that do not accept keywords are called with two arguments:
argc

The number of elementsin ar gv.

argv

Anarray of IDL_VPTRSs. These point tothe I DL _VARIABL Eswhich comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argument:
argk

The keywords which were present when the routine was called. ar gk is an opague
object—the called routine is not intended to understand its contents. ar gk is provided
to thefunction IDL_KWGetParams(), which processes the keywordsin a standard
way. For more information on keywords, see “IDL Internals; Keyword Processing”
on page 203.

External Development Guide The System Routine Interface

302 Chapter 18: Adding System Routines
Example: Hello World

Thanks to the definitive text on the C language (Kernighan and Ritchie, The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of atrivial program. Our version of this
program is a system function that returns a scalar string containing the text “Hello
World!”:

#i ncl ude <stdio. h>
#i ncl ude "export.h"

I DL_VPTR hell o_worl d(int argc, |IDL_VPTR argv[])

{
return(l DL_StrToSTRING "Hello World!"));

}

Thisis about as simple as an IDL system routine can be. The function
IDL_StrToSTRING(), returns atemporary variable which contains a scalar string.
Sincethisis exactly what is wanted, hello_world() simply returns the variable.

After compiling this function into a sharable object (named, say, hello_exe), we can
link it into IDL with the following LINKIMAGE call:

LI NKI MAGE, 'HELLO WORLD , 'hello_exe', 1, '"hello world, $
MAX ARGS=0, M N_ARGS=0

We can now issue the IDL command:
PRI NT, HELLO WORLDY)

In response, IDL writes to the screen:
Hel l o Worl d!

Example: Hello World External Development Guide

Chapter 18: Adding System Routines

Example: Doing a Little More (MULT?2)

303

The system function shown in the following figure does alittle more than the
previous one, though not by much. It expects a single argument, which must be an
array. It returns a single-precision, floating-point array that contains the values from
the argument multiplied by two.

1Q#incl ude <stdio. h>
2 §#i ncl ude "export. h"
3
4Q1 DL_VPTR mul t2(int argc, |IDL_VPTR argv[])
S5
6 | DL_VPTR dst, src;
7 float *src_d, *dst_d;
8 int n;
9 src = dst = argv[O0];
10
11§ | DL_ENSURE_SI MPLE(src);
12 | DL_ENSURE_ARRAY(src);
13
14 if (src->type != | DL_TYP_FLOAT)
C 15 src = dst = IDL_CvtFIt(1, argv);
16
17 src_d = dst_d = (float *) src->val ue.arr->data;
18
19 if (!(src->flags & |IDL_V_TEMP))
20 dst _d = (float *)
21 | DL_MakeTenpArray(| DL_TYP_FLOAT, src->val ue. arr->n_di m
22 src->val ue. arr->dim
23 IDL_ARR I NI _NOP, &dst);
24
25 for (n = src->value.arr->n_elts; n--;)
26 *dst_d++ = 2.0 * *src_d++;
27
28 return(dst);
291}

Table 18-1: mult2.c

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. Each line of thisroutine is discussed below:

1-2
Include the required header files.
4

Every system routine takes the same two or three arguments. argc is the number of
arguments, argv isan array of arguments. This routine does not accept keywords, so
argk isnot present.

External Development Guide Example: Doing a Little More (MULT2)

304

Chapter 18: Adding System Routines

6

dst will become a pointer to the resulting variable’s descriptor. src points at the input
variablewhichisfound in argv[0].

7

src_d and dst_d will point to the source and destination data areas.
8

n will contain the number of elementsin src.

10

Assume, for now, that the input variable will serve as both the source and destination.
Thiswill only be true if the parameter is atemporary floating-point array.

11-12

Screen out any input that is not of abasic type, and only allow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If theinputisnot of IDL_TYP_FLOAT, we call the IDL_CvtFIt() function to
create a floating-point copy of the argument (see “ Converting to Specific Types’ on
page 242 for information about converting types).

Note that the routine could also be written, more efficiently, with a C switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be more in the spirit of the IDL
language, where system routines work with all possible data types and sizes, but is
outside the scope of this example.

17

Here, weinitialize the pointers to the source and destination data areas from the array
block structure pointed to by the input variable descriptor.

19-23

If theinput variable is not atemporary variable, we cannot change its value and
return it as the function result. Instead, we alocate a new temporary floating point
array into which the result will be placed. Notice how the number of dimensions and
their sizes are taken from the source variable array block. See “Array Variables’ on
page 179 and “ Temporary Variables’ on page 187.

Example: Doing a Little More (MULT2) External Development Guide

Chapter 18: Adding System Routines 305

25

Loop over each element of the arrays.
26

Do the multiplication for each element.
28

Return the temporary variable containing the result.
Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRI NT, | NDGEN(5)

prints the following on the screen:
01234

To test our new function we use INDGEN to provide an input argument:
PRI NT, MULT2(| NDGEN(5))

Theresult, as expected, is.

0. 00000 2. 00000 4. 00000 6.00000 8.00000

External Development Guide Example: Doing a Little More (MULT2)

306 Chapter 18: Adding System Routines

Example: A Complete Numerical Routine
Example (FZ ROOTS2)

Thefollowing is acomplete implementation of the IDL system function FZ_ROOTS,
used to find the roots of an m-degree complex polynomial, using Laguerre’s method.
The result is an m-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keyword,
TC_INPUT, that is not present in the real routine.

FZ_ROQOTS2 uses the routine zroots(), described in section 9.5 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press:

void zroots(fconplex a[], int m fconplex roots[], int polish)
Quoting from the referenced book:

Given the degree m and the m+1 complex coefficients a/0..m] of the polynomial
" ,a(i)xt, thisroutine successively calls| aguer and findsall m complex rootsin
rootg 1..m]. The boolean variable pol i sh should beinput astrue (1) if polishing (also
by Laguerre’'s method) is desired, false (0) if the roots will be subsequently polished

by other means.

FZ_ROQOTS2 will support both single and double precision complex values as well
as give the caller control over the error tolerance, which is hard wired into the
Numerical Recipes code asa C preprocessor constant named EPS. In order to support
these requirements, we have copied the zr oots() function given in the book and
atered it to support both data types and make EPS a user specified parameter, giving
two functions:

void zroots_f(fconplex a[], int m fconplex roots[], int polish,
float eps);

void zroots_d(dconplex a[], int m dconplex roots[], int polish,
doubl e eps);

Note that fcomplex and dcomplex are Numerical Recipes defined types that happen
to have the same definition asthe IDL typesIDL_COMPLEX and
IDL_DCOMPLEX, aconvenient fact that eliminates some type conversion issues.

The definition of FZ_ROOTS2 from the IDL user perspectiveis:

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 307

Calling Sequence
Result = FZ_ROOTS2(C)
Arguments

C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROQOTS2 normally usesthe type of C to determine the type of the computation. If
DOUBLE is specified, it overrides this default. Setting DOUBLE to anon-zero value
causes the computation type and the result to be double precision complex. Setting it
to zero forces single precision complex.

EPS

The desired fractional accuracy. The default valueis 2.0 x 10°6.

NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’'s method.
TC_INPUT

If present, TC_INPUT specifies a named variable that will be assigned the input
value C, with its type converted to the type of the result.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS?2)

308 Chapter 18: Adding System Routines
Example
The following figure gives the code for fzroots2.c,. Thisis ANSI C code that
implements FZ_ROOTS2. The line numbers are not part of the code and are present
to make the discussion easier to follow. Each line of thisroutine is discussed bel ow.
1Q#i ncl ude <stdio. h>
2Q#i ncl ude <stdarg. h>
3j§#i nclude "export.h"
4Q#include <nr/nr.h>
5
61 DL_VPTR fzroots2(int argc, |IDL_VPTR *argv, char *argk)
i’ i
8 static int force_type;
9 static | DL_LONG do_doubl e;
10 static doubl e eps;
11 static | DL_LONG no_poli sh;
12 static IDL_VPTR tc_input;
13 static | DL_KWPAR kw pars[] = {
14 {"DOUBLE", IDL_TYP_LONG 1, 0, &force_type,
15 | DL_CHARA(do_doubl e) },
16 { "EPS", IDL_TYP_DOUBLE, 1, 0, O, |DL_CHARA(eps) }.
17 { "NOPOLISH', IDL_TYP_LONG 1, IDL_KWZERO O,
18 | DL_CHARA(no_pol i sh) 1},
19 { "TC_INPUT", 0, 1, IDL_KWOUT|IDL_KW ZERO, 0,
20 | DL_CHARA(t c_i nput) 1},
21 { NULL }
228}
C 23
24 I DL_VPTR resul t;
25 I DL_VPTR c_raw,
26 I DL_VPTR c_tc;
27 I DL_MEM NT m
28 voi d *out dat a;
29] I DL_MEM NT dinfIDL_NMAX_ARRAY DI M ;
30 int rtype;
31 static |DL_ALLTYPES zero;
32
33 eps = 2.0e-6;
34 (void) |DL_KWzet Parans(argc, argv, argk, kw pars, &c_raw, 1);
35
36 | DL_ENSURE_ARRAY(c_raw) ;
37] | DL_ENSURE_SI MPLE(c_raw);
38 if (c_raw>value.arr->n_dim!= 1)
390 I DL _Message(!DL_M NAVED GENERI C, |DL_MSG LONGIMP,
40 "l nput argunment nmust be a columm vector.");
41 m = c_raw >val ue. arr->di n{ 0] ;
42 if (--m<=0)
43 | DL_Message(| DL_M NAMED GENERI C, | DL_NMSG _LONGIMP,
44 "I nput array does not have enough el ements");

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

External Development Guide

Chapter 18: Adding System Routines 309

45Q if (tc_input)

46 I DL_StoreScal ar(tc_input, IDL_TYP_LONG &zero);

47

48 if (force_type) {

49 rtype = do_double ? | DL_TYP_DCOVPLEX : | DL_TYP_COVPLEX;
50 } else {

51 rtype = ((c_raw >type == | DL_TYP_DOUBLE)

52 |] (c_raw>type == | DL_TYP_DCOWPLEX))

53 ? | DL_TYP_DCOWPLEX : | DL_TYP_COWPLEX;

}
550din{o] = m

56 outdata = (void *)

57 | DL_MakeTenpArray(rtype, 1,dimIDL_ARR I Nl _NOP, & esul t);
58
59 if (c_raw>type == rtype) {
60 c_tc = c_raw,
C 61 1} else {
62 c_tc = IDL_Basi cTypeConversion(1l, &_raw, rtype);
63 }
64
65 if (rtype == | DL_TYP_COWPLEX) {
66 zroots_f((fconmplex *) c_tc->value.arr->data, m
67 ((fconplex *)outdata)-1,!no_polish, (float)eps);
68 } else {
69 zroots_d((dconplex *) c_tc->value.arr->data, m
70 ((dconplex *) outdata) - 1, !no_polish, eps);
71 }
72

73 if (tc_input) IDL_VarCopy(c_tc, tc_input);
74 else if (c_raw!= c_tc) IDL_Deltnmp(c_tc);

76 return result;

4

Table 18-2: fzroots2.c

nr . h isthe header file provided with Numerical Recipesin C code.

6

FZROOTS2 has the usual three standard arguments.

8

force_type will be TRUE if the user specifies the DOUBLE keyword. In this case,
the value of the DOUBLE keyword will determine the result type without regard for
the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex result
and non-zero forces double precision complex.

External Development Guide

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

310

Chapter 18: Adding System Routines

10

The value of the EPS keyword.

11

The value of the NO_POLISH keyword.

12

The value of the TC_INPUT keyword.

13

This array defines the keywords accepted by FZ_ROOTS2.
14

Since setting DOUBLE to 0 has a different meaning than not specifying the keyword
at al, force_typeisused to detect the fact that the keyword is set independent of its
value.

16

The EPS keyword allows the user to specify the eps tolerance parameter. epsis
specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default value
for this keyword is non-zero, so no zeroing is specified here. If the user includes the
EPS keyword, the value will be placed in eps, otherwise epswill not be changed.

17

This keyword lets the user suppress the usual polishing performed by zroots(). Since
specifying avalue of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO isusedtoinitialize the variable.

19

If present, TC_INPUT is an output keyword that will have the type converted value
of theinput argument stored in it. By specifying IDL_KW_OUT and
IDL_KW_ZERO, weensurethat TC_INPUT is either zero or a pointer to avalid
IDL variable.

24

This variable will receive the function result.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 311

25
The input argument prior to any type conversion.
26

The type converted input variable. If the input variable is already of the correct type,
thiswill be the same as c_raw, otherwise it will be different.

27
The value of mto be passed to zroots().
28

Pointer to the data area of the result variable. We declareit as(voi d *) sothat it
can point to data of any type.

29

Used to specify dimensions of the result. This will aways be a vector of m elements.
30

IDL type code for result variable.

31

Used by IDL_StoreScalar () to type check the TC_INPUT keyword. It is declared as
static to ensure it isinitialized to zero.

33

Set the default EPS value before doing keyword processing. If the user specifies EPS,
the supplied value will override this. Otherwise, thisvalue will still bein epsand will
be passed to zr oots() unaltered.

34
Perform keyword processing.
36 — 37

Ensure that the input argument is an array, and is one of the basic types (not afile
variable or structure).

38—-40

The input variable must be a vector, and therefore should have only asingle
dimension.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS?2)

312 Chapter 18: Adding System Routines

41 - 44

Ensure that the input variable islong enough for mto be non-zero. mis one less than
the number of elementsin the input vector, so thisis equivalent to saying that the
input must have at least 2 elements.

45

If the TC_INPUT keyword was present, use |DL_StoreScalar () to make sure the
named variable specified can receive the converted input value. A nice side effect of
this operation is that any dynamic memory currently being used by this variable will
be freed now instead of later after we have allocated other dynamic memory. This
freed memory might be immediately reusable if it is large enough, which would
reduce memory fragmentation and lower overall memory requirements.

48

If the user specified the DOUBLE keyword, it is used to control the resulting type,
otherwise the input argument type is used to decide.

49

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX, otherwise IDL_TYP_COMPLEX.

51-53

Use the input type to decide the result type. If theinputisIDL_TYP_DOUBLE or
IDL_TYP_DCOMPLEX, useIDL_TYP_DCOMPLEX, otherwise
IDL_TYP_COMPLEX.

55 -57
Create the output variable that will be passed back as the result of FZ_ROOTS2.
59-63

If necessary, convert the input argument to the result type. Thisis done after creation
of the output variable becauseitislikely to have ashort lifetime. If it does get freed at
the end of thisroutine, it won’t cause memory fragmentation by leaving aholein the
process virtual memory.

65
The version of zroots() to call depends on the data type of the result.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 18: Adding System Routines 313

66— 67

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensates for the fact that the Numerical Reciperoutinewill index it
from [1..m] rather than [0..m-1] asisthe usual C convention. Also, epsiscast to
single precision.

69— 70
Double precision complex case.
73

If the user specified the TC_INPUT keyword, copy the type converted input into the
keyword variable. Since Var Copy() freesits source variable if it is atemporary
variable, we are relieved of the usual responsibility to call IDL_Deltmp() if c_tc
contains atemporary variable created on line 61.

74

The user didn’t specify the TC_INPUT keyword. In this case, if we allocated c¢_tc on
line 66, we must free it before returning.

76

Return the result.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOTS?2)

314 Chapter 18: Adding System Routines

Example: An Example Using Routine Design
Iteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM isafunction
that returns the running sum of the valuesin its single input argument. We will
present three versions of this routine, each one of which represents an improvement
in functionality and flexibility.

All three versions use the function result_var () shown in the following figure. The
result of RSUM always has the same general shape and dimensions as the input
argument. result_var () encapsulates the task of creating atemporary variable of the
desired type and shape using the input argument as atemplate.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 315

Running Sum (Example 1)

The first example of RSUM isvery simple. Here is asimple “ Reference Manual”
style description of it:

RSUM1

Compute a running sum on the array input. The result is afloating point array of the
same dimensions.

Calling Sequence
Result = RSUM1(Array)

Arguments

Array

Array for which arunning sum will be computed.

Thisisaminimal design that lacks some important characteristics that IDL
system routines usually embody:

¢ |t does not handle scalar input.

* Thetype of theinput isinflexible. IDL routines usualy try to handle any
input type and do whatever type conversions are necessary.

» Theresult typeisalways single precision floating point. IDL routines
usually perform computationsin the type of the input argumentsand return
avalue of the same type.

0 ~NO O WN K

=
o ©

11
12
13
14
15
16

{

char *result_var(IDL_VPTR tenplate, int type, IDL_VPTR *res)
/*
* Allocate a result variable, using the tenplate IDL_VPTR to determ ne
* the structure, and type to determine the type. *res is set to
* the new variable, and a pointer to its data area is returned.
*/
char *data;
I DL_VPTR I res;
if (tenplate->flags & IDL_V_ARR) {
data = | DL_MakeTenpArray(type, tenplate->value.arr->n_dim
tenpl ate->value.arr->dim |IDL_ARR IN _NOP, res);
} else {
Ires = *res = IDL_Gettnp();
I res->type = type;

Table 18-3: result_var() function for RSUM example

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

316 Chapter 18: Adding System Routines
17 data = (char *) &(lres->value.c);
18 }
19
20f return data;
21}
Table 18-3: result_var() function for RSUM example
We will improve on this design in our subsequent attempts. The code to implement
RSUM1 is shown in the following figure. The line numbers are not part of the code
and are present to make the discussion easier to follow. Each line of thisroutineis
discussed below:
1§IDL_VPTR IDL_rsuml(int argc, IDL_VPTR argv[])
2K
3] IDL_VPTR v;
4] IDL_VPTR r;
5 float *f_src;
6 float *f_dst;
70 I DL_MEM NT n;
8
9
10 v = argv[O0];
11 if (v->type != I DL_TYP_FLOAT)
c 12 | DL_Message(| DL_M NAMED GENERI C, | DL_NMSG _LONGIMP,
13 "argument nust be float");
14 | DL_ENSURE_ARRAY(V);
15§ | DL_EXCLUDE_FI LE(V);
16
17 f_dst = (float *) result_var(v, IDL_TYP_FLOAT, &r);
18 f_src = (float *) v->value.arr->data;
19 n = v->value.arr->n_elts - 1;
20 *f_dst++ = *f_src++;/* First element */
21 for (; n--; f_dst++) *f _dst = *(f_dst - 1) + *f_src++;
22
23 return r;
24}
Table 18-4: Code for IDL_rsum1()
1

The standard signature for an IDL system function that does not accept keywords.
3

Thisvariable is used to access the input argument in a convenient way.

4

ThisIDL_VPTR will be used to return the result.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 317

5-6

Asthe running sum is computed, f_src will point at the input dataand f_dst will
point at the output data.

7

The number of elements in the inpuit.

10

Obtain the input variable pointer from argv[Q].
11

If the input is not single precision floating point, throw an error and quit. Thisis
overly rigid. Real IDL routines would attempt to either type convert the input or do
the computation in the input type.

14
This version can only handle arrays. If the user passes a scalar, it throws an error.
15

This routine cannot handle ASSOC file variables. Most IDL routines exclude such
variables as they do not contain any data to work with. ASSOC variable data usually
comes into aroutine as the result of an expression that yields a temporary variable
(e.g. TMP = RSUM MY_ASSCC VAR(2))).

17

Create a single precision floating point temporary variable of the same size asthe
input variable and get a pointer to its data area.

18

Get apointer to the data area of the input variable. At this point we know this variable
is always a floating point array.

19
The number of data elementsin the input.
20-21

The running sum computation.

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

318 Chapter 18: Adding System Routines

23

Return the result.
Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in several ways:
* RSUMZ2 accepts scalar input.

« If theinput is not of floating type, we type convert it instead of throwing an
error.

» If theinput isatemporary variable of the correct type, we will do the running
sum computation in place and return the input as our result variable rather than
creating an extratemporary. This optimization reduces memory use, and can
have positive effects on dynamic memory fragmentation.

Asaways, thefirst step in writing a system routine is to write a simple description of
its interface and intended behavior:

RSUM2

Compute a running sum on the input. The result is afloating point variable with the
same structure.

Calling Sequence
Result = RSUM2(Input)
Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 319

The following is the code for RSUM2:

©CO~NOUIDAWNPF

I DL_VPTR I DL_rsun®(int argc, |IDL_VPTR argv[])
{

I DL_VPTR v;
IDL_VPTR r;
float *f_src;
float *f_dst;
| DL_MEM NT n;

v = | DL_Basi cTypeConversion(1l, argv, |DL_TYP_FLQAT);

/* | DL_Basi cTypeConversion calls | DL_ENSURE_SI MPLE, so
skip it here. */

I DL_Var Get Dat a(v, &n, (char **) &f _src, FALSE);

/* Get a result var, reusing the input if possible */
if (v->flags & V_.TEMP) {

r o=,

f_dst = f_src;
} else {

f_dst = (float *) result_var(v, |IDL_TYP_FLOAT, &r);
}

*f _dst++ = *f_src++;/* First el enment */
n--;
for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++

return r;

Table 18-5: Code for IDL_rsum2().

Discussion of the code for the improvements introduced in this version follow:
10

If the input has the wrong type, obtain one of the right type. If it was aready of the
correct type, IDL_BasicTypeConversion() will simply return the input value
without allocating atemporary variable. Hence, no explicit check for that is required.
Also, if the input argument cannot be converted to the desired type (e.g. itisa
structure or file variable) IDL_BasicTypeConversion() will throw an error. Hence,
we know that the result from this function will be what we want without requiring
any further checking.

13

IDL_GetVarData() isamore elegant way to obtain a pointer to variable data along
with a count of elements. A further benefit is that it automatically handles scalar
variables which removes the restriction from RSUM 1.

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

320 Chapter 18: Adding System Routines

15-21

If theinput variable is atemporary, we will do the computation in place and return
the input. Otherwise, we create atemporary variable of the desired type to be the
result.

Notethat if IDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value of argv[0], that value will be atemporary variable which will then
be turned into the function result by this code. Hence, we never free the value from
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 is abig improvement over RSUM1, but it still suffers from the fact that all
computation isdone in asingle datatype. A rea IDL system routine always tries to
perform computations in the most significant type presented by its arguments. In a
single argument case like RSUM, that would mean doing computations in the input
datatype whatever that might be. Our final version, RSUM 3, resolves this
shortcoming.

RSUM3

Compute a running sum on the input. The result is a variable with the same type and
structure as the input.

Calling Sequence
Result = RSUM 3(Input)
Arguments

Input

Scalar or array data of any numeric type for which arunning sum will be
computed.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 321

The code for RSUM 3 is given in the following figure. Discussion of the code for the
improvements introduced in this version follow:

1fcx_public IDL_VPTR IDL_rsunB(int argc, IDL_VPTR argv[])
2{

3 IDL_VPTR v, r;

4 uni on {

5 char *sc; /* Standard char */

6 UCHAR *c; /* I DL_TYP_BYTE */

7 short *i; [* IDL_TYP_I NT */

8 I DL_UI NT *ui; /* IDL_TYP_UI NT */

9 I DL_LONG *I; /* I DL_TYP_LONG */
10 | DL_ULONG *ul ; /* I DL_TYP_ULONG */
11 | DL_LONGG4 *1 64; /* IDL_TYP_LONGG4 */
12 | DL_ULONG64 *ul 64; /* I DL_TYP_ULONGG4 */
13 float *f; /* I DL_TYP_FLQOAT */
14 doubl e *d; /* | DL_TYP_DOUBLE */
15 | DL_COWPLEX *cnp; /* | DL_TYP_COWPLEX */
16 | DL_DCOVPLEX *dcnp; /* | DL_TYP_DCOWPLEX */

17Q} src, dst;
181 DL_LONG n;

19

20

21fv = argv[O0];

22fif (v->type == IDL_TYP_STRI NG

23 v = | DL_Basi cTypeConversion(1, argv, |IDL_TYP_FLQAT);
2441 DL_Var Get Dat a(v, &n, &(src.sc), TRUE);
C 25fn--; /* First is a special case */

27Q/* Get a result var, reusing the input if possible */
28Qif (v->flags & IDL_V_TEMP) {

29 r =v;

30 dst = src;

31} else {

32 dst.sc = result_var(v, v->type, &r);
331}

34

35#defi ne DOCASE(type, field) \
36fcase type: for (*dst.field++ = *src.field++; n--;dst.field++)\

37 *dst.field = *(dst.field - 1) + *src.field++; break
38

39 #defi ne DOCASE_CMWP(type, field) case type: \

40ffor (*dst.field++ = *src.field++, n--; \

41 dst.field++, src.field++) { \

42 dst.field-> = (dst.field - 1)->r + src.field->r; \
43 dst.field-> = (dst.field - 1)-> + src.field->i; } \
44 br eak

46 switch (v->type) {

47 DOCASE(| DL_TYP_BYTE, c);
48 DOCASE(I DL_TYP_INT, i);

49 DOCASE(IDL_TYP_LONG, 1);
50 DOCASE(| DL_TYP_FLOAT, f);

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

322

Chapter 18: Adding System Routines

51 DOCASE(1 DL_TYP_DOUBLE, d);

52 DOCASE_CMP(| DL_TYP_COMPLEX, cnp);

53 DOCASE_CMP(| DL_TYP_DCOVPLEX, dcnp);

54 DOCASE(| DL_TYP_UI NT, ui);

55 DOCASE(| DL_TYP_ULONG, ul);

56 DOCASE(| DL_TYP_LONG64, | 64);

57 DOCASE(| DL_TYP_ULONG64, ul 64);

58 defaul t: | DL_Message(|DL_M NAVED GENERI C, | DL_MSG _LONGIMP,
59 "unexpected type");

60 }

61 f#undef DOCASE

62 f#undef DOCASE_CMP

63
64freturn r;
651}

17

f_srcand f_dst are no longer pointersto float. They are now the IDL_ALLPTR
type, which can point to data of any IDL type. To reflect this change in scope, the
leading f_ prefix has been dropped.

22-23

Strings are the only input type that now require conversion. The other types can either
support the computation, or are not convertable to atype that can.

35-37

The code for the running sum computation is logically the same for all non-complex
datatypes, differing only inthe IDL_ALLPTR field that is used for each type.

Using a macro for this means that the expression is only typed in once, and the C
compiler automatically fillsin the different parts for each datatype. Thisisless error
prone than entering the expression manually for each type, and leads to more
readable code. Thisisone of the rare cases where amacro makes things more reliable
and readable.

39-44
A macro for the 2 complex types.
46-60

A switch statement that uses the macros defined above to perform the running sum on
all possible types. Note the default case, which traps attempts to compute a running
sum on structures.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 18: Adding System Routines 323

61-62

Don't alow the macros used in the above switch statement to remain defined beyond
the scope of this function.

External Development Guide Example: An Example Using Routine Design Iteration (RSUM)

324 Chapter 18: Adding System Routines

Registering Routines

The IDL_SysRtnAdd() function adds system routines to IDL’s internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you are linking aversion of IDL to which you are adding routines,
although thisisvery rare and not considered to be a good practice for maintainability
reasons. More commonly, you use IDL_SysRtnAdd() inthe DL _L oad() function
of aDynamically Loadable Module (DLM). DLMs are discussed in “Dynamically
Loadable Modules’ on page 337.

Note

LINKIMAGE or DLMs are the preferred way to add system routinesto IDL

because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

Syntax
int |DL_SysRtnAdd(I|DL_SYSFUN DEF2 *defs, int is_function, int cnt)
It returns Trueif it succeeds in adding the routine or False in the event of an error.

Arguments
defs

An array of IDL_SY SFUN_DEF2 structures, one per routine to be declared.
This array must be defined with the C language static storage class because

IDL keeps pointersto it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF2 structures contained in the defs array.

Registering Routines External Development Guide

Chapter 18: Adding System Routines 325

The definition of IDL_SYSFUN_DEF2is:
typedef | DL_VARI ABLE *(* | DL_SYSTRN_GENERI O)();

typedef struct {
| DL_SYSRTN _GENERI C funct _addr;
char *nane;
unsi gned short arg_mn;
unsi gned short arg_nex;
int flags
void *extra;
} 1 DL_SYSFUN DEF2;

IDL_VARIABLE structures are described in “The IDL_VARIABLE
Structure” on page 175.

funct_addr
Address of the function implementing the system routine.
name

The name by which the routine is to be invoked from within IDL. This should
be a pointer to anull terminated string. The name should be capitalized. If the
routine is an object method, the name should be fully qualified, which means
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g. CLASS: : METHOD).

arg_min
The minimum number of arguments allowed for the routine.
arg_max

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

flags

A bitmask that provides additional information about the routine. Its value can
be any combination of the following values (bitwise OR-ed together to specify
more than one at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is s&t.

External Development Guide Registering Routines

326 Chapter 18: Adding System Routines

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.
IDL_SYSFUN_DEF_F_METHOD

Thisroutine is an object method.
extra

Reserved to Research Systems, Inc. The caller should set thisto 0.

Example

The following example shows how to register a system routine linked directly with
IDL. For simplicity, everything is placed in asingle file. Normally, you would
modularize things to allow easier code maintenance.

#i ncl ude <stdio. h>
#i ncl ude "export.h"

void prox1(int argc, IDL_VPTR argv[])
{

printf("proxl %\ n", 1DL_LongScal ar(argv[0]));
}

nmai n(int argc, char *argv[])
{
static | DL_SYSFUN _DEF2 new pros[] = {
{ (1 DL_SYSRTN_GENERI C) prox1, "PROX1", 1, 1, 0, 0}
s

if ('IDL_SysRtnAdd(new pros, |DL_FALSE, 1))
| DL_Message(|1 DL_M GENERI C, | DL_MSG_RET,
"Error adding systemroutine");
return | DL_Main(0, argc, argv);
}

This adds a system procedure named PROX 1 which accepts a single argument. It
converts this argument to a scalar longword integer and printsit.

Registering Routines External Development Guide

Chapter 18: Adding System Routines 327
Enabling and Disabling System Routines

Thefollowing IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code instead
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.

External Development Guide Enabling and Disabling System Routines

328 Chapter 18: Adding System Routines

Enabling Routines
The IDL_SysRtnEnable() function is used to enable and/or disable system routines.

Syntax
void I DL_SysRtnEnabl e(int is_function, |IDL_STRING *nanes,

IDL_MEM NT n, int option,
| DL_SYSRTN_GENERI C di sf cn)

Arguments
is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.

names

NULL, or an array of names of routines.

n
The number of names in names.
option
One of the values from the following table which specify what this routine
should do.
Bit Description
IDL_SRE ENABLE Enable specified routines.
IDL_SRE ENABLE_EXCLUSIVE Enable specified routines and disable all
others.
IDL_SRE_DISABLE Disable specified routines.
IDL_SRE DISABLE EXCLUSIVE Dihsable specified routines and enable all
others.

Table 18-6: Values for option Argument

Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 329

disfcn

NULL, or address of an IDL system routine to be called by the IDL interpreter
for these disabled routines. If thisargument is not provided, adefault routineis
used.

Result

All routines are enabled/disabled as specified. If anon-existent routineis specified, it
isquietly ignored. Attempts to enable routines disabled for licensing reasons are also
quietly ignored.

Note
Theroutines CALL_FUNCTION, CALL_METHOD (function and procedure),
CALL_PROCEDURE, and EXECUTE are not real system routines, but are
actually special casesthat result in different IDL pcode. For this reason, they cannot
be disabled. However, anything they can call can be disabled, so thisis not aserious
drawback.

External Development Guide Enabling and Disabling System Routines

330 Chapter 18: Adding System Routines

Obtaining Enabled/Disabled Routine Names

The IDL_SysRtnGetEnabledNames() function can be used to obtain the names of
all system routines which are currently enabled or disabled, either due to licensing
reasons (i.e., some routines are disabled in IDL demo mode) or dueto acall to
IDL_SysRtnEnable().

Syntax
voi d | DL_SysRt nGet Enabl edNanes(int is_function,

IDL_STRING *str, int
enabl ed)

Arguments

is_function

Set to TRUE if alist of functionsis desired, FALSE for alist of procedures.

str
Points to a buffer of IDL_STRING descriptorsto fill in. The caller must call
IDL_SysRtnNumEnabled() to determine how many such routines exist, and
this buffer must be large enough to hold that number.

enabled
Set to TRUE to receive names of enabled routines, FAL SE to receive names of
disabled ones.

Result

The memory supplied viastr isfilled in with the desired names.

Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 331

Obtaining the Number of Enabled/Disabled Routines

ThelDL_SysRtnGetEnabledNames() function requires you to supply abuffer large
enough to hold al of the namesto be returned. IDL_SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the buffer.

Syntax
| DL_MEM NT | DL_SysRt nNunEnabl ed(int is_function, int enabl ed)
Arguments

is_function
Set to TRUE if the number of functionsis desired, FAL SE for procedures.
enabled

Set to TRUE to receive number of enabled routines, FAL SE to receive number
of disabled ones.

Result

Returns the requested count.

External Development Guide Enabling and Disabling System Routines

332 Chapter 18: Adding System Routines

Obtaining the Real Function Pointer
The IDL_SysRtnGetReal Ptr () routine returns the pointer to the actual internal 1DL
function that implements the system function or procedure of the specified name.

This routine can be used to interpose your own code in between IDL and the actual
routine. This process is sometimes called hooking in other systems. To implement
such ahook function, you must usethe | DL _SysRtnEnable&() function to register the
interposed routing, whichinturn usesIDL_SysRtnGetReal Ptr () to obtain the actual
IDLfunction pointer for the routine.

Syntax

| DL_SYSRTN GENERI C I DL_SysRtnGet Real Ptr(int is_function,
char *nane)

Arguments
is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.
name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...
» existsand isnot disabled, it's function pointer is returned.
e doesnot exist, aNULL pointer is returned.
* hasbeen disabled by the user, its actual function pointer is returned.
» hasbeen disabled for licensing reasons, the real function pointer does not exist,

and the pointer to its stub is returned.

Note
Thisroutine can causean IDL_MSG_LONGJIMP message to be issued if the
function comes from aDLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unlessthe IDL interpreter is active. The

Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 333

prime intent for thisroutineisto cal it from the stub routine of a disabled function
when the interpreter invokes the associated system routine.

External Development Guide Enabling and Disabling System Routines

334 Chapter 18: Adding System Routines

Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL_SysRt nGet Current Nane(voi d)

This function returns a pointer to the name of the currently executing system
routine. If thereis no currently executing system routine, aNULL (0) pointer

isreturned.
This routine will never return NULL if called from within a system routine.

Enabling and Disabling System Routines External Development Guide

Chapter 18: Adding System Routines 335
LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It alows DL programs to
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines anew system procedure or function by specifying the routine's
name, the name of the file containing the code, and the entry point name. The name
of your routine is added to IDL’s internal system routine table, making it availablein
the same manner as any other IDL built-in routine.

LINKIMAGE isthe easiest way to add your routinesto IDL. It does not require
linking a separate version of the IDL program with your code the way a direct call to
IDL_SysRtnAdd() does, and it does not require writing the extra code required for a
Dynamically Loadable Module (DLM). It is therefore commonly used for smple
applications, and for testing during the development of a system routine.

If you are developing alarger application, or if you intend to redistribute your work,
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-usersto install and use than LINKIMAGE calls.

If your IDL application relies on code written in languages other than IDL and linked
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE are linked into IDL before any code that callsthem is
restored. In practice, the best way to do thisisto make the callsto LINKIMAGE in
your MAIN procedure, and include the code that uses the linked routinesin a
secondary . SAV file. In this case your MAIN procedure may ook something like

this;
PRO mai n
:Link the external code.
LI NKI MAGE, 'link_function', 'newdl!|’

; Restore code that uses |inked code.
RESTORE, 'secondary. sav'

; Run your application.
nmyapp

END

In this scenario, the IDL code that callsthe LINK_FUNCTION routine (the routine
linked into IDL in the LINKIMAGE call) is contained in the secondary . SAV file
'secondary. sav'.

External Development Guide LINKIMAGE

336 Chapter 18: Adding System Routines

Note
When creating your secondary . SAV file, you will need to issue the LINKIMAGE
command before calling the SAVE procedure to link your routine into IDL after
you have exited and restarted. The RESOLVE_ALL routine does not resolve
routines linked to IDL with the LINKIMAGE procedure.

LINKIMAGE External Development Guide

Chapter 18: Adding System Routines 337
Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routinesin asimple and
efficient manner. However, it quickly becomes inconvenient if you are adding more
than afew routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that calsit is compiled makesit difficult to use and
complicates the process of redistributing your routines to others. IDL offersan
alternative method of packaging your system routines, called Dynamically Loadable
Modules (DLMs), that address these and other problems.

ThelDL_SYSFUN_DEF2 structure, which isdescribed in “ Registering Routines’ on
page 324, contains al the information required by IDL for it to be able to compile
callsto agiven system routine and call it:

e A routine signature (Name, minimum and maximum number of arguments, if
the routine accepts keywords).

» A pointer to acompiled language function (usually C) that suppliesthe
standard IDL system routine interface (argc, argv, argk) which implementsiit.

IDL does not require the actual code that implements the function until the routineis
caled: It isable to compile other routines and statements that reference it based only
onits signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The routines
inaDLM arenot loaded by IDL unlessthe user calls one of them. A DLM consists of
two files:

1. A module description file (human readabl e text) that IDL reads when it starts
running. Thisfiletells IDL the signature for all system routines contained in
the loadable module.

2. A sharablelibrary that implementsthe actual system routines.Thislibrary must
be coded to present a specific IDL mandated interface (described below) that
alows IDL to automatically load it when necessary without user intervention.

DLMs are a powerful way to extend IDL’s built in system routines. This form of
packaging offers many advantages:

e Unlike LINKIMAGE, IDL automatically discovers DLMswhen it starts up
without any user intervention. This makes them easy to install — you simply
copy the two files into a directory on your system where IDL will look for
them.

External Development Guide Dynamically Loadable Modules

338

Dynamically Loadable Modules

Chapter 18: Adding System Routines

DLM routines work exactly like standard built in routines, and are
indistinguishable from them. Thereis no need for the user to load them (for
example, using LINKIMAGE) before compiling code that references them.

Example

As the amount of code added to IDL grows, using sharable libraries in this way
prevents name collisions in unrelated compiled code from fooling the linker into
linking the wrong code together. DLMs thus act as a firewall between unrelated code.

There are instances where unrelated routines both use a common third party
library, but they require different versions of thislibrary (e.g. The HDF
support in IDL requiresits own version of the NetCDF library. The NetCDF
support uses a different incompatible version of this library with the same
names). Use of DLMs allows each module to link with its own private copy of
such code.

Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedule independent of IDL releases.

System routines packaged as DLMs are effectively indistinguishable from
routines built into IDL by Research Systems.

Use of sharable librariesin this manner has ample precedent in the computer
industry. Most modern operating systems use |oadabl e kernel modules to keep the
kernel small while the functionality grows. The same technique is used in user
programs in the form of sharable libraries, which allows unrelated programs to share
code and memory space (e.g. asingle copy of the C runtime library is used by all
running programs on a given system).

How DLMs Work

IDL manages DLMsin the following manner:

1. When IDL darts, it looksin the current working directory for module

definition (.dim) files. It reads any file found and adds the routines thus
defined to the table of known routines as “stubs’. Stubs are entriesin the
system routine dispatch table that lack an actual compiled function to call.
They contain sufficient information for IDL to properly compile callsto the
routines, but not to actually call them. After the current working directory, IDL
searches | DLM_PATH for .dim files and adds them to the table in the same
manner. The default value of 'DLM_PATH isthe directory inthe IDL
distribution where the binary executables are kept. This default can be changed
by defining the IDL_DLM_PATH environment variable (similarly to the way
the IDL_PATH environment variable works with PATH). This process

External Development Guide

Chapter 18: Adding System Routines 339

happens once at startup, and never again. This means that IDL’s knowledge of
loadable modules is static and unchangeabl e once the session is underway.
Thisisvery different from the way !PATH works, and reflects the static nature
of built in routines. The format of .dim filesis discussed in “The Module
Description File” on page 339.

2. ThelDL session then continues in the usual fashion until acall to aroutine
from aloadable module occurs. At that time, the IDL interpreter notices the
fact that the routine is a stub, and loads the sharable library for the loadable
modul e that supplies the routine. It then looks up and calls a function named
IDL_L oad(), whichisrequired to exist, from the library. It'sjob isto replace
the stubs from that module with real entries (by using IDL _SysRtnAdd()) and
otherwise prepare the module for use.

3. Oncethe module isloaded, the interpreter looks up the routine that caused the
load one moretime. If it is still a stub then the module has failed to load
properly and an error isissued. Normally, afull routine entry is found and the
interpreter successfully calls the routine.

4. At thispoint the moduleisfully loaded, and cannot be distinguished from a
compiled in part of IDL. A moduleis only loaded once, and additional callsto
any routine from the module are made immediately once it is |oaded.

The Module Description File

The module description fileisasimpletext file that isread by IDL when it starts. The
information in thisfile tells IDL everything it needs to know about the routines
supplied by aloadable module. With thisinformation, IDL can compile callsto these
routines and otherwise behave asif it contains the actual routine. The loadable
module itself remains unloaded until a call to one of its routines is made, or until the
user forces the module to load by calling the IDL DLM_LOAD procedure.

Empty lines are allowed in .dim files. Comments are indicated using the # character.
All text from a# to the end of thelineisignored by IDL and isfor the user’s benefit
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on the
keyword. Possible lines are:

MODULE Name

Gives the name of the DLM. This should always be the first non-comment linein a
.dim file.There can only be one MODULE line.

External Development Guide Dynamically Loadable Modules

340

Chapter 18: Adding System Routines

MODULE JPEG
DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. This information
isdisplayed by HELP/DLM. Thislineis optional.

DESCRIPTION IDL JPEG support
VERSION VersionString

Suppliesaversion string that can be used by the IDL user to determine which version
of the module will be used. IDL does not interpret this string, it only displaysit as
part of the HELP,/DLM output. Thislineis optional.

VERSION 6a
BUILD_DATE DateString

If present, IDL will display thisinformation as part of the output from HELP/DLM.
IDL does not parse this string to determine the date, it is simply for the users benefit.
Thislineisoptional.

BUILD_DATE JAN 8 1998
SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. Thislineis optional.

SOURCE Research Systems, Inc.
CHECKSUM CheckSumValue

Thisdirectiveis used by RSI to sign the authenticity of the DLMs supplied with IDL
releases. It is not required for user-written DLMs.

STRUCTURE StructureName

There should be one STRUCTURE linein the DLM file for every named structure
definition supplied by the loadable module. If you refer to such a structure before the
DLM isloaded, IDL usesthisinformation to causethe DLM to load. The IDL _Init()
function for the DLM will define the structure.

Dynamically Loadable Modules External Development Guide

Chapter 18: Adding System Routines 341

FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE linein the DLM file for every
IDL routine supplied by the loadable module. Theselines give IDL theinformation it
needs to compile calls to these routines before the module is loaded.

RtnName
The IDL user level name for the routine.
MinArgs

The minimum number of arguments accepted by this routine. If not supplied, Ois
assumed.

MaxArgs

The maximum number of arguments accepted by this routine. If not supplied, Ois
assumed.

Options
Zero or more of the following:
OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

KEYWORDS
This routine accepts keywords as well as plain arguments.
PROCEDURE READ_JPEG 1 3 KEYWORDS

The IDL_Load() function

Every loadable module sharable library must export a single symbol called

IDL_L oad(). Thisfunction is called when IDL loads the module, and is expected to
do al the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call to
IDL_SysRtnAdd(). It usualy also requiresacall to IDL_M essageDefineBlock() if
the modul e defines any messages. Any other initialization needed would also go here:

int 1DL_Load(void)

External Development Guide Dynamically Loadable Modules

342 Chapter 18: Adding System Routines

This function takes no arguments. It is expected to return True (non-zero) if it was
successful, and False (0) if some initialization step failed.

DLM Example

This example creates aloadable module named TESTMODULE. TESTMODULE
provides 2 routines:

TESTFUN

A function that issues a message indicating that it was called, and then returns the
string “TESTFUN” This function accepts between O and IDL_ MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between 0 and IDL_MAX_ARRAY_DIM arguments, but it does not use
them for anything.

The intent of this example isto show the support code required to writeaDLM for a
completely trivial application. This framework can be easily adapted to real modules
by replacing TESTFUN and TESTPRO with other routines.

Thefirst step isto create the module definition file for TESTMODULE, named
testmodule.dIm:

MODULE t est nodul e

DESCRI PTI ON Test code for | oadabl e nodul es
VERSION 1.0

SOURCE Research Systens, Inc.

BU LD DATE JAN 8 1998

FUNCTI ON TESTFUN 0 | DL_MAXPARAMS
PROCEDURE TESTPRO 0 | DL_MAX_ARRAY_DI M

The next step isto write the code for the sharable library. The contents of
testmodule.c is shown in the following figure. Comments in the code explain what
each step is doing.

Dynamically Loadable Modules External Development Guide

Chapter 18:

Adding System Routines

343

©CO~NOODWNE

#i ncl ude <stdio. h>
#i ncl ude "export.h"

/* Handy macro */

#define ARRLEN(arr) (sizeof(arr)/sizeof(arr[0]))
/* Define nmessage codes and their corresponding printf(3) format
* strings. Note that nessage codes start at zero and each one is
* one |less that the previous one. Codes nust be nonotonic and

* contiguous. */

static IDL_MSG DEF nmsg_arr[] = {

#define M_TM | NPRO 0

{ "M.TM.INPRO', "ONThis is froma | oadabl e nodul e procedure.” },
#define M_TM_ | NFUN -1

{ "MTM.INFUN", "ONThis is froma | oadabl e nodul e function.” },
b
/* The load function fills in this message bl ock handle with the

* opaque handl e to the nmessage bl ock used for this nodul e. The other
* routines can then use it to throw errors fromthis block. */
static | DL_MSG BLOCK nsg_bl ock;

/* 1 nmplenentation of the TESTPRO | DL procedure */
static void testpro(int argc, |DL_VPTR *argv)
{ | DL_MessageFronBl ock(nsg_bl ock, M TM I NPRO, |DL_MSG RET); }

/* 1l nmplenentation of the TESTFUN I DL function */

static IDL_VPTR testfun(int argc, |DL_VPTR *argv)
| DL_MessageFr onBl ock(nsg_bl ock, M TM I NFUN, |DL_MSG RET);
return | DL_Str ToSTRI NG " TESTFUN") ;
}
int |1 DL_Load(void)
/* These tables contain infornmation on the functions and procedures
* that make up the TESTMODULE DLM The information contained in these
* tables nust be identical to that contained in testnodule.dl m
*/
static | DL_SYSFUN DEF2 function_addr[] = {
{ testfun, "TESTFUN', 0, |DL_MAXPARAMS, 0, 0},
b
static | DL_SYSFUN _DEF2 procedure_addr[] = {
{ (I DL_SYSTRN GENERI C) testpro, "TESTPRO', 0, |DL_MAX ARRAY DIM 0, O},
H
/* Create a nessage block to hold our nmessages. Save its handl e where
* the other routines can access it. */
if (!(msg_block = I DL_MessageDefi neBl ock(" Test nodul e”, ARRLEN(nsg_arr),
nsg_arr))) return | DL_FALSE;
/* Register our routine. The routines nust be specified exactly the sane
* as in testnodule.dlm */
return | DL_SysRt nAdd(function_addr, TRUE, ARRLEN(function_addr))
&& |1 DL_SysRt nAdd(procedur e_addr, FALSE, ARRLEN(procedure_addr));
}

External Development Guide

Table 18-7: testmodule.c

Dynamically Loadable Modules

344

Chapter 18: Adding System Routines

If building aDLM for Microsoft Windows, alinker definition file (testmodule.def) is
also needed. All of thesefiles, along with the commands required to build the module
can be found in the dim subdirectory of the external directory of the IDL distribution.

Once the loadable module is built, you can cause IDL to find it by doing one of the
following:

* Moveto the directory containing the .dim and sharable library for the
module.

» Definethe IDL_DLM_PATH environment variable to include the
directory.

Running IDL to demonstrate the resulting module:

| DL> HELP,/DLM 't est nodul e’

** TESTMODULE - Test code for | oadabl e nodul es (not | oaded)
Version: 1.0,Build Date: JAN 8 1998, Sour ce: Resear chSyst ens, | nc.
Pat h: /home/ user/t est nodul e/ ext ernal / t est nodul e. so

| DL> testpro

% Loaded DLM TESTMODULE.

% TESTPRO. This is froma | oadabl e nodul e procedure.

| DL> HELP,/DLM 't est nodul e’

** TESTMODULE - Test code for | oadable nodul es (| oaded)
Version:1.0,Build Date: JAN 8 1998, Sour ce: Resear chSystens, Inc.
Pat h: /home/ user/t est nodul e/ ext ernal / t est nodul e. so

IDL> print, testfun()

% TESTFUN: This is froma | oadabl e nodul e function.

TESTFUN

The initial HEL P output shows that the modul e starts out unloaded. The call to
TESTPRO causes the module to be loaded. AsIDL loads the module, it prints an
announcement of the fact (similar to the way it announcesthe .pro files it
automatically compiles to satisfy callsto user routines). Once the module is loaded,
subsequent calls to HEL P show that it is present. Calls to routines from this module
do not cause the module to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued).

Dynamically Loadable Modules External Development Guide

Chapter 19:

Callable IDL

This chapter discusses the following topics:

Calling IDL asaSubroutine 346
When is Callable IDL Appropriate? 347
Licensing Issuesand CallableIDL 350
Using CadlableIDL 351
Initilization 353
Diverting IDL Output 357

External Development Guide

Executing IDL Statements 359
Runtime IDL and Embedded IDL 361
Cleanup ..., 362

Issues and Examples: UNIX and VMS ... 363
Issues and Examples: Microsoft Windows 378
Issues and Examples: Macintosh 388

345

346 Chapter 19: Callable IDL
Calling IDL as a Subroutine

IDL can be called as a subroutine from other programs. This capability is referred to
as Callable IDL to distinguish it from the more common case of calling your code
from IDL (aswith CALL_EXTERNAL or LINKIMAGE).

How Callable IDL is Implemented

IDL isbuiltin asharable form that allows other programsto call IDL as a subroutine.
The specific details of how IDL is packaged depend on the platform:

* IDL for Windows has a small driver program linked to alarger dynamic-link
library (DLL) that contains the actual IDL program.

e IDL for Macintosh is provided as a Shared Library.

e |IDL for UNIX hasasmall driver program linked to a sharable object library
that contains the actual IDL program.

* IDL for VMSis asharable executable, meaning that it can run asan
application or serve as alibrary to which other programs can link.

Inall cases, it is possibleto link the sharable portion of IDL into your own programs.
Note that Callable IDL is not a separate copy of IDL that implements alibrary
version of IDL. It isin fact the same code, being used in a different context.

Calling IDL as a Subroutine External Development Guide

Chapter 19: Callable IDL 347
When is Callable IDL Appropriate?

Although Callable IDL isvery powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually easier
approaches that will solve a given problem. See “ Supported I nter-Language
Communication Techniquesin IDL"” on page 13 for alternatives.

IDL will not integrate with all programs. Understanding the issues described in this
section will help you decide when Callable IDL isand is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL users interface with
the computer. It is natural to think that calling IDL from other programs will have the
same effect, and under the correct circumstancesthisistrue. However, using Callable
IDL isnot aseasy as using IDL. Programmers who wish to use Callable IDL need to
possess the skills described in “ Skills Required to Combine External Code with IDL”
on page 23.

Be aware that the same things that make IDL powerful at the user level can make it
difficult to include in other programs. As an interactive, interpreted language, IDL is
adecidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes acompiler, alanguage interpreter, and related code that the
caller must work around. As an interactive program, IDL must control the process to
a high degree, which can conflict with the caller’s wishes. The following (certainly
incomplete) list summarizes some of the issues that must be dealt with.

IDL Signal API

IDL uses UNIX signalsto manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the manner
inwhich they are used can change from IDL release to rel ease as hecessary. Although
the IDL signal API (describedin“IDL Internals: Signals’ on page 265) allowsyou to
use signalsin an IDL-compatible way, the resulting constraints may require changes
to your code.

IDL Timer API

IDL’s use of the process timer requires you to use the IDL timer API instead of the
standard system routines. This restriction may require changes to some programs.
Under UNIX, the timer module can interrupt system calls. Timers are discussed in
“IDL Internals: Timers’ on page 277.

External Development Guide When is Callable IDL Appropriate?

348

Chapter 19: Callable IDL

GUI Considerations

Most applicationswill call IDL and display IDL graphicsin an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows that
IDL did not create. It is not always possible for IDL to draw into windows that it did
not create for the reasons described below:

X Windows

TheIDL X Windows graphics driver can draw in windowsit did not create aslong as
the window is compatible with the IDL display connection (see Appendix B, “IDL
Graphics Devices’ in the IDL Reference Guide for details). However, the design of
IDL’s X Windows driver requires that it open its own display connection and run its
own event loop. If your program cannot support a separate display connection, or if
dividing time between two event loops is not acceptable, consider the following
options:

* RunIDL in aseparate process and use interprocess communication (possibly
Remote Procedure Calls, to control it.

* |If you chooseto use Callable IDL, use the IDL Widget stub interface,
described in “Adding External Widgetsto IDL” on page 395, to obtain the IDL
display connection, and create your GUI using that connection rather than
creating your own. The IDL event loop will dispatch your events along with
IDL’s, creating a well-integrated system.

Microsoft Windows

At thistime, the IDL for Windows graphics driver does not have the ability to draw
into windows that were not created by IDL. However, the ActiveX control described
in Chapter 3, “IDLDrawWidget ActiveX Control”, can do this.

Macintosh

At thistime, the IDL for Macintosh graphics driver does not have the ability to draw
into windows that were not created by IDL.

Program Size Considerations

On systems that support preemptive multitasking, a single huge program isa poor use
of system capabilities. Such programsinevitably end up implementing primitive task-
scheduling mechanisms better |eft to the operating system.

When is Callable IDL Appropriate? External Development Guide

Chapter 19: Callable IDL 349

Troubleshooting

Troubleshooting and debugging applicationsthat call IDL can be very difficult. With
standard IDL, malfunctionsin the program are clearly the fault of Research Systems,
and given areproducible bug report, we attempt to fix them promptly. A program that
combines IDL with other code makes it difficult to unambiguously determine where
the problem lies. The level of support Research Systems can provide in such
troubleshooting is minimal. The programmer is responsible for locating the source of
the difficulty. If the problemisin IDL, asimple program demonstrating the problem
must be provided before we can address the issue.

Threading

IDL was not designed to be used in athreaded program, nor isit threaded itself.
Attempting to integrate IDL in athreaded application may cause unpredictable
results.

Inter-language Calling Conventions

IDL iswritten in standard ANSI C. Calling it from other languagesis possible, but it
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL is most appropriate in the following situations:

e CdlableIDL isclearly the correct choice when the resulting program isto bea
front-end that creates a different interface for IDL. For example, you might
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL asamodule in a distributed system.

» Callable IDL isappropriateif either the calling program or IDL handles all
graphics, including the Graphical User Interface, without the involvement of
the other. Intermediate situations are possible, but more difficult. In particular,
beware of attempts to have two event/message | oops.

e CallableIDL isappropriate when the calling program makes little or no use of
signals, timers, or exception handling, or is able to operate within the
constraints imposed by IDL.

External Development Guide When is Callable IDL Appropriate?

350 Chapter 19: Callable IDL

Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of your
application must have access to a properly licensed copy of the IDL library. For
availability of aruntime version of IDL, contact Research Systems or your |IDL

distributor.

Licensing Issues and Callable IDL External Development Guide

Chapter 19: Callable IDL 351
Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just asif a user were typing commands at an | DL>
prompt. In addition to the usual IDL ahilities, you can import datafrom your program
and cause IDL to seeit asan IDL variable. IDL can use such datain computations as
if it had created the variable itself. In addition, you can obtain pointersto data
currently held by IDL variables and accessthe results of IDL computations from your
program.

Note
The functions documented in this chapter should only be used when calling IDL
from other programs—their use in code called by IDL viaCALL_EXTERNAL or
LINKIMAGE is not supported and is certain to corrupt and/or crash the IDL
process.

Before calling IDL to execute instructions, you must initializeit. Under UNIX, VMS,
or Macintosh, you do thisby calling IDL _Init(). Under Microsoft Windows, you call
IDL_Win32Init() instead. Thisis a one-time operation, and must occur before
calling any other IDL function. see“Initialization” on page 353 for complete
information on this topic. Once IDL isinitialized, you can:

1. SendIDL commandsto IDL for execution. Commands are sent as strings,
using the same syntax as interactive IDL. Note that there is not a separate
function for every IDL command—any valid IDL command can be executed
as|DL statements. This approach allows usto keep the callable IDL APl small
and simple while allowing full accessto IDL's abilities. Thisis explained in
“Executing IDL Statements’ on page 359.

2. Call any of the several routines that interact with IDL through other meansto
perform operations such as.

* Importing datainto IDL. (See “Creating an Array from Existing Data” on
page 192.)

e Accessing datawithin IDL. (See“Looking Up Variablesin Current Scope”
on page 202.)

» Changing itemsin the process, such as signal handling or timers. (See
“IDL Internals: Signals’ on page 265, or “IDL Internals: Timers’ on

page 277.)

External Development Guide Using Callable IDL

352 Chapter 19: Callable IDL
» Redirecting IDL output to your own function for processing. See
“Diverting IDL Output” on page 357.

The above list is not complete, but is representative of the possibilities afforded by
Callable IDL.

Cleanup

After all IDL useis complete, but before the program exits, you must call
IDL_Cleanup() to alow IDL to shutdown gracefully and clean up after itself. Once
this has been done, you are not allowed to call IDL again from this process. See
“Cleanup” on page 362.

Using Callable IDL External Development Guide

Chapter 19: Callable IDL 353
Initialization

IDL for UNIX, VMS, and Macintosh use the IDL _Init() function (described below)
to prepare Callable IDL for use. IDL for Microsoft Windows uses | DL _Win32Init(),
described in “Initialization: Microsoft Windows” on page 355.

Initialization: UNIX, VMS, and Macintosh

IDL for UNIX and VM S usethe IDL_Init() function prepares Callable IDL for use.
This must be the first IDL routine called.

Note

Microsoft Windows applications should not call DL _Init(). Instead, use
IDL_Win32Init(), described in “Initialization: Microsoft Windows’ on page 355.

int IDL_Init(int options, int *argc, char *argv[]);

where:
options

A bitmask used to specify initialization options. The allowed bit values are:
IDL_INIT_EMBEDDED

Setting this bit causes IDL to initialize to run applications from a Save/Restore file
that contains an embedded license. IDL_RuntimeExec() is then used to run the
application(s). Note that IDL _Execute() and I DL _ExecuteStr () are disabled when
IDL isinitialized with this option.

IDL_INIT_GUI

Setting this bit causes IDL to use the IDL Development Environment (IDLDE) GUI
rather than using the standard tty based interface. This option isignored under
Windows and Macintosh.

IDL_INIT_GUI_AUTO

Setting this bit causes IDL to try to use the IDL Development Environment (IDLDE)
GUI. If that fails, IDL uses the standard tty interface. This option isignored under
Windows and Macintosh.

External Development Guide Initialization

354

Initialization

Chapter 19: Callable IDL

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

IDL_INIT_NOLICALIAS

Our FLEXIm floating licence policy isto alias al IDL sessions that share the same
user/system/display to the samelicense. If IDL_INIT_NOLICALIASis set, thisI|DL
session will force a unique license to be checked out. In this case, we allow the user
to change the DISPLAY environment variable. Thisis useful for RPC servers that
don’'t know where their output will need to go before invocation. Thisoption is
ignored on Macintosh.

IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)

Indicatesto IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user’s input command processing.

One effect of thisisthat XMANAGER will realize that the active command line
functionality for processing widget eventsis not available, and XMANAGER wiill
block to manage events when it is called rather than return immediately.

Normally under UNIX, if IDL seesthat stdin and stdout are ttys, it putsthe tty into
raw mode and uses termcap/terminfo to handle command line editing. When using
callable IDL in abackground process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from the
shell) with amessage like “ Stopped (tty output) idl”. Setting this option prevents all
tty edit functions and disables the calls to termcap. /O to the tty isthen done with a
simple fgets()/printf(). If the IDL_INIT_GUI hit is set, this option is ignored.

For historical reasons, this option used to be called IDL_INIT_NOTTYEDIT. Use
of that name s still supported.

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and message of
the day.

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() is then used to run an IDL application restored from a
Save/Restore file. Note that IDL_Execute() and I DL_ExecuteStr () are disabled
when IDL isinitialized with this option.

External Development Guide

Chapter 19: Callable IDL 355

argc

As passed by the operating system to main().
argv

As passed by the operating system to main().

IDL_Init() returns TRUE if the initialization is successful, and FAL SE for failure.
Arguments not directly intended for IDL are removed from argv and argc is
decremented to match.

Initialization: Microsoft Windows

Under Microsoft Windows, the IDL_Win32Init() function preparesthe IDL DLL for
use. IDL_Win32Init() must be called before any other function except
IDL_ToutPush().

Note
Windows applications should not call IDL _Init(), described in the previous section.
IDL_Win32Init() callsIDL_Init() on your behalf at the appropriate time.

int IDL_Wn32Init(int iOpts, void *hinstExe, void *hwndExe,
voi d *hAccel);

where:

iOpts

A bitmask used to specify initialization options. The allowed bit values are:
IDL_INIT_RUNTIME

Setting this bit causes IDL to check out a runtime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restore file. Note that IDL _Execute() and IDL_ExecuteStr() are disabled
when IDL isinitialized with this option.

IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

hinstExe
HINSTANCE from the application that will be calling IDL.

External Development Guide Initialization

356 Chapter 19: Callable IDL

hwndExe

HWND for the application’s main window.
hAccel

Reserved. This argument should always be NULL.

IDL_Win32Init() returns TRUE if the initialization is successful, and FAL SE for
failure.

Initialization External Development Guide

Chapter 19: Callable IDL 357

Diverting IDL Output

When using atty-based interface (UNIX or VMS), IDL sendsits output to the screen
for the user to see. When using a GUI based interface (any platform), the output goes
to the log window. The default output function is automatically installed by IDL at
startup. To divert IDL output to afunction of your own design, use IDL_ToutPush()
and IDL_ToutPop() to change the output function called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() and IDL_ToutPop()) to manage them. The most recently pushed
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_QUTF) (int flags, char *buf, int n);

The arguments to an output function are:

flags

buf

A bitmask of flag values that specify how the text should be output. The allowed bit
values are:

IDL_TOUT_F_STDERR

Send the text to stderr rather than stdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start anew output line. On atty, thisis equivalent to sending
anewline (" \ n') character.

Thetext to be output. There may or may not be aNULL termination, so the character
count provided by n must be used to move only the specified number of characters.

The number of charactersin buf to be output.

IDL_ToutPush()

Use IDL_ToutPush() to push a new output function onto the stack. The most
recently pushed function is the one used by IDL for outpuit.

External Development Guide Diverting IDL Output

358 Chapter 19: Callable IDL

void | DL_Tout Push(| DL_TOUT_COUTF outf);
IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

I DL_TOUT_QUTF | DL_Tout Pop(voi d);

Warning
Do not pop an output function you did not push. It is an error to attempt to remove
the last remaining function.

Diverting IDL Output External Development Guide

Chapter 19: Callable IDL 359
Executing IDL Statements

There are two functions that allow you to execute IDL statements.

IDL_ExecuteStr () executes asingle command, while | DL _Execute() takes an array
of commands and executes them in order. In both cases, the commands are null
terminated strings—just as they would be typed by an IDL user at the | DL> prompt.
It isimportant to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines written in IDL from the IDL Library (found viathe IDL
IPATH system variable). This ability to “download” complicated programsinto IDL
and then run them via a simple command can be very powerful.

Note
On Macintosh, IDL reserves all resource | Ds between 128 and 2000. You must
avoid using any of the resource IDsin thisrange. If you are unable to avoid
conflictswith IDL resources, you can use the IDL_M acResExecute and
IDL_MacResExecuteStr functions. These functions areidentical to |DL_Execute
and | DL ExecuteStr with the exception that IDL will set the current resource file on
entry to IDL’s resource file and reset it on exit.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the value
of 'ERROR_STATE.CODE after the final command has executed. If the value of
IERROR_STATE.CODE is needed for an intermediate command, you should use
IDL_ExecuteStr() instead of IDL_Execute().

int | DL_Execute(int argc, char *argv[]);
argc
The number of commands contained in argv.
argv

An array of pointersto NULL-terminated strings containing IDL statementsto
execute.

IDL_ExecuteStr()

IDL_ExecuteStr () returnsthe value of the 'ERROR_STATE.CODE system variable
after the command has executed.

External Development Guide Executing IDL Statements

360 Chapter 19: Callable IDL

int | DL_ExecuteStr(char *cnd);
cmd

A NULL-terminated string containing an IDL statement to execute.

Executing IDL Statements External Development Guide

Chapter 19: Callable IDL 361
Runtime IDL and Embedded IDL

If you distribute programs that call IDL with aruntime license or an embedded
license, use IDL_RuntimeExec(). After initialization IDL_RuntimeExec() can be
used to run self-contained IDL applications from a Save/Restore file.
IDL_RuntimeExec() restores the file, then attemptsto call an IDL procedure named
MAIN. If no MAIN procedureisfound, the function attemptsto call a procedurewith
the same name as the restored Savefile. (That is, if the Savefile is named

nmypr og. sav, IDL_RuntimeExec() looks for a procedure named nypr og.)

IDL_RuntimeExec() returns TRUE if the operation succeeded and the MAIN
procedure or the named procedure were called. Note that the returned status does not
indicate whether the actual IDL code ran successfully.

int 1DL_RuntineExec(char *file);
where:
file

The complete path specification to the Save file to be restored, in the native syntax of
the platform in use.

External Development Guide Runtime IDL and Embedded IDL

362 Chapter 19: Callable IDL

Cleanup

After your programisfinished using IDL (typically just beforeit exits) it should call
IDL_Cleanup() to allow IDL to shut down gracefully. IDL _Cleanup() returnsa
status value that can be passed to Exit().

int I DL_C eanup(int just_cleanup);
where:

just_cleanup

If TRUE, IDL_Cleanup() does all the process shutdown tasks, but doesn’t actually
exit the process. If FALSE (the usual), the process exits.

Microsoft Windows applications should place this call in their Main WndProc to be
caled as aresult of the WM_CL OSE message.

swi tch(msg){
case WM CLOSE:

I DL_C eanup(TRUE) ;
any additional processing

Cleanup External Development Guide

Chapter 19: Callable IDL 363

Issues and Examples: UNIX and VMS

Interactive IDL

Under UNIX and VMS, IDL_Main() implements IDL as seen by the interactive
user. In the interactive version of IDL as shipped by Research Systems, the actual
main() function simply decodes its arguments to determine which options to specify
and then callsIDL_Main() to do therest. IDL_Main() calls exit() and does not
return to its caller.

int IDL_Main(int init_options, int argc, char *argv[]);
where:
init_options
The options argument to be passed to I DL _Init().
argc, argv

From main(). Arguments that correspond to options specified viathe init_options
argument should be removed and converted to init_options flags prior to calling this
routine.

Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. The following is abrief list of basic
concepts to consider when building programsthat call IDL.

e Compilersfor some languages add underscores at the beginning or end of user
defined names. To check the naming convention employed by your compiler,
use the UNIX nn(1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently by the
compiler, linker, and debugger. If you use more than one language, problems
arise if the different compilers use different naming conventions. For example,
the SUnOS Fortran compiler adds an underscore to the end of each name, while
the C compiler does not. To call a Fortran routine from C, you must include
this underscore in your code (to call the function ny_code, you would refer to
itasmy_code_). Note that you may also need to set a compiler flag to make
case significant.

External Development Guide Issues and Examples: UNIX and VMS

364

Chapter 19: Callable IDL

To determine whether your compilers use compatible naming conventions,
consult your compiler documentation or experiment with small test programs
using the compilers and the nmcommand.

Every program starts execution at a known routine. In the C language, this
routine is explicitly named main(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

When linking a C program, use the cc command instead of the| d command.
cc calsl d to perform the link operation, and when necessary adds a directive
tol d that causes the C runtime library to be used.

If you don't use cc to link your program (if you areusing | d directly or are
using a Fortran compiler, for example) and you get “ unsatisfied symbol” errors
for symbols that arein the standard C library, try including the runtime library
explicitly in your link command. Usually, adding the string - | ¢ to the end of
the command is al that is necessary.

Under Hewlett-Packard's HP-UX operating system, if you usel d directly you
may also need to include the PA1. 1 math library in order to locate
mathematics routines at runtime. Add theflag- L/ | i b/ pal. 1 prior to- | mon
the link line to link with the PA1. 1 math libraries.

See “Compilation and Linking Statements” on page 377 for examples showing
how to compile and link programs with the IDL libraries under various
operating systems.

Example: Calling IDL From C

The program in the following figure(cal | t est . ¢, found inthecal | abl e
subdirectory of the ext er nal subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obtain
datafrom IDL variables. It performs the following actions:

1. Createan array of 10 floating point values with each element set to the value of

itsindex. Thisis equivalent to the IDL command FINDGEN(10).
Initialize Callable IDL.
Import the floating point array into IDL as a variable named TMP.

4. HavelDL print the value of TMP.

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL 365

5. Execute a short sequence of IDL statements from a string array:

tnp2 = total (tnp)
print,"IDL total is ',tnp2

plot, tnp
6. Set TMPto zero, causing IDL to release the pointer to the floating point array.

7. Obtain apointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 isa scalar floating point
value.

8. From our C program, print the value of the IDL TMP2 variable.

9. Execute asmall widget program. Pressing the button allows the program to

dget _base()

dget _button(a, val ue='Press Wien Done', xsi ze=300,
ysi ze=200)

wi dget _control, /realize, a

dunmy = wi dget _event (a)

wi dget _control, /destroy, a

Wi
Wi

See “Compilation and Linking Statements’ on page 377 for details on
compiling and linking this program.

Each lineis numbered to make discussion easier. The line numbers are not part
of the actual program.

External Development Guide Issues and Examples: UNIX and VMS

366 Chapter 19: Callable IDL

#i ncl ude <stdio. h>
#i ncl ude "export.h"

static void free_cal |l back(UCHAR *addr)

printf("I1DL rel eased(%)\n", addr);

O©CoO~NOUTAWNE
— —_~

int main(int argc, char **argv)

10
11 float f[10];
12 int i;

13 | DL_VPTR v;

14] I DL_MEM NT di nf 1 DL_NMAX_ARRAY DI M ;

15 static char *cnmds[] = { "tnmp2 = total (tmp)",
16 "print,’IDL total is ',tnp2", "plot,tnp" };
17 static char *cnds2[] = { "a = w dget_base()",

18 "b = widget _button(a, value='Press Wen Done', xsize=300, ysize=200)",
19 "wi dget_control,/realize, a",
20 "dummy = wi dget _event(a)",
C 21 "wi dget _control,/destroy, a" };
22
23
24 for (i=0; i < 10; i++) f[i] = (float) i;
25 if (IDL_Init(0, &rgc, argv)) {
26 dinf0] = 10;
27 printf("ARRAY ADDRESS(%u)\n", f);
28 if (v=IDL_I nportNamedArray("TMP", 1, dim |DL_TYP_FLOAT,
29 (UCHAR *) f, free_callback, (void *) 0)) {
30 (void) IDL_ExecuteStr("print, tnp");
31 (void) |DL_Execute(sizeof(cnds)/sizeof(char *), cnds);
32 (void) IDL_ExecuteStr("print, 'Free the user nenory’'");
33 (void) |DL_ExecuteStr("tnp = 0");
34 if (v = | DL_FindNanedVari abl e("tnp2", |DL_FALSE))
35 printf("Programtotal is %\n", v->value.f);
36 (void) I DL_Execute(sizeof (cmls2)/sizeof (char *), cnds2);
37 | DL_C eanup(| DL_FALSE) ; /* Don’t return */
38 }
39 }
40
41Q return 1,
421}

Table 19-1: Calling IDL from C on UNIX and VMS

Following is commentary on this program, by line number:
24

C equivalent to IDL command “F = FINDGEN(10)"

25

Initialize IDL

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL 367

26-29

Import C array F into IDL asaFLTARR vector named TM P with 10 elements. Note
use of the callback argument free_callback. Thisfunction will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

30
Have IDL print the value of TMP.
31

Execute the commands contained in the C string array cmds defined on lines 15-16.
These commands create anew IDL variable named TM P2 containing the sum of the
elements of TMP, print its value, and plot the vector.

32-33

Set TMP to anew value. Thiswill cause IDL to release the user supplied memory
from lines 2629 and call free callback.

34-35

From C, get areference to the IDL variable TM P2 and print its value. This should
agree with the value printed by IDL on line 31. It isimportant to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may becomeinvalid as aresult of IDL’'s execution.

36

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 17-21.

37

Shut down IDL. The IDL_FALSE argument instructs | DL_ Cleanup() to exit the
process, so this call should not return.

41
Thisline should never be reached. If it is, return the UNIX failing status.

External Development Guide Issues and Examples: UNIX and VMS

368 Chapter 19: Callable IDL

Example: Calling an IDL Math Function

This example demonstrates how to write asimple C wrapper function that allows
caling IDL commands simply from another language. We implement a function
named call_idl_fft() that callsthe IDL FFT function operating on dataimported from
our C program. It returns TRUE on success, FAL SE for failure:

int call_idl _fft(IDL_COWLEX *data, int n, int direction);
data
A pointer to alinear array of complex data to be processed.
n
The number of data points contained in the array data.
dir
The direction of the FFT transform to take. Specify -1 for aforward transform, 1 for
the reverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program. Following is
commentary on the above program, by line number:

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL

369

1Q#i ncl ude <stdio. h>
2f#i ncl ude "export.h"
3
4
5fint call_idl _fft(IDL_COWLEX *data, IDL_MEM NT n, int dir)
6 1{
7 int r;
8 | DL_MEM NT di n{ | DL_MAX_ARRAY_DI M ;
9 char buf[64];
10
11 dinf0] = n;
12 if (IDL_I mportNanedArray(" TMP_FFT_DATA", 1, dim
13 I DL_TYP_COWLEX, (UCHAR *) data, 0, 0)) {
14 (void) |DL_ExecuteStr("MESSAGE, /RESET");
15 sprintf (buf," TMP_FFT_DATA=FFT(TMP_FFT_DATA, / OVERVRI TE) "
16 ,dir);
17 r = 11 DL_ExecuteStr(buf);
18 (void) |DL_ExecuteStr (" TMP_FFT_DATA=0");
19 } else {
20 r = FALSE;
21 }
C 22
23 return r;
2414}
25
26mai n(int argc, char **argv)
27
28 #defi ne NUM _PNTS 10
29 | DL_COWPLEX dat a[NUM_PNTS] ;
30 int i;
31
32 for (i =0; i < NUMPNTS; i++) data[i].r = data[i].i =1i;
33 if (IDL_Init(0, &rgc, argv)) {
34 call _idl _fft(data, NUMPNTS, -1);
35 call _idl _fft(data, NUMPNTS, 1);
36 for (i = 0; i < NUMPNTS; i++)
37 printf("(%, %)\n", data[i].r, data[i].i);
38 I DL_C eanup(| DL_FALSE);
39 }
40
41 return 1;
4214}
Table 19-2: call_idl_fft()
7

External Development Guide

Thevariabler holds the result from the function.
8
dim is used to import the datainto IDL as an array.

Issues and Examples: UNIX and VMS

370

Chapter 19: Callable IDL

9
A temporary buffer to format the IDL FFT command.
11-13

Import datainto IDL asthevariable TMP_FFT_DATA. Wedon't set up a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set the 'TERROR_STATE system variable back to the “success’ state so previous
errors don’t confuse our results.

15-16

Format an FFT command to IDL into buf. Note the use of the OVERWRITE
keyword. Thistellsthe IDL FFT function to place the results into the input variable
rather than creating a separate output variable. Hence, the results end up in our data
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement. | DL _ExecuteStr () returns the value of
IERROR_STATE.CODE, which should be zero for success and non-zero in case of
error. Hence, negating the result of IDL_ExecuteStr () yields the status value we
require for the result of this function.

18

Set TMP_FFT_DATA to Owithin IDL. This causes IDL to release the data pointer
imported previously.

20
If thecall to IDL_ImportNamedArray() fails, we must report failure.
26

In order to test the call_idl_fft() function, this main program callsit twice. Taking
numerical error into account the end result should be equal to the original data.

32

Set the real and imaginary part of each element to the index value.

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL 371

33

Initialize Callable IDL.

34

Cdll call_idl_fft() to perform aforward transform.
35

Call call_idl_fft() to perform areverse transform.
36-37

Print the results.

38

Shut down IDL and exit the process.

41

Thisline should never be reached. If it is, return the UNIX failing status.
Example: Calling IDL from Fortran

The program shown in the following figure (CALLTEST, found in thecal | abl e
subdirectory of the ext er nal subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, and
obtain data from IDL variables. See “Compilation and Linking Statements’ on

page 377 for details on compiling and linking this program. The source code for this
filecan befoundinthefilecal | test. f, located inthecal | abl e subdirectory of
theext er nal subdirectory of the IDL distribution.

Each lineis numbered to make discussion easier. The line numbers are not part of the
actual program:

External Development Guide Issues and Examples: UNIX and VMS

372 Chapter 19: Callable IDL

(N [e R TP
2jC Routine to print a floating point value froman |IDL variable.
3
41 SUBROUTI NE PRI NT_FLQOAT(VPTR)
5
6fQC Declare a Fortran Record type that has a conpatible formwith
74C the IDL C struct IDL_VARI ABLE for a floating point value.
8jC Note this structure contains a union which is the size of
9jC the largest data type. This structure has been padded to
10QC support the union. Fortran records are not part of
11C F77, but npst conpilers have this option.
12
13 STRUCTURE /| DL_VARI ABLE/
14 CHARACTER*1 TYPE
15 CHARACTER*1 FLAGS
16 | NTEGER*4 PAD !'Pad for |largest data type
17 REAL*4 VALUE_F
18] END STRUCTURE
19
20 RECORD /1 DL_VARI ABLE/ VPTR
21
22 WRITE(*, 10) VPTR VALUE F
23 10 FORMAT(' Programtotal is: ', F6.2)
24
fr7 25 RETURN
26
27 END
28
] [e R

30§C This function will be called when IDL is finished with the
31C array F.

33 SUBROUTI NE FREE_CALLBACK(ADDR)
35 | NTECER*4 ADDR

37 WRI TE(*, 20) LOC(ADDR)
38] 20 FORMAT (' IDL Released:’, 112)

40 RETURN

42 END

. [
A5QC This program denpnstrates how to inport data froma Fortran

46C programinto IDL, execute |IDL statements and obtain data
A74§C from | DL vari abl es.

Table 19-3: Calling IDL from Fortran On UNIX and VMS

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL

373

f77

PROGRAM CALLTEST

C Sone Fortran conpilers require external defs. for |IDL routines:
EXTERNAL IDL_Init !$pragma C(IDL_Init)
EXTERNAL | DL_C eanup ! $pragma C(1 DL_Cl eanup)
EXTERNAL | DL_Execute ! $pragma C(| DL_Execut e)
EXTERNAL | DL_ExecuteStr !$pragma C(|DL_ExecuteStr)
EXTERNAL | DL_I nport NamedArray ! $pragma C(| DL_| nport NanedAr r ay)
EXTERNAL | DL_Fi ndNanedVari abl e ! $pragma C(| DL_Fi ndNanedVari abl e)

C Define argunments for IDL_Ilnit routine
| NTEGER*4 ARGC
I NTEGER*4 ARGV(1)
DATA ARGC, ARGV(1) /2 * 0/

C Define IDL Definitions for |DL_I nportNanedArray

PARAVETER (| DL_MAX_ARRAY DI M = 8)
PARAVETER (1| DL_TYP_FLOAT = 4)

REAL*4 F(10)

I NTEGER*4 DI M | DL_MAX_ARRAY_DI M

DATA DI M /10, 7*0/

I NTEGER*4 FUNC_PTR I Address of function

| NTEGER*4 VAR _PTR I Address of IDL variable

EXTERNAL FREE_CALLBACK ! Decl are ext routine for use as arg

PARAVETER (MAXLEN=80)
PARAMETER (N=10)

C Define conmands to be executed by |DL

CHARACTER* (MAXLEN) CVDS(3)
DATA CMDS /"tnp2 = total (tnp)",
& "print, 'IDL total is ', tmp2",
& "plot, tnp"/
I NTEGER*4 CMD_ARGV(10)

3
&

ine wi dget conmands to be executed by |DL

CHARACTER* (MAXLEN) W DGET_CMDS(5)

DATA WDGET_CMDS /"a = widget_base()",

"b = wi dget_button(a, val =" Press Wen Done’, xs=300, ys=200)",
"wi dget _control, /realize, a",

"dummy = wi dget_event(a)",

"wi dget _control, /destroy, a"/

R0 R0 Ro Ro

I NTEGER*4 | STAT

External Development Guide

Table 19-3: Calling IDL from Fortran On UNIX and VMS

Issues and Examples: UNIX and VMS

374 Chapter 19: Callable IDL

98JC Null Terminate conmmand strings and store the address

99fC for each command string in CVD_ARGY

100

101 DOl =1, 3

102 CVDS(1) (MAXLEN: MAXLEN) = CHAR(0)

103 CMD_ARGV(1) = LOC(CMDS(1))

104 ENDDO

105

106C Initialize floating point array, equivalent to | DL FI NDGEN(10)

107

108 DOl =1, N

109 F(1) = FLOAT(I-1)

110 ENDDO

111

112§C Print address of F

113

114] WRI TE(*, 30) LOC(F)

115 30 FORVAT(' ARRAY ADDRESS: ', 112)

116

117§C Initialize Callable IDL

118

119 | STAT = IDL_Init(%WAL(0), ARGC, ARGV(1))

120

121 I F (I STAT .EQ 1) THEN

122

123QC Inport the floating point array into IDL as a variable named TMP
fr7 124

125 CALL | DL_I port NanmedArray(’ TMP' // CHAR(0), %WAL(1), DI'M

126 & 9/AL(1 DL_TYP_FLOAT), F, FREE_CALLBACK, %/AL(0))

127

128C Have IDL print the value of tnp

129

130 CALL | DL_ExecuteStr (' print, tnmp'//CHAR(O))

131

132C Execute a short sequence of IDL statenments froma string array

133

134 CALL | DL_Execut e(W/AL(3), CVD_ARGY)

135

136JC Set tnp to zero, causing IDL to release the pointer to the

137)C floating point array.

138

139 CALL | DL_ExecuteStr('tnp = 0'//CHAR(0))

140

141§C Obtain the address of the IDL variable containing the

142)C the floating point data

143

144 VAR PTR = | DL_Fi ndNanedVari abl e(’ t np2’ // CHAR(0), %W/AL(0))

145

146JC Call a Fortran routine to print the value of the IDL tnp2 variable

147 CALL PRI NT_FLOAT(%W/AL(VAR PTR))

148

149

Table 19-3: Calling IDL from Fortran On UNIX and VMS

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL 375

150
151
152
153
154
155
156
157
158
f77 159
160
161
162
163
164
165
166
167
168

C Null Terminate conmand strings and store the address
C for each command string in CMD_ARGV
DOl =1, 5
W DGET_CMDS(1) (MAXLEN: MAXLEN) = CHAR(0)
CVMD_ARGV(1) = LOC(W DGET_CMDS(1))
ENDDO
C Execute a small widget program Pressing the button allows

C the programto end
CALL | DL_Execut e(%/AL(5), CVD_ARGV)

C Shut down | DL
CALL | DL_Cl eanup(®/AL(0))

ENDI F

END

Table 19-3: Calling IDL from Fortran On UNIX and VMS
1-27

In order to print variables returned from IDL, we must define a Fortran structure type
for IDL_VARIABLE. This subroutine createsthe IDL_VARIABLE structure and
defines away to print the floating-point value returned in the an IDL variable.

14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure is implemented. The structureis
padded for the largest data type contained in the union. With some Fortran compilers,
the combination of UNION and M AP can be used to implement the ALLTYPES
union portion of the IDL_VARIABLE structure.

29-42

This subroutineis called when IDL releases the user-supplied memory.
44-164

Thisisthe main Fortran program.

51-57

External definitionsfor IDL internal routines. These definitions may not be necessary
with some Fortran compilers.

External Development Guide Issues and Examples: UNIX and VMS

376

Chapter 19: Callable IDL

59-62
Define the argc and ar gv arguments required by DL _I nit().
66-67

Define constants equivalent to C IDL constants for the maximum array dimensions
and type float.

69-77

Define parameters necessary for IDL_ImportNamedArray().
79-85

Define an array of IDL commands to be executed.

87-96

Define an array of IDL widget commands to be executed.
98-104

Null-terminate each of the command strings and store the address of each command
topassto IDL.

106-110

Initialize the floating-point array. This is the Fortran equivalent to the IDL command
F=FI NDGEN(10) .

117-121
Initialize IDL.
125-126

Import the Fortran array F in the IDL as a 10-element FLTARR vector named TMP.
Note the use of the callback argument FREE_CAL L BACK (), which will be called
when IDL isfinished with the array F, giving us a chance to clean up at that time.

134

Execute the commands contained in the character array CM DS defined on lines 71-
77. The address for each command is stored in the corresponding array element of
CMD_ARGV.

Issues and Examples: UNIX and VMS External Development Guide

Chapter 19: Callable IDL 377

139

Set the TM P variable to a new value. This causes IDL to release the user-supplied
memory and call FREE_CALLBACK().

144
Get areferenceto the IDL variable TM P2.
147

Cdll theroutine PRINT _FL OAT to print the value of TM P2. This should agree with
the value printed by line 130. Note that the address of the IDL variable TM P2, and its
contents, can only be used until the next call to execute an IDL statement, since IDL

may change the value of the referenced IDL_VARIABLE.

150-161

Execute the commands contained in the character array WIDGET_CM DS defined
on lines 79-88.

163-168

Shut down IDL. The 0 argument instructs IDL_CL EANUP() to exit the process, so
this call should not return.

Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on a UNIX system are
described inthefilecal | t est _uni x. t xt inthecal | abl e subdirectory of the
ext er nal subdirectory of themain IDL directory. Note that different UNIX systems
have different compilation and link statements. Note also that the name of the entry
point in the object may be different than that shown here, because compilers may add
leading or trailing underscores to the name of the source routine.

Note
The Makef i | e in the architecture-specific subdirectory of the bi n subdirectory of
the IDL distribution also contains a make rule for building thecal | t est
application. Thetext of cal | t est _uni x. t xt isderived from those files.

Compilation and linking statements used when calling IDL on aVMS system are
included in make_vns. com aVMS command filelocated inthecal | abl e
subdirectory of the ext er nal subdirectory of the main IDL directory.

External Development Guide Issues and Examples: UNIX and VMS

378

Chapter 19: Callable IDL

Issues and Examples: Microsoft Windows

Building an Application that Calls IDL

To build your 32-bit, Win32 application that calls IDL, you must take the following

steps:
1.

Include exports. h, found in theext er nal subdirectory of the IDL
distribution, in your source code.

Compile your application.
Link your application with | DL32. LI B.

Place | DL32. DLL in adirectory with your application. Seether eadne. t xt
filelocated inthe RSI - di r ect or y/ ext er nal / cal | abl e for more
information.

Example: A Simple Application

The following program demonstrates how to display message text sent from IDL,
execute |IDL statements entered by auser, and how to obtain datafrom IDL variables.
It performs the following actions:

1

3.
4.

Creates a Main window with four client controls; a scrolling edit control to
display text messages from IDL, asingle line edit control to allow a user to
enter an IDL command, a Send button to send the user commandto IDL, and a
Quit button to exit the application.

Registers a callback function to handle text messages sent by IDL to the
application.

Initializes Callable IDL.
Call IDL_Cleanup() when we receive the WM _CL OSE message.

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. The source code for this program can be found in thefilesi mpl e. c,
located inthecal | abl e subdirectory of the ext er nal subdirectory of the IDL
distribution. See the source code for details of the program not printed here.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 19: Callable IDL 379
1 ® o oo o e
2 * sinple.c Source code for sanple IDL callable application
3 *

4 * Copyright (c) 1992-1995, Research Systens Inc.
*
y
10 #i ncl ude <wi ndows. h>
11 #i ncl ude <wi ndowsx. h>
12 #include <ctl 3d. h>
13 #include <string. h>
14 #incl ude <stdio. h>
15 #i ncl ude "sinple.h"
16 #include "export.h"
17
R R LR T T
19 * WnMin
20 *
21 * This is the required entry point for all w ndows
applications.
22 *
23 * RETURNS: TRUE i f successful
24 K- */

25 int WNAPI W nMai n(H NSTANCE hl nstance, H NSTANCE
hl nst ancePr ev,

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

External Development Guide

{

LPSTR | pszCmdl i ne, int nCrdShow)

HWD hwnd;
M5G neg,

/1 Register the main wi ndow cl ass.
if (!RegisterWnd ass(hlnstance)) {
return(0);

}

/1l Create and display the main w ndow.
if ((hwnd = InitMinWndow hlnstance)) == NULL) {
return(0);

}
Mai nhwhd = hwnd;

/1 Register our output function with |DL.
| DL_Tout Push(Cut Func) ;

/]l Initialize IDL

if (1DL_Wn32Init(0, hlnstance, hwnd, NULL))
ret urn(FALSE) ;

Issues and Examples: Microsoft Windows

380

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Issues and Examples: Microsoft Windows

Chapter 19: Callable IDL

/1 Main nessage | oop.
whil e (Get Message(&rsg, NULL, 0, 0)) {
Tr ansl at eMessage(&nsQ) ;
Di spat chMessage(&rsQ) ;
}
return(msg. wPar am ;
}
% e e e e e e e e e e
* Regi ster WnCl ass
*
* To create a Main wi ndow (TLB in IDL speak). You rust first
* register the class for that w ndow
*
* RETURNS: TRUE i f successful
K o o o o o o o e e e e e e e e e e e e e e e o e a2 */
BOOL Regi ster Wnd ass(H NSTANCE hl nst)
{
VWNDCLASS Wwe;
we. style = CS_HREDRAW | CS_VREDRAW
we. | pf nWadPr oc = Mai nWhdPr oc;
we. chC sExtra = 0;
wc. cbWwhdExtra = 0;
we. hl nst ance = hlnst;
we. hl con = NULL;
we. hCur sor = LoadCur sor (NULL, | DC_ARROW ;
we. hbr Backgr ound = (HBRUSH) (COLOR_BTNFACE + 1);
we. | pszMenuNane = NULL;
we. | pszC assNane = "Sinpl e";
if ('Registerdass(&wc)) {
return(FALSE) ;
}
return(TRUE) ;
}
% e e e e e e e e e e e e
* | ni t Mai NW ndow
*
* This is where our Main window is created and displ ayed
*
* RETURNS: Handl e to wi ndow
K e e o o o e m e e e e e == */
HWAD | ni t Mai nW ndow(H NSTANCE hl nst)

{

HA\ND hwnd;

External Development Guide

Chapter 19: Callable IDL 381

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

* 0% X X X X X X

CREATESTRUCT Cs;

hwnd = Creat eW ndow("Si npl e",
"Cal | abl e I DL Sanpl e Application”,
W5_DLGFRAME | WS_SYSMENU | WB_M NI M ZEBOX | W5_VI Sl BLE,
CW USEDEFAULT,
0,
600,
480,
NULL,
NULL,
hl nst
&cs);

if (hwnd) {
ShowwW ndow(hwnd, SW SHOANORMAL) ;
Updat eW ndow(hwnd) ;

}

ret ur n(hwnd) ;

Mai nWhdPr oc

The wi ndow procedure (event handler) for our main w ndow.
Al nessages (events) sent to our app are routed through
here

RETURNS: Depends of nessage.

LRESLLT WNAR Ml nWidPr oc(HAD hwnd, U NT uMsg, VWPARAMWPar am LPARAM | Par a)

static int nDi spl ayabl e = 0;

switch (uMsg) {
/1'When our app is first created, we are sent this nessage.
//We take this opportunity to create our child controls and
/Iplace themin their desired | ocations on the w ndow.
case WM CREATE:
if (!Qeatentrol s(((LPCREATESTRUCI) | Paran) - >hl nstance, hwnd)) {
return(0);
}
if (!LayoutControls(hwnd)) {
return(0);
}
nD spl ayabl e = Get Char act er Hei ght (Get O gl tenfhwnd, | CE COMMAINDLGG)) ;
br eak;

External Development Guide Issues and Examples: Microsoft Windows

382

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Chapter 19: Callable IDL

case VWM DESTROY:
Post Qui t Message(1);
br eak;

//Each tine a button or nenu itemis selected, we get this nessage
case VW _COVVAND:
OnCommand(hwnd, LONORD(wParam), wParam | Paran;
return(FALSE) ;

/1 This is a message we send ourselves to indicate the need to
//display a text nmessage in our |og w ndow.
case | DL_OUTPUT:
Qut put Message(wPar am | Param nDi spl ayabl e);
return(FALSE) ;

case WM CLOSE:
I DL_Cl eanup(TRUE) ;
return(FALSE) ;

def aul t:
br eak;

}

r et ur n(Def W ndowPr oc(hwnd, uMsg, wParam | Param));
}
| o e e e e o e e e e e e e e e e e e e
* OnComand
*
* This is the nessage handle for our WM COWAND nessages
*
* RETURNS: FALSE
*

BOOL OnCormand(HVIND hwid, U NT ul d, WPARAM wPar am LPARAM | Par an)
{

swi tch(ul d){
case | DB_SENDCOMVAND: {
LPSTR | pComand;
LPSTR | pQut;

| pCommand = d obal Al | ocPtr (GHND, 256);
| pQut = d obal Al l ocPtr (GHND, 256);
i f (!l pComrand)

return(FALSE);

Issues and Examples: Microsoft Windows External Development Guide

Chapter 19: Callable IDL

198
199

255) ;

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

External Development Guide

383

/* First we get the string that is in the i nput w ndow */
CGet Dl gl t enTText (hWhd, | DE_COVMANDLI NE, | pComrand,
/* and then clear the w ndow */
Set DI gl t eniText (hwhd, | DE_COVMANDLI NE, "");
I strepy(l pQut, "\r\nSent to IDL: ");
I strcat (I pQut, | pComrand);
/* Send the string to our "log" w ndow */
Qut Func (I DL_TOUT_F_NLPGST, |pQut, strlen(lpQut));
/* then send the string to IDL */
| DL_ExecuteStr (| pComrand) ;
/* Now clean up */
d obal FreePtr (I pComand) ;
d obal FreePtr (I pQut);
}
br eak;
}
return(FALSE) ;
}
| o ee e
* Qut Func
*
* This is the output function that receives nmessages froml| DL
* and di splays them for the user
*
* RETURNS: NONE
K e .-
voi d Qut Func(long flags, char *buf, |long n)

{
static f Showivai n = FALSE;

/* If there is a message, post it to our MAIN wi ndow */

if (n){

SendMessage (Mai nhwad, | DL_OUTPUT, 0, (LPARAM buf);
}
/* If we need to post a new |line nessage... */

if (flags & I DL_TOUT_F_NLPOST){

SendMessage (Mai nhWid, | DL_QUTPUT, 0, (LPARAM)(LPSTR"\r\n\0");

}

/* This message gets sent to the log window to have it scroll
and display the | ast nmessage at the bottom of the w ndow.

Issues and Examples: Microsoft Windows

384

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

Issues and Examples: Microsoft Windows

* O F F X X X X X

Chapter 19: Callable IDL

Wth this, the user will always see the |ast screen full of
nessages sent
*/

SendMessage (Mai nhwad, | DL_QOUTPUT,
(LPARAM (LPSTR) "\ 0");

(WPARAM) TRUE,

return;

Cut put Message
Here we do the actual display of the text to our |og w ndow

RETURNS: not hi ng

voi d Qut put Message(WPARAM wPar am LPARAM | Param i nt nD spl ayabl e)

{

LRESULT
LONG

| Ret ;

| Buf fl en, | Nunlines, |FirstView

/* Turn of f the READONLY bit and postpone redraw */
| Ret = SendMessage(hwndLog, EM SETREADONLY, FALSE, OL);
| Ret = SendMessage(hwndLog, WM SETREDRAW FALSE, OL);
/* Get the length of the text
| Bufflen SendMessage (hwndLog, WM GETTEXTLENGTH, 0, OL);

I NunmLi nes = SendMessage (hwndLog, EM GETLI NECOUNT, 0, OL);

| FirstVi ew = SendMessage (hwndLog, EM GETFI RSTM SIBLELINE, 0, OL);

in the | og w ndow/

| Ret = SendMessage (hwndLog, EM SETSEL, |Bufflen, |Bufflen);
/* If we are adding text, wParamwi |l be 0 */
i f(!wParam
| Ret = SendMessage (hwndLog, EM REPLACESEL, 0, | Param;
el se{
if (INunmLines > (I FirstView + nbDisplayabl e)){
i nt i Li neLen = 0;
i nt i Char;
i nt iLines = 0;
| NunLi nes--;
whi | e(!i Li neLen) {
i Char = SendMessage(hwndLog, EM LI NEI NDEX,

(WPARAM | NurmLi nes, OL);

i Li neLen = SendMessage(hwndLog, EM LI NELENGTH,
i Char, OL);
i f(!iLineLen)
| NunLi nes--;

External Development Guide

Chapter 19: Callable IDL 385

295 iLines = | NunmLines-(lFirstView + (nDisplayable - 1));
296 iLines =ilLines >0 ? iLines : O;

297 SendMessage (hwndLog, EM LI NESCRCLL, 0, (LPARAM)i Lines);
298 }

299 }

300

301 /* Set the window to redraw and reset the READONLY bit */

302 | Ret = SendMessage(hwndLog, WM SETREDRAW TRUE, OL);
303 | Ret = SendMessage(hwndLog, EM SETREADONLY, TRUE, OL);
304

305 return;

306 }

The following is a commentary on the program, by line number:
16

export. h containsthe IDL _ function prototypes, IDL specific structures, and IDL
constants.

45

Call IDL_ToutPush() with the address of the output function (OutFunc) asit’'sonly
argument. Thiswill register OutFunc as a callback for IDL. IDL will call OutFunc
when it needs to display text.

48

Initialize IDL with the handle to the main window and the HINSTANCE of the
application.

52
Start the windows message loop.
131-176

Thisisthe Main window procedure. It will handle any messages that are sent to the
main window. ThisincludesWM_COM M AND messages that occur as aresult of
user interaction with the client controls. In addition, it handles a user defined message
called IDL_OUTPUT (the name doesn’t matter but thisis a clue asto its purpose).

158

When the user presses either the “ Send” or “Quit” buttons, route the message to the
OnCommand function.

External Development Guide Issues and Examples: Microsoft Windows

386

Chapter 19: Callable IDL

164

When wereceive an IDL_OUTPUT message, call the function that displays text in
the scrolling window (OutputM essage. See line 263).

168

When we receive the WM _CL OSE message, call IDL_Cleanup() to unlink IDL
from our application.

185-220

OnCommand handlesthe WM _COMM AND messages generated when the user
clicks on the application’s buttons.

199

Get the IDL command that the user has entered in the single line edit control and
store it in abuffer.

202
Clear the text in the edit control.
208

Call the IDL_TOUT _ function to display the command sent to IDL in the output
window.

211
Call IDL_ExecuteStr() with the IDL command retrieved in line 199.
230-253

OutFunc isthe callback registered with IDL to handle text messages IDL sends to
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

263-306

OutputM essage handles displaying the text to the output window. Since this window
isamulti-line edit control, we have created it as a read-only window. See the source
code for additional information on handling this situation.

280

OutputM essage appends new messages to the existing text in the control.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 19: Callable IDL 387

281-299

When the text has been displayed, OutputM essage scrolls the window to display the
last line of text in the bottom of the window.

External Development Guide Issues and Examples: Microsoft Windows

388 Chapter 19: Callable IDL

Issues and Examples: Macintosh

Sharable Libraries

The following shared libraries must be available to use callable IDL on the
Macintosh:

e IDL 5.4 shlb (thisiscallable IDL)

» StoneTablePPC-Shared (the library used by callable IDL)

* MSL RuntimePPC++.DLL (a C++ library used by StoneTablePPC-Shared)
* MesaGL.shlb and MesaGLU.shlb (The Mesa libraries)

Thelibraries must be in the ssmefolder asIDL 5.4 shlb or in the Extensions folder of
the active System Folder.

When distributing your application with IDL Runtime, it is recommended that you
put the shared librariesinside the main IDL folder, on the same level asthe IDL
Application, and then place an alias to the IDL shib in your Applications Folder.

Resources

IDL reserves all resource IDs between 128 and 2000. You should avoid using any of
the resource IDsin this range. If you are unable to avoid conflicts with IDL
resources, use IDL_MacResExecute and IDL_MacResExecuteStr to ensure
Callable IDL on the Macintosh operates correctly. For more information, see
“Executing IDL Statements’ on page 359

Preferences

Preferences are created inthe RSl Pref s: Cal | abl e | DL folder which isinitially
placed in the Pr ef er ences folder underneath your Syst emfolder. The format of
the 5.4 Prefsfile used by callable IDL isthe same as that used by IDL.

Event Handling

The following function is the event handler for windows created using callable IDL
on the Macintosh:
extern long IDL_I sl DLDEvent (voi d *t heEvent)

If you pass the address of an EventRecord returned from WaitNextEvent to the event
handling function, IDL_IsIDLDEvent returns whether the event was handled.

Issues and Examples: Macintosh External Development Guide

Chapter 19: Callable IDL 389

Callable IDL on the Macintosh also maintains its own event loop to handle widget
events, such aswhen using a=W DGET_EVENT() or and IDL procedure in blocking
mode such as, XLOADCT, / BLOCK. In each of these cases, Callable IDL on the
Macintosh provides a callback which allows your application to continue to receive
events.

You should provide an event callback function to IDL by using the following
function:

| DL_Ui cbRegMacEvent ((I DL_Ui cbMacEvent _t)ny_handl e_event);
The callback function has the following prototype:
int my_handl e_event (void *evt);
where the passed parameter is a pointer to the EventRecord structure, and null events
are passed for idle time processing.
Executing IDL Statements

Executing IDL statements on Macintosh is the same as for UNIX; however, use
IDL_MacResExecute and IDL_MacResExecuteStr instead of IDL_Execute and
IDL_ExecuteStr if your application modifies the current resource chain. This sets
the current resource file to Callable IDL’s resource file before returning.

Interactive IDL
Thisfeature is not available on Macintosh.
Examples

The program in the following figure(cal | t est . ¢, found inthecal | abl e
subdirectory of the ext er nal subdirectory of the IDL distribution) demonstrates
how to import data from a C program into IDL, execute IDL statements, and obtain
datafrom IDL variables. It performs the following actions:

1. Createanarray of 10 floating point values with each element set to the value of
itsindex. Thisis equivalent to the IDL command FINDGEN(10).

2. Initialize Callable IDL.
3. Import the floating point array into IDL as a variable named TMP.
4. Have DL print the value of TMP.

External Development Guide Issues and Examples: Macintosh

390 Chapter 19: Callable IDL
Execute a short sequence of IDL statements from a string array:
tnp2 = total (tnp)
print,"IDL total is ',tnp2
plot, tnp
Set TMP to zero, causing IDL to release the pointer to the floating point array.
Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 is a scalar floating point
value.
From our C program, print the value of the IDL TMP2 variable.
Execute a small widget program. Pressing the button allows the program to
end:
a = w dget _base()
b = w dget _button(a, val ue='Press Wen Done', xsi ze=300,
ysi ze=200)
wi dget _control, /realize, a
dumry = wi dget _event(a)
wi dget _control, /destroy, a
See “Compilation and Linking Statements’ on page 377 for details on
compiling and linking this program.
Each lineis numbered to make discussion easier. The line numbers are not part
of the actual program.
1Q#i ncl ude <stdio. h>
2Q#i ncl ude "export.h"
3
4 __MACOS__
5
6§/ * Macintosh specific includes */
7Q#i ncl ude <SIQUX. h>/* for consol e environnent */
C 8
9/ * prototype for Mac specific event handling callback funtion */
10fstatic int my_handl e_event(void *evt);
11
12}/ * prototype for tout callback function to redirect |DL nessages

to SI QUX consol e

static void nmy_tout(int flags, char *buf, int n);

Issues and Examples: Macintosh

Table 19-4: Calling IDL from C on Macintosh

External Development Guide

Chapter 19: Callable IDL

391

/* this function redirects any output fromIDL to the SIQUX console */
static void nmy_tout(int flags, char *buf, int n)

if(buf & n)
printf(buf);

if (flags & I DL_TOUT_F_NLPOST)
printf("\r");

/* This function is used to allow ny app to handl e events not handl ed by
IDL */
static int nmy_handl e_event(void *evt)

Event Record *event = (Event Record*)evt;
i f(event == NULL)
return fal se;
return Sl OUXHandl eOneEvent (event); /* pass event on to Sl OUX console */
}
#endi f /* _ MACCS_ */

static void free_cal |l back(UCHAR *addr)

printf("IDL rel eased(%)\n", addr);

int main(int argc, char **argv)

{

float f[10];

int i;

I DL_VPTR v;

I DL_MEM NT di n{ | DL_MAX_ARRAY DI M ;

static char *cnds[] = { "tnmp2 = total (tnmp)",
“print,’IDL total is ',tnmp2", "plot,tmp" };

static char *cmds2[] = { "a = wi dget_base()",
"b = widget_button(a, value="Press Wen Done’, xsize=300, ysize=200)",
"wi dget _control,/realize, a",
"dummy = wi dget_event(a)",
"wi dget _control,/destroy, a" };

External Development Guide

Table 19-4: Calling IDL from C on Macintosh

Issues and Examples: Macintosh

392 Chapter 19: Callable IDL
58 #i fdef __MACOS _
59
60 /* Initialize Maci ntosh Tool box */
61 InitGaf(&qd. t hePort);
62 I nit Fonts();
63 I ni t Wndows() ;
64 I ni t Menus();
650 TEInit();
66 I ni t Di al ogs(NULL);
67 InitCursor();
68 /* set up SIQUX consol e settings */
69 Sl QUXSettings.initializeTB = false; /* already done above */
70 Sl QUXSet ti ngs. st andal one = false; /* not running in standal one node */
71
72 /* register our event callback function with IDL */
73 | DL_Ui cbRegMacEvent ((| DL_Ui cbMacEvent _t) ny_handl e_event);
74 /* redirect IDL output to the SIQUX console */
75 | DL_Tout Push(ny_tout);
76
C 77Q#endif /* __MACOS_ */
78
79 for (i=0; i < 10; i++) f[i] = (float) i;
80 if (IDL_Init(0, &rgc, argv)) {
81 dinf0] = 10;
82 printf("ARRAY ADDRESS(%u)\n", f);
83 if (v=IDL_InportNanedArray(" TV, 1, dim |DL_TYP_FLQAT,
84 (UCHAR *) f, free_callback, (void *) 0)) {
85 (void) IDL_ExecuteStr("print, tnp");
86 (void) |DL_Execute(sizeof(cnds)/sizeof(char *), cnds);
87 (void) IDL_ExecuteStr("print, 'Free the user nenory’'");
88 (void) IDL_ExecuteStr("tnp = 0");
89 if (v = IDL_Fi ndNanedVari abl e("tnp2", |DL_FALSE))
90 printf("Programtotal is %\n", v->value.f);
91 (void) | DL_Execute(sizeof(cnds2)/sizeof(char *), cnds2);
92 | DL_O eanup(| DL_FALSE) ; /* Don’t return */
93 }
94 }
95freturn 1;
96 [}

Table 19-4: Calling IDL from C on Macintosh

Following is commentary on this program, by line number:
79

C equivalent to IDL command “F = FINDGEN(10)"

80

Initialize IDL.

Issues and Examples: Macintosh External Development Guide

Chapter 19: Callable IDL 393

81-84

Import C array F into IDL asaFLTARR vector named TM P with 10 elements. Note
use of the callback argument free_callback. Thisfunction will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

85
Have IDL print the value of TMP.
86

Execute the commands contained in the C string array cmds defined on lines 15-16.
These commands create anew IDL variable named TM P2 containing the sum of the
elements of TMP, print its value, and plot the vector.

87-88

Set TMP to anew value. Thiswill cause IDL to release the user supplied memory
from lines 2629 and call free callback.

89-90

From C, get areference to the IDL variable TM P2 and print its value. This should
agree with the value printed by IDL on line 31. It isimportant to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may becomeinvalid as aresult of IDL’'s execution.

91

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 17-21.

92

Shut down IDL. The IDL_FALSE argument instructs | DL_ Cleanup() to exit the
process, so this call should not return.

95

Thisline should never be reached. If it is, return the failing status.

External Development Guide Issues and Examples: Macintosh

394 Chapter 19: Callable IDL

Issues and Examples: Macintosh External Development Guide

Chapter 20:

Adding External
Widgets to IDL

This chapter discusses the following topics:

IDL and External Widgets 396 Functionsfor Use with Stub Widgets 400
WIDGET STUB.................... 397 Internal Callback Functions 403
WIDGET_CONTROL/WIDGET_STUB . 398 OpenVMSwith WIDGET STUB 405

External Development Guide 395

396 Chapter 20: Adding External Widgets to IDL
IDL and External Widgets

This chapter describes an IDL widget type not documented in the IDL Reference
Guide, called the stub widget. It also describes a small set of internal functions to
manipulate stub widgets. Stub widgetsallow CALL_EXTERNAL, LINKIMAGE,
DLM, and Callable IDL usersto add their own widgetsto IDL widget hierarchies.

Thisfeature does not alwayswork with versions of IDL that statically link against the
window system libraries, particularly those for Linux machines. When standard
Linux distributions ship with sharable Motif libraries, this limitation will disappear.

The next two sections describe IDL's WIDGET_STUB function and changes to
WIDGET_CONTROL when used with WIDGET_STUB. “Functions for Use with
Stub Widgets” on page 400 describes support functions that can be called from your
external code to manipulate stub widgets. “Internal Callback Functions’ on page 403
describes how to make stub widgets generate IDL widget events. Finaly, “OpenVMS
with WIDGET_STUB” on page 405 illustrates the use of stub widgets with an
external program.

Note
IDL’'s WIDGET_STUB functionality was designed for the X/Motif windowing
system, and is not supported under Microsoft Windows or on the Macintosh.

IDL and External Widgets External Development Guide

Chapter 20: Adding External Widgets to IDL 397
WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widget
typesinto IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to cal additional custom code to handle the rest. A number of
internal functions are provided to manipulate widgets from this custom code. See
“Functions for Use with Stub Widgets’ on page 400.

The returned value of thisfunction isthe widget ID of the newly-created stub widget.
Calling Sequence

Result = WIDGET_STUB(Parent)
Arguments

Parent

The widget 1D of the parent widget. Stub widgets can only have bases or other stub
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as for
other widget creation functions:

EVENT_FUNC SCR_XSIZE
EVENT_PRO SCR_YSIZE
FUNC_GET_VALUE UVALUE
GROUP_LEADER XOFFSET
KILL_NOTIFY XSIZE
NO_COPY YOFFSET
PRO_SET VALUE YSIZE

External Development Guide WIDGET_STUB

Chapter 20: Adding External Widgets to IDL

WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in the IDL Reference Guide.

These differences are described below.

Keywords

Only the most general keywords are allowed with WIDGET_CONTROL when used
with stub widgets. All other keywords are ignored. Hereis alist of those keywords
that behave identically with al widgets including stub widgets.

BAD_ID
CLEAR_EVENTS
EVENT_FUNC
EVENT_PRO
FUNC_GET_VALUE
GET_UVALUE
GROUP_LEADER
HOURGLASS
ICONIFY
KILL_NOTIFY
MANAGED
NO_COPY

PRO_SET_VALUE
RESET
SET_UVALUE
SHOW

TIMER
TLB_GET_OFFSET
TLB_GET_SIZE
TLB_SET TITLE
TLB_SET_XOFFSET
TLB_SET_YOFFSET
XOFFSET

YOFFSET

The following keywords also work with stub widgets, but require additional

commentary:
DESTROY

When awidget hierarchy containing stub widgets is destroyed, the following steps

are taken:

* Thelower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

» All IDL widget records are added to the freelist for re-use.

WIDGET_CONTROL/WIDGET_STUB

External Development Guide

Chapter 20: Adding External Widgets to IDL 399

e Any requested KILL_NOTIFY calbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callbacks are
issued, so don’t attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.

MAP, REALIZE, and SENSITIVE

These keywords cause the toolkit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, any
real widgets used by the stub widgets will be processed, along with the ones created
by the non-stub widgets, in the usual way. Any additional processing must be
provided viaCALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and offsets of the surrounding
widgets.

IDL triesto do something reasonable with these requests but, without knowledge of
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, the IDL_Widget StubSet SizeFunc() function can be used
to specify aroutine that IDL can call to perform the necessary sizing for your stub
widget.

External Development Guide WIDGET_CONTROL/WIDGET_STUB

400 Chapter 20: Adding External Widgets to IDL
Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget class
that gives the user enough accessto IDL widget internals to make the stub widget
work but hides the bulk of the actual internals. These functions are exported by the
IDL program for use by CALL_EXTERNAL code, but are not advertised in
export. h.

IDL_WidgetStubLock()

Syntax:
voi d | DL_W dget St ubLock(int set);

IDL event processing occurs asynchronously, so any code that manipul ates widgets
must execute in a protected region. This function is used to create such aregion. Any
code that manipul ates widgets must be surrounded by two callsto
IDL_WidgetStubL ock() asfollows:

| DL_W dget St ubLock(TRUE) ;
/* Do your widget stuff */
| DL_W dget St ubLock(FALSE) ;

IDL_WidgetStubLookup()
Syntax:

char *1 DL_W dget St ubLookup(| DL_ULONG i d);

When IDL creates awidget, it returns an integer value to the caller of the widget
creation function. Internally, however, IDL widgets are represented by a pointer to
memory. The IDL_WidgetStubL ookup() function is used to translate the user-level
integer value to this memory pointer. All the other internal routines use the memory
pointer to reference the widget.

Id isthe integer returned at the user level. Your call to CALL_EXTERNAL should
pass thisinteger to your C-level codefor usewith IDL_WidgetStubL ookup() which
translates the integer to the pointer.

If the specified id does not represent avalid IDL widget, this function returns NULL.
This situation can occur if awidget was killed but its integer handleis still lingering
somewhere.

Functions for Use with Stub Widgets External Development Guide

Chapter 20: Adding External Widgets to IDL 401

IDL_WidgetissueStubEvent()

Syntax:
voi d | DL_W dget | ssueSt ubEvent (char *rec, LONG val ue);

Given a handle to the IDL widget, obtained via | DL_WidgetStubL ookup(), this
function queuesan IDL WIDGET_STUB_EVENT. Such an event isastructure that
contains the three standard fields (ID, TOP, and HANDLER) as well as an additional
field named VALUE that contains the specified value.

VALUE can provide away to access additional information about the widget,
possibly by providing a memory address to the information.

IDL_WidgetSetStublds()
Syntax:

voi d | DL_W dget Set St ubl ds(char *rec, unsigned long t_id,
unsigned long b_id);

IDL widgets are built out of one or more actual widgets. Every IDL widget carries
two pointers that are used to locate the top and bottom real widget for agiven IDL
widget. This function allows you to set these top and bottom pointers in the stub
widget for later use.

Since the actual pointer type differsfrom toolkit to toolkit, this function declarest_id
(the top real widget) and b_id (the bottom real widget) as unsigned long, an integer
datatype large enough to safely contain any pointer. Use a C cast operator to handle
the difference.

After caling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additional code that creates the real widgets that
represent the stub. Having done that, use IDL_WidgetSetStubl ds() to save the top
and bottom widget pointers.

IDL_WidgetGetStublds()

Syntax:

voi d | DL_W dget Get St ubl ds(char *rec, unsigned long *t_id,
unsigned long *b_id);
This function returns the top (t_id) and bottom (b_id) real widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, it isthe caller’sresponsibility to avoid damaging the IDL-created widgetsin
any way.

External Development Guide Functions for Use with Stub Widgets

402

Chapter 20: Adding External Widgets to IDL

IDL_WidgetStubSetSizeFunc()

Syntax:

voi d | DL_W dget St ubSet Si zeFunc(char *rec,
| DL_W DGET_STUB_SET_SI ZE_FUNC f unc)

typedef void (* | DL_W DGET_STUB_SET_SI ZE_FUNC) ;
(IDL_ULONG id, int width, int height);

When IDL needsto set the size of astub widget, it attempts to set the size of the
bottom real widget to the necessary dimensions. Often, thisisthe desired behavior,
but cases can arise where it would be better to handle sizing differently. In such
cases, use | DL_WidgetStubSetSizeFunc() to register afunction that IDL will call to
do the actual sizing.

Functions for Use with Stub Widgets External Development Guide

Chapter 20: Adding External Widgets to IDL 403
Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C language
programs register interest in specific events by providing callback functions that are
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgets to generate IDL events, you must use
CALL_EXTERNAL to invoke code that sets up real widget event callbacks for the
events you are interested in. This setup can be done as part of creating the real
widgets after the initial call to WIDGET_STUB. These callbacks then call
IDL_WidgetlssueStubEvent() to issue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_wi dget _cal |l ()
{
char *idl _w dget;
| DL_W dget St ubLock(TRUE) ;
/* Get the IDL user-level identifier for this w dget */
if (idl _wdget = |DL_Wdget StubLookup(id)) {
/* Do whatever work is required */

/* Optionally, issue an IDL event */
| DL_W dget | ssueSt ubEvent (i dl _wi dget, val ue)

}
| DL_W dget St ubLock(FALSE) ;

}
Commentary on the Example Shown Above

Note that IDL_WidgetStubL ock() is used to protect the critical section where
widgets are being manipulated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, thisisdonein
one of two ways:

* When registering the callback, it is sometimes possible to specify avalue that
will be passed to the callback without interpretation. For example, the X
windows XtAddCallback() function takes an argument named client_data.
Thisvalue is passed to the callback and can be used to supply the user-level
identifier.

External Development Guide Internal Callback Functions

404 Chapter 20: Adding External Widgets to IDL

» Some widget toolkits have a set of attributes that they carry along with each
widget. Under the X windows Xt toolkit, these attributes are called resources.
Xt widgets usually have aresource capable of holding a single integer or
memory address. This resource can be used to supply the user level identifier.

IDL_WidgetStubL ookup() is used to translate the user level widget identifier into a
memory pointer. If this function returns NULL, no further event processing is done
since it would be afatal error to issue an IDL event for a non-existent widget.

The event isissued vial DL_Widgetl ssueStubEvent(). Thisstep is not required.
Many of the IDL widget types process real widget events via callbacks that do not
awaysresult in an IDL widget event being sent.

Internal Callback Functions External Development Guide

Chapter 20: Adding External Widgets to IDL 405
OpenVMS with WIDGET_STUB

Thefollowing example adds the Motif ArrowButton widget to the OpenVMSversion
of IDL intheform of an IDL program hamed wi dget _ar r owb. pr o. It would be
straightforward to do the same with any version of IDL supporting
CALL_EXTERNAL.

The WIDGET_ARROWB widget implemented below acts like anormal pushbutton.
Events are sent when the button is pressed (VALUE=1) and released (VALUE=0). If
the USE_OWN_SIZE keyword is set to zero, IDL performs its default sizing on the
stub widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWB implementation to be registered to handle such sizing.

The IDL Program for WIDGET_ARROWB

The following text isthe IDL program for WIDGET_ARROWSB. It should be saved
in afile named W DGET_ ARROVB. PRO.

FUNCTI ON wi dget _arrowb, parent, use_own_size, $
UVALUE=uval ue, _EXTRA=extra

parent = LONGE parent)

result = WDCET_STUB(parent, _extra=extra)

i f (N_ELEMENTS(uval ue) NE 0) THEN $
W DGET_CONTROL, result, SET UVALUE=uval ue

JUNK = CALL_EXTERNAL('wi dget _arrowb','wi dget_arrowb', $
def="diska:[idl.ali.arrowb].exe', parent, result, $
use_own_si ze, value=[1, 1, 1])

RETURN, result

END

The C Program for widget_arrowb.c

The code invoked by the call to CALL_EXTERNAL is contained in afile named

wi dget _ar r owb. c (thisfile can befound in thewi dst ub subdirectory of the
ext er nal subdirectory of the IDL distribution). The contents of this file are shown
below:

*

arrowb.c - This file contains C code to be called from VM | DL
via CALL_EXTERNAL. It uses the IDL stub wi dget to add a

Motif ArrowButton to an | DL-created wi dget hierarchy. The
button issues a WDGET_STUB_EVENT every tine the button is

rel eased.

* OF X X X X X T~

External Development Guide OpenVMS with WIDGET_STUB

406

*

Chapter 20: Adding External Widgets to IDL

*/
#i ncl ude <stdio. h>
#i ncl ude <X11: keysymh> /* Keysyns for text w dget events */
#i nclude <X11l:Intrinsic.h>
#i ncl ude <X11: StringDefs. h>
#i ncl ude <X11: Shell. h>
#i ncl ude <Xm ArrowB. h>
#include "idl_dir:[external]export.h"
/ * ARGSUSED* /
static void arrowb_CB(Wdget w, caddr_t client_data, caddr_t
call _data)
{
char *rec;
XmAr r owBut t onCal | backSt ruct *abcs;
| DL_W dget St ubLock(TRUE) ;
if (rec = | DL_Wdget St ubLookup((unsi gned |ong) client_data)) {
abcs = (XmArrowButtonCal | backStruct *) call _data;
| DL_W dget | ssueSt ubEvent (rec, abcs->reason == XnCR_ARM;
}
| DL_W dget St ubLock(FALSE) ;
}
static void arrowb_size_func(int stub, int width, int height)
{
char *stub rec;
unsigned long t_id, b_id;
| DL_W dget St ubLock(TRUE) ;
if (stub_rec = | DL_W dget St ubLookup(stub)) {
| DL_W dget Get St ubl ds(stub_rec, & _id, &b_id);
printf("Setting WDGCGET % to width % and hei ght %\ n",
stub, wi dth, hei ght);
Xt VaSet Val ues((Wdget) b_id, XnN\w dth, w dth, XmN\height,
hei ght, NULL);
}
| DL_W dget St ubLock(FALSE) ;
}

int widget_arrowb(lDL_LONG parent,

{

W dget
W dget

int use_own_size_func)

parent _w;
stub_w;

char *parent_rec;

char *stub rec;

unsigned long t_id, b_id;

| DL_W dget St ubLock(TRUE) ;

if ((parent_rec = | DL_W dget St ubLookup(parent))
&& (stub_rec = I DL_W dget St ubLookup(stub))) {

/* Bottom wi dget of parent
| DL_W dget Get St ubl ds(parent _rec,

OpenVMS with WIDGET_STUB

| DL_LONG st ub,

is parent to arrow button */
& _id, &b_id);

External Development Guide

Chapter 20: Adding External Widgets to IDL 407

parent _w = (Wdget) b_id;
stub_w = Xt VaCr eat eManagedW dget (" arrowb",
XmAr r owBut t onW dget d ass,
parent _w, NULL);
| DL_W dget Set St ubl ds(stub_rec, (unsigned |Iong) stub_w,
(unsigned | ong) stub_w);
Xt AddCal | back(stub_w, XnNarntal | back, (XtCall backProc)
arrowb_CB,
(Xt Pointer) stub);
Xt AddCal | back(stub_w, XnNdi sarntal | back,
(Xt Cal | backProc) arrowb_CB,
(Xt Poi nter) stub);
i f (use_own_size_func)
| DL_W dget St ubSet Si zeFunc(stub_rec, arrowb_si ze_func);
}
| DL_W dget St ubLock(FALSE) ;
return stub;

}
Compiling and Linking the C File

This C fileis compiled and linked into a sharable image usable by
CALL_EXTERNAL by a DCL command file named W DGET_ ARROMB. COM

$if "'’ fP$search(” SYSESYSTEM VAXVMSSYS. PAR')" " .egs. ""

$ then

$! ALPHA

$ cc widget_arrowb. c

$ I'i nk/ share wi dget_arrowb, sys$input/opt

/ exe=wi dget _arrowb. exe
IDL_DI R [BIN. BIN_ALPHA] i dI / share
SYS$SHARE: DECWSXMLI BSHR12. EXE/ SHARE
SYS$SHARE: DECWBXTLI BSHRR5. EXE/ SHARE
SYS$SHARE: DECWEXLI BSHR/ SHARE
SYMBOL_VECTOR=(wi dget _ar r owb=PROCEDURE)

$ el se

$! VAX

$ cc widget_arrowb. c

$ l'ink /share widget_arrowb, sys$input/opt

[exe=wi dget _arrowb. exe
I DL_DI R [BI N. Bl N_VAX] | DL/ SHARE
SYS$SHARE: DECWXM.| BSHR12. EXE/ SHARE
SYS$SHARE: DECWEXTLI BSHRR5. EXE/ SHARE
SYS$SHARE: DECWEXLI BSHR/ SHARE
sys$share: vaxcrtl/share
uni versal = wi dget_arrowb

$ endif

External Development Guide OpenVMS with WIDGET_STUB

408

Chapter 20: Adding External Widgets to IDL

Execute the file by entering:

$ @V DGET_ARROWB

An IDL Program to Test the External Widget

Shown below isan IDL widget program to test the ARROWB widget. This program
should be saved in afile called TEST. PRO. Note that one arrow button uses IDL’s
default sizing, while the other uses the WIDGET _ARROWAB version:

PRO test _event, ev
W DGET_CONTROL, GET_UVALUE=val, ev.id
IF (val EQ 0) THEN BEG N
W DGET_CONTROL, /DESTROY, ev.top
ENDI F ELSE BEG N
HELP, /STRUCT, ev
IF (ev.value EQ 1) THEN BEG N
W DGET_CONTROL, val, SET_VALUE=" New | abel string’
tmp = WDCET_I NFQ(ev. id, / GEOVETRY)
W DCGET_CONTRCOL, XSI ZE=t np. xsi ze+25, YSI ZE=t np. ysi ze+25, $
ev.id
ENDI F
ENDEL SE
END

PRO t est

a = W DGET_BASE(/ COLUWN)

b = W DGET_BUTTON(a, VALUE=' Done’, UVALUE = 0)

| abel = W DGET_LABEL(a, VALUE='A | abel’)

arrow w = WDGET_ARROMB(a, 0, XSIZE=100, YSI ZE=100, UVALUE=I abel)
arrow w = W DGET_ARROMB(a, 1, XS|ZE=100, YS|ZE=50, UVALUE=I abel)
W DGET_CONTROL, /REALIZE, a

XVANAGER, ' TEST', a

END

Start IDL and run the test program by entering:

$ IDL
| DL> TEST

OpenVMS with WIDGET_STUB External Development Guide

Appendix A:

Obsolete

Internal

Interfaces

This chapter discusses the following topics:

Interfaces Obsoleted inIDL 5.3
Simplified Routine Invocation
Obsolete Error Handling APl

External Development Guide

410 Compatibility with Versions 2 and 3

413 IDL Version 1 Compatibility

409

410 Appendix A: Obsolete Internal Interfaces
Interfaces Obsoleted in IDL 5.3

Changes were required to implement the ability to enable and disable IDL system
routines from runtime and callable IDL. Rather than alter the IDL_SY SFUN_DEF
structure, and the IDL_AddSystemRoutine() function in an incompatible way, a new
structure (IDL_SY SFUN_DEF2) and new function (IDL_SysRtnAdd()) have been
created to accomplish the new tasks, and the old structure and function have been
obsoleted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by Research Systems. This sectionis
supplied to help those maintaining older code. New code should be written using
the information found in “ Registering Routines’ on page 324.

Registering Routines

The DL _AddSystemRoutineg() function adds system routines to IDL’s internal
tables of system functions and procedures. As a programmer, you will need to call
this function directly if you are linking a version of IDL to which you are adding
routines, although thisis very rare and not considered to be a good practice for
maintainability reasons. More commonly, you use IDL_AddSystemRouting() inthe
IDL_L oad() function of a Dynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routinesto IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

int | DL_AddSystenRoutine(lDL_SYSFUN_DEF *defs, int is_function,
int cnt);

It returns Trueif it succeeds in adding the routine or False in the event of an error:
defs

An array of IDL_SY SFUN_DEF structures, one per routine to be declared. This
array must be defined with the C language static storage class because IDL keeps
pointersto it. defs must be sorted by routine name in ascending lexical order.

Interfaces Obsoleted in IDL 5.3 External Development Guide

Appendix A: Obsolete Internal Interfaces 411

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt
The number of IDL_SY SFUN_DEF structures contained in the defs array.

The definition of IDL_SYSFUN_DEF is:
typedef | DL_VARI ABLE *(* | DL_FUN_RET)();

typedef struct {
I DL_FUN_RET funct_addr;
char *nane;
UCHAR arg_m n;
UCHAR ar g_nmax;
UCHAR f | ags
} |1 DL_SYSFUN_DEF;

IDL_VARIABLE structures are described in “The IDL_VARIABLE Structure” on
page 175.

funct_addr
Address of the function implementing the system routine.
name

The name by which the routine is to be invoked from within IDL. This should be a
pointer to anull terminated string. The name should be capitalized. If the routineisan
object method, the name should be fully qualified, which meansthat it should include
the class name at the beginning followed by two consecutive colons, followed by the
method name (e.g. CLASS: : METHQOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

The maximum number of arguments allowed for the routine. If the routine does not
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

External Development Guide Interfaces Obsoleted in IDL 5.3

412 Appendix A: Obsolete Internal Interfaces

flags

A bitmask that provides additional information about the routine. Its value can be any
combination of the following values (bitwise OR’d together to specify more than one
a atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
'WARN.OBS ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

Interfaces Obsoleted in IDL 5.3 External Development Guide

Appendix A: Obsolete Internal Interfaces 413

Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely used,
and are considered functionally obsolete although they continue to be supported by
Research Systems. This section is supplied to help those maintaining older code.
New code should be written using the information found in Chapter 18, “Adding
System Routines’.

A great deal of the work involved in writing IDL system routines involves checking
positional arguments, screening out illegal combinations of type and structure, and
converting them to desired type. The function IDL_EzCall() provides asimplified
way to handle thistask. It processesan array of IDL_EZ ARG structs which
describe the processing to be applied to each positional argument.

ThelDL_EzCall() functionissimilar to the facility provided for keyword arguments
by IDL_KWGetParams():

void I DL_EzCall (int argc, |IDL_VPTR argv|[],
IDL_EZ ARG arg_struct[]);

where:

argc

The number of positional arguments present.
argv

An array of pointers to the positional arguments.
arg_struct

Anarray of IDL_EZ_ARG structures defining the desired characteristics for each
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order of the
IDL_EZ ARG structures is the same as the order in which the arguments are
specifiedinthe call. (See“The IDL_EZ ARG struct” on page 414.)

There are some things you need to be aware of when using IDL_EzCall():

» |IDL_EzCall() automatically excludes file variables (such as those created
by the ASSOC function) so you don't have to take any special action to
screen such variables out.

External Development Guide Simplified Routine Invocation

414 Appendix A: Obsolete Internal Interfaces

* Everycal toIDL_EzCall() must have a matching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

» |DL_EzCall() does not handle keyword arguments. If the calling routine
allows keyword arguments, it must do its own keyword processing using
IDL_KWGetParams() (see“IDL Internals: Keyword Processing” on
page 203) and pass an argv containing only positiona arguments to
IDL_EzCall().

* If you mark avariable as being write-only, you shouldn’t count on
anything useful being in the uargv or valuefields. Thisimpliesthat it is
not agood ideato setthe IDL_EZ POST_WRITEBACK fieldinthe
post field. Instead, you will have to alocate a new temporary variable,
place the desired value into it, and use the IDL_Var Copy() function to
write its value back into the original argv entry yourself.

Note

IDL_EZ_POST_WRITEBACK isonly useful when the accessfield is set to
IDL_EZ_ACCESS RW.

The IDL_EZ ARG struct

ThelDL_EZ ARG struct has the following definition:

typedef struct {
short al | owed_di ns;
short all owed_types;
short access;
short convert;
short pre;
short post;
I DL_VPTR to_del ete;
| DL_VPTR uar gv;
I DL_ALLTYPES val ue;
} IDL_EZ_ARG

where:
allowed _dims

A bit mask that specifies the allowed dimensions. Bit O means scalar, bit 1 means
one-dimensional, etc. The IDL_EZ_DIM_MASK macro can be used to specify
certain bits. It accepts a single argument that specifies the number of dimensions that
are accepted, and returns the bit value that represents that number. For example, to
specify that the argument can be scalar or have 2 dimensions:

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 415

| DL_EZ_ DI M MASK(0) | IDL_EZ DI M MASK(2)

In addition, the following constants are defined to simplify the writing of common
cases:

IDL_EZ_DIM_ARRAY
Allow all but scalar.
IDL_EZ_DIM_ANY
Allow anything.
allowed_types
Thisisabit mask defining the allowed data types for the argument. To convert type

codes to the appropriate bits, use the formula:

BitMask = 2'YPecode

orusethelDL_TYP_MASK macro (see“ Type Masks’ on page 169).

Note

If you specify avaue for the convert field, its a good ideato specify
IDL_TYP_B_ALL orIDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR'd together to set the proper value:

IDL_EZ _ACCESS_R
The value of the argument is used by the system routine.
IDL_EZ_ACCESS W

The value of the argument is changed by the system routine. This means that it
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW
Thisisequivalent to IDL_EZ_ACCESS R |IDL_EZ_ACCESS W.

External Development Guide Simplified Routine Invocation

416

Appendix A: Obsolete Internal Interfaces

convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF means that no conversion will be applied.

pre

A bitmask that specifies special purpose processing that should be performed on the
variable by IDL_EzCall(). These bits are specified with the following constants:

IDL_EZ_PRE_SQMATRIX
The argument must be a square matrix.
IDL_EZ_PRE_TRANSPOSE
Transpose the argument.

Note

This processing occurs after any type conversions specified by convert, and is only
doneif the accessfiedld hasthe IDL_EZ ACCESS R hit set.

post

A bit mask that specifies special purpose processing that should be performed on the
variable by IDL_EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK
Transfer the contents of the uargv field back to the actual argument.
IDL_EZ_POST_TRANSPOSE
Transpose uar gv prior to transferring its contents back to the actual argument.
Note
This processing occurs only when the accessfield hasthe IDL_EZ_ACCESS W

bit set. If IDL_EZ_ POST_WRITEBACK isnot present, none of the other actions
are considered, since that would imply wasted effort.

to_delete

Do not make use of thisfield. Thisfield isreserved for use by the EZ module. I
IDL_EzCall() alocated atemporary variable to satisfy the conversion requirements

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 417
given by the convert field, the IDL_VPTR to that temporary is saved here for use by
IDL_EzCallCleanup().
uargv

After caling IDL_EzCall(), uargv contains a pointer to the IDL_VARIABLE
which isthe argument. Thisisthe IDL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, or a
temporary variable containing a converted version of the original. Thisfield won't
contain anything useful if the IDL_EZ_ACCESS R bit is not set in the access field.

value

Thisisacopy of the value field of the IDL_VARIABLE pointed at by uargv. For
scalar variables, it contains the value, for arraysit points at the array block. Thisfield
is here to make reading read-only variables faster. Note that thisis only a copy from
uargv, and changing it will not cause the actual valuefield in uargv to be updated.

Cleaning Up

Every call to IDL_EzCall() must be bracketed by acall to IDL_EzCallCleanup():

void | DL_EzCal | O eanup(int argc, |IDL_VPTR argv[],
IDL_EZ_ARG arg_struct[]);

The arguments are exactly the same as those passed to IDL_EzCall().
Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to handle
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SV D accepts the following positional arguments (in order):

A

Anmby n matrix (input, required).

w

An n-element vector (output, required).
U

Ann by mmatrix (output, optional)

Vv

Ann by nmatrix (output, optional)

External Development Guide Simplified Routine Invocation

418

Appendix A: Obsolete Internal Interfaces

Each line is numbered to make discussion easier. These numbers are not part of the
actual program.

{

25
26
27 }

voi d nr_svdcnp(int argc, IDL_VPTR argv[])

static IDL_EZ ARG arg_struct[] = {
{ IDL_EZ_DI M MASK(2), IDL_TYP_B SIMPLE, |DL_EZ_ACCESS R,
IDL_TYP_FLOAT, 0, 0}, /* A%/
{ IDL_EZ_DIMANY, IDL_TYP_B ALL,
IDL_EZ_ ACCESS W 0, 0, 0}, /* w*/
{ IDL_EZ_DIMANY, IDL_TYP_B ALL,
IDL_EZ_ACCESS W 0, 0, 0}, /* U~*/
{ IDL_EZ_DIM ANY, IDL_TYP B ALL,
IDL_EZ_ACCESS W 0, 0, 0} /* V */
s

| DL_EzCal | (argc, argv, arg_struct);

/* Do the SVD cal cul ati on and prepare tenporary
variables to be returned as w, U, and V */

| DL_EzCal | d eanup(argc, argv, arg_struct);

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the variousfields of the IDL_EZ ARG struct for the first positional
argument (A) specifies:

allowed_dims

The argument must be 2-dimensional.

allowed_types

It can have any simpletype. Types and type codes are discussed in “IDL Internals:
Types’ on page 167.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 419

access

The routine will examine the argument’s value, but will not attempt to change it.
convert

The argument should be converted to IDL_TYP_FL OAT if necessary.

pre

No pre-processing is required.

post

No post-processing is required.

Theremaining fields are all set by IDL_EzCall() in response to the above.
9-14

Arguments two through four are allowed to have any number of dimensions and are
alowed any type. Thisis because the routine does not intend to examine them, only
to change them. For the samereason, azero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-processing
is specified.

17

Process the positional arguments.

26

Clean up.

External Development Guide Simplified Routine Invocation

420 Appendix A: Obsolete Internal Interfaces
Obsolete Error Handling API

The following variables can be accessed only on UNIX and VMS. These variables
have been superseded by the functions listed in “ Functions for Returning System
Variables’ on page 290, which are available on all platforms. In all cases, these
variables should be considered READ-ONLY:.

IDL System Variable Internal Variable Type
IDIR IDL_SysvDir IDL_STRING
IVERSION.ARCH IDL_SysvVersion.arch IDL_STRING
IVERSION.OS IDL_SysvVersion.os IDL_STRING
IVERSION.OS FAMILY | IDL_SysvVersion.os family | IDL_STRING
I'VERSION.RELEASE IDL_SysvVersion.release IDL_STRING
IERR IDL_SysvErrCode IDL_LONG
IERROR IDL_SysvErrorCode IDL_LONG
IORDER IDL_SysvOrder IDL_LONG

Table A-1: IDL System Variables Available to User Programs

In addition, the following function has been superseded by the
IDL_SysvErrorCodeValue() function:

IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of |ERR.

Obsolete Error Handling API External Development Guide

Appendix A: Obsolete Internal Interfaces 421
Compatibility with Versions 2 and 3

IDL for UNIX and IDL for VMS provide support for code written against the IDL
internal interfaces of previous versions of IDL. IDL for Windows and IDL for
Macintosh are new enough that there is no legacy code of this nature in existence, so
they do not provide these interfaces.

Support for interface routines used by IDL Version 2 and IDL Version 3 is provided
by a set of compatibility wrapper routines that recognize code written for the old
interfaces and tranglates it into a form recognizable by the current interface. To use
these compatibility routines, you should include the C header file obsol et e. h at the
top of your file:

#i ncl ude <stdio. h>
#i ncl ude "export.h"
#i ncl ude "obsol ete. h"

Theobsol et e. h file uses the C preprocessor to convert old constants, data types,
and functions with variable numbers of arguments to their new names. It also
contains prototypes for the compatibility wrapper functions.

Under UNIX, the compatibility wrapper functions are contained in an additional
sharablelibrary named | i bi dl _obsol et e that must be linked against your code.
Under VMS, they are contained in the IDL sharable executable along with the current
interface.

External Development Guide Compatibility with Versions 2 and 3

422 Appendix A: Obsolete Internal Interfaces
IDL Version 1 Compatibility

The routines described in this section provide compatibility with the interface
routines used by IDL for VM S Version 1. These routines should not be used when
writing new code. They are documented here for the sole purpose of making the port
of older code to the current version easier.

Data Type Codes

IDL Version 1 used a Fortran include file named TYPEDEF. PAR to define the type
codes as Parameter Statements. Here are the contents of aversion of that file that can
be used to port existing code to the current version of IDL:

TYPEDEF. PAR (Fortran I nclude File)

Define type codes for VM5 IDL Version 2. Define both the
old Version 1 nanes and the current Version 2 nanes.

O 0000

o

New type nanes:

Parameter TYP_BYTE = 1, TYP_INT = 2, TYP_LONG = 3
Parameter TYP_FLOAT = 4, TYP_DOUBLE = 5, TYP_COWLEX = 6
Paraneter TYP_STRING = 7, TYP_STRUCT = 8

c

¢ Version 1 type names with Version 2 val ues:

Paraneter TBYTE = 1, TINT = 2, TLONG 3

Par amet er TFLT=4, TDOUBL=5, TCOWLEX = 6, TASCIl =7

Both the old and the new data type names are defined. The actual values that define
the type codes, as well as the variable structure, have been changed. Programs that
symbolically refer to the type codes need only be recompiled. Note that the
compatibility routines referred to in the previous section require the newer type code
values.

IDL Version 1 Compatibility External Development Guide

Appendix A: Obsole

Routines

The following table is a summary of the IDL Version 1 VMS interface routines

te Internal Interfaces

423

documented in the file WRI TEYOUR. RNO (which was distributed with IDL Version 1)
and their implementation in newer versions:

Version 1 Routine

Changes

BYTE Renamed BYTE_V1

FIX Renamed FIX_V1

FLOAT_IDL

LONG

DOUBLE

COMPLEX Renamed COMPLEX_V1

STRING Renamed STRING_V1
CONVERT_TYPE

FOR_CHKPAR Routine must be called using CALL_V1
GETLON_SCL

GETFLOAT_SCL

GETDOUBLE_SCL

FOR_GETSTRING

FOR_GETTMP

FOR_GETDIMS

CREARR

TSTDELTMP

FOR_STORE_SCALAR

COPYVAR

PRINTERRMSG

IDLERR

Table A-2: IDL for VMS Version 1 Routines Mapped to Later Versions of IDL.

External Development Guide

IDL Version 1 Compatibility

424 Appendix A: Obsolete Internal Interfaces

Version 1 Routine Changes

|O0_ERROR
FOR_IO_ERROR Not implemented
BYTE1
INTEGER2
INTEGER4
GET_KBINT
STORE1L
STORE2
STORE4

Table A-2: IDL for VMS Version 1 Routines Mapped to Later Versions of IDL.

Calling Convention

IDL Version 1 modules are defined as follows:
SUBROUTI NE XXX(P1,, Pn)
IDL Version 2 and later modules have the following Fortran definition:

SUBROUTI NE XXX(N N, ARG LI ST)

C ARG LIST is an array of pointers to VARI ABLE structures:
I NTEGER * 4 ARG LI ST(*)

NARGS = %A.OC(N N)

Theroutine CALL_V1isprovidedin IDL Version 2 and later to convert the new
calling sequenceto the old. To use CALL_V 1, you must write a short wrapper
routine similar to the following, which calls the function XXX:

I NTEGER*4 FUNCTI ON XXX WRAPPER(ARCC, ARGV)
EXTERNAL XXX
| NTEGER*4 CALL_V1
XXX WRAPPER = CALL_VI1(ARGC, ARGV, XXX)
RETURN
END
SUBROUTI NE XXX(P1, P2, ..., Pn)
. Body of original routine XXX

The same method can be used to call procedures, which are defined as Fortran
subroutines, rather than as functions.

IDL Version 1 Compatibility External Development Guide

Index

Symbols

IDIR system variable, 290

IDLM_PATH, 338

IERROR_STATE system variable, 230, 290
IERROR_STATE.CODE system variable, 359
IERROR_STATE.MSG system variable, 290
IERROR_STATE.SYS MSG systemvariable,
290

IORDER system variable, 290

I'VERSION. ARCH system variable, 290
I'VERSION.OS system variable, 290
IVERSION.OS FAMILY system variable,
290

IVERSION.RELEASE system variable, 290

External Development Guide

A

absolute value, 297
accessfield, 246, 415
access_mode argument, 250
Accessing Structure Tags, 183
Accessing Variable Data, 196
action argument, 230, 255, 286
ActiveX

drawing the interface, 47

major features, 44

specifying the path, 48
adding

system routines, 324
adding code to IDL

overview, 22

skillsrequired, 23

system routines, 300

425

426

Adding To The Journa File, 263
Allocating and Freeing File Units, 257
alow argument, 254
alowed dimsfield, 414
alowed typesfield, 415
anonymous structures, 181, 182
ANSI C, 23
Apple events
Do Script, 96
Get Data, 97
overview, 96
Set Data, 99
AppleScript
controlling other applications, 94, 94
exporting datafrom IDL, 94
importing datainto IDL, 94
launching IDL, 91
moving datato and from IDL, 93
opening documents, 91
overview, 90
printing documents, 91
quitting IDL, 91
running IDL commands, 92
Appropriate Applications of Callable IDL, 349
arg_max field, 325, 411
arg_minfield, 325, 411
arg_struct argument, 413
argc argument, 205, 211, 250, 253, 257, 257,
262, 301, 355, 359, 363, 413
argk argument, 211, 250, 253, 262, 301
arguments
checking, 237
keyword see keywords
argv argument, 205, 211, 237, 250, 253, 257,
257, 262, 301, 355, 359, 363, 413
arr_lenfield, 179
array variables, 179
arrays, creating from existing data, 192
ASSOC function, 177, 180
associated input/output, 177, 180
avoiding shell under Unix, 39

Index

B

BackColor, 79

Baseld, 83

BaseName, 79

Basic AppleScript Support, 91

bell, ringing with error messages, 231
blocking timers, 278

Blocking Unix Timers, 282

buf argument, 357

buffered data, flushing, 260

C

C

ANSI, 23

stream package, 244
CALL_EXTERNAL

apha/open VMS restrictions, 156

calling aC routine, 142

calling aVMS Fortran subroutine, 160

Fortran common blocks, 162

sharable object libraries, 155
CALL_EXTERNAL function, 139

for Macintosh, 165

for OpenVMS, 156

for Unix, 155

for Windows, 164
CALL_EXTERNAL function, overview, 16
Cdlable DL

appropriate uses, 349

cleanup, 352, 362

compiling and linking C programs, 363

diverting IDL output, 357

example programs, 364, 368, 371

executing IDL statements, 359

implementation, 346

interactive IDL sessions, 363

inter-language calling conventions, 349

licensing issues, 350, 354

overview, 18

External Development Guide

program size considerations, 348
threading, 349
troubleshooting, 349
using, 351
using the Macintosh graphics driver, 348
using the Windows graphics driver, 348
when to use, 347

callback argument, 279

callbacks, timer, 279

Calling A Simple Mathematical Function, 368

calling other programs from IDL, 155
calltest program listing

C, 364, 389

Fortran, 371

Canceling Asynchronous Timer Requests, 281

capturing output, 38
characters, reading from the keyboard, 261
checking arguments, 237
Checking File Status, 255
child processes
under Unix, 40
Cleaning Up, 417
Cleanup, 362
client process, 104
Client Variables, 106
Closing Files, 253
cmd argument, 360
cnt argument, 324, 411
code argument, 230
communicating with a child process, 40
compatibility with earlier IDL versions, 421
Compatibility with older IDL code, 109
Compilation and Link Statements, 377
Compiling and Linking Programs that Call
IDL, 363
complex datatypes, 170
Constants, 296
context argument, 279, 281
Controlling Macintosh Applications, 94
convert field, 416

External Development Guide

copying strings, 222
copying variables, 197

Creating an array from existing data, 192
creating arrays from existing data, 192

427

Creating Routines that Accept Keywords, 205

creating structures, 181

D

data argument, 192
datafield, 179, 209
datatypes

default output formats, 293
datatypes see types

default output formats for datatypes, 293

definitions, external, 30, 30

defs argument, 324, 410

deleting strings, 223

dest argument, 198

Detecting End Of File, 259

devicefiles, specia, 248

dim argument, 189, 190, 192

dimfield, 180

dimsfield, 182

Diverting IDL Output, 357

DL _Load(), 341

DO_APPLE_SCRIPT procedure, 94

DoButtonPress, 77

DoButtonRelease, 77

DoExpose, 77

DoMotion, 77

Drawld, 83

DrawWidgetName, 80

dynamic memory, 194, 286
freed when deleting strings, 223
freeing, 198
IDL_MemAlloc(), 286
IDL_MemAllocPerm(), 287
IDL_MemFree(), 287

Index

428

E

elt_lenfield, 179
elt_size argument, 195
ensure_simple argument, 196
ensuring length of, 225
err_str argument, 286
errl argument, 235
err2 argument, 235
errno global variable
setting, 234
system leve errors, 232
errors
checking arguments, 237
issuing, 230
issuing OpenVM S messages, 235
message format string, 232
ringing bell with error message, 231
setting errno explicitly, 234
suppressing error message, 231
suppressing message prefix, 231
suppressing traceback portion of message,
231
system, 232
system variables, 230
Establishing A Signal Handler, 270
Example
Cdlling aC routine, 157
Calling a C Routine on a Macintosh, 165
Calling a Fortran Routine, 158
Cdlling aFortran Routine Using aC Interface
Routine, 143
Cdlling a Runtime Library Function, 159
Calling the TPU Editor, 159
examples
calling asimple math function, 368
Hello World for IDL, 302
simple system routine, 303
using callable IDL from C, 364
using callable IDL from Fortran, 371
using IDL_EzCall(), 417
widget stub, 403, 405

Index

ExecuteStr, 50
Executing IDL Commands from AppleScript,
92
Executing IDL Statements, 359
exit handlers
IDL_EXxitRegister(), 288
export.h file, 30
external definitions, 30
external programs, accessing (SPAWN), 13
extra_flags argument, 251

F

fcn argument, 213
file access
IDL_FILE _STAT struct, 246
mode, 250
file argument, 361
file attributes, 255
file descriptor, 245
file information
IDL_FILE _STAT struct, 245
file status, checking, 255
file_unit field, 180
files
always open, 252
and input/output, 244
closing, 253
detecting file end, 259
ensuring proper attributes, 255
journal, 263
opening with IDL_FileOpen(), 250
preventing closure, 254
flags argument, 255, 357
flagsfield, 175, 180, 207, 246
FLEXIm floating licence policy, 354
Flushing Buffered Data, 260
Form_Load
VisualBasic, 49
Fortran
binary data, unformatted, 247

External Development Guide

calling
using Fortran interface routine, 145

calling convention, 424

carriage control, 249

child processes, 42

compiler, 363

complex datatypes, 171

datatype codes, 422

external functions, caling, 138

passing parameters, 24

VMS, segmented records, 248
fptr field, 249
free() function, 194
free_cb argument, 193
from_callback argument, 279
fsargument, 224
func argument, 270, 271
funct_addr field, 325, 411
FZ_ROOTS example, 306

G

Getting Dynamic Memory, 194, 194
getting file information, 245
GraphicsLevel, 81

H

heap variables, 186

Hello World Example, 302

HELP,/DLM, 340, 344

How Callable IDL isImplemented on Different
Platforms, 346

hwnd, 83

ilo, 244
IDL Apple Events, 96

External Development Guide

429

IDL for VAX/VMS Version 1 Compatibility,
422

IDL organization, 28

IDL output, diverting, 357

IDL RPC Client APl Example, 107
IDL RPC variable accessor macros, 134
IDL signa API, 267

IDL statements, executing, 359

IDL timer module, 278

IDL Version 2 and IDL Version 3 Compatibil-
ity, 421

IDL, organization of, 28

IDL_A_FILE bit value, 180
IDL_ABS() macro, 297
IDL_ALLTYPESunion, 175, 178
IDL_ARR_INI_INDEX bit value, 189
IDL_ARR_INI_NOP bit value, 189
IDL_ARR_INI_ZERO bit value, 189
IDL_ARRAY structure, 175
IDL_BailOut() function, 289
IDL_BasicTypeConversion() function, 241
IDL_CHAR() macro, 297
IDL_CHARA() macro, 297
IDL_Cleanup() function, 352, 362
IDL_CvtByte function, 242
IDL_CvtBytscl function, 242
IDL_CvtComplex function, 242
IDL_CvtDbl function, 242
IDL_CvtDComplex function, 242
IDL_CvtFix function, 242

IDL_CvtFlt function, 242

IDL_CvtLng function, 242
IDL_CvtString function, 242
IDL_Deltmp() function, 191, 195
IDL_DLM_PATH, 338, 344

IDL_EFS _ASSOC bit value, 256
IDL_EFS CLOSED bit value, 255
IDL_EFS IDL_OPEN bit value, 255
IDL_EFS NOGUI bit value, 256
IDL_EFS NOPIPE bit value, 256
IDL_EFS NOT_NOSTDIO bit value, 256

Index

430

IDL_EFS NOTTY bit value, 255
IDL_EFS NOXDR bit value, 256
IDL_EFS READ bit value, 255
IDL_EFS_USER bit value, 255

IDL_EFS WRITE bit value, 255
IDL_ENSURE_ARRAY macro, 238
IDL_ENSURE_OBJREF macro, 238
IDL_ENSURE_PTR macro, 238
IDL_ENSURE_SCALAR macro, 238
IDL_ENSURE_SIMPLE macro, 238
IDL_ENSURE_STRING macro, 238
IDL_ENSURE_STRUCTURE macro, 238
IDL_EXCLUDE_COMPLEX macro, 238
IDL_EXCLUDE_CONST macro, 237
IDL_EXCLUDE_EXPR macro, 237
IDL_EXCLUDE_FILE macro, 238
IDL_EXCLUDE_SCALAR macro, 238
IDL_EXCLUDE_STRING macro, 238
IDL_EXCLUDE_STRUCT macro, 238
IDL_EXCLUDE_UNDEF macro, 237
IDL_Execute() function, 359
IDL_ExecuteStr() function, 359
IDL_ExitRegister() function, 288
IDL_EZ ACCESS R bit value, 415
IDL_EZ ACCESS_RW hit value, 415
IDL_EZ_ACCESS W bit value, 415
IDL_EZ_ARG struct, 414

IDL_EZ DIM_ANY bhit value, 415
IDL_EZ DIM_ARRAY bhit value, 415
IDL_EZ POST_TRANSPOSE bit value, 416
IDL_EZ_POST_WRITEBACK bit value, 416
IDL_EZ_PRE_SQMATRIX bit value, 416
IDL_EZ_PRE_TRANSPOSE bit value, 416
IDL_EzCall() function, 413
IDL_EzCallCleanup() function, 417
IDL_F _COMPRESS bit value, 247

IDL_F _DEL_ON_CLOSE hit value, 246
IDL_F_DOS _BINARY bhit value, 249
IDL_F_ISAGUI bit value, 246

IDL_F _ISATTY bit value, 246
IDL_F_MORE bit value, 246

Index

IDL_F_NOCLOSE bit value, 246
IDL_F_SR hit value, 247

IDL_F_STDIO value, 247
IDL_F_SWAP_ENDIAN bit value, 247
IDL_F_UNIX_F77 bit value, 247
IDL_F_UNIX_NOSTDIO bit value, 247
IDL_F_UNIX_PIPE bit value, 247
IDL_F_UNIX_SPECIAL bit value, 248
IDL_F VAX_FLOAT hit value, 247
IDL_F_VMS _CCFORTRAN hit value, 249
IDL_F VMS_CCLIST bit value, 249
IDL_F VMS _CCNONE bit value, 249
IDL_F VMS FIXED hit value, 248
IDL_F VMS_INDEXED hit value, 248
IDL_F VMS PRINT bit value, 248
IDL_F VMS RMSBLK bit value, 248
IDL_F VMS RMSBLKUDF bit value, 248
IDL_F VMS SEGMENTED bit value, 248
IDL_F VMS _SHARED bit value, 249
IDL_F VMS _STREAM bhit value, 248
IDL_F VMS STREAM_STRICT bit value,
248

IDL_F VMS SUBMIT hit value, 248
IDL_F VMS _SUPERCEED hit value, 249
IDL_F VMS TRCLOSE hit value, 249
IDL_F VMS VARIABLE bit value, 248
IDL_F_XDR bit value, 246

IDL_FALSE preprocessor constant, 296
IDL_FILE_CLOSE() macro, 254
IDL_FILE_NOCLOSE() macro, 254
IDL_FILE_STAT struct, 245
IDL_FileClose() function, 253
IDL_FileEnsureStatus() function, 255
IDL_FileEOK() function, 259
IDL_FileFlushUnit() function, 260
IDL_FileFreeUnit() function, 257
IDL_FileGetUnit() function, 257
IDL_FileOpen() function, 250
IDL_FileSetClose() function, 254
IDL_FileStat() function, 245
IDL_FileTerm global variable, 291

External Development Guide

IDL_FileTermColumns function, 291
IDL_FileTermlsTty function, 291
IDL_FileTermLines function, 291
IDL_FileTermName function, 291
IDL_FindNamedV ariable() function, 202
IDL_GetKbrd() function, 261
IDL_GetScratch function, 194
IDL_Gettmp() function, 188
IDL_GetUserInfo() function, 295
IDL_GetVarAddr() function, 201
IDL_GetVarAddrl() function, 201
IDL_ImportArray() function, 182, 192
IDL_ImportNamedArray() function, 182, 192
IDL_Init() function, 351, 353
IDL_INIT_BACKGROUND, 354
IDL_INIT_EMBEDDED bhit value, 353
IDL_INIT_GUI bit value, 353
IDL_INIT_GUI_AUTO bit value, 353
IDL_INIT_NOLICALIAS bit value, 354
IDL_INIT_NOTTYEDIT bit value, 354
IDL_KW_ARR_DESC structure, 209
IDL_KW_ARRAY bit value, 207
IDL_KW_CLEAN bit value, 213
IDL_KW_FAST_SCAN macro, 212
IDL_KW_MARK bit value, 213
IDL_KW_OUT hit value, 207
IDL_KW_PAR structure, 205, 206
IDL_KW_VALUE bit value, 208
IDL_KW_VIN bit value, 207
IDL_KW_ZERO bit value, 207
IDL_KWCleanup() function, 205, 213
IDL_KWGetParams() function, 205, 211
IDL_Load(), 324, 410

IDL_Logit() function, 263

IDL_LONG type definition, 170
IDL_LONGS64, 170

IDL_M_GENERIC message string, 233
IDL_M_NAMED_GENERIC message code,
233

IDL_Main() function, 363
IDL_MakeStruct() function, 181

External Development Guide

431

IDL_MakeTempArray function, 188
IDL_MakeTempStruct() function, 190
IDL_MAX() macro, 297
IDL_MAX_ARRAY _DIM preprocessor con-
stant, 296

IDL_MAX_TY PE constant, 168
IDL_MAXIDLEN preprocessor constant, 296
IDL_MAXPATH preprocessor constant, 296
IDL_MBLK_CORE, 228

IDL_MemAlloc() function, 286
IDL_MemAllocPerm() function, 287
IDL_MemFree() function, 287
IDL_Message() function, 230, 270
IDL_MessageDefineBlock(), 228, 341
IDL_MessageErro() function, 234
IDL_MessageNameToCode(), 236
IDL_MessageVM () function, 235
IDL_MIN() macro, 297
IDL_MSG_ATTR_BELL bit value, 231
IDL_MSG_ATTR_MORE bit value, 231
IDL_MSG_ATTR_NOPREFIX bit value, 231
IDL_MSG_ATTR_NOPRINT bit value, 231
IDL_MSG_ATTR_NOTRACE bit value, 231
IDL_MSG_ATTR_QUIET bit value, 231
IDL_MSG_ATTR_SYShit value, 232
IDL_MSG_DEF, 228

IDL_MSG_EXIT bit value, 230
IDL_MSG_INFO bhit value, 230
IDL_MSG_IO_LONGJIMP bit value, 231
IDL_MSG_LONGJIMP bit value, 231
IDL_MSG_RET hit value, 230
IDL_NUM_TY PES constant, 168
IDL_OPEN_APND bit value, 246, 251
IDL_OPEN_R hit value, 246, 250
IDL_OPEN_TRUNC bit value, 246, 251
IDL_OPEN_W bit value, 246, 250
IDL_OutputFormat global variable, 293
IDL_OutputFormatFunc function, 293
IDL_OQutputFormatLen global variable, 293
IDL_OutputFormatL enFunc function, 293
IDL_Print() function, 262

Index

432

IDL_PrintF() function, 262
IDL_REGISTER preprocessor constant, 296
IDL_ROUND_UP() macro, 297
IDL_RPCCleanup, 112
IDL_RPCDeltmp, 113
IDL_RPCExecuteStr, 114
IDL_RPCGetArrayData, 134
IDL_RPCGetArrayNumDims, 134
IDL_RPCGetArrrayDimensions, 134
IDL_RPCGetMainVariable, 115
IDL_RPCGettmp, 116
IDL_RPCGetVarByte, 134
IDL_RPCGetVarComplex, 134
IDL_RPCGetVarComplex|, 134
IDL_RPCGetVarComplexR, 134
IDL_RPCGetVarDComplex, 134
IDL_RPCGetVarDComplex!, 134
IDL_RPCGetVarDComplexR, 134
IDL_RPCGetVarDouble, 134
IDL_RPCGetVarFloat, 135
IDL_RPCGetVariable, 117
IDL_RPCGetVarint, 135
IDL_RPCGetVarLong, 135
IDL_RPCGetVarLong64, 135
IDL_RPCGetVarString, 135
IDL_RPCGetVarType, 135
IDL_RPCGetVarUInt, 135
IDL_RPCGetVarULong64, 135
IDL_RPClmportArray, 118
IDL_RPCInit, 119
IDL_RPCMakeArray, 120
IDL_RPCOutputCapture, 122
IDL_RPCOutputGetStr, 123
IDL_RPCSetMainVariable, 124
IDL_RPCSetVariable, 125
IDL_RPCStoreScalar, 126
IDL_RPCStrDelete, 127
IDL_RPCStrDup, 128
IDL_RPCStrEnsurelength, 129
IDL_RPCStrStore, 130
IDL_RPCTimeout, 131

Index

IDL_RPCVarCopy, 132
IDL_RPCVarGetData, 133
IDL_RPCVarlsArray, 135
IDL_RuntimeExec() function, 361
IDL_SignaBlock() function, 275
IDL_SignaMaskBlock() function, 274
IDL_SignaMaskGet() function, 273
IDL_SignaMaskSet() function, 274
IDL_Signa Register() function, 270
IDL_Signa SetAdd() function, 272
IDL_Signa SetDel() function, 273
IDL_Signa Setlnit() function, 272
IDL_Signal SetlsMember() function, 273
IDL_Signal Suspend() function, 275
IDL_SignalUnregister() function, 271
IDL_SREF structure, 175, 181
IDL_STDERR_UNIT file unit, 252
IDL_STDIN_UNIT file unit, 252
IDL_STDOUT_UNIT file unit, 252
IDL_StoreScalar() function, 198, 237
IDL_StoreScalarZero(), 198
IDL_StrDelete() function, 223
IDL_StrDup() function, 222
IDL_StrEnsurel ength() function, 225
IDL_STRING struct, 171

IDL_STRING structure, 220
IDL_STRING_STR macro, 221
IDL_StrStore() function, 224
IDL_StrToSTRING() function, 224
IDL_STRUCT_TAG_DEF type definition,
182

IDL_StructNumTags(), 184
IDL_StructTaglnfoBylndex() function, 183
IDL_StructTaglnfoByName() function, 183
IDL_StructTagNameBylndex function, 184
IDL_SYSFUN_DEF, 324, 411
IDL_SYSFUN_DEF struct, 411
IDL_SYSFUN_DEF_KEYWORDS, 205
IDL_SYSFUN_DEF?2 struct, 205, 324
IDL_SysRtnAdd function, 205, 324
IDL_SysvDir variable, 420

External Development Guide

IDL_SysvDirFunc function, 290
IDL_SysvErrCode variable, 420
IDL_SysvErrCodeVaue function, 420
IDL_SysvErrorCode variable, 420
IDL_SysvErrorCodeValue function, 290
IDL_SysvErrStringFunc function, 290
IDL_SysVersionArch function, 290
IDL_SysVersionOS function, 290
IDL_SysVersionOSFamily function, 290
IDL_SysVersionRelease function, 290
IDL_SysvOrder variable, 420
IDL_SysvOrderValue function, 290
IDL_SysvSyserrStringFunc function, 290
IDL_SysvVersion.arch variable, 420
IDL_SysvVersion.os variable, 420
IDL_SysvVersion.os family variable, 420
IDL_SysvVersion.release variable, 420
IDL_TERMINFO struct, 291
IDL_TIMER_CONTEXT variable, 279
IDL_TimerBlock() function, 282
IDL_TimerCancel() function, 281
IDL_TimerSet() function, 279
IDL_TOUT _F NLPOST bit value, 357
IDL_TOUT_F_STDERR bit value, 357
IDL_ToutPop() function, 358
IDL_ToutPush() function, 357
IDL_TRUE preprocessor constant, 296
IDL_TTY Reset function, 292

IDL_TYP B_ALL constant, 169
IDL_TYP_BYTE type code, 168
IDL_TYP_COMPLEX type code, 168, 170
IDL_TYP_DCOMPLEX type code, 168, 170
IDL_TYP_DOUBLE type code, 168
IDL_TYP_FLOAT type code, 168
IDL_TYP_INT type code, 168
IDL_TYP_LONG type code, 168
IDL_TYP_LONGS64 type code, 169
IDL_TYP_MASK preprocessor macro, 169
IDL_TYP_OBJREF type code, 169
IDL_TYP_PTR type code, 169
IDL_TYP_STRING type code, 168, 171

External Development Guide

433

IDL_TYP_STRUCT type code, 168, 181
IDL_TYP_UINT type code, 169
IDL_TYP_ULONG type code, 169
IDL_TYP_ULONG64 type code, 169
IDL_TYP_UNDEF, 168
IDL_TYP_UNDEF type code, 168
IDL_TypeName global variable, 293
IDL_TypeNameFunc function, 294
IDL_TypeSize global variable, 293
IDL_TypeSizeFunc function, 294
IDL_ULONG, 170

IDL_ULONG64, 170

IDL_USER_INFO struct, 295

IDL_V_ARR bit value, 176
IDL_V_CONST bit value, 176
IDL_V_DYNAMIC bit value, 177
IDL_V_FILE bit value, 177
IDL_V_STRUCT bit value, 177, 181
IDL_V_TEMP bit value, 176
IDL_VarCopy() function, 197
IDL_VarGetData() function, 196
IDL_VARIABLE structure, 175
IDL_VarName() function, 200

IDL_VPTR, 29, 175
IDL_WidgetGetStublds() function, 401, 401
IDL_Widgetl ssueStubEvent() function, 401
IDL_WidgetSetStublds() function, 401, 401
IDL_WidgetStubL ock() function, 400
IDL_WidgetStubL ookup() function, 400
IDL_WidgetStubSetSizeFunc() function, 402,

402

IDL_Win32Init() function, 351, 355
IDLDrawWidget

auto event properties, 85

compiling IDL code, 53

creating, 50

creating an interface and handling events, 46

do methods (runtime only), 77

events, 87

initializing IDL, 49, 53

integrating object graphics, 62

Index

434

methods, 69
modifying IDL library code, 60
properties, 79
read only properties, 83
register for events, 74
sharing grid control array, 63
specifying IDL path, 48
IdIPath, 81
|dIPath property, 49
IDLRPCGetVarULong, 135
ienter argument, 201, 202
information on open files
IDL_FILE_STAT struct, 245
init argument, 189
init_options argument, 363
input/output, 244
inter-language calling conventions, 23
Inter-language Communication Techniques
Supported by IDL, 13
Internal Callback Functions (widget stub), 403
Internal Functions for Use with Stub Widgets,
400
internal interfaces, obsolete, 421
interpreted languages, 28
interpreter stack, 29
interrupt flag, internal, 289
is_function argument, 324, 411

J

journal file, adding to, 263
just_cleanup argument, 362

K

keyword field, 206
KEYWORD_DEMO procedure, 214
keywords

array, 207, 210

Boolean, 207

Index

creating, 205

examples, 214

input, 207

input/output, 210

output, 207

overview, 204

processing, 211

processing options, 210

read-only, 209

scalar, 210

speeding processing of, 212
kw_list argument, 211

L

length argument, 279
licensing, 354
Licensing Issues, 350
LINKIMAGE procedure
overview, 17
linking
C programs with Callable IDL, 363
external codeinto IDL, 31
linking details, 31
Linking to the Client Library, 107
logical unit numbers, 180
LONG
IDLDrawWidget parameters, 74
long integer data type, 170
longjmp() function, 231
longjmp_safe argument, 251
LUNs seelogical unit numbers

M

Macintosh
calling convention and parameter passing,
165

Macros, 297

External Development Guide

main program variables, 201
looking up, 201
Makefilefile, 31
Making A Timer Request, 279
malloc() function, 194
mapping of basic types, 170
mask argument, 212
mask field, 206
maximum, 297
memory
alocating, 286
allocating permanent, 287
freeing, 287
message block, 228
message format string, 232
minimum, 297
more command, 231
Moving datato and from IDL, 93
msg_action argument, 270, 271

N

n argument, 196, 222, 223, 225, 286, 357
nfield, 209

n_dim argument, 188, 190, 192

n_dim field, 180

n_eltsargument, 195

n_eltsfield, 179

name argument, 181, 192, 201, 201, 202
name field, 182, 245, 325, 411

names of variables, 200

nmax field, 209

nmin field, 209

O

obsolete interna interfaces, 421
obtaining names of variables, 200
omask argument, 274
OnButtonPress, 85

External Development Guide

435

OnButtonRelease, 85

OnDbIClick, 85

OnExpose, 86

Onlnit, 86

OnMotion, 86

OnViewScrolled, 87

opening files
IDL_FileOpen(), 250

OpenVMS, 161
access to global data, 298
Example Using WIDGET_STUB, 405
status code, 235

options argument, 353

organization, 28

oset argument, 274

Output of IDL Variables, 262

Overview, 11

P

p argument, 191, 194
parameters

passing mechanism, 140
pd argument, 196
plain_args argument, 211
post field, 416
prefield, 416
preprocessor constants, 296
Preventing File Closing, 254
printf() function, 230
printing IDL variables, 262
printing, VisualBasic, 59
proc argument, 288
procedure calls, remote, 104
Program Size Considerations, 348

R

Reading a Character, 261
recommended reading, 26, 26

Index

436

registering exit handlers, 288
registering routines using IDL_SysRtnAdd(),
315
Remote Procedure Calls, 15, 104
example code, 136
Removing A Signal Handler, 271
Retain, 82
returning address in current execution scope
from name, 202
ringing bell with error messages, 231
RMS, 244
rms.mrsfield, 249
rounding values, 297
RPC Examples, 136
RPC server, using IDL as, 105
RPCs see Remote Procedure Calls
Running IDL in Server Mode, 105
Runtime IDL and Embedded IDL, 361

S

sargument, 193, 224, 224, 225, 263
sfield, 171
scalar values

storing, 198
scalar variables, 178
Scroll, 83
sdef argument, 190
sdef field, 181
server |D number, 105
server process, 104
set argument, 272, 272, 273, 273, 273, 274,
274, 275
SetNamedArray, 74
SetNamedData, 75
SetOutputWnd, 76
SetOutputWnd method, 50
shell

avoiding under Unix, 39
should_wait argument, 261
shutting down IDL, 288

Index

SIG_DFL, 266, 268

SIG_IGN, 268

SIGALRM, 267, 282

SIGFPE, 266, 267, 267

SIGINT, 289

signal handlers
establishing, 270
removing, 271

signal masks
IDL_SignaBlock(), 275
IDL_SignalMaskBlock(), 274
IDL_SignaMaskGet(), 273
IDL_SignaMaskSet(), 274
IDL_Signal SetAdd(), 272
IDL_Signal SetDel(), 273
IDL_Signal Setlnit(), 272
IDL_Signal SetlsMember(), 273
IDL_Signal Suspend(), 275
overview, 272

signals, 266
IDL API, 267
IDL limitations, 267
problems, 266

signo argument, 270, 271, 272, 272, 273, 273,

275
SIGTRAP, 266, 267, 267
Simplified Routine Invocation, 413
Skills Required to Add Codeto IDL, 23
denfield, 171
Spawn
noninteractive use of, 39
spawn

communicating with aUnix child process, 40

interactive use of SPAWN, 35
noninteractive use of SPAWN, 37

Special File Units, 252

specified field, 208

stack, interpreter, 29

standard error, 252

standard input, 252

standard output, 252

External Development Guide

stat_blk argument, 245
stdio buffering, 247
stop argument, 283, 289
storing scalar values, 198
str argument, 222, 223
stream files, 244
string data type, 171
strings, 225
accessing, 221
copying, 222
deleting, 223
processing, 220
setting value of, 224
Structure
creating temporary, 190
structure variables, 181
structures, 181
anonymous, 181, 182
creating, 181
stub widgets
interna functions, 400
overview, 396
WIDGET_STUB function, 397
stypefield, 171
symbol table, 201
system routines
adding, 324
examples, 302, 303, 417
interface, 301
invocation, 413
overview, 300
system variables
functions for returning, 290

T

tags argument, 182

Temporary array
getting, 188

Temporary variable
freeing, 191

External Development Guide

getting, 188
temporary variables, 187
Termina Information, 291
The IDL RPC directory, 105
TheIDL_EZ_ARG struct, 414
timers, 278
blocking, 278, 282
cdlbacks, 279
cancelling requests, 281
IDL_TimerBlock(), 282
IDL_TimerCancel(), 281
IDL_TimerSet(), 279
to_deletefield, 416
transfer vector, 298
type argument, 188, 192, 198
type codes, 168
typefield, 182, 206
Type Information, 293
types
complex, 170
long integer, 170
mapping of, 170
string, 171
type codes, 168
type masks, 169
unsigned byte, 170

U

uargv field, 417
UCHAR type definition, 170

unit argument, 245, 254, 255, 259, 260

UNIVERSAL symbols, 298
Unix
avoiding shell, 39
OS-specific ahilities, 40
Unix Signal Masks, 272
unsigned byte data type, 170
User Information, 295
User Interrupts, 289
Using Callable IDL

437

Index

438

from C, 364
from Fortran, 371
overview, 351

V

v argument, 196
value argument, 198
valuefield, 208, 417
value.arr fied, 179
vaue.cfield, 178
value.cmp field, 178
valued field, 178
value.decmp field, 178
valuef field, 178
value.i field, 178
valuel field, 178
vaue.l64 field, 178
valuesfield, 181
vaue.str field, 178
value.ui field, 178
value.ul field, 178
value.ul64 field, 178
var argument, 189, 190
Variable Name
obtaining, 200
variables, 202
array, 179
copying, 197
in current scope, looking up, 202
obtaining names of, 200
returning address in main program from
name, 201
scalar, 178
setting to scalar values, 198
structure, 181
system, 290
temporary, 187
VBCopyPrint
copying and printing IDL graphics, 56

Index

VBPaint
handling events within VB, 64
VBSharelD, 63
Visible, 82
VisualBasic
printing, 59
VMS
calling convention and parameter passing,
156
VMS See OpenVM S

wW

When isit Appropriate to Add Codeto IDL?,
22
When isit Appropriate to use Callable IDL?,
347
widget stub
examples, 403, 405
function, 397
interface, 348, 396
WIDGET_CONTROL Used with
WIDGET_STUB, 398
WIDGET_STUB function, 397
widgets
adding custom to IDL, 396
interna functions, 400
WIDGET_CONTROL, 398
WIDGET_STUB, 397
Windows
calling convention and parameter passing,
164

X

XLoadCT functionality using VB, 60
Xoffset, 83

Xsize, 82

Xviewport, 83

External Development Guide

439

Y Z

Y offset, 83 zero argument, 191
Ysize, 82

Y viewport, 84

External Development Guide Index

440

Index External Development Guide

	Online Guide
	Contents
	Overview
	About this Manual
	Using this Document with Previous Versions of IDL

	Supported Inter-Language Communication Techniques in IDL
	Translate into IDL
	Advantages
	Disadvantages
	Recommendation

	SPAWN
	Advantages
	Disadvantages
	Recommendation

	ActiveX
	Advantages
	Disadvantages
	Recommendation

	AppleScript
	Advantages
	Disadvantages
	Recommendation

	Remote Procedure Calls (RPCs)
	Advantages
	Disadvantages
	Recommendation

	CALL_EXTERNAL
	Advantages
	Disadvantages
	Recommendation

	IDL System Routine (LINKIMAGE, Dynamically Loadable Modules)
	Advantages
	Disadvantages
	Recommendation

	Callable IDL
	Advantages
	Disadvantages
	Recommendation

	Dynamic Linking Terminology and Dynamic Linking Concepts
	CALL_EXTERNAL
	LINKIMAGE and Dynamically Loadable Modules (DLMs)
	Callable IDL
	Remote Procedure Calls (RPCs)

	When is it Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	ActiveX
	RPC
	ANSI C
	System C Compiler, Linker, and Libraries
	Inter-language Calling Conventions
	Operating System Features And Conventions
	Microsoft Windows
	UNIX
	OpenVMS

	Recommended Reading
	The C Language
	Microsoft Windows
	UNIX
	OpenVMS
	X Windows

	IDL Organization
	The Interpreter Stack

	External Definitions
	Linking Details

	Using SPAWN
	The SPAWN Procedure
	Interactive Use of SPAWN
	UNIX Command Interpreter
	VMS Command Interpreter
	Windows Command Interpreter
	Macintosh

	Noninteractive Use of SPAWN
	Macintosh
	Capturing Output

	Avoiding the Shell Under UNIX
	Communicating Through the Use of a UNIX Child Process
	Example: Communicating with a Child Process Under UNIX

	IDLDrawWidget ActiveX Control
	Overview
	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the clipboard
	Printing the IDL Graphic using IDL Object Graphics
	Executing IDL user routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Your Object Graphics by Utilizing Visual Basic
	Sharing a Grid Control Array with IDL
	This example illustrates the following concepts:

	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDL ActiveX Control Command Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	Parameters
	Returns
	Remarks

	CopyWindow
	Parameters
	Returns

	CreateDrawWidget
	Parameters
	Returns

	DestroyDrawWidget
	Parameters
	Returns

	DoExit
	Parameters
	Returns
	Remarks

	ExecuteStr
	Parameters
	Returns
	Remarks

	GetNamedData
	Parameters
	Returns
	Remarks

	InitIDL
	Parameters
	Returns

	Print
	Parameters
	Returns

	RegisterForEvents
	Parameters
	Returns

	SetNamedArray
	Parameters
	Returns
	Remarks

	SetNamedData
	Parameters
	Returns

	SetOutputWnd
	Parameters
	Returns

	Do Methods (Runtime Only)
	DoButtonPress
	Parameters
	Returns

	DoButtonRelease
	Parameters
	Returns

	DoExpose
	Parameters
	Returns

	DoMotion
	Parameters
	Returns

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	AppleScript Support
	AppleScript and IDL
	Basic AppleScript Support
	Launching IDL
	Quitting IDL
	Opening Documents
	Printing Documents

	Using IDL Commands via AppleScript
	Moving Data To and From IDL
	Notes

	Controlling Other Applications
	Importing Data into IDL
	Exporting Data from IDL
	Controlling Other Applications

	IDL Apple Events
	Do Script
	Get Data
	Set Data

	References

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode

	Client Variables
	Linking to the Client Library
	Example of IDL RPC Client API

	Compatibility with Older IDL Code
	The IDL RPC Library
	IDL_RPCCleanup
	pClient
	iKill
	Return Value

	IDL_RPCDeltmp
	Description
	Parameters
	vTmp
	Return Value

	IDL_RPCExecuteStr
	pClient
	pCommand
	Return Value

	IDL_RPCGetMainVariable
	pClient
	Name
	Return Value

	IDL_RPCGettmp
	Parameters

	IDL_RPCGetVariable
	pClient
	Name
	Return Value

	IDL_RPCImportArray
	n_dim
	dim
	type
	data
	free_cb

	IDL_RPCInit
	Description
	ServerId
	pHostname

	IDL_RPCMakeArray
	type
	n_dim
	dim
	init
	var

	IDL_RPCOutputCapture
	pClient
	n_lines

	IDL_RPCOutputGetStr
	pClient
	pLine
	first

	IDL_RPCSetMainVariable
	pClient
	Name
	pVar

	IDL_RPCSetVariable
	pClient
	Name
	pVar

	IDL_RPCStoreScalar
	dest
	type
	value

	IDL_RPCStrDelete
	IDL_RPCStrDup
	IDL_RPCStrEnsureLength
	IDL_RPCStrStore
	IDL_RPCTimeout
	lTimeOut

	IDL_RPCVarCopy
	src
	dst

	IDL_RPCVarGetData
	v
	n
	pd
	ensure_simple

	Variable Accessor Macros
	IDL_RPCGetArrayData(v)
	IDL_RPCGetArrayDimensions(v)
	IDL_RPCGetArrayNumDims(v)
	IDL_RPCGetVarByte(v)
	IDL_RPCGetVarComplex(v)
	IDL_RPCGetVarComplexR(v)
	IDL_RPCGetVarComplexI(v)
	IDL_RPCGetVarDComplex(v)
	IDL_RPCGetVarDComplexR(v)
	IDL_RPCGetVarDComplexI(v)
	IDL_RPCGetVarDouble(v)
	IDL_RPCGetVarFloat(v)
	IDL_RPCGetVarInt(v)
	IDL_RPCGetVarLong(v)
	IDL_RPCGetVarLong64(v)
	IDL_RPCVarIsArray(v)
	IDL_RPCGetVarString(v)
	IDL_RPCGetVarType(v)
	IDL_RPCGetVarUInt(v)
	IDLRPCGetVarULong(v)
	IDL_RPCGetVarULong64(v)

	RPC Examples

	CALL_EXTERNAL
	IDL and CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Input and Output
	Memory Cleanup
	Calling Convention and Parameter Passing
	Platform-Specific Information

	Example: Passing Parameters by Reference to IDL
	Example: Calling a C routine
	Example: Calling a Fortran Routine Using a C Interface Routine
	Example: Calling a Fortran Routine Using a Fortran Interface Routine
	Further Examples
	Wrapper routines

	Handling Different Data Types
	Strings
	Returning a String Value

	Example
	Arrays
	Structs

	CALL_EXTERNAL Under UNIX
	UNIX Compilation and Linking

	CALL_EXTERNAL Under OpenVMS
	Alpha/OpenVMS Restrictions
	Calling Convention and Parameter Passing
	Example: Calling a C routine
	Example: Calling a Fortran Routine
	Example: Calling the TPU Editor
	Example: Calling a Runtime Library Function
	Calling a VMS Fortran Subroutine
	Passing Parameters by Value
	Using CALL_EXTERNAL with Fortran Common Blocks
	Further Examples
	OpenVMS Compilation and Linking

	CALL_EXTERNAL Under Windows
	Calling Convention and Parameter Passing
	Examples

	CALL_EXTERNAL on the Macintosh
	Calling Convention and Parameter Passing
	Example: Calling a C Routine on a PowerPC Macintosh

	IDL Internals: Types
	Type Codes
	Type Masks

	Mapping of Basic Types
	Unsigned Byte Data
	Unsigned Integer Data
	Long Integer Data
	Unsigned Long Integer Data
	64-bit Integer Data
	Unsigned 64-bit Integer Data
	Complex Data
	String Data
	slen
	stype
	s

	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	IDL_V_CONST
	IDL_V_TEMP
	IDL_V_ARR
	IDL_V_FILE
	IDL_V_DYNAMIC
	IDL_V_STRUCT

	Scalar Variables
	Array Variables
	elt_len
	arr_len
	n_elts
	data
	n_dim
	flags
	file_unit
	dim

	Structure Variables
	Creating Structures
	name
	tags
	name
	dims
	type
	flags

	Accessing Structure Tags
	sdef
	name (IDL_StructTagInfoByName)
	index (IDL_StructTagInfoByIndex)
	msg_action
	var

	Determining the Number Of Structure Tags
	sdef

	Determining the Names Of Structures and their Tags
	sdef
	index
	msg_action
	struct_name

	Heap Variables
	Temporary Variables
	Getting a Temporary Variable
	Creating a Temporary Array
	type
	n_dim
	dim
	init
	var
	Creating a Temporary Vector
	type, init, var
	dim

	Creating a Temporary Structure
	sdef
	n_dim
	dim
	var
	zero

	Creating a Temporary Vector
	sdef, var, zero
	dim

	Freeing A Temporary Variable

	Creating an Array from Existing Data
	name
	n_dim
	dim
	type
	data
	free_cb
	s

	Getting Dynamic Memory
	The IDL_GetScratch Function
	p
	n_elts
	elt_size

	Accessing Variable Data
	v
	n
	pd
	ensure_simple

	Copying Variables
	Storing Scalar Values
	dest
	type
	value
	dest
	type
	Using IDL_StoreScalar() to Free Dynamic Resources

	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	name
	name
	ienter

	Looking Up Variables in Current Scope
	name
	ienter

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	The IDL_KW_PAR Structure
	keyword
	type
	mask
	flags
	specified
	value

	The IDL_KW_ARR_DESC Structure
	data
	nmin
	nmax
	n

	Keyword Processing Options
	Scalar Input-Only
	Array Input-Only
	Input/Output

	Processing Keywords
	argc
	argv
	argk
	kw_list
	plain_args
	mask
	Speeding Keyword Processing

	Cleaning Up
	IDL_KW_MARK
	IDL_KW_CLEAN

	Keyword Examples
	7
	9
	10 – 13
	14
	15
	16
	18
	19 – 20
	21
	22
	23 – 24
	25 – 26
	27
	28
	31
	33
	35
	36
	37 – 38
	39– 45
	47 – 55
	57

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	Copying Strings
	str
	n

	Deleting Strings
	str
	n

	Setting an IDL_STRING Value
	s
	fs
	s

	Obtaining a String of a Given Length
	s
	n

	IDL Internals: Error Handling
	Message Blocks
	name
	format
	block_name
	n
	defs
	Example: Defining A Message Block

	Issuing Error Messages
	block
	code
	action
	IDL_MSG_RET
	IDL_MSG_INFO
	IDL_MSG_EXIT
	IDL_MSG_LONGJMP
	IDL_MSG_IO_LONGJMP
	IDL_MSG_ATTR_NOPRINT
	IDL_MSG_ATTR_MORE
	IDL_MSG_ATTR_NOPREFIX
	IDL_MSG_ATTR_QUIET
	IDL_MSG_ATTR_NOTRACE
	IDL_MSG_ATTR_BELL
	IDL_MSG_ATTR_SYS
	...

	Error Codes
	IDL_M_GENERIC
	IDL_M_NAMED_GENERIC

	Choosing an Error Code

	Specifying errno Explicitly
	Issuing OpenVMS Messages
	err1
	err2

	Looking Up A Message Code by Name
	block
	name

	Checking Arguments
	IDL_EXCLUDE_UNDEF
	IDL_EXCLUDE_CONST
	IDL_EXCLUDE_EXPR
	IDL_EXCLUDE_FILE
	IDL_EXCLUDE_STRUCT
	IDL_EXCLUDE_COMPLEX
	IDL_EXCLUDE_STRING
	IDL_EXCLUDE_SCALAR
	IDL_ENSURE_ARRAY
	IDL_ENSURE_OBJREF
	IDL_ENSURE_PTR
	IDL_ENSURE_SCALAR
	IDL_ENSURE_STRING
	IDL_ENSURE_SIMPLE
	IDL_ENSURE_STRUCTURE

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	argc
	argv
	type

	Converting to Specific Types

	IDL Internals: Files and Input/Output
	IDL and Input/Output Files
	File Information
	IDL_FileStat()
	unit
	stat_blk
	name
	access
	flags
	IDL_F_STDIO
	fptr
	rms.mrs

	Opening Files
	IDL_FileOpen()
	argc
	argv
	argk
	access_mode
	extra_flags
	longjmp_safe
	msg_attr

	Special File Units

	Closing Files
	IDL_FileClose()
	argc
	argv
	argk

	Preventing File Closing
	IDL_FileSetClose()
	unit
	allow

	Checking File Status
	IDL_FileEnsureStatus()
	action
	unit
	flags

	Allocating and Freeing File Units
	IDL_FileGetUnit()
	argc
	argv

	IDL_FileFreeUnit()
	argc
	argv

	Detecting End of File
	IDL_FileEOF()
	unit

	Flushing Buffered Data
	IDL_FileFlushUnit()
	unit

	Reading a Single Character
	IDL_GetKbrd()
	should_wait

	Output of IDL Variables
	IDL_Print() and IDL_PrintF()
	argc
	argv
	argk

	Adding to the Journal File
	IDL_Logit()
	s

	IDL Internals: Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	signo
	func
	msg_action

	Removing a Signal Handler
	signo
	func
	msg_action

	UNIX Signal Masks
	IDL_SignalSetInit()
	set
	signo

	IDL_SignalSetAdd()
	set
	signo

	IDL_SignalSetDel()
	set
	signo

	IDL_SignalSetIsMember()
	set
	signo

	IDL_SignalMaskGet()
	set

	IDL_SignalMaskSet()
	set
	omask

	IDL_SignalMaskBlock()
	set
	oset

	IDL_SignalBlock()
	signo

	IDL_SignalSuspend()
	set

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	length
	callback
	from_callback
	context

	Canceling Asynchronous Timer Requests
	context

	Blocking UNIX Timers
	stop

	IDL Internals: Miscellaneous Information
	Dynamic Memory
	IDL_MemAlloc()
	n
	err_str
	action

	IDL_MemFree()
	m
	err_str
	action

	IDL_MemAllocPerm()

	Exit Handlers
	IDL_ExitRegister()
	proc

	User Interrupts
	IDL_BailOut()
	stop

	Functions for Returning System Variables
	IDL_STRING *IDL_SysvVersionArch(void)
	IDL_STRING *IDL_SysvVersionOS(void)
	IDL_STRING *IDL_SysvVersionOSFamily(void)
	IDL_STRING *IDL_SysvVersionRelease(void)
	IDL_STRING *IDL_SysvDirFunc(void)
	IDL_STRING *IDL_SysvErrStringFunc(void)
	IDL_STRING *IDL_SysvSyserrStringFunc(void)
	IDL_LONG IDL_SysvErrorCodeValue(void)
	IDL_LONG IDL_SysvOrderValue(void)

	Terminal Information
	Functions for Returning IDL_FileTerm Variable Values
	char *IDL_FileTermName(void)
	int IDL_FileTermIsTty(void)
	int IDL_FileTermLines(void)
	int IDL_FileTermColumns(void)

	Ensuring UNIX TTY State
	Type Information
	IDL_OutputFormat
	IDL_OutputFormatLen
	IDL_TypeSize
	IDL_TypeName
	Functions for Returning Data Type Variable Values
	char *IDL_OutputFormatFunc(int type)
	int IDL_OutputFormatLenFunc(int type)
	int IDL_TypeSizeFunc(int type)
	char *IDL_TypeNameFunc(int type)

	User Information
	Constants
	IDL_TRUE
	IDL_FALSE
	IDL_REGISTER
	IDL_MAX_ARRAY_DIM
	IDL_MAXIDLEN
	IDL_MAXPATH

	Macros
	IDL_MIN(x,y) and IDL_MAX(x,y)
	IDL_ABS(x)
	IDL_ROUND_UP(x, m)
	IDL_CHAR(ptr)
	IDL_CHARA(addr)

	IDL Global Data Under VAX/OpenVMS

	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	argc
	argv
	argk

	Example: Hello World
	Example: Doing a Little More (MULT2)
	1 – 2
	4
	6
	7
	8
	10
	11 – 12
	14
	17
	19 – 23
	25
	26
	28
	Testing the Example

	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Calling Sequence
	Arguments
	C

	Keywords
	DOUBLE
	EPS
	NO_POLISH
	TC_INPUT

	Example
	4
	6
	8
	10
	11
	12
	13
	14
	16
	17
	19
	24
	25
	26
	27
	28
	29
	30
	31
	33
	34
	36 – 37
	38– 40
	41 – 44
	45
	48
	49
	51 – 53
	55 – 57
	59– 63
	65
	66– 67
	69– 70
	73
	74
	76

	Example: An Example Using Routine Design Iteration (RSUM)
	Running Sum (Example 1)
	RSUM1
	Calling Sequence
	Arguments
	Array

	1
	3
	4
	5–6
	7
	10
	11
	14
	15
	17
	18
	19
	20–21
	23

	Running Sum (Example 2)
	RSUM2
	Calling Sequence
	Arguments
	Input

	10
	13
	15–21

	Running Sum (Example 3)
	RSUM3
	Calling Sequence
	Arguments
	Input

	17
	22-23
	35-37
	39-44
	46-60
	61-62

	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS
	IDL_SYSFUN_DEF_F_METHOD
	extra
	Example

	Enabling and Disabling System Routines
	Enabling Routines
	is_function
	names
	n
	option
	disfcn

	Obtaining Enabled/Disabled Routine Names
	is_function
	str
	enabled

	Obtaining the Number of Enabled/Disabled Routines
	is_function
	enabled

	Obtaining the Real Function Pointer
	is_function
	name

	Obtaining the IDL Name of the Current System Routine
	LINKIMAGE
	Dynamically Loadable Modules
	Example
	How DLMs Work
	The Module Description File
	MODULE Name
	DESCRIPTION DescriptiveText
	VERSION VersionString
	BUILD_DATE DateString
	SOURCE SourceString
	CHECKSUM CheckSumValue
	STRUCTURE StructureName
	FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
	PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]
	RtnName
	MinArgs
	MaxArgs
	Options
	OBSOLETE
	KEYWORDS

	The IDL_Load() function
	DLM Example
	TESTFUN
	TESTPRO

	Callable IDL
	Calling IDL as a Subroutine
	When is Callable IDL Appropriate?
	Technical Issues Relating to Callable IDL
	IDL Signal API
	IDL Timer API
	GUI Considerations
	X Windows
	Microsoft Windows
	Macintosh
	Program Size Considerations
	Troubleshooting
	Threading
	Inter-language Calling Conventions

	Appropriate Applications of Callable IDL

	Licensing Issues and Callable IDL
	Using Callable IDL
	Cleanup

	Initialization
	Initialization: UNIX, VMS, and Macintosh
	options
	IDL_INIT_EMBEDDED
	IDL_INIT_GUI
	IDL_INIT_GUI_AUTO
	IDL_INIT_LMQUEUE
	IDL_INIT_NOLICALIAS
	IDL_INIT_BACKGROUND (IDL_INIT_NOTTYEDIT)
	IDL_INIT_QUIET
	IDL_INIT_RUNTIME

	argc
	argv
	Initialization: Microsoft Windows
	iOpts
	IDL_INIT_RUNTIME
	IDL_INIT_LMQUEUE

	hinstExe
	hwndExe
	hAccel

	Diverting IDL Output
	flags
	IDL_TOUT_F_STDERR
	IDL_TOUT_F_NLPOST

	buf
	n
	IDL_ToutPush()
	IDL_ToutPop()

	Executing IDL Statements
	IDL_Execute()
	argc
	argv
	IDL_ExecuteStr()
	cmd

	Runtime IDL and Embedded IDL
	file

	Cleanup
	just_cleanup

	Issues and Examples: UNIX and VMS
	Interactive IDL
	init_options
	argc, argv

	Compiling Programs That Call IDL
	Example: Calling IDL From C
	24
	25
	26–29
	30
	31
	32–33
	34–35
	36
	37
	41

	Example: Calling an IDL Math Function
	data
	n
	dir
	7
	8
	9
	11–13
	14
	15–16
	17
	18
	20
	26
	32
	33
	34
	35
	36–37
	38
	41

	Example: Calling IDL from Fortran
	1-27
	14-17
	29-42
	44-164
	51-57
	59-62
	66-67
	69-77
	79-85
	87-96
	98-104
	106-110
	117-121
	125-126
	134
	139
	144
	147
	150-161
	163-168

	Compilation and Linking Statements

	Issues and Examples: Microsoft Windows
	Building an Application that Calls IDL
	Example: A Simple Application
	16
	45
	48
	52
	131-176
	158
	164
	168
	185-220
	199
	202
	208
	211
	230-253
	263-306
	280
	281-299

	Issues and Examples: Macintosh
	Sharable Libraries
	Resources
	Preferences
	Event Handling
	Executing IDL Statements
	Interactive IDL
	Examples
	79
	80
	81–84
	85
	86
	87–88
	89–90
	91
	92
	95

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	Calling Sequence
	Arguments
	Parent

	Keywords

	WIDGET_CONTROL/WIDGET_STUB
	Keywords
	DESTROY
	MAP, REALIZE, and SENSITIVE
	XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

	Functions for Use with Stub Widgets
	IDL_WidgetStubLock()
	IDL_WidgetStubLookup()
	IDL_WidgetIssueStubEvent()
	IDL_WidgetSetStubIds()
	IDL_WidgetGetStubIds()
	IDL_WidgetStubSetSizeFunc()

	Internal Callback Functions
	Commentary on the Example Shown Above

	OpenVMS with WIDGET_STUB
	The IDL Program for WIDGET_ARROWB
	The C Program for widget_arrowb.c
	Compiling and Linking the C File
	An IDL Program to Test the External Widget

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 5.3
	Registering Routines
	defs
	is_function
	cnt
	funct_addr
	name
	arg_min
	arg_max
	flags
	IDL_SYSFUN_DEF_F_OBSOLETE
	IDL_SYSFUN_DEF_F_KEYWORDS

	Simplified Routine Invocation
	argc
	argv
	arg_struct
	The IDL_EZ_ARG struct
	allowed_dims
	IDL_EZ_DIM_ARRAY
	IDL_EZ_DIM_ANY

	allowed_types
	access
	IDL_EZ_ACCESS_R
	IDL_EZ_ACCESS_W
	IDL_EZ_ACCESS_RW

	convert
	pre
	IDL_EZ_PRE_SQMATRIX
	IDL_EZ_PRE_TRANSPOSE

	post
	IDL_EZ_POST_WRITEBACK
	IDL_EZ_POST_TRANSPOSE

	to_delete
	uargv
	value

	Cleaning Up
	Example— using IDL_EzCall()
	A
	w
	U
	V
	7-8
	allowed_dims
	allowed_types
	access
	convert
	pre
	post
	…
	9-14
	17
	26

	Obsolete Error Handling API
	IDL_LONG IDL_SysvErrCodeValue(void)

	Compatibility with Versions 2 and 3
	IDL Version 1 Compatibility
	Data Type Codes
	Routines
	Calling Convention

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

