= DL

Obsolete IDL
Features

IDL Version 5.4
RE S EARC H September, 2000 Edition
SYST EMS Copyright © Research Systems, Inc.
‘ All Rights Reserved

oooooooooooooooo

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research SystemsInc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software = Vision ~ is atrademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities

Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-

ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

OVEBIVIBW ettt ettt e e et e e e et e e e e e e e e et e e e et e e esba e eesans 7
Backwards CompatibiliTycoeiririiecne e 8
IDL INtErNAl ROULINES ...cveeiveeitie ettt sttt e sttt e stee st s b e saeesbeesbeesbeesbeesressanesnnesnnens 8
ROULINES WIHTIEN TN IDL ..cveeiiee ettt e e ere e e enns 8
Detecting Use of ODSOIELE FEALUIEScccveiiiierieeie e eeete st st sae e sae e ens 9
Documentation for Older ObSOlEte ROULINEScoveeevieiriecteeecee ettt 10

Chapter 2:

ODSOlete ROULINES ..oveiiiiiiiiece e e 11
DDE ROULINESveeie ittt et s e s st s s e b e s s s abe e s s sbaessssbbeessasbaesssabbesssasbenssanbeesssnres 12
] L@ I 1Y/ 5] 13
L I 1 = 14
HANDLE CREATE ...ttt sttt s e ettt e e e e snee e snte e snbeeenneeenreas 16
HANDLE FREE ...ttt nae e e nnee e snte e e e eneeeneeas 19
HANDLE INFO ..ottt te e st e e e e ae e e snee e snt e e snbeesnneeenreas 20

Obsolete IDL Features 3

HANDLE _MOVE ...ttt sttt 22
HANDLE VALUE ...ttt et nnenn 24
HDF _DFSD_ADDDATA oottt sttt se e nsens 26
HDF _DFSD _DIMGEToctiteiricisieises sttt ee e st sesse e s sansnsans 28
HDF_DFSD_DIMSET ...ttt ettt ssens 29
HDF _DFSD _ENDSLICEocoiiteiiicesieesisteesie et tea st sa e ssens 31
HDF_DFSD_GETDATA oottt sttt nsens 32
HDF _DFSD_GETINFO ...c.ooiieieisieese ettt sttt et seesasssenes 33
HDF _DFSD_GETSLICE ..ottt sttt 35
HDF _DFSD _PUTSLICEociiteiicesieeses sttt sa s ssens 36
HDF _DFSD_READREF ..ottt 37
HDF _DFSD_SETINFO ...ocvitiiieisieesie et se st e st sae e e sanessens 38
HDF _DFSD_STARTSLICE ...oooiieieeeteesees et 42
INP, INPW, QUTP, OUTPW ..ottt saese e se st see e ssesasassasssens 44
PICKFILE ..ottt ettt b et 45
O I o 46
RIEMANN ..ottt s s ettt e ettt et b et b e e e s et etens 48
S I © 5 T 52
SIZE EXECULIVE COMMANG ...ttt sttt se e nne s 53
SLICER .ottt ettt e st ae et e e Re e e s et et e e bene et e neneenenterenaene e 55
STRUSEP ettt b ettt b ettt et eene e 61
LI 310 1Y TP 63
TIFF _READ .ottt sttt ettt nanne e 64
QLI AT L =TRSO 66
WWIDED ..ottt ettt sttt b ettt sttt st st et e e ne et 69
WIDGET_MESSAGE ...ttt 70
Chapter 3:
Remote Procedure CallSccciiiiiiiiiieeieeeeeeeiee e 71
USING IDL @S aN RPC SEIVENoooieiieiieciecie ettt sttt sresne e s 73
THe IDL RPC DITECIONYevvieeieieriestesteieesie st st sn e e s s 73
RUNNING IDL iN SEIVEr MOOEceeeieieciecese ettt st 73
Creating the IDL RPC LiDrarycccoevinineieiseseseseeseses e 73
Linking your Clent Programcccceiieieieseseeseseseeeeste e seesre e sseesaesresreennensens 74
(SR I o o O I o S 75
free 1dl_Variable ..o e s 76

Contents Obsolete IDL Features

Lo Ao |2 = o 1= 77
Il _SEIVEr TNTEIECHIVE ...t see e e aesae e 79
LIRS /= SO RUSRUR 80
=0 TS G o I o= o SRS 81
1S1S 1o [o oo /0T 0= Vo S 82
RS S o [1107 | SR 83
SEL Il VarADIE ..o e e 84
SEL_IPC_VEIDOSITY ...oveieiieeiee e n e s 86
(U= o XS = g o o = 0| RSP 87
The Varinfo_t SITUCIUIE ..ottt sne e 88

Variable Creation FUNCLIONS ..o e 88
AV 07= ST 07 (SR 89
V_MAKE COMPIEX ..eiiiiiiiieeie sttt ettt st e s te e ae et e s besre e e e tesresneenaenresneens 20
V_MaKE _ACOMPIEX ...ttt ettt ettt e e te et esbeseeene e tesnesneeneensesne e 91
AV 7= G0 (010 o =S 92
(V7= ST 1 o 93
(A 1.7= S | S 9
AV 107= ST L0 ST 95
AV 7= G 1 o U 96
N2 L= Y/ SR 97
More Variable Manipulation IMBCIOScceieiieeeeiesieeeeeese st eeesee e sre e e sressae e sresneas 98
Notes on Variable Creation and Memory Managementcocceeeverencneienenreneennens 100

FreBiNg RESOUICESoceeiviiiiieeeie sttt ste sttt e st st ae e s e e ee s tesre e s e sbesteeseentesreerean 100

Creating a Statically-AllOCaEd ATTAYccccovrereriereeeeeresenee s 100

Allocating SPace fOr SENQSocvvieeieeciceees e 101
e O = o] =SS 102

Obsolete IDL Features Contents

Chapter 1:

Overview

This chapter discusses the following topics:

Backwards Compatibility 8 Documentation for Older Obsolete Routines 10
Detecting Use of Obsolete Features 9

Obsolete IDL Features 7

8 Chapter 1: Overview

Backwards Compatibility

Research Systems strongly recommends that you not use obsolete routines when
writing new IDL code. AsIDL continues to evolve, the likelihood that obsolete
routines will no longer function as expected increases. While we will continue to
make every effort to ensure that obsol ete routines shipped with IDL function, ina
small number of cases this may not be possible.

IDL Internal Routines

Routines that are built into the IDL executable—routines not written in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsol ete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled
for eventual removal.

Routines Written in IDL

Routines written in the IDL language (. pr o files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. Aslong as a given obsolete
routine isincluded in this subdirectory, it will continue to function as always.

Backwards Compatibility Obsolete IDL Features

Chapter 1: Overview 9
Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the 'WARN system variable. Setting 'WARN causes IDL to print
informational messages to the command log or console window when it encounters
references to obsolete features. See 'WARN in the IDL Reference Guide for details.

Obsolete IDL Features Detecting Use of Obsolete Features

10 Chapter 1: Overview

Documentation for Older Obsolete Routines

Routines that became obsolete in IDL version 4.0 or earlier are not documented in
this book or in the IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header of the . pr o file, or use the
DOC _LIBRARY routine. The. pr o filesfor obsolete routines are located in the
obsol et e subdirectory of thel i b directory of the IDL distribution.

Documentation for Older Obsolete Routines Obsolete IDL Features

Chapter 2:

Obsolete Routines

This chapter contains compl ete documentation for obsoleted IDL routines. New IDL
code should not use these routines. For alist of the routines that replace each of these
obsolete routines, see Appendix I, “Obsolete Routines’ in the IDL Reference Guide.

Obsolete IDL Features 11

12

Chapter 2: Obsolete Routines

DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange (DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented below:

Result = DDE_GETSERVERS()

Thisfunction returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

Thisfunction returns the items list for the specified server. The server argument is a
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST(server, topic, item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic, command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.

DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 13
DEMO_MODE

Thisroutine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns Trueif IDL isrunning in the timed demo mode
(i.e., alicense manager is not running). Calling this function causesa FLUSH, -1
command to be issued.

Syntax

Result = DEMO_MODE()

Obsolete IDL Features DEMO_MODE

14

Chapter 2: Obsolete Routines

GETHELP

Thisroutine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP iscalled. The function builds astring array that contains
information that follows the format used by the IDL HEL P command.

When called without an argument, GETHELP returns a string array that normally
contains variable datathat isin the same format as used by the IDL HELP procedure.
The variablesin thislist are those defined for the routine (or program level) that
called GETHELP . If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax

Result = GETHEL P([Variablé])

Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If this argument is omitted, GETHELP returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

GETHELP

FULLSTRING

Normally astring that islonger than 45 charsis truncated and followed by “..." just
like the HEL P command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

ONELINE

If avariable name is greater than 15 charactersit is usually returned as 2 two
elements of the output array (Variable name in 1st element, variable info in the 2nd

Obsolete IDL Features

Chapter 2: Obsolete Routines 15

element). Setting this keyword will put all the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return al current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of all IDL system
(built-in) functions.

Note
RESTRICTIONS: Due to the difficultiesin determining if avariableis of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

» Associate record typeis structure.
* Associated file is opened for update (openu).
e Associatefileis not empty.

Another difference between this routine and the IDL help command isthat if a

variable isin a common block, the common block name is not listed next to the
variable name. Currently there is no method available to get the common block
names used in aroutine.

Example

To obtain alisting in ahelp format of the variables contained in the current routine
you would make the following call:

HelpData= GetHelp()
The variable HelpData would be a string array containing the requested information.

Obsolete IDL Features GETHELP

16 Chapter 2: Obsolete Routines

HANDLE_CREATE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_CREATE function creates anew handle. A “handle” isa
dynamically-allocated variable that isidentified by a unique integer value known asa
“handle ID”. Handles can have avalue, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to al program units at all times. (Remember,
however, that IDL variables containing handle IDs are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology

The following terms are used to describe handles in the documentation for this
function and other handle-related routines:

* HandlelID: The unique integer identifier associated with a handle.
* Handlevaue Dataof any IDL type and organization associated with a handle.

» Top-level handle: A handle at the top of ahandle hierarchy. A top-level handle
can have children, but does not have a parent.

» Parents, children, and siblings: These terms describe the relationship between
handlesin a handle hierarchy. When anew handle s created, it can be the start
of anew handle hierarchy (atop-level handle) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in thisway issaid
to be achild of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax
Result = HANDLE_CREATE([ID])

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 17

Arguments

ID

If thisargument is present, it specifies the handle I D relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by ID. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.
Keywords

FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specified by
ID. Any existing children of ID become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value datais taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is a sibling of atop-level
handle.

VALUE
The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
Thisvalue isnot used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handleisfirst created.

If the VALUE keyword is not specified, the handle’s initial value is undefined.
Handle values can be retrieved using the HANDLE_VALUE procedure.

Obsolete IDL Features HANDLE_CREATE

18 Chapter 2: Obsolete Routines

Examples

The following commands create a top-level handle with 3 child handles. Each handle
is assigned adifferent string value:

;Create top-level handle without an initial handl e val ue:

top = HANDLE_CREATE()

;Create first child of the top-level handle:

first = HANDLE_CREATE(top, VALUE="First child’)

;Create second child of the top-1level handle:

second = HANDLE_CREATE(top, VALUE=' Second child’)

;Create a new sibling between first and second.

;This handle is also a child of the top-1level handle:

third = HANDLE CREATE(first, VALUE=" Another child’, /SIBLING

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 19
HANDLE FREE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.

Syntax
HANDLE_FREE, ID
Arguments

ID

The ID of the handle to be freed. Once the handle is freed, further use of it isinvalid
and causes an error to be issued.

Example

To free al memory associated with the top-level handle top, and all its children, use
the command:

HANDLE_FREE, top

Obsolete IDL Features HANDLE_FREE

20 Chapter 2: Obsolete Routines
HANDLE_INFO

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID isvalid. Keywords
can be set to return other types of information.

Syntax
Result = HANDLE_INFO(ID)
Arguments

ID

The ID of the handle for which information is desired. This argument can be scalar or
array an array of IDs. Theresult of HANDLE_INFO has the same structure as ID,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of thefirst child of the specified handle. I
the handle has no children, O is returned.

NUM_CHILDREN
Set this keyword to return the number of children related to ID.
PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handleis atop-level handle (i.e., it has no parent), O is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID isatop-level handle, Ois returned.

VALID_ID

Set this keyword to return 1 if ID represents a currently valid handle. Otherwise, zero
isreturned. Thisisthe default action for HANDLE_INFO if no other keywords are
specified.

HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a message if handlel is a valid handle ID.

| F HANDLE | NFQ(handl el) THEN PRI NT, 'Valid handle.’
;Retrieve the handle ID of the first child of top.
handl e = HANDLE | NFQ(t op, /FI RST_CHI LD)

;Retrieve the handle ID of the next sibling of handlel.
next = HANDLE | NFQ(handl el1, /Sl BLI NG

21

Obsolete IDL Features HANDLE_INFO

22

Chapter 2: Obsolete Routines

HANDLE_MOVE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move_ID) to anew
location. This new position is specified relative to Static_ID.

Syntax

HANDLE_MOVE, Satic_ID, Move D

Arguments

Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move_ID becomes the last child of Static_ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID isset to 0, Move ID becomes atop level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID
The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_|ID thefirst child of Static_ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move _|D the sibling handle immediately following
Static_ID. Any siblings currently following Static_|D become later siblings of the
new handle. Note that you cannot move a handle such that is becomes a sibling of a
top-level handle.

Example

; Create top-level handle:
top = HANDLE_CREATE()

HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines

; Create first child of top:

chil d1 = HANDLE_ CREATE(t op)

; Create second child of top:

chil d2 = HANDLE_CREATE(t op)

; Move the first child to be the last child of top:
HANDLE MOVE, top, childl

Obsolete IDL Features

23

HANDLE_MOVE

24

Chapter 2: Obsolete Routines

HANDLE_VALUE

Thisroutine is obsolete and should not be used in new IDL code.

The HANDLE_ VALUE procedure returns or sets the value of an existing handle.

Syntax

HANDLE_VALUE, ID, Value

Arguments

ID
A valid handle ID.
Value

When using HANDLE VALUE to return an existing handle value (the default),
Valueis a named variable in which the value is returned.

When using HANDLE_VALUE to set a handle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE_VALUE works by making a second copy of the source data.
Although this technique is fine for small data, it can have a significant memory cost
when the data being copied is large.

If the NO_COPY keyword is set, HANDLE VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attachesit directly to
the destination. This feature can be used to move data very efficiently. However, it
has the side effect of causing the source variable to become undefined. On aretrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default isto retrieve
the current handle value.

HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 25

Example

The following commands demonstrate the two different uses of HANDLE_ VALUE:

: Retrieve the value of handlel into the variable current:
HANDLE VALUE, handl el, current

; Set the value of handlel to a 2-elenent integer vector:
HANDLE_VALUE, handl el, [2, 3] , / SET

Obsolete IDL Features HANDLE_VALUE

26 Chapter 2: Obsolete Routines
HDF_DFSD_ADDDATA

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well as al other information
set viacallsto HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDF file.

The Data array must have the same dimensions as the array in thefile. The new SDS
is appended to thefile, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename, Data [, /OVERWRITE]
[, SET_DIM=valug{ must set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename
A scalar string containing the name of the file to be written.
Data

An expression (typically an array) containing the data to write.
Keywords

OVERWRITE

Set this keyword to write Data as the first, and only, SDSin the file. All previously-
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You must set the number of dimensionsin the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.

HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 27

SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.

Obsolete IDL Features HDF_DFSD_ADDDATA

28 Chapter 2: Obsolete Routines
HDF DFSD DIMGET

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET, Dimension [, /FORMAT] [, /LABEL] [, SCAL E=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.
Keywords

FORMAT

Set this keyword to return the dimension format string.
LABEL

Set this keyword to return the dimension label string.
SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to avector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.

HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 29
HDF DFSD DIMSET

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensionsin an HDF. Note that the label, unit, and format of a dataset must be set
simultaneously.

Syntax

HDF_DFSD_DIMSET, Dimension [, FORMAT=string] [, LABEL=string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension
The dimension number that the label, unit, format or scale apply to.

Keywords

FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL

A string for the dimension |abel.

SCALE

A vector of values used to set the dimension scale.
UNIT

A string for the dimension units.

Example

Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of
values representing water content within the volume of a cloud. Assume further that
each element in the 100-element dimension (the®Y” dimension) was sampled at 1/10
mile increments. Appropriate labeling, formatting, unit, and scaling information for
the 'Y dimension can be set with the following command:

Obsolete IDL Features HDF_DFSD_DIMSET

30 Chapter 2: Obsolete Routines

HDF_DFSD DI MBET, 1, LABEL = 'Y Position', FORVAT = 'F8.2', $
UNIT = "Mles', SCALE = 0. 1*FI NDGEN(100)

HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 31
HDF DFSD ENDSLICE

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by
HDF _DFSD_STARTSLICE by closing the internal dice interface and synchronizing
thefile.

Syntax
HDF_DFSD_ENDSLICE
Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_ENDSLICE

32 Chapter 2: Obsolete Routines

HDF_DFSD GETDATA

Thisroutine is obsolete and should not be used in new IDL code.
The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF _DFSD_GETDATA, Filename, Data [, /GET_DIMS{ Set only if you have not
caled HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TY PE]

Arguments

Filename

A scalar string containing the name of the file to be read.
Data

A named variable in which the data is returned.

Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one has not called HDF_DFSD_GETINFO with the DIMS

keyword
GET_TYPE
Set this keyword to get the data type for the current SDS.

HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 33
HDF DFSD GETINFO

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TY PE keywords may
ater which dataset is current. See “Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in the NCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading alabel, unit, format, or coordinate system string that has more than
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFO, Filename [, CALDATA=variable] [, /COORDSY S
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, INSDS] [, /RANGE]
[, TYPE=variable] [, /UNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filename is only needed
to determine SDS dimensions and/or the number of SDSsin afile.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The datawill be returned in a structure of the form:

{ CAL: 0d, CAL_ERR 0d, OFFSET: 0d, $
OFFSET_ERR 0d, NUM_TYPE: OL }

COORDSYS
Set this keyword to return the data coordinate system description string.
DIMS

Set this keyword to anamed variable in which the dimensions of the current SDS are
returned in alongword array.

Obsolete IDL Features HDF_DFSD_GETINFO

34

Chapter 2: Obsolete Routines

FORMAT

Set this keyword to return the data format description string.

LABEL

Set this keyword to return the data label description string.

LASTREF

Set this keyword to return the last reference number written or read for an SDS.
NSDS

Set this keyword to return the number of SDSsin thefile.

RANGE

Set this keyword to return the valid max/min values for the current SDS.
TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., 'BYTE', 'FLOAT, etc.).

UNIT
Set this keyword to return the data unit description string.

Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_GETI NFO, filenarme, DI MS=d, TYPE=t, RANGE=r, $
LABEL=| , UN T=u, FORMAT=f, COORDSYS=c

FORi = 0, N ELEMENTS(d)-1 DO BEG N

HDF_DFSD DI MGET, i, LABEL=dl, UNI T=du, FORMAT=df, SCALE=ds
ENDFOR
HDF_DFSD_GETDATA, filenanme, data

HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 35
HDF DFSD GETSLICE

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of datafrom the current
Hierarchical Data Format file.

Note
Before caling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the
DIMS and TY PE keywords to get the dimensions and type of the next data dlice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the data incorrectly, and may cause unexpected results.

Syntax

HDF _DFSD_GETSLICE, Filename, Data [, COUNT=vector] [, OFFSET=vector]
Arguments

Filename

A scalar string containing the name of thefile to be read.

Data

A named variable in which the data, read from the SDS, is returned.
Keywords

COUNT

An optional vector containing the countsto be used in reading Value. The default is
toread all elementsin each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_GETSLICE

36 Chapter 2: Obsolete Routines
HDF DFSD PUTSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_PUTSLICE procedure writes a data dlice to the current HDF file.

Note
Before calling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the sliceand HDF_DFSD_STARTSLICE toinitidize
the dlice interface.

Syntax
HDF_DFSD_PUTSLICE, Data [, COUNT=vector]
Arguments

Data

An array containing the data to write. Dimensions used to write the data are taken
from the dimensions of Data, unless the COUNT keyword is used.

Keywords

COUNT

An optional vector containing the counts to be used in writing Data. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

HDF_DFSD_PUTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 37
HDF _DFSD READREF

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_READREF procedure specifies the reference number of the HDF
fileto be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.

Syntax
HDF_DFSD_READREF, Filename, Refno
Arguments

Filename

A scalar string containing the name of the file to be read.

Refno
The reference number of the desired SDS.

Obsolete IDL Features HDF_DFSD_READREF

38 Chapter 2: Obsolete Routines
HDF DFSD SETINFO

Thisroutine is obsolete and should not be used in new IDL code.

TheHDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set thefirst time that
HDF_DFSD_SETINFOiscalled.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call toit. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF _DFSD_ADDDATA with the SET_TYPE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETI NFO, LEN_FORMAT=10, FORNMAT='12. 3F
or

HDF_DFSD_SETI NFO, LEN _FORMAT=10
HDF_DFSD_SETI NFO, FORVMAT=' 12. 3F

Dueto the underlying C routines, it is necessary to set al four data strings at the same
time, or the unspecified strings are treated as*’ (null strings).

For example:

HDF_DFSD_SETI NFO, LABEL = ’hi’
HDF_DFSD SETINFO, UNIT = ’ergs’

isthe same as;
HDF_DFSD_SETI NFO, LABEL='hi’, UNIT="’', FORMAT="’', COORDSYS=''
HDF_DFSD_SETI NFO, LABEL='', UN T="ergs’', FORMAT='', COORDSYS=''
Syntax

HDF_DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]
[, COORDSY S=string] [, DIMS=vector] [, /BYTE |, /DOUBLE |, /FLOAT, |, /INT
|, /LONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=value]

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 39

[, LEN_UNIT=value] [, LEN_FORMAT=value] [, LEN_COORDSY S=valug]
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Arguments
None
Keywords

BYTE

Set this keyword to make the SDS data type DFNT_UINTS8 (1-byte unsigned
integer).

CALDATA

Set this keyword to a structure containing calibration information. The structure
should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldata = { Cal: 1.0d $; Calibration factor.
Cal _Err: 0.1d $; Calibration error.
O fset: 2.5d $; Uncalibrated offset.
O fset Err: 0.1d $; Uncalibrated offset error.
Num Type: 5L $; Nunber type of uncalib. data.

Some typical values for the Num Type field include:
For byte data:

3L (DFNT_UCHARS)
21L (DFNT_UI NT8)

For integer data:

22L (DNFT_I NT16)
For long-integer data:

24L (DFNT_I NT32)
For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not nativeto IDL. They can befound inthehdf . h
header file for the HDF library.

Obsolete IDL Features HDF_DFSD_SETINFO

40

Chapter 2: Obsolete Routines

CLEAR

Set this keyword to reset al possible set values to their default value.
COORDSYS

A string for the data coordinate system description.

DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. For
example:

HDF_DFSD _SETINFO, DIMS = [10, 20, 30]
DOUBLE

Set this keyword to make the SDS datatype DFNT_FL OAT64 (8-byte floating
point).

FLOAT

Set this keyword to make the SDS datatype DFNT_FL OAT32 (4-byte floating
point).

FORMAT

A string for the data format description.

INT

Set this keyword to make the SDS datatype DFNT_INT16 (2-byte signed integer).
LABEL

A string for the data |abel description.

LEN_LABEL

The label string length (default is 255).

LEN_UNIT

The unit string length (default is 255).

LEN_FORMAT

The format string length (default is 255).
LEN_COORDSYS

The format coordinate system string length (default is 255).

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 41

LONG
Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).
RANGE

The minimum and maximum range, represented as a 2-element vector of the same
datatype asthe data to be written. The first element is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETI NFO, RANGE = [10, 0]
RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDSin thefile.

UNIT
A string for the data unit description.

Example

Write a 100x50 array of longs:

data = LONARR(100, 50)
HDF_DFSD_SETI NFO, /CLEAR, /LONG DI M5=[100,50], $
RANGE=[MAX(data), M N(data)], $
LABEL=" pressure’, UN T='pascals’', $
FORVAT=" F10. 0’

Obsolete IDL Features HDF_DFSD_SETINFO

42 Chapter 2: Obsolete Routines
HDF_DFSD_STARTSLICE

Thisroutine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write aslice of
datato an HDF file. HDF_DFSD_SETINFO must be called before
HDF _DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax
HDF_DFSD_STARTSLICE, Filename
Arguments

Filename

A scalar string containing the name of the file to be written.
Example

Open an HDF file:
fi d=HDF_OPEN('test.hdf',/ALL)

Create two dat asets:
sl i cedat al=FI NDGEN(5, 10, 15)
sl i cedat a2=DI NDGEN(4, 5)

Use HDF_DFSD _SETINFO to set the dinmensions, then add
the first slice:
HDF_DFSD_SETI NFO, LABEL='1 abel 1', DI M5=[5, 10, 15], /FLOAT
HDF_DFSD_STARTSLI CE, ' t est . hdf"
HDF_DFSD_PUTSLI CE, slicedatal
HDF_DFSD_ENDSLI CE

Repeat the process for the second slice:
HDF_DFSD_SETI NFO, LABEL='Iabel 2', DI M5=[4,5], /DOUBLE
HDF_DFSD_STARTSLI CE, ' test . hdf"

HDF_DFSD_PUTSLI CE, sl i cedat a2
HDF_DFSD_ENDSLI CE
HDF_DFSD_SETI NFO, / RESTART

Use HDF _DFSD GETINFO to advance slices and set slice
attributes, then get the slices:

HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 43

HDF_DFSD_GETI NFO, nane, DI Ms=di ms, TYPE=type
HDF_DFSD_CETSLI CE, out1l
HDF_DFSD_GETI NFO, nane, DI Ms=di ns, TYPE=type
HDF_DFSD_CETSLI CE, out 2

; Close the HDF file:
HDF_CLOSE(' t est. hdf ')

; Check the first slice to see if everything worked:

IF TOTAL(out1l EQ slicedatal) EQ N_ELEMENTS(out1) THEN $
PRINT, 'SLICE 1 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 1 WRI TTEN READ | NCORRECTLY"

; Check the second slice to see if everything worked:

I F TOTAL(out2 EQ slicedata2) EQ N_ELEMENTS(out2) THEN $
PRI NT, 'SLICE 2 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 2 WRI TTEN READ | NCORRECTLY'

IDL Ouput

SLI CE 1 WRI TTEN READ CORRECTLY

SLICE 2 WRI TTEN READ CORRECTLY

Obsolete IDL Features HDF_DFSD_STARTSLICE

44

Chapter 2: Obsolete Routines

INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each case, Port is specified using the hexadecimal address of
the hardware port. For example, if serial port #1 of your PC is at address 3F8, you
would use the following IDL commands to read that port:

paddr = ' 3F8' xSat paddr to hexadecimal value.
data = | NPW paddr) Read data.

Result = INP(Port, [Dq . .. Dy])

Thisfunction returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specified by D, . . . Dy) read from the specified
hardware port. Port is the hardware port number. For example,

result = | NP(paddr)
would read a single byte, and
result = INP(paddr, 2,4)

would read a two-element by four-element array.
Result = INPW(Port, [D; . .. Dy])

Thisfunction returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specified by D, . . . Dy) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardware
port. Port is the hardware port number. Value is the byte value or array to be written.

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specified
hardware port. Port is the hardware port number. Value isthe integer value or array to
be written.

INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 45
PICKFILE

Thisroutine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it had in
previous releases. See DIALOG_PICKFILE in the IDL Reference Guide.

Obsolete IDL Features PICKFILE

46

Chapter 2: Obsolete Routines

POLYFITW

Thisroutine is obsolete and should not be used in new IDL code. To perform a
weighted polynomial fit, use the WEIGHTS keyword to POLY _FIT.

The POLY FITW function performs a weighted |east-square polynomial fit with
optional error estimates and returns a vector of coefficients with alength of
NDegree+1.

The POLY FITW routine uses matrix inversion. A newer version of thisroutine,
SVDFIT, uses Singular Value Decomposition. The SVD technique is more flexible,
but slower. Another version of thisroutine, POLY _FIT, performs aleast square fit
without weighting.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
pol yfitw. prointheli b subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree [, Yfit, Yband, Sigma, Corrm]
[, /DOUBLE] [, STATUS=variabl€])

Arguments

POLYFITW

X

An n-element vector of independent variables.

Y

A vector of independent variables, the same length as X.
Weights

A vector of weights, the samelengthas X and Y.
NDegree

The degree of the polynomial to fit.

Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

Obsolete IDL Features

Chapter 2: Obsolete Routines a7

Yband

A named variable that will contain the error estimate for each point.

Sigma

A named variable that will contain the standard deviation of the returned coefficients.
Corrm

A named variable that will contain the correlation matrix of the coefficients.
Keywords

DOUBLE
Set this keyword to force computations to be done in double-precision arithmetic.
STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

e 0= Successful completion.

e 1=Singular array (which indicates that the inversion isinvalid). Result is
NaN.

* 2 =Warning that asmall pivot element was used and that significant accuracy
was probably lost.

¢ 3 =Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

Obsolete IDL Features POLYFITW

48

Chapter 2: Obsolete Routines

RIEMANN

Thisroutine is obsolete and should not be used in new IDL code. RIEMANN has
been replaced by the RADON function.

The RIEMANN procedure computes the “ Riemann sum” (or itsinverse) which helps
implement the backprojection operator used to reconstruct the cross-section of an
object, given projections through the object from multiple directions. This technique
iswidely used in medical imaging in the fields of computed x-ray tomography, MRI
imaging, Positron Emission Tomography (PET), and also has applications in other
areas such as seismology and astronomy. The inverse Riemann sum, which evaluates
the projections given a slice through an object, is also a discrete approximation to the
Radon transform.

Given amatrix A(m,n), which will contain the reconstructed dice; a vector P,
containing the ray sums for a given view; and an angle Theta measured in radians
from the vertical: the Riemann sum “backprojects’ the vector P into A. For each
element of A, the value of the closest element of P issummed, leaving theresultin A.
Bilinear interpolation is an option. All operations are performed in single-precision
floating point.

In the reverse operation, the ray sums contained in the view vector, P, are computed
given the original dlice, A, and Theta. Thisis sometimes called “front projection”.

The Riemann sum can be written:
M-1
z A(r Ccos(i CA—0),i1 D)
i=0

which is the sum of the data along lines through an image with an angle of thetafrom
the vertical.

Syntax

RIEMANN

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1to 0}] [, D=spacing] [, ROW=valug]

Obsolete IDL Features

Chapter 2: Obsolete Routines 49

Arguments

P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set), P
contains the ray sums for asingle view. For the inverse operation, P should contain
zeros on input and will contain the ray sums for the view on output.

A

An m by n floating-point image matrix. For backprojection, A contains the
accumulated results. For the inverse operation, A contains the original image.
Typically, k should be larger than

AJm? +n?

which is the diagonal size of A.
Theta

The angle of the ray sums from the vertical.
Keywords

BACKPROJECT

Set this keyword to perform backprojection in which P is summed into A. If this
keyword is not set, the inverse operation occurs and the ray sums are accumul ated
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neighbor
sampling. Results are more accurate but slower when bilinear interpolation is used.

CENTER

Set this keyword equal to a floating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements of P.

COR

Set this keyword equal to atwo-element floating-point vector specifying the center of
rotation in the array A. The default valueis[mV2., n/2.], where Aisan m by n array.

Obsolete IDL Features RIEMANN

50

RIEMANN

Chapter 2: Obsolete Routines

For symmetric results, given symmetric operands, COR should be set to the origin of
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., where nisthe
number of elementsin the projection vector, P.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to a value greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than wy, and f is sampled with spacing less than or equal to 1/2wy,
then f can be reconstructed by convolving with asinc function: sinc (x) = sin (Tx) /
().

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see;

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974,

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Use this keyword to specify the spacing between elements of P, expressed in the
same units as the spacing between elements of A. The default is 1.0.

ROW

Set this keyword to specify the P vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row. In
this case, P must be an array with afirst dimension equal to k, and the value of ROW
must be in the range of O to the number of vectors of length k in P, minus one.

Obsolete IDL Features

Chapter 2: Obsolete Routines 51

Example

This example forms a synthetic image in A, computes Nviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram”) in amatrix PP,
It then backprojects the projectionsinto the matrix B, forming the reconstructed slice.
In practical use, the projections are convolved with afilter before being
backprojected.

; Define nunmber of colums in A
N = 100L

; Define nunber of rows in A
M = 100L

Nunmber of vi ews:
nviews = 100

; The length of the |ongest projection. If filtered backprojection
; is used, 1/2 the length of the convolution kernel must also be
;. added.

K = CEIL(SQRT(N*2 + M*2))

; Formoriginal slice:
A = FLTARR(N, M

; Sinmulate a square object:
AN 2:N2+5, M2:M2+5] = 1.0

; Make array for sinogram
pp = FLTARR(K, nviews)

Conput e each vi ew
FOR 1=0, NVIEWS-1 DO RIEMANN, pp, A | * !'Pl/nviews, ROMiI

; Show si nogram
TVSCL, pp

Initial reconstructed inmage:
B = FLTARR(N, M

; Do the backprojection for each view
FOR I =0, nviews-1 DO $
R EMANN, pp, B, I * IPI/nviews, /BACKPROJIECT, ROWi

; Show reconstructed array:
TVSCL, B

Obsolete IDL Features RIEMANN

52

Chapter 2: Obsolete Routines

RSTRPOS

Thisroutine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. See STRPOS in the IDL Reference Guide.

The RSTRPOS function finds the last occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of a substring). If the substring
isfound in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax

Result = RSTRPOS(Expression, Search_String [, Pog])
Arguments

Expression

The expression string in which to search for the substring.
Search_String

The substring to be searched for within Expression.

Pos

The character position before which the search is begun. If Pos is omitted, the search
begins at the last character of Expression.

Example

RSTRPOS

Define the expression:
exp = 'Holy snokes, Batman!'

Find the position of a substring:
pos = RSTRPOS(exp, 'snokes')

Print the substring s position:
PRI NT, pos

IDL prints:
5

Note
Substring begins at position 5 (the sixth character).

Obsolete IDL Features

Chapter 2: Obsolete Routines 53
SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.
.SIZE Code_Size, Data_Size

The. SI ZE command resizesthe memory area used to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and all
main program variables. For example, to extend the code and data areas to 30,000
and 5,000 bytes, respectively, use the following statement:

. SI' ZE 30000 5000

Each user-defined procedure, function, and main program hasits own code area that
contains the compiled code and constants. Although the maximum size of these areas
isset by the. SI ZE command, thereis virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and
common blocks for each procedure, function, or main program. Note that the “data
area’ is not the space available for variable storage, but the space available for that
program unit’s symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note that
there are separate code and data areas for each compiled function, routine, or main
program. The HELP command can be used to see the current sizes of the code and
data areas for the program unit in which the HEL P function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data areas. If the
compiled routine does not use the full amount of code space allocated by the default

Obsolete IDL Features SIZE Executive Command

54

Chapter 2: Obsolete Routines

code area size, the code area“ shrinks’ to just the size the routine needs. For example,
enter and compile asimple procedure from the IDL prompt by entering:

. RUN

- PRO EXAMPLE

- PRINT, "Here are the code and data areas for this procedure:"
- HELP

- END

Call the EXAMPLE procedure from the command line to see the result:
EXAVPLE

Thethird line of output from the HEL P procedure displays:
Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code areafor the EXAMPLE procedure is completely filled and that the
total size of the code areaiisjust 100 bytes.

SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 55
SLICER

Thisroutine is obsolete and should not be used in new IDL code.

The IDL SLICER is awidget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. Theimage may be redisplayed on adifferent device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Datais passed to the SLICER viathe common block VOLUME_DATA. Note that
the variable used to contain the volume data must be defined as part of the common
block before the volume data is read into the variable. (See the Example section,
below.)

The SLICER has the following modes:

« Slices: Digplays or removes orthogonal or oblique slices through the data
volume.

» Block: Displays the surfaces of a selected block inside the volume.
» Cutout: Cuts blocks from previously drawn objects.

» Isosurface: Draws an isosurface contour.

» Probe: Displays the position and value of objects using the mouse.
e Colors: Manipulates the color tables and contrast.

* Rotations: Sets the orientation of the display.

e Journal: Records or plays back files of SLICER commands.

Seethe SLICER’s help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A
A =your_volume _data
SLICER

Obsolete IDL Features SLICER

56

Chapter 2: Obsolete Routines

Arguments

A

A 3D array containing volume data. Note that the variable A must be included in the
common block VOLUME_DATA before being equated with the volume data. A is
not an explicit argument to SLICER.

Keywords

SLICER

CMD_FILE

Set this keyword to a string that contains the name of afile containing SLICER
commands to execute as described under SLICER Commands, below. The file should
contain one command per line.

Command files can be created interactively, using the SLICER’s “ Journal” feature.
COMMAND

Set thiskeyword equal to a1 x n string array contai ning commands to be executed by
the SLICER before entering interactive mode. Available commands are described
under SLICER Commands, below.

Note that commands passed to the SLICER with the COMMAND keyword must be
inalx narray, rather than in an n-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the slicer:

com=TRANSPOSE([' COLOR 5', 'TRANS 1 20", '1SO 17 1'])
SLI CER, COMMVAND=com
DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget 1D of the widget that calls SLICER. When GROUP is
specified, acommand to destroy the calling widget also destroys the SLICER.

NO_BLOCK

Set this keyword equal to zero to have XMANAGER block when this application is
registered. By default, NO_BLOCK isset equal to one, providing access to the
command lineif active command line processing is available. Setting

Obsolete IDL Features

Chapter 2: Obsolete Routines 57

NO_BLOCK=0 will cause all widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to a two-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum val ues.

RESOLUTION

Set this keyword to a two-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

The dlicer accepts anumber of commands that replicate the action of controlsin the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can aso be created and played back from within the SLICER, using the
“Journa” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blanks. The following are
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color tables. Table _Index is the pre-defined color table number (see
LOADCT), or -1 to retain the present table. Low is the contrast minimum, High isthe
contrast maximum, and Shading is the differential shading, all expressed in percent.
For example, the following command picks color table number 2, sets the minimum
contrast to 10%, the maximum contrast to 90%, and the differential shading to 50%:

COLOR 2 10 90 50
CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1

Defines the volume used for “Block” and “ Cutout” operations. Set Mode=1 for Block
mode or Mode=2 for Cutout maode. Set Cut_Ovr=0 to mimic selecting the “ Cut Into”
button or Cut_Owvr=1 to mimic selecting the “Cut Over” button.

Obsolete IDL Features SLICER

58

SLICER

Chapter 2: Obsolete Routines

Note
These buttons have no effect in Block mode. See the online help on SLICER for
further explanation of Cut Into and Cut Over.

Set Interp=1 for bilinear interpolation sampling or Interp=0 for nearest neighbor
sampling.

X0,Y0,Z0 are the coordinates of the lower corner of the volume, and X1,Y1,Z1 are the
coordinates of the upper corner. For example:

CUBE 1 0 1 20 0 56 60 75 42

selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume's corners at (20, 0, 56) and (60, 75, 42).

ERASE
Erases the display. Mimics clicking on the “ Erase” button.
ISO Threshold Hi_Lo

Draws an iso-surface. Threshold isthe isosurface threshold value. Set Hi_Lo equal to
1 to view the low side, or equal to O to view the high side.

ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. Set X_Axis, Y_Axis, and Z_Axisto 0, 1, or 2, where O represents
thedata X axis, 1thedatayY axis, and 2 the dataZ axis. Set X Rev, Y_Rev, and Z Rev
to O for normal orientation or to 1 for reversed. Set X_Rot and Z_Rot to the desired
rotations of the X and Z axes, in degrees (30 is the default). Set Asp to the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and Z
axes and reversethe Y use the string:

ORI 210010230301
SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. Set Axisto 0 to draw adlice parallel to the X axis, to 1 for
theY axis, or to 2 for the Z axis. Set Value to the pixel value of the slice. Set Interp=1
for bilinear interpolation sampling or Interp=0 for nearest neighbor sampling. Set
Expose=1 to cut out of an existing image (mimicking the “Expose” button) or set
Expose=0 to draw the slice on top of the current display (mimicking the “Draw”
button). The final zero indicates that the dlice is orthogonal rather than oblique. For
example, the following command draws an orthogonal slice parallel to the X axis, at
the pixel value 31, using bilinear interpolation.

Obsolete IDL Features

Chapter 2: Obsolete Routines 59

SLICEO0O 31100
SLICE Azimuth Elev Interp Expose 1 X0 YO Z0

Draws an oblique dlice. The ablique plane crossesthe XY plane at angle Azimuth,
with an elevation of Elev. Set Interp=1for bilinear interpolation sampling or Interp=0
for nearest neighbor sampling. Set Expose=1 to cut out of an existing image
(mimicking the “Expose” button) or set Expose=0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the sliceis
oblique rather than orthogonal. The plane passes through the point (X0, YO, Z0). For
example, the following command exposes an oblique slice with an azimuth of 42 and
an elevation of 24, using bilinear interpolation. The plane passes through the point
(52, 57, 39).

SLICE 42 24 1 1 1 52 57 39
TRANS On_Off Threshold

Turns transparency on or off and sets the transparency threshold value. Set On_Off=1
to turn transparency on, On_Off=0 to turn transparency off. Threshold isexpressed in
percent of data range (0 = minimum data value, 100 = maximum data value). For
example, this command turns transparency on and sets the threshold at 20 percent:

TRANS 1 20
UNDO
Undoes the previous operation.
WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.
Example

Dataistransferred to the SLICER viathe VOLUME_DATA common block instead
of as an argument. This technique is used because volume datasets can be very large
and the duplication that occurs when passing values as arguments is a waste of
memory.

Suppose that you want to read some datafrom thefilehead. dat , whichisincluded in
the IDL examplesdirectory, into IDL for usein the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COMVON VOLUME_DATA, VOL

Obsolete IDL Features SLICER

60

SLICER

Chapter 2: Obsolete Routines

The VOLUME_DATA common block has just one variablein it. (The variable can
have any name; here, we're using the name vaL.) Now read the data from thefile into
VOL. For example:

OPENR, UNIT, /GET, FILEPATH(' head.dat', SUBDI RECTORY=['exanples',
"data'])

VOL = BYTARR(80, 100, 57, /NOQZERO

READU, UNIT, VOL

CLOSE, UNIT

Now you can run the SLICER widget application by entering:

SLI CER
The data stored in VOL is the data being worked on by the SLICER.
To obtain the image in the slicer window after dlicer is finished:

SET_PLOT, 'z Usethe Z buffer graphics device.
A = TVRD() Read theimage.

Obsolete IDL Features

Chapter 2: Obsolete Routines 61
STR SEP

Thisroutine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. See
STRSPLIT in the IDL Reference Guide.

The STR_SEP function divides a string into pieces as designated by a separator
string. STR_SEP returns a string array where each element is a separated piece of the
original string.

Syntax
Result = STR_SEP(Str, Separator [, /TRIM] [, /REMOVE_ALL] [, /ESC])
Arguments

Str
The string to be separated.
Separator

The separator string.
Keywords

TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIM (String, 2).

REMOVE_ALL

Set this keyword to remove al blanks from each element of the returned string array.
REMOVE_ALL performs STRCOMPRESS(Sring, /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character literally
and not as separators. For example, if the separator is acomma and the escape
character is a backslash, the character sequence “a\,b” isinterpreted asasinglefield
containing the characters “a,b”.

Obsolete IDL Features STR_SEP

62 Chapter 2: Obsolete Routines

Example

; Create a string:
str = 'Doug.is.a.cool.dude!"’

; Separate the parts between the peri ods:
parts = STR_SEP(str, '.")

; Confirmthat the string has been broken up into 5 el enents:
HELP, parts

PRI NT, parts[3]
IDL Output

PARTS STRING = Array|[5]
cool

STR_SEP Obsolete IDL Features

Chapter 2: Obsolete Routines 63

TIFF_DUMP

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumps the Image File Directories of a TIFF file directly
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not al of the tags have names encoded. In particular, Facsimile, Document
Storage and Retrieval, and most no-longer-recommended fields are not encoded.

Syntax

TIFF_DUMP, File
Arguments

File

A scalar string containing the name of file to read.

Obsolete IDL Features TIFF_DUMP

64 Chapter 2: Obsolete Routines
TIFF_READ

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it had
in previous releases. See READ_TIFF in the IDL Reference Guide.

The TIFF_READ function reads 8-hit or 24-bit imagesin TIFF format files (classes
G, P, and R) and returns the image and color table vectorsin the form of IDL
variables. Only oneimage per fileisread. TIFF_READ returns a byte array
containing theimage data. The dimensions of the result are the same as defined in the
TIFF file (Columns, Rows).

For TIFF images that are RGB interleaved by pixel, the output dimensions are (3,
Columns, Rows).

For TIFF imagesthat are RGB interleaved by image, TIFF_READ returnstheinteger
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variables defined by the R, G, and B arguments.

Syntax
Result = TIFF_READ(File[, R, G, B])
Arguments
File
A scalar string containing the name of file to read.
R,G,B

Named variables that will contain the Red, Green, and Blue color vectors extracted
from TIFF Class P, Palette Color images. For TIFF images that are RGB interleaved
by image (when the variable specified by the PLANARCONFIG keyword isreturned
as 2) the R, G, and B variables each hold an image with the dimensions (Columns,
Rows).

Keywords

ORDER

Set this keyword to a named variable that will contain the order parameter from the
TIFF File. This parameter is returned as O for images written bottom to top, and 1 for

TIFF_READ Obsolete IDL Features

Chapter 2: Obsolete Routines 65

images written top to bottom. If the Orientation parameter does not appear in the
TIFF file, an order of 1 isreturned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter from
the TIFF file. This parameter isreturned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read thefileny. ti f inthe current directory into the variablei nage, and save the
color tablesin the variables, R, G, and B by entering:

imge = TIFF_READ(' ny.tif', R G B)
To view the image, load the new color table and display the image by entering:

TVLCT, R, G B
TV, inage

Obsolete IDL Features TIFF_READ

66 Chapter 2: Obsolete Routines
TIFF_WRITE

Thisroutine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functionality it
had in previous releases. See WRITE_TIFF in the IDL Reference Guide.

The TIFF_WRITE procedure writes 8- or 24-bit imagesto a TIFF file. Files are
written in asingle strip, or in three strips when the PLANARCONFI G keyword is set
to 2.

Syntax

TIFF_WRITE, File, Array [, Orientation]
Arguments

File

A scalar string containing the name of file to create.

Array

Theimage datato be written. If not already a byte array, it ismade abyte array. Array
may be either an (n, m) array for Grayscale or Palette classes, or a (3, n, m) array for
RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then the Array parameter isignored (and may be omitted).

Orientation

This parameter should be O if theimage is stored from bottom-to-top (the default).
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in doubt,
first convert the image to top-to-bottom order (use the REVERSE function), and set
Orientation to 1.

Keywords

RED, GREEN, BLUE

If you arewriting a Class P, Palette color image, set these keywords equal to the color
table vectors, scaled from O to 255.

TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 67

If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword equal to 2 if writing an RGB image that is contained in three
separate images (color planes). The three images must be stored in the variables
specified by the RED, GREEN, and BLUE keywords. Otherwise, omit this parameter
(orsetitto 1).

XRESOL

The horizontal resolution, in pixels per inch. The default is 100.
YRESOL

The vertical resolution, in pixels per inch. The default is 100.

Examples

Four types of TIFF files can be written:
TIFF Class G, Grayscale.

Thevariablear r ay containsthe 8-bit image array. A value of O isblack, 255 iswhite.
The Red, Green, and Blue keywords are omitted.

TIFF_WRITE, "a.tif', array
TIFF Class P, Palette Color

The variable ar r ay contains the 8-bit image array. The keyword parameters RED,
GREEN, and BLUE contain the color tables, which can have up to 256 elements,
scaled from 0O to 255.

TIFF WRITE, 'a.tif', array, RED = r, GREEN = g, BLUE = b
TIFF Class R, RGB Full Color, color interleaved by pixel
Thevariable ar r ay contains the byte data, and is dimensioned (3, cols, rows).

TIFF_WRITE, '"a.tif', array
TIFF Class R, RGB Full Color, color interleaved by image

Input isthree separate images, provided in the keyword parameters RED, GREEN,
and BLUE. Theinput argument Array isignored. The keyword PLANARCONFIG
must be set to 2 in this case.

Obsolete IDL Features TIFF_WRITE

68 Chapter 2: Obsolete Routines

TIFF_WRITE, 'a.tif', RED =r, GREEN = g, BLUE = b, PLAN = 2

TIFF_WRITE Obsolete IDL Features

Chapter 2: Obsolete Routines 69
WIDED

Thisroutine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL’s graphical user interface designer, known as
the Widget Builder. Thisfunctionality has been replaced by the GUIBuilder, whichis
documented in Building IDL Applications.

Syntax

WIDED

Obsolete IDL Features WIDED

70 Chapter 2: Obsolete Routines
WIDGET_MESSAGE

Thisroutine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See DIALOG_MESSAGE inthe IDL
Reference Guide.

WIDGET_MESSAGE Obsolete IDL Features

Chapter 3:
Remote Procedure
Calls

Note
Remote Procedure Calls are still included in IDL. The RPC API described here (the
APl included with IDL version 4.0) has been replaced with a new API. See the
External Development Guide for details on the RPC API included with IDL version
5.0 and later.

Remote Procedure Calls (RPCs) alow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library

of Clanguage routinesisincluded to handle communication between client programs
andtheIDL server. Not e that renote procedure calls are supported only on

UNI X pl at f or ms.

Obsolete IDL Features 71

72

Chapter 3: Remote Procedure Calls

The current implementation allows IDL to be run as an RPC server and your own
program to berun asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

Obsolete IDL Features

Chapter 3: Remote Procedure Calls 73

Using IDL as an RPC Server

The IDL RPC Directory

All of thefiles related to using IDL's RPC capabilities are found inther pc
subdirectory of the ext er nal subdirectory of the main IDL directory. The main
IDL directory isreferred to here asidldir.

Running IDL in Server Mode

Touse IDL asan RPC server, run IDL in server mode by using the - ser ver
command line option. This option can be invoked one of two ways:

idl -server process_id
or
idl -server=server_nunber process_id

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If aserver ID number is not supplied, IDL usesthe default, IDL_DEFAULT_ID,
defined inthefileidldir/ ext ernal / rpc/ rpc_i dl . h. Thisvalueisoriginaly
set to 0x2010CAFE.

The process_i d argument is an optional argument that specifies the process ID of a
UNIX process that should be contacted when IDL has finished running in interactive
mode. If the IDL rpc server is placed in interactive mode and a process ID has been
supplied on the command line, IDL sendsthe UNIX signal SIGUSRL1 to the specified
process. Thissignal allows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL RPC
library. The make file for thislibrary is contained in the directory

ididir/ ext er nal / r pc. If the machine that runs the client program is not licensed
torun IDL, simply copy the contents of the IDL r pc directory to an appropriate
location on the client machine.

Obsolete IDL Features Using IDL as an RPC Server

74 Chapter 3: Remote Procedure Calls

To build the IDL RPC library, copy the IDL r pc directory to anew directory, change
to that directory, and enter the make command:

cp -Ridldir/external/rpc new pcdir
cd new pcdir
make

The created library is contained in the file newrpcdir/ r pci dl . a. The functions
contained in the library are described in “The IDL RPC Library” on page 75
Linking your Client Program

Your client program must include thefileidldir/ ext ernal / rpc/ rpc_idl . h.

You must aso link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC library, you
might enter:

cc -c rpcclient.c
cc -o rpcclient.o idldir/external/rpc/rpcidl.a

where rpcclient.c is the name of your program. Note that your actual command lines
and flag settings may be different than the ones shown above, depending upon your C
compiler. The Makef i | e contains details on modifications for various systems.

Using IDL as an RPC Server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 75
The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.

Obsolete IDL Features The IDL RPC Library

76 Chapter 3: Remote Procedure Calls

free _idl variable

Syntax
void free_idl _var(varinfo_t* var);
Description

Thisfunction frees all dynamic memory associated with the given variable. Attempts
to free astatic variable are silently ignored. (See “Notes on Variable Creation and
Memory Management” on page 100)

Parameters

var

The address of the varinfo_t structure that contains the information about the variable
to be freed.

Return Value

None

free_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 77
get_idl variable

Syntax

int get_idl_variabl e(CLIENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call thisfunction to retrieve the value of an IDL variable in the IDL session referred
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve values
from an IDL structure, “decompose” the structure into regular variablesin IDL, then
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to aregular IDL variable. The value of
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */

send_i dl _command(client, "X = IP.T");
get _idl _variable(client, "X', &pt, 0);

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
name

A null terminated string that contains the name of the IDL variable to be retrieved.
Only thefirst MAXI DLEN characters of this string are used. MAXI DLEN is defined in
thefileidldir/ ext ernal / rpc/rpc_idl . h.

var

Theaddressof avari nf o_t structure in which to store the returned variable
information. Upon return, the Nane field of the var structure contains the name of
thevariableasfoundin IDL. If the name suppliedisanillegal IDL variable name, the
Nare field isset to <I LLEGAL_NAME>. If the variable is a structure or associated
variable, the Nane field is set to <BAD- VAR- TYPE>.

Obsolete IDL Features get _idl_variable

78

Chapter 3: Remote Procedure Calls

typecode

If you want IDL to typecast avariable (i.e., guarantee the value to be of a particular
type) beforeit istransported, set t ypecode to one of the following values (defined
inthefileexport. h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG |DL_TYP FLOAT,
I DL_TYP_DOUBLE, |DL_TYP_STRING |DL _TYP_COMPLEX, |DL_TYP_DCOWPLEX

For example, the command:
get _idl _variable(client, "x", &v, |IDL_TYP_LONG
guarantees that the value in x is returned as a 32-hit integer.

If t ypecode isO, the variableis transferred with whatever data typeit hasin the
server. Typecasting only affects the variables in the client — the server side is not
affected.

Return Value

This function returns a status value that denotes the success or failure of thisfunction
as described below.

-1 Failure: bad arguments supplied (e.g., name or var iSNULL).
0 RPC mechanism failed (an error message may also be printed).
1 Success
-2 lllegal variable name (e.g., “213xyz”, “#a’, “|DEVICE")
-3 Variable not transportable (e.g., the variable is a structure or associated
variable)

get_idl variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 79

Idl_server_interactive

Syntax
int idl _server_interactive(CLI ENT*client)
Description

Call thisfunction to cause the IDL server to become an interactive IDL session. It is
likely that this command will time out. Some alternative mechanism for determining
when the server is finished should be implemented. See the exampleser ver. c in
theidldir/exanpl es/ r pc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.
Return Value

Thisfunction returns TRUE if the interactive IDL session did not time out. FALSE is
returned if the session times out or otherwise fails.

Obsolete IDL Features idl_server_interactive

80 Chapter 3: Remote Procedure Calls

Kill_server

Syntax
int kill_server(CLIENT*client)
Description
Call thisfunction to kill the IDL RPC server.
Parameters

client
The pointer to a CLIENT structure registered with the server to be killed.

Return Value

This function returns TRUE if the server was successfully killed. FALSE is returned
otherwise.

kill_server Obsolete IDL Features

Chapter 3: Remote Procedure Calls 81
register_idl_client

Syntax
CLI ENT* register_idl _client(long server_id, char* hostnane,
struct tinmeval* tinmeout)

Description

Call this function to register your program as a client of an IDL server. Note that a
program can be the client of a number of different servers at the sametime and a
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program is to be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server isrunning. If thisvalueisNULL or
"" thedefault, | ocal host , isused.

timeout

A pointer to the timeout value for all communication with IDL servers. If thisvalueis
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure is returned. This function returns NULL if it
Is unsuccessful.

Obsolete IDL Features register_idl_client

82 Chapter 3: Remote Procedure Calls

send _idl command

Syntax

int send_idl _command(CLI ENT* client, char* command);
Description

Call thisfunction to send an IDL command to the IDL server referred to by client.
The command is executed just asif it had been entered from the IDL command line.

This function cannot be used to send multi-line commands. If thefirst part of a multi-
line command is sent, for example:

send_i dl _command(client, "FOR I=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent commands
are not executed.

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
command

A null-terminated string with no more than MAX_STRI NG_LEN characters.
MAX STRI NG _LENisdefined inthefileididir/ ext ernal / rpc/ rpc_idl. h.

Return Value

Thisfunction returns a status val ue that denotes success or failure as described below.
e -1 =RPC communication failure (an error message is also printed).
* 0=CommandisNULL.
* 1= Success.

For all other errors, the error number is returned. This number could be passed as an
argument to STRMESSAGE() ; .

send_idl_command Obsolete IDL Features

Chapter 3: Remote Procedure Calls 83
set_idl_timeout

Syntax
int set_idl_tinmeout(struct timeval* tineout)
Description

Cadll thisfunction to replace the current timeout used by the RPC mechanism with the
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no defaullt.
Return Value

This function returns TRUE if the timeout was replaced. FALSE isreturned if the
timeout value was NULL or zero.

Obsolete IDL Features set_idl_timeout

84 Chapter 3: Remote Procedure Calls

set_idl variable

Syntax
int set_idl_variable(CLIENT* client, varinfo_t* var);
Description

Call thisfunction to assign avalueto an IDL variablein the IDL session referred to
by cl i ent. Theaddressvar pointstoavari nf o_t structurethat contains
information about the variable to be set. The “helper” functions can be used to build
var. (See“Thevarinfo_t Structure” on page 88) Any scalar or array variable type
can be set. Variables can be set only in the main IDL program level.

Note that it is not possible to set the value of an IDL structure. To set valuesin an
IDL structure, set the individual elements of the structure to scalar IDL variables,
then usethesend_i dl _conmand function to create the structurein IDL.

It is not possible to set the value of IDL system variables directly. To set the value of
an IDL system variable, first set the value of aregular IDL variable. The value of the
regular variable can then be assigned to the system variable. For example:

set _idl _variable(client, &ewar); /* newar describes the */
/* IDL variable "NEW */
send_i dl _comand(client, "!P. T = NEW);
Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.
var

The address of thevar i nf o_t structure that contains information about the
variable to be set.

Return Value

This function returns a status value that denotes the success or failure of thisfunction
as described below.

e -1=Failure: bad arguments supplied (e.g., var isNULL).
* 0=RPC mechanism failed (an error message is also printed).

set_idl_variable Obsolete IDL Features

Chapter 3: Remote Procedure Calls 85

e 1 =Success

Obsolete IDL Features set_idl_variable

86 Chapter 3: Remote Procedure Calls
set_rpc_verbosity

Syntax
voi d set_rpc_verbosity(verbosity)

Description

This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines to
explain what failed. If verbosity is FALSE, return codes continue to indicate success
or failure, but no error messages are printed.

Parameters

verbosity

Ani nt specifying TRUE or FALSE as explained above.
Return Value

None

set_rpc_verbosity Obsolete IDL Features

Chapter 3: Remote Procedure Calls 87
unregister_idl_client

Syntax
voi d unregister_idl _client(CLIENT* client)
Description

Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically releases the resources associated with
al CLIENT structures when your program exits. This function does not affect the
IDL server.

Parameters

client
The pointer to the CLIENT structure to be unregistered.

Return Value

None

Obsolete IDL Features unregister_idl_client

88 Chapter 3: Remote Procedure Calls

The varinfo_t Structure

Thevari nf o_t structureisused to pass variables to and from the IDL server.

Thevari nf o_t structureisdefinedintheidldir/ external /rpc/rpc_idl.h
file. The structureis:

typedef struct _VARI NFO {
char Name[MAXI DLEN+1] ;

I DL_VPTR Vari abl e;

I DL_LONG Lengt h;

} varinfo_t;

Variable Creation Functions

A number of functions are provided to help build var i nf o_t structures. These
functions are contained in thefileidldir/ ext er nal / r pc/ hel per. c.

The variable creation functions are described below. Unless otherwise noted, all of
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passing avar i nf o_t structure pointer, if theVar i abl e fieldis
NULL, the variable creation functions attempt to allocate that field.

The varinfo_t Structure Obsolete IDL Features

Chapter 3: Remote Procedure Calls 89
v_make_byte

Syntax

int v_nmake_byte(varinfo_t* var_struct, char* var_nane,
unsi gned val ue)

Description

Create an IDL byte variable with the given name and value.

Obsolete IDL Features v_make_byte

90 Chapter 3: Remote Procedure Calls

Vv_make_complex

Syntax

int v_nmake_conpl ex(varinfo_t* var_struct, char* var_nane,
doubl e real _val ue, doubl e i nag_val ue)

Description

Create an IDL complex variable.

v_make_complex Obsolete IDL Features

Chapter 3: Remote Procedure Calls 91

v_make_dcomplex

Syntax

int v_make_dconpl ex(varinfo_t* var_struct, char* var_nane,
doubl e real _val ue, doubl e i nag_val ue)

Description

Create an IDL double-precision complex variable.

Obsolete IDL Features v_make_dcomplex

92 Chapter 3: Remote Procedure Calls

v_make double

Syntax

int v_nmake_doubl e(varinfo_t* var_struct, char* var_nane,
doubl e val ue)

Description

Create an IDL double-precision, floating-point variable.

v_make_double Obsolete IDL Features

Chapter 3: Remote Procedure Calls 93

v_make float

Syntax

int v_make_float(varinfo_t* var_struct, char* var_nane,
doubl e val ue)

Description

Create an IDL single-precision, floating-point variable.

Obsolete IDL Features v_make_float

94 Chapter 3: Remote Procedure Calls
v_make int

Syntax
int v_make_int(varinfo_t* var_struct, char* var_name, int val ue)
Description

Create an IDL (16-bit) integer variable.

v_make_int Obsolete IDL Features

Chapter 3: Remote Procedure Calls 95
v_make_long

Syntax

int v_make_long(varinfo_t* var_struct, char* var_nane,
I DL_LONG val ue)

Description

Create an IDL long variable.

Obsolete IDL Features v_make_long

96 Chapter 3: Remote Procedure Calls
vV_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* nane,
char* val ue)

Description

Create an IDL string variable.

v_make_string Obsolete IDL Features

Chapter 3: Remote Procedure Calls 97

v_fill_array
Syntax
int v_fill_array(varinfo_t* var, char* name, int type,
int ndinmension, IDL_LONG dins[], UCHAR* val ue,
IDL_I ong | ength)
Description

Create an IDL array variable. The type argument should be one of the following
values (defined in thefileexport . h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG |DL_TYP FLOAT,
| DL_TYP_DOUBLE, |DL_TYP_STRING |DL_TYP_COWPLEX, |DL_TYP_DCOMPLEX

Thisfunction allocatesvar - >Var i abl e- >val ue. arr.
If val ue isNULL thenvar - >Var i abl e- >val ue. arr - >dat a is dlocated.
Thedi ns[] argument should have at least ndi mensi on valid elements.

If val ue issupplied but | engt h isO, var->Length isfilled with the computed size
of the array (in bytes) and val ue isassumed to point to at least that many bytes of
memory. If val ue and | engt h are supplied, | engt h isassumed to be the size (in
bytes) of the region of memory that value pointsto. (See“Notes on Variable Creation
and Memory Management” on page 100)

Obsolete IDL Features v_fill_array

98 Chapter 3: Remote Procedure Calls
More Variable Manipulation Macros

The following macros can be used to get information from var i nf o_t structures.
Like the variable creation functions, these macros are defined in thefile
rpc_idl.h.

All of these macros accept asingle argument v of vari nfo_t type.
GetArrayData(v)

This macro returns a pointer to the array data described by thevari nf o_t
structure.

GetArrayDimensions(v)

This macro returns the dimensions of the array described by thevari nf o_t
structure. The dimensions arereturned as| ong di mensi ons[] .

GetArrayNumDims(v)

This macro returns the number of dimensions of the array.
GetVarByte(v)

This macro returns the value of a 1-byte, unsigned char vari abl e.
GetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of a complex variable.
GetVarDComplex(v)

This macro returns the value (as a struct, not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)
This macro returns the value of a double-precision, floating-point variable.

GetVarFloat(v)

This macro returns the value of a single-precision, floating point variable.

More Variable Manipulation Macros Obsolete IDL Features

Chapter 3: Remote Procedure Calls 99

GetVarint(v)

This macro returns the value of a 2-byte integer variable.
GetVarLong(v)

This macro returns the value of a4-byte integer variable.
GetVarString(v)

This macro returns the value of a string variable (as a char*).
GetVarType(v)

This macro returns the type of the variable described by thevar i nf o_t structure.
Thetypeisreturned as| DL_TYP_XXX as described under the documentation for the
get _i dl _vari abl e function.

VarlsArray(v)

This macro returns non-zero if visan array variable.

Obsolete IDL Features More Variable Manipulation Macros

100 Chapter 3: Remote Procedure Calls

Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.
Freeing Resources

Thevariable creation functions (i.e., v_nmake_xxx) do not free resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated with thevar i nf o_t structure being passed.

To prevent memory leakage, memory associated with avariable is freed before new
memory is allocated. You should make surethat thevar i nf o_t structure passed to
theget _i dl _vari abl e function contains valid information or has been cleared
(to zeroes) first. If an array of the same size, dimensions, and type is being read into
the existing array variable, no allocation is performed and the same space is re-used.
For example:

/* Assune that:

X = FLTARR(1000, 1000)
Y = FLTARR(1000, 1000)
Z = LONARR(1000, 1000)sane size, different type

*/
bzero(&vinfo, sizeof(vinfo));
get _idl _variable(client, "X", &info, 0); /* array allocated */

get _idl _variable(client, "Y', &info, 0); /* menory re-used */

get _idl _variable(client, "Z", &info, 0); /* array allocated */
free_idl _var(&vinfo);

Theget _i dl _vari abl e functioncallsfree_i dl _var before doing any
allocation. So, in the example above, we only needed to free Z. X and Y were freed
when we re-used vi nf 0.

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from the
server without having the overhead of memory reallocation every timeinformationis
received.

If theLengt h field of thevar i nf o_t structureis not zero, it is assumed to be the
size of the array data. Thef r ee_i dl _var function will not do anythingto a
variable where length is non-zero. It is up to the programmer to do their own memory

Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 3: Remote Procedure Calls 101

management if thisisthe case. Storing ascalar in astatic variable (i.e., avariable that
has a non-zero Lengt h field) fails as does attempting to store an array that does not
fit the statically-allocated array. For example:

/* X = FLTARR(10) 40 bytes of data (10*4)
Y = LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
W= 12 scal ar

*/

char buf [40]

varinfo_t v;
VARI ABLE var;

ARRAY arr;

/* Build a static array. Fill in the mnimum anount of */
/* information required. */
v. Vari abl e = &var;

v. Length = 40;

var.type = | DL_TYP_BYTE;

var. fl ags = V_ARR

var.value.arr = &arr;

arr.data = buf;

get _idl _variable(client, "X*, &, 0); [/* ok */

get _idl _variable(client, "Y', &, 0); [/* ok */

get _idl _variable(client, "2Z", &, 0); [/* fails —too big */
get _idl _variable(client, "W, &, 0); /* fails —scalar */

Allocating Space for Strings

All space for strings is assumed to be obtained vianal | oc(3) . Thisfactis
important only when receiving variables (usingtheget i dl _vari abl e
function). For example, the following code fragment is valid:

v_make_string(& oo, "UGH', "blug");
set _idl _variable(client, & 00);

Here is an example of code that will crash your program:

v_make_string(& oo, "UGH', "blug");

set _idl _variabl e(ne, &foo0);

send_i dl _command(me, "UGH"hello world ");
get _idl _variabl e(me, "UGH', &f oo, 0);

Inthiscase, theget i dl _vari abl e function attempts to free the old resources
before allocating new storage. Freeing the constant bl ug resultsin an error. You
could achieve the desired result without an error by changing the first line to:

v_make_string(& oo, "UGH', strdup("blug"));

Obsolete IDL Features Notes on Variable Creation and Memory Management

102 Chapter 3: Remote Procedure Calls
RPC Examples

A number of examplefilesareincluded in theidlidir/ ext er nal / exanpl es/ r pc
directory. A Makef i | e for these examplesis also included. These short C programs
demonstrate the use of the IDL RPC library.

RPC Examples Obsolete IDL Features

	Online Guide
	Contents
	Overview
	Backwards Compatibility
	IDL Internal Routines
	Routines Written in IDL

	Detecting Use of Obsolete Features
	Documentation for Older Obsolete Routines

	Obsolete Routines
	DDE Routines
	Result = DDE_GETSERVERS()
	Result = DDE_GETTOPICS(server)
	Result = DDE_GETITEMS(server)
	Result = DDE_REQUEST(server, topic, item)
	DDE_EXECUTE, server, topic, command

	DEMO_MODE
	GETHELP
	Variable
	FULLSTRING
	FUNCTIONS
	ONELINE
	PROCEDURES
	SYS_PROCS
	SYS_FUNCS

	HANDLE_CREATE
	ID
	FIRST_CHILD
	NO_COPY
	SIBLING
	VALUE

	HANDLE_FREE
	ID

	HANDLE_INFO
	ID
	FIRST_CHILD
	NUM_CHILDREN
	PARENT
	SIBLING
	VALID_ID

	HANDLE_MOVE
	Static_ID
	Move_ID
	FIRST_CHILD
	SIBLING

	HANDLE_VALUE
	ID
	Value
	NO_COPY
	SET

	HDF_DFSD_ADDDATA
	Filename
	Data
	OVERWRITE
	SET_DIM
	SET_TYPE

	HDF_DFSD_DIMGET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_DIMSET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	Filename
	Data
	GET_DIMS
	GET_TYPE

	HDF_DFSD_GETINFO
	Filename
	CALDATA
	COORDSYS
	DIMS
	FORMAT
	LABEL
	LASTREF
	NSDS
	RANGE
	TYPE
	UNIT

	HDF_DFSD_GETSLICE
	Filename
	Data
	COUNT
	OFFSET

	HDF_DFSD_PUTSLICE
	Data
	COUNT

	HDF_DFSD_READREF
	Filename
	Refno

	HDF_DFSD_SETINFO
	BYTE
	CALDATA
	CLEAR
	COORDSYS
	DIMS
	DOUBLE
	FLOAT
	FORMAT
	INT
	LABEL
	LEN_LABEL
	LEN_UNIT
	LEN_FORMAT
	LEN_COORDSYS
	LONG
	RANGE
	RESTART
	UNIT

	HDF_DFSD_STARTSLICE
	Filename
	IDL Ouput

	INP, INPW, OUTP, OUTPW
	Result = INP(Port, [D1 . . . DN])
	Result = INPW(Port, [D1 . . . DN])
	OUTP, Port, Value
	OUTPW, Port, Value

	PICKFILE
	POLYFITW
	X
	Y
	Weights
	NDegree
	Yfit
	Yband
	Sigma
	Corrm
	DOUBLE
	STATUS

	RIEMANN
	P
	A
	Theta
	BACKPROJECT
	BILINEAR
	CENTER
	COR
	CUBIC
	D
	ROW

	RSTRPOS
	Expression
	Search_String
	Pos

	SIZE Executive Command
	SLICER
	A
	CMD_FILE
	COMMAND
	DETACHED
	GROUP
	NO_BLOCK
	RANGE
	RESOLUTION
	COLOR Table_Index Low High Shading
	CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1
	ERASE
	ISO Threshold Hi_Lo
	ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp
	SLICE Axis Value Interp Expose 0
	SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0
	TRANS On_Off Threshold
	UNDO
	WAIT Secs

	STR_SEP
	Str
	Separator
	TRIM
	REMOVE_ALL
	ESC
	IDL Output

	TIFF_DUMP
	File

	TIFF_READ
	File
	R, G, B
	ORDER
	PLANARCONFIG

	TIFF_WRITE
	File
	Array
	Orientation
	RED, GREEN, BLUE
	PLANARCONFIG
	XRESOL
	YRESOL
	TIFF Class G, Grayscale.
	TIFF Class P, Palette Color
	TIFF Class R, RGB Full Color, color interleaved by pixel
	TIFF Class R, RGB Full Color, color interleaved by image

	WIDED
	WIDGET_MESSAGE

	Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode
	Creating the IDL RPC Library
	Linking your Client Program

	The IDL RPC Library
	free_idl_variable
	var

	get_idl_variable
	client
	name
	var
	typecode

	idl_server_interactive
	client

	kill_server
	client

	register_idl_client
	server_id
	hostname
	timeout

	send_idl_command
	client
	command

	set_idl_timeout
	timeout

	set_idl_variable
	client
	var

	set_rpc_verbosity
	verbosity

	unregister_idl_client
	client

	The varinfo_t Structure
	Variable Creation Functions

	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	Freeing Resources
	Creating a Statically-Allocated Array
	Allocating Space for Strings

	RPC Examples

