=i DL

What's New
in IDL 5.5

RE S EARCH /IAE\ZJL :J/:trSion 5.; ition
SYSTEMS Copyrigh , Systems, Inc
L A Kodak Company

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documentation
described herein are sold under license agreement. Their use, duplication, and disclosure are sub-
ject to the restrictions stated in the license agreement. Research Systems, Inc., reservestheright to
make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL software package or its documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the com-
puter program described herein. Software = Vision™ isa trademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Libran

Copyright ~ 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rightsto StoneTable™ and its documentation are retained by Ston-
eTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publishing

WA STE text engine © 1993-1996 Marco Piovanelli
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Overview of New Features in IDL 5.5oooiiiiiiiiiiiiiiiee e 11
Visuaization ENNANCEMENTSooiiiiiie e e e 12
High-Resolution Textures Supported by IDLGrSurfaceccoccooeeveeiieieenieenennene 12
New EnhancementS to XOBJIVIEW ..ot s 13
New XOBJIVIEW_ROTATE ProCeaUIEcccveieeieiesieeiereee et seeeeee e 13
New XOBJIVIEW_WRITE_IMAGE Procedurecccoceeoeeeneneseeieesesseneenins 13
New Procedure for Generating Tetrahedral Dataccoeoeeiceininnen e 13
New Support fOr REGION GIOWINGc..cerreeiueeeuieeereeriesseee e esee e seeesaeeeeneeeseee s 14
New XROI FUNCHONAIITYooueiiieeeie ettt s e 14
New TrueColor Support for Any Depth on UNIX ..o 14
New Support for Resolving Stitching Artifacts in Object Graphicscccccveeneenne 16
New QUIET Keyword for RECONS3cooiiiiieeeeniie et s 19
New Keyword for Smoother Results Using WARP_TRI ..o 19

What's New in IDL 5.5 3

ANAlYSIS ENNBNCEMENTS ..ottt e e e 20
The IDL Thread Pool and Multi-Threadingccccoeoeneenenenne e 20
New Functionality for Gridding and INterpolationccoceveeeeeneneneeiniene e 21
New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL 21
New REAL _PART FUNCLONoceiiieeiee ettt e e se e ene s seenes 22
New ERF, ERFC, and ERFCX FUNCLIONScoouiiiiiiiie ettt 22
Support for SIMPLEX Method for Linear Programmingcccoceeeveeeeneereseenienene 22
BESELI, BESELJ, BESELK and BESELY Functionality Improvements 22
New NaN Support for SMOOTH and CONVOLc.cceeiriiereeeeie e 22
New LNORM Keyword for COND and NORMcceimiieneiieeine e 23
New DOUBLE Keyword for POLY_AREA ..ot 23
New STATUS Keyword for POLYWARP SUPPOItccovveriereieeiine e 23
New ACOS, ASIN, ATAN Support for Complex INPULccceeeeererenecirene e 23
New Minimum/Maximum Operator Support for Complex Dataccoceeeeevereenne. 24
New SMOOTH Function Multidimensional Width SUpportccccceveveeiieeieene 24
New Dimension-specific Transforming for FETcccooiriininenie e 25
New Dimension-setting functionality for Arraysccceveveeeneneneennneese e 25
Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMPcccceevnennuenn. 25
New Histogram Cumulative Probability Distribution Functionalityccccceee.... 26

Language ENNBNCEMENEScooiiiiieieeieee et e e 27
Maximum String Length Limit Increased for 32-Bit IDLcccceceiiriineeneceeie e 27
New MESSAGE Keywords and Message Block SUPPOItccceeeennneeneceeieieee 27
Relaxed Formatted I nput/Output Record Length Limitsccoocoecieiinienicnienieen, 31
New and Enhanced File Handling ROULINEScccoeiiiininieeee e 31
New Functionality Frees DynamiC RESOUICEScceverereenieiesrerseeseesie e seenees 33
New Ability to Check for Keyword Inheritance Errorsccccoveeeenineneceeieneenne 33
Enhancements to IDL Path EXPaNSIONcccccoveiieieie i 34
New Support for REFORM-Style DImension AITaycccoceeeneeenneseeneeeeie e 35
New DOUBLE Keyword for COMPLEX ..ot 36
New CENTER Keyword for CONGRIDcooiiiiieiinineneeee e e 37
New SIGN Keyword for FINITE ..o s 37
Improvements to Files Created With SAVE ..o 37
Improvements to UNIX Filename EXPansioncccccevevereeneniesenneeseene e 38
Pre-IDL 4.0 C Internals Compatibility Library Removedcccoovvivinineicnenn, 38

User Interface ToolKit ENNANCEMENESocueeiiieieireeee e s 40
New COM and ActiveX Functionality for IDLcccevevenieeiee e 40

Contents What's New in IDL 5.5

New ShortCut MenU WIAQELcccoeriieireeeireee et ene e e 40
Emulating System Colorsin Application Widgetscccooeieirenenecinine e 41
New Functionality to Specify Slider Incrementsin IDL Widgetsccceeeevreenene. 43
File ACCESS ENNANCEMENTScveiiiiiieeeieeie et sttt es e st se e e srae e se e e eneenaenees 44
NeW PATH_SEP FUNCHON ..ottt sttt 44
ENhanced TIFF SUPPOITcooiiiieiee ettt s e 44
New SUPPOIT FOr MISID ..o e e s e e 47
Development Environment ENhanCemMENtScooeiuereirine e 48
Improved ProjeCt EXPOITiNGcoeirerereireerire et sss e e enenie s 48
Scientific Data Formats ENNaNCEMENLSooeirieeiieiierre e e 49
HDF-EOS Data Output ENNGNCEMENTSocceuiriiiereee e 49
New HDF Vdata Attribute ROULINEScooceeiiieiierice et 50
IDL ActiveX Control ENNANCEMENESc..coirririiriiereciet et e 51
IDL DataMiner ENNANCEMENTScceiiiiriiriiie ettt st e e s e e e e e neeeseee s 52
Platform Specific INFOrMaLIONccooeiiieieie e e e 52
Documentation ENNBNCEMENLSceiiiieiiii i e e 56
ENNanced IDL ULHITIESocuiiieiee ettt et e st nee 57
ENhanced IDL ULHITIEScoiiiiiie ettt e 57
New Keywords/Arguments to EXisting IDL ULIItIeSccccoveeeieninieenece e 58
New and Enhanced IDL ODJECESccueiiierireeie ettt s 60
NEW ODJECE CIBSSESoiveieeieie ittt ettt e sr et e e e s en e 60
IDL Object Method ENhaNCEMENEScccoeiiriiriirieiee e e 60
New and Enhanced IDL ROULINESccouiiiriieeie ettt 72
NEW IDL ROULINES ..ottt ettt st ettt e et se e e e eeeesee s 72
IDL ROULINE ENNBNCEMENTSeoiuiiieieieeiee ettt e st s e e see s 80
Updates to EXeCUtive COMMANGScooveeeieriereireeiee st s 120
New and Updated System VariableSoccocviiiieiireeee e s 121
FeatureS ODSOIELEAcooiiie et e e eaee e 122
ODSOIEtEd ROULINEScoviiieie ittt ettt st e e e e e sae e e e e snee 122
Obsoleted Keywords and ATQUMENLScc.overereeiienesreneeeee e s 122
Platforms Supported in thiSREIEASEcc.ooiiiiiie e 124
Chapter 2:
Multi-Threading iN IDL ... 125
The IDL Thread POOIc.oociiiieieee st s e 126
Benefits of the IDL Thread POOI ..o e 126

What's New in IDL 5.5 Contents

Possible Drawbacks to the Use of the IDL Thread Poolcccooiiriiecinicneneennns 126
Controlling the Thread POOI iN IDLcc.ciiiiiiiiie e 128
Using the Initial Settings of the Thread Pool ..o 128
Programmatically Controlling the Settings of the Thread Poolccccccccevveeeeennnene 128
Disabling the Thread POOIooiiiiiiiiese e 133
Routines Supporting the Thread POOIoooeiiiiineiecr e 134
Chapter 3:
Using COM ODbBjJeCtS iN IDL ..ot 137
Introduction t0 IDL COM ODJECEScuveieeiriiieriee ettt 138
Skills Required to USe COM ODJECLScccerruirririeiireerireeiee e 139
IDL COM NamMIiNG SCHEMESccouiiiiieiieieeiriee sttt s e 140
About Obtaining COM Class [dentifierscccoerireirieie e 140
Using IDL IDispatch COM ODJECESoceeuiriirieriiieiisie s e 142
IDL IDispatch Naming SChEMES ..o 142
IDisSpatCh ODJECE CrEALONc.coueevieecieeeeie sttt e 143
IDispatch Method DiSPatChinNgc..occeereerierieeniise e e s 143
IDispatch COM ObjeCt DESLIUCTIONccevvevererieeeiieiieeetire e 144
IDispatch Property ManagemMentcccooererreeireiene e s 144
COM Objects Returning IDispatch Pointers to Other Objectsovvvveveieieveene, 145
Example: Creating an IDispatch COM Object in IDLcccoveiiieeieie e 145
Using AcCtiveX CONtrolSiN IDLccuoiiiiieeeeie it s 149
ActiveX-based COM Naming SChEMESccooieiiie i e 149
ACtVEX CONLrol CrEaLIONccveeeieiie ettt e e e 150
ActiveX Control Access and DispatChingccccevevereeieeie s 150
Freeing DYNamIiC RESOUICESccocviiueeuireieieesesie e sr e e s s 151
ActiveX Control DESLIUCTIONcocviueeiiriieie et s e 151
Example: Embedding an ActiveX Control inIDLcoceeeieiininiecce e 152
Accessto ActiveX Methods and Propertiesccoceveveeieeie s 155
EVENt Propagalionccoceeeeiiie it st e s e 156
Chapter 4:
Using the Shortcut Menu Widget ..o 157
Introduction to the Shortcut Menu Widgetccooiriieieeiniene s 158
Using WIDGET_DISPLAY CONTEXTMENUccociiiiiiincine e 159
Creating a Base Widget SNOrtCUt MENUcoveiierrerierieiee e e 160
Creating a Draw Widget SNOMCUt MENUcoveiiiireeeieieeceeree e e 162

Contents What's New in IDL 5.5

Creating a List Widget SNOrtCUt MENUcc.eveirieiiecie e e 166
Creating a Text Widget SNOrtCUt MENUc..coeirieerecie et 170
Chapter 5:
NEW ODJECTS oo 175
[DLCOMIDISPALCIiveceieete ettt e e et e nene e 176
IDLCOMIDISPALCNIIINIT ...ttt e 177
IDLcoml DispatCh::GEIPIOPEITYcccoverviieeireeeire et e 179
IDLcoml DispatCh:: SEtPIOPEITYocvvvereeieeireeeire et e 180
[DLFEMISID ittt ettt e et e e bttt s et see e 181
IDLFFMISIDIICIEANUD ..oueviieieeieeeie sttt s e 182
IDLffMISID::GetDIMSALTLEVEL ... e 183
IDLFfMISID::GEtIMAgEDELAccvveveeeiieeieeeie sttt 185
IDLFfMISID::GEIPIOPEITY ..eoiveieiieeeeiie sttt st e e 188
[IDLFEMISIDZINIT ottt et et e 191
Chapter 6:
NEeW IDL ROULINES ..ottt 193
(@1 U ST 194
DEFINE_MSGBLEK ..ottt st sttt st bbb see e 197
DEFINE_MSGBLK_FROM_FILE ..ottt e 200
R et e e R bR R e bR e bt e R bRt ee e 203
ERFC ettt ettt e e e s bR b bt h e n et ee e 204
ERFCX ettt ettt e et b e bbb e h e bbbt e e e e bt er s 205
FILE_INFO ettt ettt e sttt e e 206
FILE_SEARGCH ..ottt ettt e et st se e 210
GRID_INPUT ettt e s et se e et st bt eb st 224
GRIDDATA ettt e h bbbt e e bt e ben e bt et st st b et b en bbb 228
HDF_VD_ATTRFIND ..ottt et et e e 253
HDF_VD_ATTRINFO ..ottt e et e st e e 254
HDF_VD_ATTRSET ..ottt sttt et e 256
HDF_VD_ISATTR ottt ettt e et st eb et s et se e 262
HDF_VD_INATTRS ...ttt ettt b e st s eb et a s s et 263
HEAP_FREE ...ttt et ettt b en s 264
INTERVAL_VOLUME ...ttt st s e 267
PATH_SEP .ttt et et st b e e e st een e 270
QGRIDS ...ttt et e h et bbbt e e bt et bbb bR e bt b st r et 271

What's New in IDL 5.5 Contents

QHULL e e et e bbb et b e e e e r bbb et 276
QUERY _IMRSID ..ottt ettt eh e e e 279
READ_MRSID ...ttt et et et et eaenn e 281
REAL _PART ettt h e et e e eb e e e st ebe e 283
REGION_GROW ...ttt sttt st st e eb e e es e ene e nes 284
SIMPLEX ettt ettt e et e e st h e e ne bt eh b e n et eneas 287
WIDGET_ACTIVEX ettt e e e 291
WIDGET_DISPLAY CONTEXTMENU ..ot 298
XOBIVIEW_ROTATE .ttt e 300
XOBIVIEW_WRITE_IMAGE ..ottt 302
XIROM ettt et ee bbb e st b e e s e er b st n e e 303
Chapter 7:
NEeW EXAMPIES .o 319
Overview of New EX8MPIESccciiiiiiiieric e 320
Mapping an Image ONto @ SUMTECEccccireiieieiirere e 322
Centering an ImMage ODJECEooiiiiiieiece et 325
AlphaBlending: Creating a Transparent Image ODJECtcoeveirinereeneeire e 328
Working with Mesh Objects and ROULINEScccoeiiieiiniciree e 332
ClHPPING @MESN ..ot e e s 333
DECiMALiNg @MESNccueiiiiie ettt e e s 336
MErgiNg MESNES ... e e 339
SMOOLNING BIMESN ... e e s 342
Advanced Meshing: Combining Meshing ROULINEScccccoevrenencniecerecieee 345
Copying and Printing ODJECEScuooiririiieiirie ettt s 351
Copying a Plot Display to the Cliphoardc...oceoereirnne e 351
Printing @ PIOt DISPIay ...cocveeveeiieiieie e e 353
Copying an Image Display to the Clipbhoardcccooeririeeni i 355
Printing an Image DiSplayccoveereiiieieie e e e 357
Capturing IDL Direct GraphiCS DiSPlaysccccceviererieeneeie s s 359
Capturing Direct Graphics Displays on PseudoColor DeviCesccoeveveiereenne. 359
Capturing Direct Graphics Displays on TrueColor DeViCesccocvvereeieieneenne, 360
Creating and ReStOriNg .SAV FIlEScciiiiiieie e e 363
Customizing and Saving an ASCIl TeEMPIatecceoeveririeee e 363
Saving and Restoring the XROI Utility and Image ROI Dataccccceeveveneveene. 365
Handling Table WidgetSin GUIScociiiiiiieieiee et s e 368

Contents What's New in IDL 5.5

Finding Straight LiNeSin IMAJESccccuriiiiiiniiirci et 374
Color Density Contrasting in an IMaJEcoeurieeereeiierene e 376
Removing Noise from an Image With FFT ... 379
Using Double and Triple INtEGrationc..ccoereirninereenieise et 381
Integrating to Determine the Volume Under a Surface (Double Integration) 381
Integrating to Determine the Mass of a Volume (Triple Integration)c.c...... 382
Obtaining Irregular Grid INTEIVAIS ..ot e s 385
Calculating Incomplete Beta and Gamma FUNCLIONSccoeierreeincienecireee e 387
Working With Tolerances in the Incomplete Beta FUNCLIONcccccveiereceennne 387
Working With Iteration Controlsin the Incomplete Gamma Function 388
Determining Bessel FUNCLION ACCUIACYcooreeuirieieneeiineee et e 390
Analyzing the Bessel Function of the First Kind ... 390
Analyzing the Bessel Function of the Second Kindcccooeeiviiincnene s 392
Analyzing the Modified Bessel Function of the First Kindcccooveviiiiennn. 394
Analyzing the Modified Bessel Function of the Second Kindcoccooeveiiennee, 396
IO X it a e e e e e 399

What's New in IDL 5.5 Contents

Chapter 1.

Overview of New

Features In

This chapter contains the following topics:

IDL 5.5

Visualization Enhancements 12
AnalysisEnhancements 20
Language Enhancements 27
User Interface Toolkit Enhancements 40
Development Environment Enhancements . 48
File AccessEnhancements 44
Scientific Data Formats Enhancements 49
IDL DataMiner Enhancements 52

What's New in IDL 5.5

Documentation Enhancements 56
Enhanced IDL Utilities................ 57
New and Enhanced IDL Objects 60
New and Enhanced IDL Routines 72
New and Updated System Variables 121
FeaturesObsoleted 122
Platforms Supported in thisRelease.. 124

11

12 Chapter 1: Overview of New Features in IDL 5.5

Visualization Enhancements

The following enhancements have been made in the area of Visualization in the IDL
5.5 release:

* High-Resolution Textures Supported by IDLgrSurface
* New Enhancements to XOBJVIEW

* New XOBJVIEW_ROTATE Procedure

* New XOBJVIEW_WRITE_IMAGE Procedure

* New Procedure for Generating Tetrahedral Data

* New Support for Region Growing

* New XROI Functionality

* New TrueColor Support for Any Depth on UNIX

* New Support for Resolving Stitching Artifactsin Object Graphics
* New QUIET Keyword for RECON3

* New Keyword for Smoother Results Using WARP_TRI

High-Resolution Textures Supported by IDLgrSurface

Different 3D hardware platforms support different maximum texture resolutions. For
example, OpenGL only guarantees that the maximum resolution will be at |east 64-
by-64 pixels. This presents a problem if a high pixel resolution image needs to be
mapped onto a 3D surface. Previously, IDL solved this problem by scaling the image
down to the maximum texture size supported by the hardware. Thisresulted in aloss
of data that was particularly noticeable when zooming in on the surface. In some
cases, magnification of the low-resolution texture resulted in an unrecognizable
image.

IDL 5.5 addresses this problem with the new TEXTURE_HIGHRES keyword to
IDLgrSurface. Using this new keyword tiles multiple textures across the surface and
may a so divide the surface geometry to fit the texture tiles. Although IDL tilesthe
texture and surface, the original datais unaltered. Use of the TEXTURE_HIGHRES
keyword thus preserves fine detail by allowing a high-resolution image to be mapped
onto a surface.

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 13

Note
Because of the way in which high-resolution textures require modified texture
coordinates, if the TEXTURE_COORD keyword is used, TEXTURE_HIGHRES
will be disabled.

New Enhancements to XOBJVIEW

A new JUST_REG keyword has been added to the XOBJVIEW utility in IDL 5.5.
You can set this keyword to indicate that the XOBJVIEW utility should just be
registered and return immediately. This keyword is useful if you want to register
XOBJVIEW before beginning event processing and either:

» your command-processing front-end does not support an active command line,
or

» one or more of the registered widgets requests that XM ANAGER block event
processing. (Note that in this case alater call to XMANAGER without the
JUST_REG keyword is necessary to begin blocking.)

AlsoinIDL 5.5 anew RENDERER keyword has been added to the XOBJVIEW
utility. You can set this keyword to an integer value indicating which graphics
renderer to use when drawing objectsin the XOBJVIEW draw window. Valid values
can be given for either platform-native OpenGL or for IDL’s software
implementation.

New XOBJVIEW_ROTATE Procedure

The new XOBJVIEW_ROTATE procedure is used to programmatically rotate the
object currently displayed in XOBJVIEW. For more information about the new
XOBJIVIEW_ROTATE procedure, see “XOBJIVIEW_ROTATE” in Chapter 6 of this
book.

New XOBJVIEW_WRITE_IMAGE Procedure

The new XOBJVIEW_WRITE_IMAGE procedure is used to write the object
currently displayed in XOBJVIEW to an image file with the specified name and file
format. For more information about the new XOBJVIEW_WRITE_IMAGE
procedure, see “XOBJVIEW_WRITE_IMAGE” in Chapter 6 of this book.

New Procedure for Generating Tetrahedral Data

The new INTERVAL_VOLUME procedure can be used to generate a tetrahedral
mesh from volumetric data. The mesh generated by this procedure spans the portion

What's New in IDL 5.5 Visualization Enhancements

14 Chapter 1: Overview of New Features in IDL 5.5

of the volume where the volume data samples fall between two constant data values.
This can also be thought of as a mesh constructed to fill the volume between two
isosurfaces where the isosurfaces are drawn at the two supplied constant data val ues.
For more information about the new INTERVAL_VOLUME procedure, see
“INTERVAL_VOLUME” in Chapter 6 of this book.

New Support for Region Growing

IDL 5.5 now supports region growing, an image processing technique that extends
the boundaries of a specified region to include neighboring pixels that share a
common trait. The new REGION_GROW function takes a given region within an N-
dimensional array and expands the region to include all connected, neighboring
pixelsthat fall within the specified limits. For more information about the
REGION_GROW function, see “REGION_GROW?” in Chapter 6 of this book. The
XROI utility also offers an interactive implementation of REGION_GROW. See
“Growing an ROI” on page 312 for more information.

New XROI Functionality

The XROI utility has been improved in 5.5, offering several new interactive ROI
definition toolsincluding Rectangle and Ellipse drawing tools. Additionally, any ROI
selected in the drawing window can be translated or scaled using the Translate/Scale
tool. XROI aso includes the functionality of the new IDL routine, REGION_GROW.
An ROI defined in XROI can be grown to include all neighboring pixelswhich match
specified threshold conditions. The Region Grow Properties dialog allows you to
precisely control the properties associated with aregion growing process. Support for
RGB images has been added to the histogram plot feature and is also a part of the
Region Grow properties dialog, allowing you to select the channel used when
growing aregion of an RGB image. For more information about the XROI utility, see
“XROI” in Chapter 6 of this book.

New TrueColor Support for Any Depth on UNIX

In previous releases of IDL, the X Windows device only supported TrueColor with a
visual depth of 24. In IDL 5.5, TrueColor visuas of any depth are now supported.

How IDL Selects a Visual Class

With the new support for TrueColor visuals of any depth, the following is now the
order in which IDL will query the display to find the first available visual class:

1. DirectColor, 24-bit
2. TrueColor, 24-bit

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 15

3. TrueColor, 16-bit (on Linux platforms only)
4. PseudoColor, 8-bit, then 4-bit
5. StaticColor, 8-bit, then 4-bit
6. GrayScale, any depth
7. StaticGray, any depth
Setting a Visual Class with the DEVICE Routine

You can manually set the visual class (instead of having IDL determine the visual
class) by using the DEVICE routine to specify the desired visual class and depth
before you create a window. For the TRUE_COL OR keyword, you can now specify
any value (the most common being 15, 16, and 24). For example:

DEVICE, TRUE_COLOR = 16
Setting a Default Visual Class in Your .Xdefaults File

You can set the initial default value of the visual class and color depth by setting
resources in the .Xdefaults filein your home directory. For example, to set the
default visual classto TrueColor and the visual depth to 24, insert the following lines
inyour .Xdefaults ~ file:

idl.gr_visual: TrueColor
idl.gr_depth: 24

How Color is Interpreted for a TrueColor Visual

How acolor (such as!P.COLOR) isinterpreted by IDL (when a TrueColor visual is
being utilized) depends in part upon the decomposed setting for the device.

To retrieve the decomposed setting:

DEVICE, GET_DECOMPOSED = currentDecomposed
To set the decomposed setting:

DEVICE, DECOMPOSED = newDecomposed

If the decomposed vaueis zero, colors (like |P.COLOR) are interpreted as indices
into IDL's color table. A color should bein therangefromO0to !D.TABLE_SIZE - 1.
The DL color table contains ared, green, and blue component at a given index; each
of these componentsisin the range of 0 up to 255.

Note
IDL’s color table does not map directly to a hardware color table for a TrueColor
visual. If IDL'scolor table is modified, for example using the LOADCT or TVLCT

What's New in IDL 5.5 Visualization Enhancements

16 Chapter 1: Overview of New Features in IDL 5.5

routines, then the new color table will only take effect for graphics that are drawn
after it has been modified.

If the decomposed va ue is non-zero, colors (like 'PCOLOR) areinterpreted as a
combination of red, green, and blue settings. The least significant 8 bits contain the
red component, the next 8 bits contain the green component, and the most significant
8 bits contain the blue component.

In either case, the most significant bits of each of the resulting red, green, and blue

components are utilized. The number of bits utilized per component depends upon

thered, green, and blue masksfor the visual. On UNIX systems, anew field (Bits Per

RGB) has been added to the output from HELP, /DEVICE. This Bits Per RGB field

indicates the amount of bits utilized for each component.

Tip
The UNIX command, xdpyinfo , aso providesinformation about each of the
visuals.

New Support for Resolving Stitching Artifacts in Object
Graphics

In previous releases of IDL, it was very difficult to reduce or remove a common
visual artifact called stitching. Stitching may occur when multiple graphic primitives
are rendered at the same depth, or distance from the eye in view space. If the
primitives overlap each other at the same depth, parts of some of the primitives may
poke through other primitives, creating a stitching effect. These artifacts are caused
by unavoidable rounding in rasterization calculations, Z-buffer limitations and by
different algorithms used to rasterize different primitives.

One of the most common examples of this effect is caused by trying to draw lines"on
top" of a surface, using the same vertex data. Even though the lines may be drawn
last, the surface still pokes through the lines, leaving a stitched appearance. An
attempt to correct the situation by moving the lines up or away from the surfacein
world coordinates usually fails because rotating the abjects with atrackball or other
mechanism fails to keep the lines above the surface.

InIDL 5.5, this problem has been addressed by allowing the specification of a
DEPTH_OFFSET valuethat is used to displace polygons away from the eyein view
space as the polygons are rendered. This displacement is applied in the view, after the
model transforms have been applied. If two objects overlap at the same depth, one of
them can be rendered with a non-zero DEPTH_OFFSET to force a separation
between them in view space. For example, if one object is a set of lines, and the other

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 17

isasurface, the surface can be rendered with aDEPTH_OFFSET greater than zero to
"push” it back away from the eye and allow the lines to appear without interference
from the surface. Even if the objects are rotated with a model transform, the surface
will always be drawn slightly farther away from the eye. DEPTH_OFFSET has no
effect on the drawing order of objects, and vice-versa.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
layering complex scenes with multiple DEPTH_OFFSET values. It is safest to use
only aDEPTH_OFFSET value of 0, the default, and one other non-zero value such
as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used. This
can lead to portability problems because one set of DEPTH_OFFSET values may
produce better results on one machine as compared to another. Using IDL's
software renderer will help improve the cross-platform consistency of scenes that
use DEPTH_OFFSET.

The new DEPTH_OFFSET keyword has been added to the following methods:.

Object Class Method

IDLgrContour GetProperty

Init

SetProperty

IDLgrPolygon GetProperty

Init

SetProperty

IDLgrSurface GetProperty

Init

SetProperty

Table 1-1: Methods That Support the New DEPTH_OFFSET Keyword

Asan example, the following program displays a surface. When you run the program,
you can see the “stitching” in the surface.

What's New in IDL 5.5 Visualization Enhancements

18

Chapter 1: Overview of New Features in IDL 5.5

PRO stitch_ex

; Create data.
X = 5.*SIN(10*FINDGEN(37)*'DTOR)
y = 5.*COS(10*FINDGEN(37)*'DTOR)
data = x ## y

; Initialize model to contain surface and
; mesh.
oModel = OBJ_NEW('IDLgrModel’)

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $
STYLE = 2, COLOR = [200, 200, 200])

; Initialize mesh object.
oMesh = OBJ_NEW('IDLgrSurface', data, $
COLOR = [0, 0, Q])

; Add surface and mesh to model.
oModel -> Add, oSurface
oModel -> Add, oMesh

; Rotate model for better initial perspective.
oModel -> Rotate, [-1, 0, 1], 45

; Display model in XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
TITLE = 'Example of Line Stitching'

END

Now, modify the program to specify the DEPTH_OFFSET keyword. Change the
lines that initialized the surface object:

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $
STYLE = 2, COLOR = [200, 200, 200], DEPTH_OFFSET = 1)

Visualization Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 19

When you run the example again, you will not see the “stitching”.

Figure 1-1: Surface Without the DEPTH_OFFSET Keyword (Left) and Using the
DEPTH_OFFSET Keyword (Right)

New QUIET Keyword for RECON3

A new QUIET keyword has been added to the RECON3 functionin IDL 5.5. By
default (QUIET = 0), the RECONS3 function outputs an informational message when
the processing of each image has been completed. This keyword, when set, allows
you to suppress the output of this message.

New Keyword for Smoother Results Using WARP_TRI

The new TPS keyword to WARP_TRI uses Thin Plate Spline interpolation. The Thin
Plate Spline interpolation isideal for modeling functions with complex local
distortions, such as warping functions, which are too complex to be fit with
polynomials.

What's New in IDL 5.5 Visualization Enhancements

20

Chapter 1: Overview of New Features in IDL 5.5

Analysis Enhancements

The following enhancements have been made in the area of AnalysisinthelDL 5.5
release:

The IDL Thread Pool and Multi-Threading

New Functionality for Gridding and Interpolation

New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL
New REAL_PART Function

New ERF, ERFC, and ERFCX Functions

Support for SIMPLEX Method for Linear Programming

BESELI, BESELJ, BESELK and BESELY Functionality |mprovements
New NaN Support for SMOOTH and CONVOL

New LNORM Keyword for COND and NORM

New DOUBLE Keyword for POLY_AREA

New STATUS Keyword for POLY WA RP Support

New ACOS, ASIN, ATAN Support for Complex Input

New Minimum/Maximum Operator Support for Complex Data

New SMOOTH Function Multidimensional Width Support

New Dimension-specific Transforming for FFT

New Dimension-setting functionality for Arrays

Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

New Histogram Cumulative Probability Distribution Functionality

The IDL Thread Pool and Multi-Threading

With thisrelease, IDL for Windows and IDL for UNIX have the ahility to use
multiple threads of execution in a user transparent manner when performing some
numeric computations on multi-CPU hardware. This can greatly increase the speed at
which calculations are accomplished on large data sets; however, it can also hinder
analysistimein certain cases. Developers are able to control the default use of multi-
threading by using the |CPU system variable, the new CPU procedure, and the new
multi-threading keywords in each routine supporting multi-threading.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 21

What is Multi-Threading?

On systems equipped with multiple processors, IDL automatically evaluates the
advantages and disadvantages of using the processorsin paralel to accomplish the
calculation. Unless otherwise overridden by using the new CPU procedure to change
the new !CPU system variable, IDL may decide to perform calculations using a
thread pool for routines which support this capability. See Chapter 2, “Multi-
Threading in IDL" for a complete description of multi-threading, and alisting of all
routines currently supporting this capability.

Platform Support for Multi-Threading
IDL supports the use of the thread pool on all platforms except AlX and Macintosh.

New Functionality for Gridding and Interpolation

Four new routines have been added to the gridding and interpolation functionality in
thisrelease: GRID_INPUT, GRIDDATA, QGRID3 and QHULL.

* GRID_INPUT preprocesses and sorts two-dimensional scattered data sets, and
removes duplicate points.

» GRIDDATA interpolates data to aregular grid from scattered data values and
locations.

* QGRID3 linearly interpolates dependent variable values to pointsin a
regularly sampled volume.

* QHULL isused to construct convex hulls, Delaunay triangulations, and
Voronoi diagrams for a set of points two-dimensional or higher.

New Examples Using the AUTO_GLUE Keyword to
CALL_EXTERNAL

The IDL distribution now includes two new examples of how to use the
AUTO_GLUE keyword to the CALL_EXTERNAL function. The AUTO_GLUE
keyword, introduced in IDL 5.4, allows you to easily access routines within other
programming libraries.

Two new examples show how to use AUTO_GLUE to access routines within the
IMSL C Numerical Library. The examples are located in the examples/imsl|
directory. Thisdirectory also includes areadme.txt text file, which explains how
to use these exampl es.

These examples are implemented as IDL functions. The first example computes the
Airy function using the Visual Numerics IMSL C Numerical Library. Thisexampleis

What's New in IDL 5.5 Analysis Enhancements

22 Chapter 1: Overview of New Features in IDL 5.5

called IMSL_AIRY and isin the imsl|_airy.pro file. The second example
computes the singular value decomposition of an input array using the Visual
Numerics IMSL C Numerical Library. Thisexampleiscalled IMSL_SVDC and isin
theimsl_svdc.pro file.

New REAL_PART Function

Thenew REAL_PART function returnsthe real part of its complex-valued argument.
For more information about the new REAL_PART function, see “REAL_PART” in
Chapter 6 of this book.

New ERF, ERFC, and ERFCX Functions

The new ERF, ERFC, and ERFCX functions return the value of the error function,
the complimentary error function, and the scaled complimentary error function,
respectively. For more information about these new functions, see “ERF”, “ERFC”,
and “ERFCX” in Chapter 6 of this book.

Support for SIMPLEX Method for Linear Programming

The new SIMPLEX function uses the smplex method to solve linear programming
problems and is modeled on the simplx routine found in Numerical Recipes. For
more information about the new SIMPLEX function, see “SIMPLEX” in Chapter 6
of this book.

BESELI, BESELJ, BESELK and BESELY Functionality
Improvements

The BESEL functions now accept any order greater than or equal to zero (within
memory limitations), and also return arrays of the correct dimensions.

New NaN Support for SMOOTH and CONVOL

IDL's CONVOL and SMOOTH functions now support the handling of NaNs.

When using CONVOL and SMOQOTH, the new NAN keyword may be set to cause
the routine to check for occurrences of the |EEE floating-point value NaN in the
input data. Elements with thisvalue are treated as missing data, and are ignored when
computing the convolution for neighboring elements. In the Result, missing elements
arereplaced by the convolution of al other valid points within the kernel. If all points
within the kernel are missing, then the result at that point is given by the MISSING
keyword.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 23

New LNORM Keyword for COND and NORM

A new LNORM keyword has been added to the COND and NORM functionsin I DL
5.5. This keyword allows you choose which norm is used in the computation of the
COND and NORM functions. For NORM with avector input argument, you can
choose L, norm, L4 norm, L, norm, ..., L, norm where nis any number. The default
for vectorsis L, norm. For COND and NORM with a two-dimensional array input,
you can choose L ,, norm (the maximum absolute row sum norm), L1 norm (the
maximum absolute column sum norm), or L, norm (the spectral norm). The default
for two-dimensional arraysis L, norm.

New DOUBLE Keyword for POLY_AREA

InIDL 5.5, anew DOUBLE keyword has been added to the POLY_AREA function.
You can set this keyword to force the computation of the POLY _AREA function to
be performed using double-precision arithmetic.

New STATUS Keyword for POLYWARP Support

When calculating polynomial coefficients for 45-degree rotations with POLY WARP
certain inputs may cause singular matrices. This rarely happens with real data, but
does happen with more idealized data (such as squares or regular shapes). In thistype
of case, itisvery easy to get afailureinthe INVERT. InIDL 5.5, aSTATUS keyword
has been introduced for feedback on such rare occurrences.

New ACOS, ASIN, ATAN Support for Complex Input

InIDL 5.5, new support has been added allowing complex input to ACOS, ASIN,
and ATAN. Previoudly, the inverse transcendental functions ACOS and ASIN did not
accept complex input. The ATAN function accepted complex input, Z=X+iY; but
incorrectly converted the complex number into the 2-argument ATAN(y, X) form and
returned areal result. For ATAN, support has been added for input of two complex
arguments.

ATAN Function Support

The ATAN function now computes the complex arctangent for complex input.
Previoudly, for acomplex number Z=X+iY , internally ATAN(Z) would split Z into its
real and imaginary components and compute ATAN(Y, X). IDL code that uses this
undocumented behavior should be changed by replacing callsto ATAN(Z) with
ATAN(IMAGINARY (Z), REAL_PART(Z)).

For example, in IDL 5.4, to compute the argument (or angle) of a complex number:

What's New in IDL 5.5 Analysis Enhancements

24 Chapter 1: Overview of New Features in IDL 5.5
z = COMPLEX(2, 1)
print, ATAN(z)*180/!PI ; undocumented behavior
IDL prints:
26.5651
Now, in IDL 5.5, to compute the argument:

z = COMPLEX(2, 1)
print, ATAN(IMAGINARY(z), REAL_PART(z))*180/!PI

IDL prints:
26.5651

New Minimum/Maximum Operator Support for Complex Data

Complex data types now work with <, >, LT, LE, GT, and GE operators, utilizing the
absolute value (or modulus) for al comparisons. Behavior is unchanged for EQ and
NE.

New SMOOTH Function Multidimensional Width Support

Since SMOOTH dlows n-dimensional input arrays, IDL 5.5 now allows an n-
dimensional smoothing window (the Width input argument can now have more than
one dimension).

Example

This example shows the use of SMOOTH with the new multidimensiona width
argument on an RGB image.

; Determine the path to the file.
file = FILEPATH(rose.jpg’, $
SUBDIRECTORY = [‘examples', 'data’])

; Import in the RGB image from the file.
image = READ_IMAGE(file)

; Initialize the image size parameter.
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.

DEVICE, DECOMPOSED = 1

WINDOW, 0, XSIZE = imageSize[l], YSIZE = imageSize[2], $
TITLE = 'Original Rose Image'

; Display the original image on the left side.
TV, image, TRUE = 1

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 25

; Initialize another display

WINDOW, 1, XSIZE = 3*imageSize[l], YSIZE = imageSize[2], $
TITLE = 'Vertically Smoothed (left), Horizontally ' + $
'‘Smoothed (middle), and Both (right)'

; Smooth the RGB image in just the width dimension.
smoothed = SMOOTH(image, [1, 1, 21])

; Display the results.
TV, smoothed, 0, TRUE = 1

; Smooth the RGB image in just the height dimension.
smoothed = SMOOTH(image, [1, 21, 1])

; Display the results.
TV, smoothed, 1, TRUE = 1

; Smooth the RGB image in just the width and height dimensions.
smoothed = SMOOTH(image, [1, 5, 5])

; Display the results.
TV, smoothed, 2, TRUE = 1

New Dimension-specific Transforming for FFT

Previoudly, the FFT function accepted multi-dimensional arguments but did not allow
specification of which dimension to transform, but instead transformed along all
dimensions. Now in IDL 5.5, the new DIMENSION keyword allows you to
transform only along one dimension.

New Dimension-setting functionality for Arrays

The new DIMENSION keyword to the MIN and MAX functions alows you to set
the dimension over which to find the minimum or maximum values (respectively) of
an array of data. If not present or set to zero, the minimum or maximum
(respectively) values are found over the entire array.

Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

The IDL source code for the CLUSTER, CLUST_WTS, EIGENQL, and PCOMP
routinesis now available. They can be accessed in thelib subdirectory of the IDL
distribution in the following files: cluster.pro , clust_wts.pro ,eigengl.pro
and pcomp.pro .

What's New in IDL 5.5 Analysis Enhancements

26 Chapter 1: Overview of New Features in IDL 5.5

New Histogram Cumulative Probability Distribution
Functionality

The new FCN keyword to HIST_EQUAL and ADAPT_HIST_EQUAL allow you to
set the resulting histogram’s desired cumulative probability distribution function by
specifying a 256 element vector. |f omitted, alinear ramp, which yields equal
probability binswill result. This function is later normalized, so magnitude is not
important, though it should increase monaotonically.

Analysis Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

Language Enhancements

27

The following enhancements have been made in the area of Languageinthe IDL 5.5
release:

Maximum String Length Limit Increased for 32-Bit IDL
New MESSAGE Keywords and Message Block Support
Relaxed Formatted I nput/Output Record Length Limits
New and Enhanced File Handling Routines

New Functionality Frees Dynamic Resources

New Ability to Check for Keyword Inheritance Errors
Enhancements to IDL Path Expansion

New Support for REFORM-Style Dimension Array
New DOUBLE Keyword for COMPLEX

New CENTER Keyword for CONGRID

New SIGN Keyword for FINITE

Improvements to Files Created with SAVE
Improvementsto UNIX Filename Expansion

Pre-IDL 4.0 C Internals Compatibility Library Removed

Maximum String Length Limit Increased for 32-Bit IDL

Prior to IDL 5.5, 32-bit IDL had a maximum string length limit of 64K (65534

characters) while 64-bit IDL allowed stringsto be up to 2.1GB (2147483647
characters) in length. With IDL 5.5, thislimit has been raised to 2.1GB for both types
of IDL.

New MESSAGE Keywords and Message Block Support

The new message block support in IDL 5.5 allows the MESSA GE routine to issue

any IDL error instead of the single IDL_M_USER_ERR message previously

supported. IDL printf

printf

What's New in IDL 5.5

-style formatting is supported, using the printf
formatting added to explicit formatting in IDL 5.4. For more information on the

-style

-styleformatting, see“C printf -Style Quoted String Format Code” on page
187 of the Building I DL Applications manual.

Language Enhancements

28

Chapter 1: Overview of New Features in IDL 5.5

Two new procedures have been added in IDL 5.5 to further provide message block
support: the DEFINE_MSGBLK and DEFINE_MSGBLK_FROM _FILE
procedures. These new procedures alow the user to define new message blocks
within large applications built on IDL which must manage their own errors. When a
message block isloaded, the messages can be issued to the user-level using the
BLOCK and NAME keywords to the MESSAGE procedure.

The MESSA GE procedure has been changed by implementing three new keywords:
BLOCK, LEVEL, and NAME to allow you to issue any IDL error.

Example Using MESSAGE (Pre-IDL 5.5)

In previousreleases of IDL, messages were issued by programs using the MESSAGE
procedure. The following simple program illustrates how this was done.

This program randomly chooses a number between 0 and 10. It outputs that number
to let you know if the messages from your guesses are correct. Then, the program
prompts the user to guess the number. If the user’s guessis|lower than the number,
the message “Too Low!” appearsin the Output Log. If the user’s guessis higher than
the number, the message “Too High!” appearsin the Output Log. And if the user
guesses the number correctly, the message tells the user their guessis correct.

PRO guessANumber
; Derive a number in-between 0 and 10.
number = LONG(10.*RANDOMU(seed, 1))
; Output the number.
PRINT, *
PRINT, 'The number is ' + STRTRIM(number, 2) + "'
; Initialize variable as a float-point value outside
; of the 0 to 10 range.
guess = -1.
; Loop over guesses until the correct number is inputed.
WHILE (number[0] NE ROUND(guess)) DO BEGIN
; Prompt user to guess.
PRINT, *
READ, guess, $
PROMPT = 'Guess a number between 0 and 10: '
; Output whether user is below or above the
; correct number.
PRINT, “
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $
'Too Low!, /INFORMATIONAL, /NONAME
IF (number[0] LT ROUND(guess)) THEN MESSAGE, $
'Too High!, /INFORMATIONAL, /NONAME
; Loop until correct number is inputed.
ENDWHILE

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 29

; Output correct number.

MESSAGE, STRTRIM(number[0], 2) + ' is the number!, $
/INFORMATIONAL, /NONAME

END

New Message Block Support in IDL 5.5

The same example program in IDL 5.5 can now use the new message block support.
In the two examples that follow, you will see how to use the DEFINE_MSGBLK and
the DEFINE_MSGBLK_FROM_FILE procedures, respectively to improve the guess
anumber program.

M essage blocks can be defined for an IDL session, or in amain routine of an
application using the DEFINE_M SGBLK procedure. For large message blocks, it
may be easier to maintain a message text file and accessit using the
DEFINE_MSGBLK_FROM_FILE procedure.

These exampl es establish message blocks for the IDL session. The message blocks
are defined from the IDL command line. If you were using either of these procedures
in an application, you would define the message block within the main routine of the
application, instead from the IDL command line.

DEFINE_MSGBLK Example

This example uses the same program as before with afew modifications. For this
exampl e the message block is defined using the DEFINE_M SGBLK procedure
entered at the IDL command line.

The program must first be modified as follows before defining the new message
block asfollows.

PRO guessANumber

; Derive a number in-between 0 and 10.

number = LONG(10.*RANDOMU(seed, 1))

; Output the number.

PRINT, ™

PRINT, "The number is " + STRTRIM(number, 2) + ""

; Initialize variable as a float-point value outside

; of the 0 to 10 range.

guess = -1.

; Loop over guesses until the correct number is inputed.

WHILE (number[0] NE ROUND(guess)) DO BEGIN
; Prompt user to guess.
PRINT, ™

READ, guess, $
PROMPT = "Guess a number between 0 and 10: "
; Output whether user is below or above the correct
; number.

What's New in IDL 5.5 Language Enhancements

30

Chapter 1: Overview of New Features in IDL 5.5

PRINT, ™
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $
BLOCK = "GUESSING", NAME = "GUESS_MSG_LOW", $
/INFORMATIONAL
IF (number[0] LT ROUND(guess)) THEN MESSAGE, $
BLOCK = "GUESSING", NAME = "GUESS_MSG_HIGH", $
/INFORMATIONAL
; Loop until correct number is inputed.
ENDWHILE
; Output correct number.
MESSAGE, STRTRIM(number[0], 2), BLOCK = "GUESSING", $
NAME = "GUESS_MSG_CORRECT", /INFORMATIONAL
END

Now define the message block (named GUESSING) to associate the message “Too
Low!” with the name GUESS_MSG_L OW, the message “Too High!” with the name
GUESS MSG_HIGH, and the message “%s is the number” with the name
GUESS _MSG_CORRECT by entering the following lines of code at the command
line.

name = ['LOW", "HIGH", "CORRECT"]

format = ["Too Low!", "Too High!", "%s is the number!"]
These names and formats are now used to create the message block using the new
DEFINE_MSGBLK procedure as follows.

DEFINE_MSGBLK, "GUESSING", name, format, PREFIX = "GUESS_MSG_"

The message block has now been established for the remainder of the IDL session.
Now when you run the program, this message block supplies the messages as needed.
Once the message block is defined, it exists for the entire session.

Example Using DEFINE_MSGBLK_FROM_FILE

This example uses the same message block but defines it as a separate message text
file rather than entering it at the IDL command line.

Note
Since the same block of messages is used, exit out of IDL before continuing with

this example.

For this example, create a message text file by opening anew filein atext editor.
Copy and paste the following text into that file:

@IDENT GUESSING
@PREFIX GUESS_MSG_

@ LOW "Too Low!"
@ HIGH "Too High!"
@ CORRECT "%s is the number!"

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

Save thisfile as guessANumber.msg inyour IDL working directory.

Start up IDL. At the IDL command line define the message block with the
DEFINE_MSGBLK_FROM_FILE procedure:

DEFINE_MSGBLK_FROM_FILE, "guessANumber.msg"

Now you can run the previous example program to see the messages applied using
the new DEFINE_MSGBLK_FROM_FILE procedure.

Relaxed Formatted Input/Output Record Length Limits

Severa IDL record length limits have been relaxed in IDL 5.5.

The 32K limit for default or explicitly formatted Input/Output has been
removed. Now, the only limit on the length of alineis the maximum length
allowed in an IDL string variable (2.1GB).

The A format code used to require that the width parameter be in the range
(1 < w < 256). This requirement has been relaxed to (1 < w).

TheA,F, D,E G, 0O, Z, X, C(), and open parenthesis (format codes all
allow you to specify arepetition count, n, controlling how many times each
format element is processed before moving on to the next format element.
Previous versions of IDL required this repetition count to fall in the range
(1< n<32767). Thisrequirement has been relaxed to (1 < n).

TheT, TL, and TR format codes al require a parameter n, that specifies the
column to moveto, either directly or as an offset, depending on the format
code used. Previous versions of IDL required that n be in the range

(1< n<32767). Thisreguirement has been relaxed to (1 < n).

New and Enhanced File Handling Routines

The following table describes new and enhanced routinesin IDL 5.5 that improve
IDL’s ability to perform file handling operations:

New/Enhanced Routine Description

FILE_CHMOD New NOEXPAND_PATH keyword allows you to

use File exactly as specified, without applying the
usual file path expansion.

What's New in IDL 5.5

Table 1-2: New File Handling Routines in IDL 5.5

Language Enhancements

32

Chapter 1: Overview of New Features in IDL 5.5

New/Enhanced Routine

Description

FILE_DELETE

New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_INFO

The new FILE_INFO function provides file status
information based on a filename, without opening
thefile. Thisdiffersfrom FSTAT because FSTAT
requires the file to be open, and much of the
information FSTAT providesisonly relevant for
openfiles. FILE_INFO returnsfile access, type, and
size information, and together with FSTAT and
FILE_TEST, provides acomplete set of file query
operationsin IDL. See “FILE_INFO” in Chapter 6
for more information.

FILE_MKDIR

New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_SEARCH

The new FILE_SEARCH function returns a string
array containing the names of all files matching the
input path specification. Input path specifications
may contain wildcard characters, enabling them to
match multiple files. All matched filenames are
returned in a string array, one file name per array
element. In comparison to the existing FINDFILE
function, FILE_SEARCH is more powerful and
provides full cross-platform compatibility. See
“FILE_SEARCH?” in Chapter 6 for more
information.

Note - Research Systems strongly recommends the
FILE_SEARCH function be used rather than the
FINDFILE function. FILE_SEARCH isintended as
areplacement for FINDFILE.

FILE_TEST

New NOEXPAND_PATH keyword which allows
you to use File exactly as specified, without
applying the usua file path expansion.

Table 1-2: New File Handling Routines in IDL 5.5 (Continued)

Language Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 33

New Functionality Frees Dynamic Resources

The HEAP_FREE routine recursively frees al heap variables associated with the
argument which is passed to the routine. This routine will examine the variable data,
traversing arrays and structures, pointer, and object references. When an object value
is encountered, it is released using the OBJ_DESTROY routine. When a pointer
value is encountered, its contents are scanned, freeing any dynamic resources, and
then the pointer itself isreleased using the PTR_FREE routine.

HEAP_FREE may be used:

» Torelease the dynamic resources contained in a structure returned from the
GetRecord method of an IDL dbRecordset object.

» Torelease any dynamic resources associated with an event generated by an
ActiveX control that isembedded in an IDL Widget hierarchy using
Widget_ActiveX().

However, HEAP_FREE does have some disadvantages, see “HEAP_FREE” in
Chapter 6 for more information.

New Ability to Check for Keyword Inheritance Errors

When passing inherited keywords to aroutine, the_ EXTRA keyword quietly ignores
any keywords not accepted by the routine you are calling. Although thisis often the
desired behavior, this can alow incorrect usage to go undetected under some
circumstances. For example, consider the following two routines:

PRO PRINT_HELLO_WORLD, UPCASE = upcase
PRINT, KEYWORD_SET(upcase) ? 'Hello World!" : 'Hello World"
END

PRO HELLO_WORLD, number, _[EXTRA = extra
FOR | = 1, number DO PRINT_HELLO_WORLD, _EXTRA = extra
END

This generally works as desired, but will not report an error for any inherited
keywords that are not understood by the PRINT_HELLO_WORLD procedure. For
example, if you called the HELLO_WORLD procedure using a non-existent
keyword (LOWCASE), the routine would quietly ignore the incorrect usage:

HELLO_WORLD, 2, /LOWCASE
You would receive the results:
Hello World!

What's New in IDL 5.5 Language Enhancements

34

Chapter 1: Overview of New Features in IDL 5.5

Also, if you called the HELLO_WORLD procedure with the following (notice that
the UPCASE keyword is misspelled):

HELLO_WORLD, 2, /UCASE

You would receive the same results as the previous exampl e since the incorrect
keyword would be quietly ignored.

Thenew _STRICT_EXTRA keyword restricts the use of keywords not accepted by
the routine you are calling. You can use this keyword to provide error checking. For
example, if you changed the _EXTRA keyword to the _STRICT_EXTRA keyword
inthe HELLO_WORLD procedure:

FOR | = 1, number DO PRINT_HELLO_WORLD, _STRICT_EXTRA = extra
and run the example again:
HELLO_WORLD, 2, /UCASE
You would receive the following error message:
% Keyword UCASE not allowed in call to: PRINT_HELLO_WORLD

Enhancements to IDL Path Expansion

The following enhancements have been made to the expansion of the IDL_PATH,
IDL_DLM_PATH, and IDL_HELP_PATH environment variables. IDL expandsthese
variables when they are translated at startup time.

« Using<IDL_BIN_DIRNAM E>— When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_BIN_DIRNAME> with the name
of the subdirectory within the installed IDL distribution where binaries for the
current system are kept. This feature is useful for distributing packages of
Dynamically Loadable Modules (DLMs) with support for multiple operating
system and hardware combinations.

For example, on UNIX, assume that you have your DLMsinstaled in
{ust/local/mydim , with support for each platform in a subdirectory using
the same naming convention that IDL uses for the platform dependant
subdirectories underneath the bin directory of the IDL distribution. The
following line, which might be located in afile executed by your shell when
you login (your .cshrc or .login file) will add the location of the proper
DLM for your current system to IDL's!DLM_PATH at startup:

% setenv IDL_DLM_PATH "/usr/local/mydim/<IDL_BIN_DIRNAME>
:<IDL_DEFAULT>"

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 35

On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

Using <IDL_VERSION_DIRNAME> — When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_VERSION_DIRNAME> with a
unique name for the IDL version that is currently running. This feature can be
combined with <IDL_BIN_DIRNAME> to easily distribute packages of
DLMswith support for multiple IDL versions, operating systems, and
hardware platforms.

For example, on UNIX, assume that you have your DLMsinstaled in
{ust/local/mydim . Within the mydim subdirectory would be adirectory for
each supported version of IDL. Within each of those subdirectorieswould be a
subdirectory for each operating system and hardware combination supported
by that version of IDL. The following line, which might be located in afile
executed by your shell whenyou login (your .cshrc or .login file) will add
the location of the proper DLM for your current systemto IDL's'DLM_PATH
at startup:

% setenv IDL_DLM_PATH
"/usr/local/mydim/<IDL_VERSION_DIRNAME>/
<IDL_BIN_DIRNAME>:<IDL_DEFAULT>"

On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

New Support for REFORM-Style Dimension Array

The REFORM functionin IDL allowsyou to specify the resulting dimensions (the D;
argument) of an array as separate arguments, or as a single array argument containing
the dimensions. For example, if avariable, a, isdefined asa20 x 10 x 5 array:

a = FINDGEN(20, 10, 5)

Then,

b
b

the following statements are equivalent:

REFORM(a, 200, 5)
REFORM(a, [200, 5])

What's New in IDL 5.5 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 5.5

This syntax, which was unique to REFORM, allows code to easily handle data of
arbitrary dimensionality. IDL 5.5 extends this notation to the following routines that
accept dimension arguments:

Note

BINDGEN FLTARR REFORM
BYTARR INDGEN REPLICATE
BYTE INTARR SHIFT
CINDGEN L64INDGEN SINDGEN
COMPLEX LINDGEN STRARR
COMPLEXARR LONG64ARR UINDGEN
DBLARR LONARR UINT
DCINDGEN LONG UINTARR
DCOMPLEX LONG64 ULG4INDGEN
DCOMPLEXARR MAKE_ARRAY ULINDGEN
DINDGEN OBJARR ULONG4ARR
DOUBLE PTRARR ULONARR
FINDGEN RANDOMN ULONG

FIX RANDOMU ULONG64
FLOAT REBIN

The SHIFT function accepts shift parameters (S; arguments), and not dimensions
(D; argument), but the syntax is identical.

New DOUBLE Keyword for COMPLEX

A new DOUBLE keyword has been added to the COMPLEX functionin IDL 5.5.
You can set this keyword to return a double-precision complex result. Thisis
equivalent to using the DCOMPLEX function. This keyword is provided as a
programming convenience.

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 37

New CENTER Keyword for CONGRID

A new CENTER keyword has been added to the CONGRID functionin IDL 5.5. If
you set thiskeyword, the interpolation is shifted so that pointsin the input and output
arrays are assumed to lie at the midpoint of their coordinates rather than at their
lower-left corner.

New SIGN Keyword for FINITE

A new SIGN keyword has been added to the FINITE function in IDL 5.5. You can
use this keyword with the INFINITY and NAN keywords to determineis an infinite
or NaN valueis positive or negative. By default (SIGN = 0), the FINITE function
ignores the sign of infinite and NaN values.

Improvements to Files Created with SAVE

With IDL 5.4, Research Systems released a version of IDL that was 64-bit capable.
Theoriginal IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-
bit memory access, the IDL SAVE/RESTORE file format was modified to allow the
use of 64-bit offsetswithin the file, while retaining the ability to read old filesthat use
the 32-bit offsets.

The SAVE command always begins reading any .sav file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

* InIDL versions capable of writing large files
('VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

» SAVE always starts reading any .sav file using 32-bit offsets. If it sees the 64-
bit offset command, it switches to 64-bit offsets for any commands following
that one.

This configuration is fully backward compatible, in that any IDL program can read
any .sav fileit has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
fileswritten by newer IDL versionsto sites where they are restored by older versions
of IDL (that is new files being input by old programs). It is not generally reasonable
to expect this sort of forward compatibility, and it does not fit the usual definition of
backwards compatibility. Research Systems has always strived to maintain this
compatibility. However, in IDL 5.4 this was not the case. The following steps have

What's New in IDL 5.5 Language Enhancements

38 Chapter 1: Overview of New Features in IDL 5.5

been taken in IDL 5.5 to minimize the problemsthat have been caused by the IDL 5.4
save format:

* 64-bit offsets encoding has been improved. The .sav files written within IDL
5.5 and subsequently should be readable by any previousversion of IDL, if the
file datadoes not exceed 2.1 GB in length.

* |IDL 5.5 and subsequent versions will retain the ability to read the 64-bit offset
files produced by IDL 5.4.x, thus ensuring backwards compatibility.

» The.sav fileswritten within IDL 5.5 or subseguent versions, which contain file
data exceeding 2.1GB in length are not readable by older versions of IDL, but
will be readable by IDL 5.5 and subseguent versions of IDL that have
IVERSION.MEMORY_BITS equal to 64.

* The CONVERT_SR54 procedure, apart of the IDL 5.5 user library, can be
used to convert .sav fileswritten within IDL 5.4 into the newer IDL 5.5 format.
This alows existing data files to become readable by previous IDL versions.
The CONVERT_SR54 procedure islocated in the
RSI-Directory/lib/obsolete

Improvements to UNIX Filename Expansion

IDL for UNIX expands wildcard characters within file namesin executive commands
(such as .compile and .run) and in routines that accept file names as arguments (such
as OPEN, FILE_TEST, FILE_INFO, and so on). Previousto IDL 5.5, this expansion
was done by a child process running the C-shell (/bin/csh). Now, this expansion is
done by IDL's internal file searching engine, which is also the heart of the new
FILE_SEARCH function. The wildcard characters accepted remain the same (~, *, ?,
[1,{}, and environment variables), and any change should be negligible. However,
expansion of C-shell variables such as $path or $shell are no longer expanded.
Instead, they are treated as environment variables, and since most environments do
not contain lower-case names, they expand to null replacement text. In this case, the
desired effect can usually be obtained by instead using the equivalent environment
variables (for example $SHELL, or $PATH).

Pre-IDL 4.0 C Internals Compatibility Library Removed

The sharable library libobsolete.so (known as libobsolete.a under AlX, and
libobsolete.d under HP-UX) has been removed from IDL. This library, which first
appeared within IDL 4.0, supplied implementations of the older non-IDL _ prefixed
IDL internal API (application programming interface) written in terms of the API
documented in the IDL External Development Guide.

Language Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 39

Historical Note: IDL 4.0 (released in 1995) offered Callable IDL, which allows IDL
to be called from other compiled programs. From that time, the names of al
externally visible functions and data structures have had astandard IDL_ prefix. This
prevented internal IDL names from conflicting with namesin the calling user
program. In order to ease the transition for UNIX and VMS customers with existing
code, asharable library (libobsolete.so for UNIX, and OBSOLETE.EXE for VMS)
was included in the bin subdirectory that contained an implementation of the old non-
prefixed APl written in terms of the new. This code consists largely of functionswith
the old names each making a single call to the corresponding function in the IDL
sharable library. It has always been recommended that user code be revised to utilize
the newer supported API instead of the older API. For atime however, the option of
linking against libobsol ete has been available during the transition. The amount of
code which relied on thislibrary has never been large, and after six years, any code
that relied on this library should have had ample time to be converted to the new
prefixed API. Therefore, the obsolete library is no longer included in the IDL
distribution. If you have existing code that relies on thislibrary, it is recommended
that it be converted to the supported version of the API, as documented in the
External Development Guide.

What's New in IDL 5.5 Language Enhancements

40 Chapter 1: Overview of New Features in IDL 5.5

User Interface Toolkit Enhancements

The following enhancements have been made in the area of the User Interface Toolkit
inthe IDL 5.5 release:

* New COM and ActiveX Functionality for IDL

« New Shortcut Menu Widget

e Emulating System Colorsin Application Widgets

* New Functionality to Specify Slider Incrementsin IDL Widgets

New COM and ActiveX Functionality for IDL

IDL for Windows now supports the use of COM objects. COM (Component Object
Model) objects, regardless of type or method of creation, are treated as IDL objects.
There are two main uses for COM functionality in IDL:

e Using the IDLcomlDispatch object to instantiate a desired COM object by
using a provided class or program ID. This method isideal for COM objects
that do not utilize a graphical-user interface.

* Usingthe WIDGET_ACTIVEX function to embed an ActiveX control in an
IDL widget hierarchy.

The primary differencesin IDL between using |DLcomlDispatch-based objects and
using an ActiveX control are the methods by which they are created and managed.
These methods of creation and management as well as more in-depth information on
COM objects are detailed in Chapter 3, “Using COM Objectsin IDL".

New Shortcut Menu Widget

InIDL 5.5 for Windows and IDL 5.5 for UNIX, a shortcut menu widget (otherwise
known as a context sensitive or pop-up menu) has been added to enhance the IDL
widget system. These menus are available for:

» Basewidgets
e Text widgets
o Draw widgets
e Listwidgets

User Interface Toolkit Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 41

An example of a shortcut menu widget is shown in the following figure.

Figure 1-2: Shortcut Menu Widget

For more information, see Chapter 4, “Using the Shortcut Menu Widget”.
Emulating System Colors in Application Widgets

A new SY STEM_COL ORS keyword has been added to the WIDGET_INFO routine
for the Windows and UNIX operating systems. This hew keyword enables an
application developer to determine what colors are used in IDL application widgets
so they can design widgets for their application with the same look and feel asthe
supplied IDL widgets.

The WIDGET_SYSTEM_COLORS Structure

When the new SY STEM_COL ORS keywordisusedin aWIDGET_INFO call witha
valid IDL widget identifier, an IDL structure isreturned. The

WIDGET_SY STEM_COLORS structure contains 25 fields holding the 3 element
vector values for the corresponding RGB colors. The vector elements range between
0 and 255 or are assigned a value of —1 if unavailable. The field names and meaning
on the Windows and UNIX operating systems are shown in the following table.

Field Names Windows Platform UNIX Platform
DARK_SHADOW_3D Dark shadow color for | N/A
3D display elements.
FACE_3D Face color for 3D Base background
display elements and color for al widgets.
dialog boxes.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields

What's New in IDL 5.5 User Interface Toolkit Enhancements

42

Chapter 1: Overview of New Features in IDL 5.5

Field Names

Windows Platform

UNIX Platform

LIGHT_EDGE_3D

Highlight color for 3D
edges that face the light
source.

Color of top and left
edges of 3D widgets.

LIGHT_3D Light color for 3D Color of highlight
display elements. rectangle around
widgets with the
keyboard focus.
SHADOW_3D Coalor for 3D edgesthat | Color of bottom and
face away fromthelight | right edges of 3D
source. widgets.
ACTIVE_BORDER Activewindow’s border | Push button

color.

background color
when button is armed.

ACTIVE_CAPTION

Active window’s

N/A

caption color.
APP_WORKSPACE Background color of N/A
MDI applications.
DESKTOP Desktop color. N/A

BUTTON_TEXT

Text color on push
buttons.

Widget text color.

CAPTION_TEXT

Coalor of text in caption,
size box, and scroll bar
arrow box.

Widget text color.

GRAY _TEXT Color of disabled text. N/A
HIGHLIGHT Coalor of item(s) Toggle button fill
selected in awidget. color.
HIGHLIGHT _TEXT Coalor of text of item(s) | N/A
selected in awidget.
INACTIVE_BORDER Inactive window’s N/A

border color.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)

User Interface Toolkit Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

43

Field Names

Windows Platform

UNIX Platform

INACTIVE_CAPTION Inactive window’s N/A
caption color.
INACTIVE_CAPTION_TEXT | Inactive window’s N/A
caption text color.
TOOLTIP_BK Background color for N/A
tooltip controls.
TOOLTIP_TEXT Text color for tooltip N/A
controls.
MENU Menu background color. | N/A
MENU_TEXT Menu text color. N/A
SCROLLBAR Coalor of scroll bar Color of scroll bar
13 gray” ar%. 13 grwﬂ area
WINDOW_BK Window background Base background
color. color for al widgets.

WINDOW_FRAME

Window frame color.

Widget border color.

WINDOW_TEXT

Text color in windows.

Widget text color.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)

Note

Thisfeatureis currently not available on the Macintosh platform.

New Functionality to Specify Slider Increments in IDL
Widgets

The WIDGET_SLIDER and CW_FSLIDER widgetsin IDL for Windows and
Macintosh have right and left arrow buttons that increment the sliders. In IDL 5.5,
you may how specify the amount the slider isincremented when the arrow buttons
are pressed. The SCROLL keyword to WIDGET_SLIDER (increments by integer
values) and CW_FSLIDER (increments by floating point/decimal values) now causes
the dider to be incremented by the correct amount each time the slider arrows are
pressed.

What's New in IDL 5.5 User Interface Toolkit Enhancements

44 Chapter 1: Overview of New Features in IDL 5.5

File Access Enhancements

The following enhancements have been made in the area of File Accessin the IDL
5.5 release:

* New PATH_SEP Function
* Enhanced TIFF Support
* New Support for MrSID

New PATH_SEP Function

The new PATH_SEP function returns the proper segment separator character in the
file path for the current operating system. Thisisthe same character used by the host
operating system for delimiting subdirectory namesin a path specification. This new
function enables code to be more flexible and portable as opposed to hardwiring the
separatorsin the code.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
path_sep.pro inthelib subdirectory of the IDL distribution.

Enhanced TIFF Support

Enhanced Support for 1-bit and 4-bit TIFF Images

IDL 5.5 now supports reading and writing 1-bit (black and white) and 4-bit TIFF
files. The WRITE_TIFF procedure can write TIFF files with one or more channels,
where each channel can contain 1, 4, 8, 16, or 32-bit integer pixels, or floating-point
values. For black and white images, writing out the image as a 1-bit TIFF will take
approximately 1/8 of the disk space compared to an 8-bit grayscale image. For 4-bit
images (pixel values 0 through 15), writing out the image as a 4-bit TIFF will take
approximately 1/2 the disk space compared to an 8-bit grayscale image.

File Access Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 45

New Returned Information for TIFF Queries

The Info argument to QUERY _TIFF returns an anonymous structure containing
information about the image in the file. In IDL 5.5 the following new QUERY _TIFF
fields have been added:

Field IDL data type Description

BITS PER_SAMPLE | Long This new field indicates the number of
bits per sasmple or channel. Possible
valuesare 1, 4, 8, 16, or 32.

ORIENTATION Long This new field indicates image
orientation (by columns and rows):

» 1=Lefttoright, top to bottom
(default)

* 2 =Right to |eft, top to bottom
» 3 =Right to left, bottom to top
» 0or 4 = Léeft to right, bottom to top
» 5=Top to bottom, left to right
* 6 =Top to bottom, right to left
» 7 =Bottom to top, right to left
» 8= Bottom to top, left to right

PLANAR_CONFIG Long This new field indicates how the
components of each pixel are stored.
Possible values are:

» 0= Pixel interleaved RGB image or
atwo-dimensional image (no
interleaving exists). Pixel
components (such as RGB) are
stored contiguously.

* 2 =Image interleaved. Pixel
components are stored in separate
planes.

Table 1-4: QUERY _TIFF Routine Info Structure Fields

What's New in IDL 5.5 File Access Enhancements

46

Chapter 1: Overview of New Features in IDL 5.5

Field

IDL data type

Description

PHOTOMETRIC

Long

Thisnew field indicates the color model
used for the image data. Possible values
are:

e 0=Whiteiszero

e 1=Blackiszero

e 2=RGB color model

» 3 = Palette color model
* 4 = Transparency mask

e 5= Separated (usualy CMYK -
cyan-magenta-yellow-black)

RESOLUTION

Float array

This new field is a two-element vector
[x resolution, y resolution] giving the
number of pixels per resolution unit in
the width and height directions.

UNITS

Long

This new field is used to indicate the
units of measurement for
RESOLUTION:

e 1=Nounits
» 2 =Inches (the default)
e 3= Centimeters

TILE_SIZE

Long array

This new field is used for images stored
in separate tiles. Thisis atwo-element
vector [tilewidth, tile height] giving the
width and height of each tile. For non-
tiledimagesthe TILE_SIZE will contain
[Image width, 1].

Table 1-4: QUERY _TIFF Routine Info Structure Fields (Continued)

Improved TIFF Orientation Functionality

InIDL 5.5, anew ORIENTATION keyword has been added for WRITE_TIFF as
well asfor READ_TIFF. The ORIENTATION keyword is set to indicate the
orientation of the image with respect to the columns and rows of Image. This
ORIENTATION keyword replaces the Order argument to WRITE_TIFF and the

File Access Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 a7

ORDER keyword to READ_TIFF which are now both obsolete. Code that uses the
Order argument or ORDER keyword will continue to work as before, but new code
should use the ORIENTATION keyword.

New Unit-setting Functionality for WRITE_TIFF

The new UNITS keyword to WRITE_TIFF can be set to indicate the units of the
XRESOL and YRESOL keywords (which define the horizontal and vertical
resolutions). Possible values are; 1 = No units, 2 = Inches (the default), or

3 = Centimeters.

New Support for MrSID

InIDL 5.5 for Windows, functionality has been added for MrSID. The MrSID
(Multi-Resolution Seamless Image Database) file format is a wavelet compressed,
multi-resol ution raster image format. The multi-resolution nature of the format
allows the image to be opened using sel ective decompression with only the required
portion of an image being opened at once. Using this method, the image may be
viewed at the highest detail while never being fully decompressed. The memory
requirements and time delays associated with opening a full image into memory are
thus avoided, and an image, irrespective of size, may be viewed quickly at any
resolution. IDL 5.5 now provides support for MrSID through use of the IDLffMrSID
object and through the READ_MRSID and QUERY _MRSID methods. The
IDLffMrSID object encapsulates all functionality that is required to access MrSID
files.

For more information on the new IDLffMrSID class, see Chapter 5, “New Objects”.

What's New in IDL 5.5 File Access Enhancements

48 Chapter 1: Overview of New Features in IDL 5.5

Development Environment Enhancements

Improved Project Exporting

IDL 5.5 for Windows features enhanced project exporting capabilities. The export
feature assists users in packaging up their IDL programs for distribution.

Export Files E3 |
=-[# bin = Add
1-[F] bin=86
= D Bemove |
=B Rsl
=[] IDL55 ﬂl
=[] examples
e
[l Ex_Contes
=[] resource
- bitmaps
= colars
[colors1 thl
[readme. bt
=[] fonts
[hershl.chr (I
-0 ps
= O _ O |

.l readme bt hd
4 | k Cancel

Figure 1-3: The New Export Files Dialog

For more information on this feature and how to export and distribute an IDL
application, contact your RSI sales representative.

Development Environment Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 49

Scientific Data Formats Enhancements

Enhancements have been made to the following Scientific Data Formatsin the IDL
5.5 release:

« HDF-EOS Data Output Enhancements
« New HDF Vdata Attribute Routines

HDF-EOS Data Output Enhancements

IDL HDF-EOS routines now consistently handle the array ordering between IDL and
C used by the HDF-EOS library routines. In addition, dimension size vectors and
dimension name lists are also now in IDL order rather than in C order. This was done
so that IDL order is maintained in the reading and writing of data arrays with the
HDF-EOS routines.

Enhanced routines include:

EOS_SW_DEFDATAFIELD EOS_GD_DEFFIELD
EOS_SW_DEFGEOFIELD EOS _GD_DEFTILE
EOS_SW_EXTRACTPERIOD EOS_GD_READFIELD
EOS_SW_EXTRACTREGION EOS_GD_READTILE
EOS_SW_PERIODINFO EOS_GD_REGIONINFO
EOS_SW_READFIELD EOS_GD_TILEINFO
EOS_SW_REGIONINFO EOS_GD_WRITEFIELD
EOS_SW_WRITEDATAMETA EOS_GD_WRITEFIELDMETA
EOS_SW_WRITEFIELD EOS_GD_WRITETILE

EOS_SW_WRITEGEOMETA

Note
For the EOS_GD_READFIELD, EOS_SW_READFIELD,
EOS GD_WRITEFIELD, and EOS_SW_WRITEFIELD routines, the START,
STRIDE, and EDGE keywords should &l so be specified in the IDL dimension order.

What's New in IDL 5.5 Scientific Data Formats Enhancements

50 Chapter 1: Overview of New Features in IDL 5.5

Note
EOS GD_INQDIMS and EOS_SW_INQDIMS return dimension size and name
information without consideration of order.

Note
Programs written with previous versions of the IDL HDF-EOS routines may have
been created to intentionally compensate for the previous behavior. Due to the
array-handling enhancementsin IDL 5.5, this work-around may now generate
incorrect results.

New HDF Vdata Attribute Routines

New IDL versions of the HDF vdata attribute routines have been created. HDF has
seven routines dealing with vdata attributes, whose functionality have been built into
five new IDL routines. Vdata attributes are scalars, vectors or strings and can be
associated with avdata (like adatatable) or with a specific field (column of the table)
in avdata. These new IDL routines are:

» HDF_VD_ATTRSET - Creates an attribute for a given vdata or vdata/field
pair.

» HDF_VD_ATTRINFO - Getsinformation about a particular vdata attribute,
including its value(s).

« HDF_VD_ATTRFIND - Returns the attribute index number for agiven
attribute name.

» HDF_VD_NATTRS - Returns the number of attributes associated with avdata
or avdata/field pair.

e HDF_VD_ISATTR - Indicates whether the specified vdatais being used to
store an attribute (in HDF, HDF structures are used to store internal HDF
information).

Scientific Data Formats Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 51

IDL ActiveX Control Enhancements

IDL 5.5 includes anew version of the IDLDrawX ActiveX control. The control is
now named IDLDrawX3. This control has added a method to allow specification of
IDL_Init options for use in developing external applications.

Why Was a New Version of the Control Created?

One of the features of COM s that interfaces areimmutable. That is to say that when
an interface is created you “ contractually” agree that the interface won't change.
Changesrequire that anew interface (or version) be created. Since the IDL ActiveX
control isa COM object it is bound by this agreement. Because we have made
improvements to the ActiveX control interface by adding new methods and
properties, it was hecessary that we create a new ActiveX control with the new
interface.

What Must You Change to Take Advantage of the Control?

If you are aVisual Basic user, you need to add the “IDLDrawX3 ActiveX Control
Module” to your project and remove the “IDLDrawX ActiveX Control Modul€” or
“IDLDrawX?2 ActiveX Control Module” from your project. The source code need not
change.

What About the Previous ActiveX Control?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, itisno longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

Why Should You Upgrade?

The new control has a number of new features including printing support, dua
interface control, and new memory improvements. Therest of this section details the
improvements in the new version of the IDL ActiveX control.

What's New in IDL 5.5 IDL ActiveX Control Enhancements

52 Chapter 1: Overview of New Features in IDL 5.5

IDL DataMiner Enhancements

InIDL 5.5, the ODBC support for IDL DataMiner has been upgraded. This upgrade
affects the following platforms:

» Solaris (Sparc base platforms)

« AIX

* HP-UX

* Windows

* Linux (new platform support), see “Platform Specific Information” for more

information.

Other supported platforms remain at the current level of ODBC support. These
platforms are:

* MacOS

* SGIIRIX

Platform Specific Information

ODBC drivers are installed with IDL if you have selected the IDL DataMiner option.
For more information on installing IDL, see the Installing and Licensing IDL 5.5
manual .

For more information on specific platform requirements, issues, and how to
configure the ODBC driver for use with your database, see the Merant DataDirect
Connect ODBC Reference manual.

e For IRIX and Macintosh, see the 3.11 version of the DataDirect Connect
ODBC Reference manual.

» For al other platforms, seethe 3.7 version of the DataDirect Connect ODBC
Reference manual. Both manuals are located in the info/docs/odbc
directory of your product CD-ROM.

Thefollowing table describes the driversthat areincluded with and supported by IDL
DataMiner:

IDL DataMiner Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

Note

53

The following table is for support of ODBC drivers on specific platforms, which
maybe different from support of IDL 5.5 (including IDL DataMiner) on specific
platforms. IDL platform support may supersede the listed OS levelsfor ODBC
drivers. See “Platforms Supported in this Release” on page 124 for more

information.
g;ffbogéig Driver Name Supported Platforms
INFORMIX 7.xor 9.x | INFORMIX 9 Windows 98, Me, NT 4.0, 2000
Sun Solaris 8
AlX 4.3
IRIX 6.5
HP-UX 11
Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4
INFORMIX Dynamic | INFORMIX WP | Windows 98, Me, NT 4.0, 2000
Server 9.x, 2000 Sun Solaris 8
HP-UX 11
Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4
Oracle 7.x Oracle7 Windows 98, Me, NT 4.0, 2000

(7.x functionality via
SQL*Net 2.)

Solaris 8
AlIX 4.3
IRIX 6.5

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4

Mac OS8.1

Table 1-5: Supported ODBC Drivers for DataMiner

What's New in IDL 5.5

IDL DataMiner Enhancements

54 Chapter 1: Overview of New Features in IDL 5.5

Supported .

Databases Driver Name Supported Platforms
Oracle 8.0.5+, 7.3,8] | Oracle 8 Windows 98, Me, NT 4.0, 2000
(viaNet 8 8.0.5+) Solaris 8

AlIX 4.3
HP-UX 11
IRIX 6.5 (requires Oracle N32 Client
Development Kit, Version 8.0.5.0.0
(Oracle Part Number Z24604-02) or
later)
Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4
Mac OS 8.1 (SQL*Net 2.x)
Sybase Adaptive SybaseA SE Windows 98, Me, NT 4.0, 2000
Server 11.0 + Solaris 8
AlIX 4.3
HP-UX 11
Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4
SQL Server 4.9.2 Sybase IRIX 6.5
MacOS 8.1 (System 10 and 11 only)
Sybase System 10.11, | Sybase IRIX 6.5
Adaptive Server 11.x,
12.0
MS SQL Server 6.5, | MS_SQLServer7 | Windows 98, Me, NT 4.0, 2000
7.0, 2000 Solaris 8
(UNIX support on AlX 4.3
SQL Server 2000 is
HP-UX 11

via 7.0 functionality)

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4

Table 1-5: Supported ODBC Drivers for DataMiner

IDL DataMiner Enhancements

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

55

Supported .
Databases Driver Name Supported Platforms
ASCII text files Text Windows 98, Me, NT 4.0, 2000

Solaris 8
AlX 4.3
HP-UX 11
IRIX 6.5
MacOS 8.1

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SUSE Linux 6.4

Table 1-5: Supported ODBC Drivers for DataMiner

Note

For more information on specific platform requirements, issues, and how to
configure the ODBC driver for use with your database, see the Merant DataDirect
Connect ODBC Reference manual. For IRIX and Macintosh, see the 3.11 version of
the DataDirect Connect ODBC Reference manual, for all other platforms, see the
3.7 version of the DataDirect Connect ODBC Reference manual. Both manuals are
located in the /info/docs/odbc directory of your product CD-ROM.

What's New in IDL 5.5

IDL DataMiner Enhancements

56 Chapter 1: Overview of New Features in IDL 5.5

Documentation Enhancements

Many new examples highlighting a wide range of functionality in IDL have been
added in this release. These examples provide code that can be easily followed and
adapted when developing your own routines using the covered functionality. Areas
that have new examples are;

» Object Graphics
* Language
* Visudization
e Analysis
For more information, see Chapter 7, “New Examples’.

Documentation Enhancements What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 57
Enhanced IDL Utilities

IDL 5.5 now contains utilities that can be used in several ways:
» Assdtand-alone applications
» Astoolsfor helping you create applications
» Embedded within IDL applications that you develop

All of these utilities are located in the lib/utilities directory and have been
added to your path at ingtall time. Some of these utilities existed in previous versions
of IDL but have been improved.

These utilities may be updated in subsequent IDL releases to take advantage of new
features and technol ogies.

Enhanced IDL Utilities

The following table liststhe IDL utilities. Note that utilities that existed in previous
versions have been listed here since they have moved within the directory structure.

Utility Description

XOBJIVIEW The XOBJVIEW_ROTATE and
XOBJIVIEW_WRITE_IMAGE procedures, which can
be called only after acall to XOBJVIEW, can be used
to easily create animations of volumes and isosurfaces
displayed in XOBJVIEW. For more information, see
XOBJVIEW_ROTATE and
XOBWVIEW_WRITE_IMAGE.

Table 1-6: Enhanced IDL Ultilities

What's New in IDL 5.5 Enhanced IDL Utilities

58

Chapter 1: Overview of New Features in IDL 5.5

New Keywords/Arguments to Existing IDL Utilities

Thefollowing isalist of the new keywords to existing IDL utilities:

XOBJVIEW

Item

Description

RENDERER

Set this keyword to an integer value indicating which
graphics renderer to use when drawing objectsin the
XOBJVIEW draw window. Valid values are:

» 0 = Platform native OpenGL
» 1=IDL’s software implementation

By default, your platform’s native OpenGL
implementation isused. If your platform does not have
anative OpenGL implementation, IDL’s software
implementation is used regardless of the value of this

property.

JUST_REG

Set this keyword to indicate that the XOBJVIEW
utility should just be registered and return
immediately.

XOFFSET

The horizontal offset of the widget in units specified
by the UNITS keyword (pixels are the default) relative
toits parent.

Specifying an offset relative to a row-major or
column-major base widget does not work because
those widgets enforce their own layout policies. This
keyword is primarily of use relativeto a plain base
widget. Note that it is best to avoid using this style of
widget layout.

Enhanced IDL Utilities

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

59

Item

Description

YOFFSET

The vertical offset of the widget in units specified by
the UNITS keyword (pixels are the default) relative to
its parent. This offset is specified relative to the upper
left corner of the parent widget.

Specifying an offset relative to a row-major or
column-major base widget does not work because
those widgets enforce their own layout policies. This
keyword is primarily of use relativeto a plain base
widget. Note that it is best to avoid using this style of
widget layout.

XROI

Keyword/Argument

Description

TOOLS

The values for the TOOL S keyword indicate the
buttons to be included on an XROI toolbar. New
valuesto the TOOL S keyword are:

» 'Trandlate Scale' — Enables translation and
scaling of ROIs. Mouse down on the bounding
box selects a region, mouse motion translates
(repositions) the region. Mouse down on ascale
handle of the bounding box enables scaling
(stretching, enlarging and shrinking) of the region
according to mouse motion. Mouse up finishes
the translation or scaling.

» 'Rectangle’ — Enables rectangular ROI drawing.
M ouse down positions one corner of the
rectangle, mouse motions creates the rectangle,
positioning the rectangle€' s opposite corner, mouse
up finishes the rectangular region.

* 'Ellipse’ — Enables elliptical ROI drawing.
M ouse down positions the center of the ellipse,
mouse motion positions the corner of the ellipse’s
imaginary bounding box, mouse up finishes the
elliptical region.

What's New in IDL 5.5

Enhanced IDL Utilities

60 Chapter 1: Overview of New Features in IDL 5.5

New and Enhanced IDL Objects

This section describes the following:
* New Object Classes
* |DL Object Method Enhancements

New Object Classes

The following table describes the new object classesin IDL 5.5 for Windows.

New Object Class Description

IDLcomlDispatch Used to create and utilize an IDispatch COM object in
IDL which implements the IDispatch interface.

IDLffMrSID Used to query information about and load image data
fromaMrSID (.sid) imagefile.

IDL Object Method Enhancements

The following table describes new and updated keywords and arguments to IDL
object methods.

IDLgrBuffer::Pickdata

Iltem Description

DIMENSIONS Set this keyword to atwo-element array [w, h] to
specify data picking should occur for all device
locations that fall within apick box of these
dimensions. The pick box will be centered about the
coordinates[x, y] specified in the Location
argument, and will occupy the rectangle defined by:

(x-(W/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box coversasingle pixel. The
return value of the Pickdata method will match the
dimensions of the pick box. Likewise, the array

returned via the XYZLocation argument will have
dimensions [3, w, h].

New and Enhanced IDL Objects What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 61

IDLgrContour::GetProperty

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.
The units are "Z-Buffer units’, whereavalueof 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unlessthe
FILL keyword is set.

What's New in IDL 5.5

New and Enhanced IDL Objects

62 Chapter 1: Overview of New Features in IDL 5.5

IDLgrContour::Init

Iltem Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unlessthe
FILL keyword is set.

New and Enhanced IDL Objects What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 63

IDLgrContour::SetProperty

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.
The units are "Z-Buffer units’, whereavalueof 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unlessthe
FILL keyword is set.

What's New in IDL 5.5

New and Enhanced IDL Objects

64

Chapter 1: Overview of New Features in IDL 5.5

IDLgrPolygon::GetProperty

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unlessthe
value of the STYLE keyword is 2 (Filled).

New and Enhanced IDL Objects

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 65

IDLgrPolygon::Init

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.
The units are "Z-Buffer units’, whereavalueof 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unlessthe
value of the STYLE keyword is 2 (Filled).

What's New in IDL 5.5

New and Enhanced IDL Objects

66

Chapter 1: Overview of New Features in IDL 5.5

IDLgrPolygon::SetProperty

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unlessthe
value of the STYLE keyword is 2 (Filled).

New and Enhanced IDL Objects

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 67

IDLgrSurface::GetProperty

Item

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unlessthe
value of the STYLE keyword is2 or 6 (Filled or
LegoFilled).

What's New in IDL 5.5

New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 5.5

IDLgrSurface::Init

Enhancement Description

TEXTURE_HIGHRES Set thiskeyword to cause texturetiling to be used as
necessary to maintain the full pixel resolution of the
original texture image. Thisisrecommended if IDL
isrunning on modern 3D hardware and resolution
loss due to downscaling becomes problematic. If not
set, and the texture map is larger than the maximum
resolution supported by the 3D hardware, the texture
isscaled down to the maximum resol ution supported
by the 3D hardware on your system. The default
valueisO.

Note - Because of the way in which high-resolution
textures require modified texture coordinates, if you
specify the TEXTURE_COORD keyword, high
resolution textures (TEXTURE_HIGHRES) will be
disabled.

New and Enhanced IDL Objects What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 69

Enhancement

Description

DEPTH_OFFSET

An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is2 or 6 (Filled or
LegoFilled).

What's New in IDL 5.5

New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 5.5

IDLgrSurface::SetProperty

Iltem Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units', whereavalue of 1is
used to specify a distance that correspondsto a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause afilled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

Thisis useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RS suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphicsdrivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using I DL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unlessthe
value of the STYLE keyword is2 or 6 (Filled or
LegoFilled).

New and Enhanced IDL Objects What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 71

IDLgrWindow::Pickdata

Item

Description

DIMENSIONS

Set this keyword to atwo-element array [w, h] to
specify data picking should occur for all device
locations that fall within apick box of these
dimensions. The pick box will be centered about the
coordinates [x, y] specified in the Location
argument, and will occupy the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box coversasingle pixel. The
return value of the Pickdata method will match the
dimensions of the pick box. Likewise, the array
returned via the XYZLocation argument will have
dimensions [3, w, h].

What's New in IDL 5.5

New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 5.5

New and Enhanced IDL Routines

This section describes the following:
* New IDL Routines
* |IDL Routine Enhancements

e Updates to Executive Commands
New IDL Routines

Thefollowing isalist of new functions, procedures, statements, and executive
commands added to IDL.

New Routine Description

CPU Controls the way IDL uses the system
processor for calculations. The results of
using the CPU procedure arereflected in
the state of the |CPU system variable.

DEFINE_MSGBLK Defines and | oads a new message block
into the currently running IDL session.
Once loaded, the MESSA GE procedure
can be used to issue messages from this
block.

DEFINE_MSGBLK_FROM_FILE Reads the definition of a message block
fromafile, and usesDEFINE_MSGBLK
to load it into the currently running IDL
session. Once loaded, the MESSAGE
procedure can be used to issue messages
from this block.

ERF Returns the value of the error function.

ERFC Returns the value of the complimentary
error function.

ERFCX Returns the value of the scaled

complimentary error function.

FILE_INFO Returns status information about a
specified file, without opening the file.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

73

New Routine

Description

FILE_SEARCH

Returns a string array containing the
names of all files matching theinput path
specification. Input path specifications
may contain wildcard characters,
enabling them to match multiple files.
All matched filenames are returned in a
string array, one file name per array
element.

Note - Research Systems strongly
recommends the FILE_ SEARCH
function be used rather than the
FINDFILE function. FILE_SEARCH is
intended as a replacement for
FINDFILE.

GRID_INPUT

This new procedure preprocesses and
sorts two-dimensional data sets and
removes duplicate points.

GRIDDATA

This new function interpolates datato a
regular grid from scattered data values
and locations using one of several
available interpolation methods.
Computations are preformed in single
precision floating point.

HDF_VD_ATTRFIND

This new function returns an attribute's
index number given the name of an
attribute associated with the specified
vdata or vdata/field pair. If the attribute
cannot be located, -1 isreturned.

HDF_VD_ATTRINFO

This new procedure reads or retrieves
information about a vdata attribute or a
vdata field attribute from the currently
attached HDF vdata structure. If the
attribute is not present, an error message
is printed.

What's New in IDL 5.5

New and Enhanced IDL Routines

74

Chapter 1: Overview of New Features in IDL 5.5

New Routine

Description

HDF_VD_ATTRSET

This new procedure writes a vdata
attribute or a vdatafield attribute to the
currently attached HDF vdata structure.
If no datatype keyword is specified, the
data type of the attribute value is used.

HDF_VD_ISATTR

This new function returns TRUE (1) if
the vdatais storing an attribute, FALSE
(O) otherwise. HDF stores attributes as
vdatas, so this routine provides a means
to test whether or not a particular vdata
contains an attribute.

HDF_VD_NATTRS

This new function returns the number of
attributes associated with the specified
vdata or vdata/field pair if successful.
Otherwise, -1 isreturned.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 75

New Routine Description

HEAP_FREE This new routine frees al dynamic
resources associated with the argument
which is passed to the routine. This
routine will traverse the data represented
by the variable, traversing arrays and
structures. When an object valueis
encountered, it isreleased using the
OBJ _DESTROY routine. When a
pointer value is encountered, its contents
are scanned, freeing any dynamic
resources, and then the pointer itself is
released using the PTR_FREE routine.
Thisis especialy helpful with routines
that return dynamically allocated
information.

HEAP_FREE may be used:

 To release the dynamic resources
contained in a structure returned
from the GetRecord method of an
IDL dbRecordset abject.

» Torelease any dynamic resources
associated with an event generated
by an ActiveX control that is
embedded in an IDL Widget
hierarchy using Widget_ActiveX().

However, HEAP_FREE does have some
disadvantages, see “HEAP_FREE” in
Chapter 6 for more information.

What's New in IDL 5.5 New and Enhanced IDL Routines

76

Chapter 1: Overview of New Features in IDL 5.5

New Routine

Description

INTERVAL_VOLUME

This new procedure can be used to
generate a tetrahedral mesh from
volumetric data. The mesh generated by
this procedure spans the portion of the
volume where the volume data samples
fall between two constant data val ues.
This can also be thought of as amesh
constructed to fill the volume between
two isosurfaces where the isosurfaces are
drawn at the two supplied constant data
values.

PATH_SEP

This new function returns the proper file
path segment separator character for the
current operating system.

QGRID3

Linearly interpolates the dependent
variable values to pointsin aregularly
sampled volume, given atriangulation of
scattered data pointsin three dimensions,
and the value of a dependent variable for
each point.

QHULL

This new function constructs convex
hulls, Delaunay triangulations, and
Voronoi diagrams of a set of points of 2
or more dimensions. It uses and is based
on the program QHULL, whichis
described in Barber, Dobkin and
Huhdanpaa, “ The Quickhull Algorithm
for Convex Hulls,” ACM Transactionson
Mathematical Software, Vol. 22, No 4,
December 1996, Pages 469-483.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

77

New Routine

Description

QUERY_MRSID
(Windows only)

This new method allows you to obtain
information about a MrSID image file
without having to import in an image
from the file. This wrapper around the
object interface presents MrSID image
loading in afamiliar way to users of the
QUERY_* image routine. However this
function is not as efficient as the object
interface and the object interface should
be used whenever possible.

READ_MRSID
(Windows only)

This new method extracts and returns
image data from aMrSID file at the
specified level and location. This
wrapper around the object interface
presents MrSID image loading in a
familiar way to users of the READ_*
image routine. However thisfunctionis
not as efficient asthe object interface and
the object interface should be used
whenever possible.

REAL_PART

This new function returns the real part of
its complex-valued argument.

What's New in IDL 5.5

New and Enhanced IDL Routines

78

Chapter 1: Overview of New Features in IDL 5.5

New Routine

Description

REGION_GROW

This new function performs region
growing for a given region within an N-
dimensional array by expanding the
region to include all connected
neighboring pixels that fall within the
gpecified limits. The limits are specified
either as a threshold range (a minimum
and maximum pixel value) or asa
multiple of the standard deviation of the
original region pixel values. If the
threshold is used (this is the default), the
region is grown to include al connected
neighboring pixels that fall within the
given threshold range. If the standard
deviation multipleis used, theregionis
grown to include all connected
neighboring pixels that fall within the
range of the mean (of theregion's pixel
values) plus or minusthe given
multiplier times the sample standard
deviation. REGION_GROW returnsthe
vector of array indices that represent
pixels within the grown region.

SIMPLEX

The new SIMPLEX function uses the
simplex method to solve linear
programming problems.

WIDGET_ACTIVEX
(Windows only)

The new WIDGET_ACTIVEX function
creates an ActiveX control in IDL and
placesit into an IDL widget hierarchy.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

79

New Routine

Description

WIDGET_DISPLAY CONTEXTMENU
(Windows, UNIX only)

The new

WIDGET_DISPLAY CONTEXTMENU
function displays a context menu. After
buttons for the context menu have been
created, a context menu can be displayed
using

WIDGET_DISPLAY CONTEXTMENU.
Thisisnormally called in an event
handler that has processed a context
menu event. This procedure takes the ID
of the widget that is the parent of the
context menu, the x and y location to
display the menu, and the ID of the
context menu base.

XOBJVIEW_ROTATE

This procedure can be used to
programmatically rotate the object
currently displayed in XOBJVIEW.

XOBJVIEW_WRITE_IMAGE

This procedure can be used to write the
object currently displayed in
XOBJVIEW to an image file using the
specified name and file format.

What's New in IDL 5.5

New and Enhanced IDL Routines

80

Chapter 1: Overview of New Features in IDL 5.5

IDL Routine Enhancements

Thefollowing isalist of new and updated keywords, arguments, and/or return values

to existing IDL routines.

ABS

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The ABS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ACOS

Item

Description

Complex Input

ACOS now supports complex input.

Thread Pool Keywords
(Windows, UNIX only)

The ACOS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ADAPT_HIST_EQUAL

Item

Description

FCN

Set this keyword to the desired cumul ative probability
distribution function in the form of a 256 element
vector. If omitted, alinear ramp, which yields equal
probability binsresults. Thisfunction islater
normalized, so magnitude isinconsequential, though it
should increase monotonically.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 81

ALOG

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The ALOG function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ALOG10

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The ALOG10 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ASIN

Item

Description

Complex Input

ASIN now supports complex input.

Thread Pool Keywords
(Windows, UNIX only)

The ASIN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ATAN

Item

Description

Complex Input

ATAN now supports complex input as well asinput of
two complex arguments.

Thread Pool Keywords
(Windows, UNIX only)

The ATAN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

82

BINDGEN

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The BINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

BREAKPOINT

Item

Description

ON_RECOMPILE

This new keyword allows you to specify that a
breakpoint will not take effect until the next time the
file containing it is compiled.

BYTARR
Iltem Description
D, This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
BYTE
Iltem Description
D; This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The BY TE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 83

BYTEORDER

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The BY TEORDER function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL".

BYTSCL

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The BYTSCL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

CEIL

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The CEIL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

CINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The CINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

84 Chapter 1: Overview of New Features in IDL 5.5
COMPLEX
Item Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
DOUBLE Set this keyword to return a double-precision complex

result. Thisis equivalent to using the DCOMPLEX
function, and is provided as a programming
convenience.

Thread Pool Keywords
(Windows, UNIX only)

The COMPLEX function supportsthe new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

COMPLEXARR
Iltem Description
D, This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
COND
Iltem Description
LNORM Set this keyword to indicate which norm to use for the

computation. The possible values of this keyword are:

* LNORM =0 Usethe L, norm (the maximum
absolute row sum norm).

* LNORM =1 Use the L, norm (the maximum
absolute column sum norm).

* LNORM = 2 Usethe L, norm (the spectral norm).
For LNORM = 2, A cannot be complex.

LNORM isset to 0 by default.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 85
CONGRID
Item Description
CENTER If this keyword is set, the interpolation is shifted so
that points in the input and output arrays are assumed
to lie at the midpoint of their coordinates rather than at
their lower-l€eft corner.
CONJ
Iltem Description

Thread Pool Keywords
(Windows, UNIX only)

The CONJ function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

CONVOL
Item Description
MISSING The valueto return for elements that contain no valid
points within the kernel. The default isthe IEEE
floating-point value NaN. Thiskeyword isonly used if
the NAN keyword is set.
NAN Set this keyword to cause the routine to check for

occurrences of the |EEE floating-point value NaN in
the input data. Elements with the value NaN are
treated as missing data, and are ignored when
computing the convolution for neighboring elements.
In the Result, missing elements are replaced by the
convolution of all other valid points within the kernel.
If all points within the kernel are missing, then the
result at that point is given by the MISSING keyword.
Note that CONVOL should never be called without
the NAN keyword if the input array may possibly
contain NaN values.

What's New in IDL 5.5

New and Enhanced IDL Routines

86

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The CONVOL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

COS

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The COS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

CW_FIELD
Item Description
TEXT_FRAME Set this keyword to the width in pixels of aframeto be
drawn around the text field.
Thiskeyword isonly a"hint" to the toolkit, and may
be ignored in some instances. Under Microsoft
Windows, text widgets always have aframe of width 1
pixel.
CW_FSLIDER
Item Description
DOUBLE Set this keyword to return double-precision values for

the GET_VALUE keyword to WIDGET_CONTROL,
and for the VALUE field in widget events. If
DOUBLE=0 then the GET_VALUE keyword and the
VALUE field will return single-precision values. The
default is/DOUBLE if one of the MINIMUM,
MAXIMUM, or VALUE keywordsis double
precision, otherwise the default is DOUBLE=0.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 87

Item

Description

SCROLL

Under the Motif window manager, the SCROLL value
specifies how many units the scroll bar should move
when the user clicks the left mouse button inside the
dlider area, but not on the slider itself. On Macintosh
and Microsoft Windows, the SCROLL va ue specifies
how many units the scroll bar should move when the
user clicks the left mouse button on the slider arrows,
but not within the dider areaor on the dider itself. The
default SCROLL valueis 1% of the slider width.

CW_PDMENU

Item

Description

CONTEXT_MENU
(Windows, UNIX only)

Set this new keyword to create a context menu
pulldown. If CONTEXT_MENU is set, Parent must
be the widget ID of acontext menu base, and the
return value of CW_PDMENU isthiswidget ID. Also
see the CONTEXT_MENU keyword to
WIDGET_BASE.

DBLARR
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
DCINDGEN
Iltem Description
D, This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The DCINDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

88

DCOMPLEX

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The DCOMPLEX function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

DCOMPLEXARR
Item Description
D, This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
DEVICE
Item Description

LANUAGE_LEVEL

Set this keyword to indicate the language level of the
PostScript output that isto be generated by the device.
Valid valuesinclude 1 (the default) and 2 (required for
some features, such asfilled patterns for polygons).

TRUE_COLOR

You can now use this keyword to specify any
TrueColor visual depth. The most common are 15, 16,
and 24.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 89

DINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The DINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

DOUBLE

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The DOUBLE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

EXP
Iltem Description
Thread Pool Keywords The EXP function supports the new thread pool
(Windows, UNIX only) keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
EXPINT

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The EXPINT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

90 Chapter 1: Overview of New Features in IDL 5.5

FFT

Item Description

DIMENSION Set this keyword to the dimension across which to
calculate the FFT. If this keyword is not present or is
zero, then the FFT is computed across all dimensions
of the input array. If this keyword is present, then the
FFT isonly calculated only across asingle dimension.
For example, if the dimensions of Array are N1, N2,
N3, and DIMENSION is 2, the FFT is calculated only
across the second dimension.

Thread Pool Keywords The FFT function supports the new thread pool
(Windows, UNIX only) keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

FILE_CHMOD
Item Description
NOEXPAND_PATH If specified, FILE_CHMOD uses File exactly as
specified, without applying the usual file path
expansion.
FILE_DELETE
Item Description
NOEXPAND_PATH If specified, FILE_DELETE uses File exactly as
specified, without applying the usual file path
expansion.
FILE_MKDIR
Item Description
NOEXPAND_PATH If specified, FILE_MKDIR uses File exactly as
specified, without applying the usual file path
expansion.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5

FILE_TEST

91

Item

Description

NOEXPAND_PATH

If specified, FILE_TEST uses File exactly as
specified, without applying the usual file path
expansion.

FINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The FINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

FINITE

Item

Description

SIGN

If theINFINITY or NAN keyword is set, then set this
keyword to one of the following values:

* SIGN > 0: For /INFINITY, return True (1) if Xis
positive infinity, False (0) otherwise. For /INAN,
return True (1) if X is+NaN (negative sign bit is
not set), False (0) otherwise.

» SIGN = 0 (the default): The sign of X (positive or
negative) isignored.

* SIGN < 0: For /INFINITY, return True (1) if Xis
negative infinity, False (0) otherwise. For /INAN,
return True (1) if X is-NaN (negative sign bitis
set), False (0) otherwise.

If neither the INFINITY nor NAN keyword is set, then
this keyword is ignored.

What's New in IDL 5.5

New and Enhanced IDL Routines

92

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The FINITE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

FIX

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The FIX function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

FLOAT

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The FLOAT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

FLOOR

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The FLOOR function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 93

FLTARR
Item Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
GAMMA
Item Description

Thread Pool Keywords
(Windows, UNIX only)

The GAMMA function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

GAUSSINIT

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The GAUSSINIT function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

GAUSSHIT

Item

Description

ESTIMATES

The way the estimates are constructed in GAUSSFIT
if not provided by the user has been improved. If the
ESTIMATES array is not specified, estimates are
calculated by first subtracting a polynomial of degree
NTERMS-4 (only if NTERMS is greater than 3) and
then forming a simple estimate of the Gaussian
coefficients.

What's New in IDL 5.5

New and Enhanced IDL Routines

94

GET_DRIVE_LIST

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

COUNT

This new keyword is named variable into which the
number of drives/volumes found is placed. If no
drives/volumes are found, avalue of 0 is returned.

CDROM

If set by this new keyword, compact disk drives are
reported. Note that although CDROM devices are
removable, they are treated as a special case, and the
REMOVABLE keyword does not apply to them.

Note - Thisis aWindows only keyword.

FIXED

If set by this new keyword, hard drives physically
attached to the current system are reported.

Note - Thisis aWindows only keyword.

REMOTE

This new keyword specifies that remote (i.e. network)
drives should be reported.

Note - Thisis aWindows only keyword.

REMOVABLE

This new keyword reports removable media devices
(e.0. floppy, zip drive) other than CDROMSs.

Note - Thisis aWindows only keyword.

GETENV

Item

Description

Return Value

Returns the equivalence string for Name from the
environment of the IDL process, or anull string if
Name does not exist in the environment. If Name isan
array, the result has the same structure, with each
element containing the equivalence string for the
corresponding element of Name.

Name

The string variable for which equivalence strings from
the environment is desired.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 95

HELP

Item

Description

DEVICE

On UNIX systems, anew field (Bits Per RGB) has
been added to the output from the DEVICE keyword.
This Bits Per RGB field indicates the amount of bits
utilized for each RGB component.

HIST_EQUAL

Item

Description

FCN

Set this keyword to the desired cumul ative probability
distribution function in the form of a 256 element
vector. If omitted, alinear ramp, which yields equal
probability binsresults. Thisfunction islater
normalized, so magnitude isinconsequential, though it
should increase monotonically.

IMAGINARY

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The IMAGINARY function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

INDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The INDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

96

INTERPOLATE

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The INTERPOL ATE function supportsthe new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ISHFT

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The ISHFT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

L64INDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The L64INDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

LINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The LINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 97

LNGAMMA

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The LNGAMMA function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

LONARR
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
LONG
Iltem Description
D; This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The ERROREF function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

LONG64

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The LONGB64 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

98

Chapter 1: Overview of New Features in IDL 5.5

MAKE_ARRAY
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
DIMENSION This modified keyword represents a vector of 1to 8

elements specifying the dimensions of the result. This
is equivalent to the array form of the D; plain
arguments.

Thread Pool Keywords
(Windows, UNIX only)

The MAKE_ARRAY function supports the new
thread pool keywords. For more information, see
“Multi-Threading Keywords” on page 119 and
Chapter 2, “Multi-Threading in IDL".

MATRIX_MULTIPLY

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The MATRIX_MULTIPLY function supports the new
thread pool keywords. For more information, see
“Multi-Threading Keywords” on page 119 and
Chapter 2, “Multi-Threading in IDL".

MAX

Item

Description

DIMENSION

Set this new keyword to the dimension over which to
find the maximum values for an array. If this keyword
isnot present or is zero, then the maximum is found
over the entire array. If this keyword is present, then
thereturn valuesfor Result, Max_Subscript, MIN, and
SUBSCRIPT_MIN will all be arrays of one dimension
less than the input array. For example, if the
dimensions of Array are N1, N2, N3, and
DIMENSION is 2, the dimensions of the result are
(N1, N3), and element (i,j) of the result contains the
maximum value of Array[i, *, j].

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 99

Item

Description

SUBSCRIPT_MIN

A named variable that, if supplied, is converted to an
integer containing the one-dimensional subscript of
the minimum element, the value of which is available
viathe MIN keyword.

Thread Pool Keywords
(Windows, UNIX only)

The MAX function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

MESH_OBJ

Item

Description

CLOSED

Thisnew keyword, if set, “closes’ the polygonal mesh
topologically by using thefirst vertex in arow for both
the first and last polygons in that row. This keyword
parameter is only applicable to the CYLINDRICAL,
SPHERICAL, REVOLUTION, and EXTRUSION
surface types. This keyword parameter removes the
discontinuity where the mesh wraps back around on
itself, which can improve the mesh's appearance when
viewing it as a shaded object. For the EXTRUSION
surface type, this procedure handles input polygons
that form a closed loop with the last vertex being a
copy of the first vertex, as well as those that do not.

MESSAGE

Item

Description

BLOCK

If specified, BLOCK suppliesthe name of the message
block to use. The BLOCK keyword isignored unless
the NAME keyword is also specified.

LEVEL

The LEVEL keyword is used to indicate that the name
of aroutine further up in the current call chain should
be used instead.

What's New in IDL 5.5

New and Enhanced IDL Routines

100

Chapter 1: Overview of New Features in IDL 5.5

Iltem Description
NAME If specified, NAME supplies the name of the message
to throw. NAME is often used in conjunction with the
BLOCK keyword.
MIN
Iltem Description
DIMENSION Set this new keyword to the dimension over which to

find the minimum values of an array. If thiskeywordis
not present or is zero, then the minimum is found over
the entire array. If this keyword is present, then the
return values for Result, Min_Subscript, MAX, and
SUBSCRIPT_MAX will al be arrays of one
dimension lessthan theinput array. For example, if the
dimensions of Array are N1, N2, N3, and
DIMENSION is 2, the dimensions of the result are
(N1, N3), and element (i,j) of the result contains the
minimum value of Array[i, *, j].

SUBSCRIPT_MAX

A named variable that, if supplied, is converted to an
integer containing the one-dimensional subscript of
the maximum element, the value of which is available
viathe MAX keyword.

Thread Pool Keywords
(Windows, UNIX only)

The MIN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

N_TAGS

Item

Description

DATA_LENGTH

Set this new keyword to return the length of the data
fields contained within the structure, in bytes. This
differsfrom LENGTH in that it does not include any
alignment padding required by the structure. The
length of the datafor agiven structure will be the same
on any system.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 101

NORM

Item

Description

LNORM

Set this keyword to indicate which norm to compute.
If Aisavector, then the possible values of this
keyword are:

* LNORM = 0 Compute the L ,, norm, defined as
MAX(ABS(A)).

* LNORM =1 Compute the L, norm, defined as
TOTAL(ABS(A)).

* LNORM = 2 Compute the L, norm, defined as
SQRT(TOTAL (ABS(A)*2)).

* LNORM = n Compute the L, norm, defined as
(TOTAL(ABS(A)*n))(1/n) where nisany
number, float-point or integer.

LNORM for vectorsis set to 2 by default.

If A isatwo-dimensional array, then the possible
values of this keyword are:

* LNORM = 0 Compute the L ., norm (the
maximum absolute row sum norm), defined as
MAX(TOTAL(ABS(A), 1)).

* LNORM =1 Compute the L; norm (the maximum
absolute column sum norm), defined as
MAX(TOTAL(ABS(A), 2)).

* LNORM = 2 Compute the L, norm (the spectral
norm) defined as the largest singular value,
computed from SVDC. For LNORM =2, A
cannot be complex.

LNORM for two-dimensional arraysis set to 0 by
default.

OBJARR

Item

Description

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

What's New in IDL 5.5

New and Enhanced IDL Routines

102 Chapter 1: Overview of New Features in IDL 5.5

OPENR, OPENU, OPENW

Item

Description

NOEXPAND_PATH

If specified, Fileis used exactly as specified, without
applying the usua file path expansion.

POLYWARP

Item

Description

DOUBLE

Set this keyword to use double-precision for
computations and to return a double-precision result.
Set DOUBLE=0 to use single-precision for
computations and to return a single-precision result.
The default is/DOUBLE if any of theinputs are
double precision, otherwise the default is
DOUBLE=0.

STATUS

Set this keyword to a named variable to receive the
status of the operation. Possible status values are:

0 = Successful completion.

1 = Singular array (which indicates that the
inversion isinvalid).

2 = Warning that a small pivot element was used
and that significant accuracy was probably |ost.

Note - If STATUS is not specified, any warning
messages will be output to the screen.

POLY 2D

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The POLY _2D function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 103

POLY_AREA

Item

Description

DOUBLE

Set this keyword to use double-precision for
computations and to return a double-precision result.
Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision result. If
either of the inputs are double-precision, the default is
/DOUBLE (DOUBLE = 1), otherwise the default is
DOUBLE = 0.

PTRARR

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

QUERY_TIFF

Item

Description

Info

The Info argument to QUERY _TIFF returnsan
anonymous structure containing information about the
image in the file. New Info structure fields have been
added. See “New Returned Information for TIFF
Queries’ on page 45.

RANDOMN

Item

Description

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

What's New in IDL 5.5

New and Enhanced IDL Routines

104 Chapter 1: Overview of New Features in IDL 5.5

RANDOMU

Item Description

D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

READ_TIFF

Item Description

ORIENTATION Set this keyword to a named variable that will contain
the orientation value from the TIFF file. Possible
return values are:

» 1= Column O represents the left-hand side, and
row O represents the top.

» 2= Column O represents the right-hand side, and
row O represents the top.

» 3= Column O represents the right-hand side, and
row O represents the bottom.

» 0or 4= Column 0 represents the | eft-hand side,
and row 0 represents the bottom.

» 5= Column O represents the top, and row 0
represents the left-hand side.

» 6= Column O represents the top, and row 0
represents the right-hand side.

e 7 = Column O represents the bottom, and row 0
represents the right-hand side.

» 8= Column O represents the bottom, and row 0
represents the left-hand side.

If an orientation val ue does not appear inthe TIFF file,
an orientation of O is returned.

Return Value READ_TIFF now imports 1- and 4-bit images from
TIFF files. For 1-bit (bi-level) images, the image
values are O or 1. For 4-bit grayscale images, the
image values are in the range O to 15.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 105

REBIN
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
RECONS
Iltem Description
QUIET Set this keyword to suppress the output of
informational messages when the processing of each
image is compl eted.
REFORM
Iltem Description
D, This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
REPLICATE
Iltem Description
D, This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The REPLICATE function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 5.5

REPLICATE_INPLACE

Item Description

Thread Pool Keywords The REPLICATE_INPLACE function supports the
(Windows, UNIX only) new thread pool keywords. For more information, see
“Multi-Threading Keywords’ on page 119 and
Chapter 2, “Multi-Threading in IDL".

ROUND

Item Description

Thread Pool Keywords The ROUND function supports the new thread pool
(Windows, UNIX only) keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

SETENV

Item Description

Environment_Expression | Thisargument may now be either a scalar or array
string variable containing environment expressions to
be added to the environment.

SHIFT
Item Description
S This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 107

SIN
Item Description
Thread Pool Keywords The SIN function supports the new thread pool
(Windows, UNIX only) keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
SINDGEN
Item Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
SINH
Item Description
Thread Pool Keywords The SINH function supports the new thread pool
(Windows, UNIX only) keywords. For more information, see “Multi-
’ Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
SMOOTH

Item

Description

MISSING

The valueto return for elements that contain no valid
points within the kernel. The default is the IEEE
floating-point value NaN. Thiskeyword isonly used if
the NAN keyword is set.

What's New in IDL 5.5

New and Enhanced IDL Routines

108

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

NAN

Set this keyword to cause the routine to check for
occurrences of the |EEE floating-point value NaN in
the input data. Elements with the value NaN are
treated as missing data, and are ignored when
computing the smooth value for neighboring elements.
In the Result, missing elements are replaced by the
smoothed value of al other valid points within the
smoothing window. If all pointswithin thewindow are
missing, then the result at that point is given by the
MISSING keyword. Note that SMOOTH should never
be called without the NAN keyword if the input array
may possibly contain NaN values.

Width

This modified argument defines the width of the
smoothing window. Width can either be ascalar or a
vector with length equal to the number of dimensions
of Array. If Width isa scalar then the same width is
applied for each dimension that has|ength greater than
1 (dimensions of length 1 are skipped). If Widthisa
vector, then each element of Width is used to specify
the smoothing width for each dimension of Array.
Values for Width must be smaller than the
corresponding Array dimension. If aWidth valueis
even, then Width+1 will be used instead. The value of
Width does not affect the running time of SMOOTH to
agreat extent.

Note - A Width value of zero or 1 impliesno
smoothing. However, if the NAN keyword is set, then
any NaN values within the Array will be treated as
missing data and will be replaced.

Tip - For amultidimeniona array, set widthsto 1
within the Width vector for dimensions that you don't
want smoothed.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 109

SQRT

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The SQRT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

STRARR
Item Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
TAN
Item Description

Thread Pool Keywords
(Windows, UNIX only)

The TAN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

TANH

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The TANH function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

What's New in IDL 5.5

New and Enhanced IDL Routines

110

TOTAL

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The TOTAL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL".

TVSCL

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The TV SCL procedure supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

UINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The UINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

UINT

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The UINT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 111

UINTARR
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
ULG64INDGEN
Iltem Description
D, This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The UL64INDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ULINDGEN

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The ULINDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ULONG64ARR

Item

Description

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

What's New in IDL 5.5

New and Enhanced IDL Routines

112

Chapter 1: Overview of New Features in IDL 5.5

ULONARR
Iltem Description
D; This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.
ULONG
Iltem Description
D, This modified argument can now specify dimensions

asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The UNLONG function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

ULONG64

Item

Description

D;

This modified argument can now specify dimensions
asasingle array aswell as a sequence of scalar values.

Thread Pool Keywords
(Windows, UNIX only)

The ULONG64 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

VOIGT

Item

Description

Thread Pool Keywords
(Windows, UNIX only)

The VOIGT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 113

WARP_TRI
Item Description
TPS This new keyword uses Thin Plate Spline interpolation
which isideal for modeling functions with complex
local distortions, such aswarping functions, which are
too complex to be fit with polynomials.
WHERE
Item Description

Thread Pool Keywords
(Windows, UNIX only)

The WHERE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL".

WIDGET_BASE

Item

Description

CONTEXT_EVENTS
(Windows, UNIX only)

Set this new keyword to generate context events when
the right mouse button is pressed over the widget. To
request right mouse button eventsin adraw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generatesa WIDGET_DRAW event
with the EVENT.TY PE field equal to 0 and the
EVENT.RELEASE field equal to 4.

What's New in IDL 5.5

New and Enhanced IDL Routines

114

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

CONTEXT_MENU
(Windows, UNIX only)

Set this new keyword to cause a context menu to be
created. The context menu base must be a child of one
of the following types of widgets:

» WIDGET_BASE
» WIDGET_DRAW
» WIDGET_TEXT
* WIDGET_LIST

WIDGET_CONTROL

Item

Description

CONTEXT_EVENTS
(Windows, UNIX only)

Set this new keyword to enable context menu events
generated by right mouse button clicks. Setting a zero
value disables such events. This keyword appliesto
widgets created with WIDGET_BASE,
WIDGET_TEXT, or WIDGET_LIST.

WIDGET_INFO

Item

Description

CONTEXT_EVENTS
(Windows, UNIX only)

Set this new keyword to return 1 if Widget_ID isa
widget with the CONTEXT_EVENTS attribute set.
Otherwise, 0 is returned. This keyword applies to
widgets created with WIDGET_BASE,
WIDGET_TEXT, or WIDGET_LIST.

New and Enhanced IDL Routines

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 115

Iltem Description
SYSTEM_COLORS This new keyword requiresavalid IDL widget
(Windows, UNIX only) identifier and returns an IDL structure named

WIDGET_SYSTEM_COLORS. The structure
contains RGB values for 25 display elements. Each
RGB valueisathree-dimensional array of integers
representing the red, green, blue valuesin the range O
to 255 or avalue of —1 if unavailable.

For more detailed information on the
WIDGET_SYSTEM_COLORS structure fields and
their meaning see the “Emulating System Colorsin
Application Widgets’ on page 41.

WIDGET_LIST

Iltem Description

CONTEXT_EVENTS Set this new keyword to generate context eventswhen
(Windows, UNIX only) the right mouse button is pressed over the widget. To
request right mouse button eventsin adraw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generatesa WIDGET_DRAW event
with the EVENT.TY PE field equal to 0 and the
EVENT.RELEASE field equal to 4.

What's New in IDL 5.5 New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 5.5

WIDGET_SLIDER

Item Description

SCROLL Under the Motif window manager, the SCROLL value
specifies how many units the scroll bar should move
when the user clicks the left mouse button inside the
dlider area, but not on the slider itself. The default on
Motif is 10% of the slider width. On Macintosh and
Microsoft Windows, the SCROL L value specifies how
many units the scroll bar should move when the user
clicks the left mouse button on the slider arrows, but
not within the slider area or on the slider itself. The
default on Macintosh and Microsoft Windowsis 1
unit.

WIDGET_TEXT

Item Description

CONTEXT_EVENTS Set this new keyword to generate context events when
(Windows, UNIX only) the right mouse button is pressed over the widget. To
request right mouse button eventsin adraw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generatesa WIDGET_DRAW event
with the EVENT.TY PE field equal to 0 and the
EVENT.RELEASE field equal to 4.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 117

WRITE_TIFF

Item Description

BITS PER_SAMPLE This new keyword can be used for a grayscale image,
by being set to either 1, 4, or 8 to indicate the bits per
sample to write. For 1-bit (bi-level) images, an output
bit is assigned the value 1 if the corresponding input
pixel isnonzero. For 4-bit grayscale images, the input
pixel values should be in the range 0 through 15. The
default isBITS PER_SAMPLE = 8. This keyword is
ignored if an RGB image or color palette is present, or
if one of the FLOAT, LONG, or SHORT keywordsis
set.

What's New in IDL 5.5 New and Enhanced IDL Routines

118

New and Enhanced IDL Routines

Chapter 1: Overview of New Features in IDL 5.5

Item

Description

ORIENTATION

Set this new keyword to indicate the orientation of the
image with respect to the columns and rows of Image.
Possible values are:

» 1= Column O represents the left-hand side, and
row O represents the top.

» 2 = Column O represents the right-hand side, and
row O represents the top.

» 3= Column O represents the right-hand side, and
row O represents the bottom.

» 0or 4= Column O represents the left-hand side,
and row O represents the bottom.

» 5= Column O represents the top, and row 0
represents the left-hand side.

» 6= Column O represents the top, and row 0
represents the right-hand side.

e 7 = Column O represents the bottom, and row 0
represents the right-hand side.

» 8 = Column O represents the bottom, and row 0
represents the left-hand side.

The default is ORIENTATION=1.

Warning - Not al TIFF readers honor the value of the
ORIENTATION field. IDL writes the value into the
file, but many known readersignore this value. In such
cases, it is recommended that the image be converted
to top to bottom order with the REVERSE function
and then ORIENTATION be set to 1.

UNITS

Set this new keyword to indicate the units of the
XRESOL and YRESOL keywords. Possible values
are:

e 1=Nounits
» 2 =Inches (the default)
e 3= Centimeters

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 119

Iltem Description
XRESOL This existing keyword sets the horizontal resolution.
Units may now be set for XRESOL using the UNITS
keyword.
YRESOL This existing keyword sets vertical resolution. Units

may now be specified for YRESOL using the UNITS
keyword.

Multi-Threading Keywords

These keywords can be used to modify IDL’'s use of the IDL Thread Pool to perform
calculations. See Chapter 2, “Multi-Threading in IDL” for a complete listing of the
operators and routines which support multi-threading in this release.

Keyword

Description

TPOOL_MAX_ELTS
(Windows, UNIX only)

Use this keyword to override the default and use a
different upper limit for a given computation call
without altering the |CPU system variable.

If ICPU.TPOOL_MAX_ELTSisnon-zero, IDL will
use the single threaded version of any routine with
more than |CPU.TPOOL_MAX_ELTS elements to
avoid situations where use of the thread pool can be
slower than the single threaded case because the
threads end up fighting each other for access to system
memory.

TPOOL_MIN_ELTS
(Windows, UNIX only)

Use this keyword to override the default and use a
different lower limit for a given computation call
without altering the !CPU system variable.

Use of the thread pool requires some overhead. If a
given computation does not involve enough data
points to make it worthwhile, the threaded version of a
routine can be slower than the non-threaded version.
To avoid this pitfall, IDL does not use the thread pool
for computations involving fewer than
ICPU.TPOOL_MIN_ELTS elements.

What's New in IDL 5.5

New and Enhanced IDL Routines

120 Chapter 1: Overview of New Features in IDL 5.5

Keyword Description

TPOOL_NOTHREAD If TPOOL_NOTHREAD is set, the routine will not
(Windows, UNIX only) use the thread pool, and instead uses the non-threaded
implementation of the routine. Normally, IDL decides
whether to use the thread pool for a given computation
based on the current setting of the !|CPU system
variable.

Updates to Executive Commands

The following list of executive commands have been updated as indicated.

Executive Command Update Description

SKIP The .SKIP command skips one or more statements and
stops. It isuseful for moving past a program statement
that caused an error. If the optional argument nis
present, it gives the number of statementsto skip;
otherwise, a single statement is skipped.

Note - .SKIP does not skip into a called routine.

New and Enhanced IDL Routines What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 121

New and Updated System Variables

The following system variables have been added or updated in IDL 5.5:

System Variable Description

ICPU Supplies information about the state of the system
processor, and of IDL'suse of it. |CPU isread-only,
and cannot be modified directly.

IERROR_STATE A new field has been added to the returned structure
called SYS CODE_TYPE. The new field follows the
SYS CODE fidld and comes before the M SG field.

TheSYS _CODE_TYPE fieldisastring describing the
type of system code contained in the SYS_CODE
field. Possible values are:

* errno — Unix/Posix system error.
* win32 — Microsoft Windows Win32 system error.

» winsock — Microsoft Windows sockets library
error.

* macos — Macintosh system error.

A null string in this field indicates that thereis no
system code corresponding to the current error.

IVERSION This variable has been changed by the addition of an
0OS _NAME field.
'WARN The 'WARN system variable no longer contains the

TRUNCATED_FILENAME field.

What's New in IDL 5.5 New and Updated System Variables

122

Features Obsoleted

Obsoleted Routines

Chapter 1: Overview of New Features in IDL 5.5

The following routines were present in IDL Version 5.4 but became obsoletein IDL
Version 5.5. These routines have been replaced with new routines or new keywords
to existing routinesthat offer enhanced functionality. These obsol eted routines should

not be used in new IDL code.

Routine

Replaced By

ERRORF

ERF

Note

ERF and ERFC are the standard mathematical names for the error function and
complimentary error function. However, because of their short length, users should
be aware of conflicts with their existing code which might have variables or
functions named erf or erfc. Existing uses of the name erf or erfc should be

replaced.

Obsoleted Keywords and Arguments

The following keywords and arguments became obsolete in IDL Version 5.5. These
keywords and arguments have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted keywords and
arguments should not be used in new IDL code.

Routine

Item

Description

WRITE_TIFF

Order

The Order argument is obsolete, and
has been replaced by the
ORIENTATION keyword. Code that
uses the Order argument will
continue to work as before, but new
code should use the ORIENTATION
keyword instead.

Features Obsoleted

What's New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 123
Routine Item Description
READ_TIFF ORDER The ORDER keyword is obsol ete,
and has been replaced by the
ORIENTATION keyword. Code that
uses the ORDER keyword will

continue to work as before, but new
code should use the ORIENTATION
keyword instead.

What's New in IDL 5.5

Features Obsoleted

124

Chapter 1: Overview of New Features in IDL 5.5

Platforms Supported in this Release

IDL 5.5 supports the following platforms and operating systems:

Platform | Vendor Hardware Ogisr?:rzg S\l;‘frzfor:]esd
UNIXT Compaq Alpha Tru64 UNIX | 5.1

Compaq Alpha Linux Red Hat 6.217

HP PA-RISC HP-UX 110

IBM RS/6000 AIX 4.3

Intel Intel x86 Linux Red Hat 6.0, 7.1t7

SGI Mips IRIX 6.5.1

SUN SPARC Solaris 8

SUN SPARC Solaris 8

(64-bit Ultra)

SUN Intel x86 Solaris 8
Windows | Microsoft | Intel x86 Windows 98, NT 4.0, 2000
Macintosh | Apple PowerMACttt | MacOS 8.6, 9.x

Table 1-7: Platforms Supported in IDL 5.5

T For UNIX, the supported versionsindicate that IDL was either built on (the lowest
version listed) or tested on that version. You can install and run IDL on other versions
that are binary compatible with those listed.

11 IDL 5.5 was built on the Linux 2.2 kernel with glibc

2.1using Red Hat Linux. If

your version of Linux is compatible with these, it is possible that you can install and

run IDL on your version.

11+ Includes G3, G4 and iMac

Platforms Supported in this Release

What's New in IDL 5.5

Chapter 2:

Multi-Threading in IDL

This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.

ThelDL ThreedPool 126 Routines Supporting the Thread Pool ... 134
Controlling the Thread Pool in IDL 128

What's New in IDL 5.5 125

126 Chapter 2: Multi-Threading in IDL

The IDL Thread Pool

Multi-threading can be used to increase the speed of numeric computations by using
multiple system processors to simultaneously carry out different parts of the
computation. IDL uses athread pool, a pool of multiple computation threads that are
used as helpers to accelerate numerical computations, for this purpose. The
implementation of the IDL thread pool allows IDL to automatically determine
whether a specified computation can be accomplished using parallel processing to
save time.

IDL automatically evaluates all computations to determine whether or not to use the
thread pool to carry them out. This decision is based on attributes such as the number
of data elements involved, the availability of multiple CPUs in the current system,
and the applicability of the thread pool to the specific computation. The IDL user has
the ability to alter the parameters used by IDL to make this decision, either on a
global basis for the duration of the IDL session, or for an individual computation.

IDL supports the use of the thread pool on all platforms except Al X and Macintosh.
Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in acalculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL reaches a computation that
can use the thread pool and which would benefit from parallel execution, it divides
the task into sub-parts for each thread, enables the thread pool to do the computation,
waits until the thread pool completes, and then continues. Other than the improved
performance, the end result is virtually indistinguishable when compared to the same
computation performed in the standard single-threaded manner.

Possible Drawbacks to the Use of the IDL Thread Pool

There are instances when alowing IDL to use its default thread pool settings can
produce resultswhich are less than optimal. For instance, the thread pool can actually
take longer to complete agiven job, or cause other undesirable effectsif used in
inappropriate situations.

The following situations describe when it is better to override the initia thread pool
settings:

» Computation of arelatively small number of data elements. The IDL
thread pool requires a small fixed overhead when compared to a non-threaded
version of the same computation. Normally, computational speed efficiency is

The IDL Thread Pool What's New in IDL 5.5

Chapter 2: Multi-Threading in IDL 127

achieved when the multiple CPUs work in parallel and the speed-up is much
larger than the overhead required to use them. However, if the computation
does not include enough data el ements (each element being a data value of a
particular data type), the overhead exceeds the benefit and the overall
computation speed can be slower.

e Largecomputation that requiresvirtual memory use. If the desired
computation is too large to fit into physical memory, the threadsin the thread
pool may cause page faults which will activate the virtual memory system. If
more than one thread encounters this situation simultaneoudy, the threads will
compete with each other for accessto memory and performance will fall below
that of a single-threaded approach to the computation.

* Multiple userson ashared system competing for CPU use. On alarge
multi-user system, an IDL application that uses the thread pool may consume
all available CPUs, thus affecting other users of the system by reducing overall
performance.

» Sensdtivity to numerical precision. Algorithms that are sensitive to the order
of operations may produce different results when performed by the thread
pool. Such results are due to the use of finite precision floating point types, and
are equally correct within the precision of the data type.

What's New in IDL 5.5 The IDL Thread Pool

128 Chapter 2: Multi-Threading in IDL

Controlling the Thread Pool in IDL

IDL alowsyou to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

* Using thelnitial Settings of the Thread Pool
* Programatically Controlling the Settings of the Thread Pool
» Disabling the Thread Pool

Note
For alist of the types of computations that support the thread pool, see “ Routines
Supporting the Thread Pool” on page 134.

Using the Initial Settings of the Thread Pool

The current values of the parameters that determine IDL’s use of the thread pool for
computations are always available in the ' CPU system variable. |CPU isinitialized
by IDL at startup with default values for the number of CPUs (threads) to use, as well
as the minimum and maximum number of data elements. If you have more than one
processor on your system, if your desired computation is able to use the thread pool,
and if the number of data elementsin your computation fallsinto the allowed range
(neither too few, nor too many), then IDL will employ the thread pool in that
calculation.

If the number of data elementsistoo low (is below the minimum alowed number),
the overhead associated with the use of the thread pool will exceed the potential
performance gain. If the number of data elementsistoo high (exceeds the maximum
number of data elements), you may not have enough avail able memory on your
system, requiring the use of virtual memory which degrades performance. For these
reasons, IDL will not use the thread pool for computations that fall outside the
specified number of elements.

Programmatically Controlling the Settings of the Thread Pool

There are two ways to control the settings for the thread pool in IDL:

» Usethe CPU procedure to alter the global thread pool settings for a session or
group of computations.

» Usethethread pool keywords supported by individual IDL routinesto override
the current global thread pool settings for the duration of that single call.

Controlling the Thread Pool in IDL What's New in IDL 5.5

Chapter 2: Multi-Threading in IDL 129

Controlling the Thread Pool Settings for a Session or Group of
Computations

The global parameters that control IDL’s use of the thread pool are always visible in
the !CPU system variable. IDL initializes the defaults for these values at startup. The

CPU procedureis used to modify these parameters to better fit individual needs. This
procedure alows you to specify:

» Theminimum number of dataelementsrequired before IDL will use the thread

pool.

* The maximum number of data el ements for which IDL will use the thread
pool.

» Thenumber of threadsto use (Note that specifying the use of 1 thread disables
the use of the thread pool).

For more information on the CPU procedure, see “ CPU” on page 194.

The !CPU system variable supplies information about your system, including the
current global thread pool parameters. !CPU is read-only, and cannot be modified
directly. The CPU procedure is used to change the values in ICPU. The fields of
ICPU are shown in the following table:

Field Description

HW_VECTOR Information on whether or not the system supports a
vector unit (e.g. Macintosh Altivec/Velocity Engine).
Possible values are:

» 1 — True, the system supports a vector unit
* 0—Fadse

Note - Thisvalueis currently always 0 (False) on
platforms other than Macintosh.

VECTOR_ENABLE Information about whether or not the use of avector
unit isenabled in IDL. Possible values are:

* 1— True(IDL will use avector unit, if such a unit
is available on the current system)

* 0—Fdse
Note - Thisvalueis currently always 0 (False) on
platforms other than Macintosh.

Table 2-1: Fields of the !CPU System Variable Structure

What's New in IDL 5.5 Controlling the Thread Pool in IDL

130 Chapter 2: Multi-Threading in IDL

Field Description

HW_NCPU The number of CPUs on the system IDL is currently
running on.

TPOOL_NTHREADS The number of threads that IDL will use in thread pool
computations. The initial value is equal to the value
contained in HW_NCPU, so that each thread will have
the potential to runin parallel with the others. For
numerical computation, there is no benefit to using
more threads than your system has CPUs. However,
depending on the size of the problem and the number of
other programs running on the system, there may be a
performance advantage to using fewer CPUs.

TPOOL_MIN_ELTS The number of data elementsin a computation that are
necessary before IDL will use the thread pool. If the
number of elementsislessthan TPOOL_MIN_ELTS,
IDL will perform the computation without using the
thread pool. Use this parameter to prevent IDL from
using the thread pool on tasksthat are too small to
benefit from it.

TPOOL_MAX ELTS If non-zero, the maximum number of elementsin a
computation that will be processed using the thread
pool. Computations with more than this number of
elements will not use the thread pool. Setting
TPOOL_MAX_ELTSto 0 (the default) means that no
limit isimposed and any computation with at |east
TPOOL_MIN_ELTS can use the thread pool. Set this
parameter if large jobs are causing virtual memory
paging on your system.

Table 2-1: Fields of the |CPU System Variable Structure

Note
The following examples will only work on systems with more than one processor.
Do not try these examples on a single processor system.

Asafirst example, imagine that we want to make sure that the thread pool is not used
unlessthere are at least 50,000 data elements and no more than 1,000,000. We set the
minimum to 50,000 since we know, for our particular system, that at least 50,000

Controlling the Thread Pool in IDL What's New in IDL 5.5

Chapter 2: Multi-Threading in IDL 131

floating point data el ements are required before the use of the thread pool will exceed
the overhead required to useit. We set the maximum to 1,000,000 since we know that
1,000,000 floating point data elements will exceed the maximum amount of memory
we want to use for this computation.

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(IDTOR*theta))"2

In this example, the thread pool will be used since we are performing a computation
on an array of 65,341 data elements which falls between the minimum and maximum
thresholds. Note that we altered the global thread pool parameters to achieve this. An
alternative approach that does not change the global defaultsin shownin
“Controlling the Thread Pool Settings for a Specific Computation” on page 132.

In the next example, we will:

» Savethe current thread pool settings from the |CPU system environment
variable.

* Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform afloating point computation.

» Perform afloating point computation.

* Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

» Perform adouble precision computation.
* Restore the thread pool settingsto their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool:

; Retrieve the current thread pool settings
threadpool = ICPU

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $
TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

What's New in IDL 5.5 Controlling the Thread Pool in IDL

132 Chapter 2: Multi-Threading in IDL

; Perform computation, using 2 threads
sineSquared = 1. - (COS(IDTOR*theta))"2

; Modify thread pool settings for new data type
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000

; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(IDTOR*theta))"2

;Return thread pool settings to their initial values

CPU, TPOOL_MAX_ELTS = threadpool. TPOOL_MAX_ELTS, $
TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

Controlling the Thread Pool Settings for a Specific Computation

All routines that support the thread pool accept the following three keywords that
allow you to override the thread pool settings for the duration of asingle cal. This
allows you to modify the settings for a particular computation without affecting the
global default settings of your session.

The three thread pool keywords are described in the following table.

Keyword Description

TPOOL_MAX _ELTS If non-zero, this keyword sets the maximum number
of data elements for a given computation. If the
number of elements you specify is exceeded, IDL will
not use the thread pool for this computation. Setting
thisvalueto 0 removesany limit on maximum number
of elements, and any computation with at least
TPOOL_MIN_ELTS will use the thread pool.

This keyword overrides the default value, which is
given by |CPU.TPOOL_MAX_ELTS.

Table 2-2: The Thread Pool Keywords

Controlling the Thread Pool in IDL What's New in IDL 5.5

Chapter 2: Multi-Threading in IDL 133

Keyword Description

TPOOL_MIN_ELTS This keyword sets the minimum number of data
elements for a given computation. If the number of
elementsisless than what you specified, IDL will not
use the thread pool for this computation. Use this
keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit fromit.

This keyword overrides the default value, which is
given by |CPU.TPOOL_MIN_ELTS.

TPOOL_NOTHREAD If set, the computation will not use the thread pool.

Table 2-2: The Thread Pool Keywords

We can use the TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to modify
the example used in the previous section so that it does not alter the global default
thread pool settings:

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation and override session settings for maximum

; and minimum number of elements

sineSquared = 1. - (COS(IDTOR*theta, TPOOL_MAX_ELTS = 1000000, $
TPOOL_MIN_ELTS = 50000))*2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:

» Employ the CPU procedure to alter the default global thread pool parameters,
either for an entire IDL session, or just for arelated group of computations.

» Usethethread pool keywords to aroutine to disable the thread pool for a
specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threadsto useto 1:

CPU, TPOOL_NTHREADS =1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(IDTOR*theta, /TPOOL_NOTHREAD))"2

What's New in IDL 5.5 Controlling the Thread Pool in IDL

134 Chapter 2: Multi-Threading in IDL

Routines Supporting the Thread Pool

The operators and routines currently supporting the thread pool in IDL arelisted in
the section that follows, grouped per the functional category (as listed in the IDL
Quick Reference) to which the routines belong.

Binary and Unary Operators:

.« — o +
« NOT « AND
o/ o *
* EQ * NE
« GE e LE
e GT e LT
o« > o <
* OR « XOR
o« N « MOD
o« # o H#

Mathematical Routines:

» ABS *» ERRORF * MATRIX_MULTIPLY
* ACOS « EXP * ROUND

* ALOG « EXPINT * SIN

* ALOGI0 * FINITE * SINH

* ASIN * FLOOR * SORT

* ATAN * GAMMA TAN

» CEIL * GAUSSINT TANH

* CONJ * IMAGINARY * VOIGT

* COS e ISHFT

* COSH * LNGAMMA

Routines Supporting the Thread Pool What's New in IDL 5.5

Chapter 2: Multi-Threading in IDL 135

Image Processing Routines:

« BYTSCL « INTERPOLATE
« CONVOL . POLY_2D
. FFT . TVSCL

Array Creation Routines:

» BINDGEN * LINDGEN

* BYTARR * L64INDGEN

* CINDGEN * MAKE_ARRAY
 DCINDGEN REPLICATE

* DCOMPLEXARR * UINDGEN
 DINDGEN * ULINDGEN

* FINDGEN * ULG64INDGEN
* INDGEN

Non-string Data Type Conversion Routines:

* BYTE * LONG

* COMPLEX * LONG64
» DCOMPLEX * UINT

» DOUBLE * ULONG
* FIX * ULONG64
* FLOAT

What's New in IDL 5.5 Routines Supporting the Thread Pool

136 Chapter 2: Multi-Threading in IDL

Array Manipulation Routines:

« MAX « TOTAL
e MIN « WHERE
« REPLICATE_INPLACE

Programming and IDL Control Routines:

» BYTEORDER

Routines Supporting the Thread Pool

What's New in IDL 5.5

Chapter 3:

Using COM QObjects

In IDL

This chapter describes the following topics:

Introduction to IDL COM Objects 138 Using IDL IDispatch COM Objects

Skills Required to Use COM Objects 139 Using ActiveX Controlsin IDL
IDL COM Naming Schemes 140

What's New in IDL 5.5

137

138 Chapter 3: Using COM Objects in IDL

Introduction to IDL COM Objects

COM (Component Object Model) objects are a specification and implementation for
building software components that may be used to build programs or to add
functionality to existing programs running on the Windows platform. COM
components are written in a variety of programming languages (although most are
written in C++) and are able to be utilized in a program at run time without having to
recompile the program. In IDL, COM abjects, regardless of type or method of
creation, are treated as IDL objects. In order to call methods associated with a COM
object, auser employsthe arrow operator -, just aswould be done when calling any
other object method in IDL. IDL will then internally recognize this COM -based
object and will route the method call to the internal COM subsystem for dispatching.

When adding COM functionality in IDL, an IDispatch interface must be exposed on
all COM objects accessed by IDL since thisinterfaceis used by IDL to call methods
on each COM object. Although this may seem to be alimitation, it isaminimal one
sinceit is common to scriptable objects, for which the interface is designed.

There are two main uses for COM functionality in IDL:

e Using the IDLcomlDispatch object to instantiate a desired COM object by
using a provided class or program ID. This method isideal for COM objects
that do not utilize a graphical-user interface.

* Usingthe WIDGET_ACTIVEX function to embed an ActiveX control in an
IDL widget hierarchy.

The primary differencesin IDL between using DL comlDispatch-based objects and
using an ActiveX control are the methods by which they are created and managed.
These methods of creation and management are detailed in this chapter.

Note
IDL COM functionality is not accessible when in IDL demonstration mode.

Introduction to IDL COM Objects What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 139

Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, some
knowledge of COM isrequired to use the functionality. Thereis a large difference
between the level at which atypical user sees IDL compared to that of the internal
programmer. To the user, IDL is an easy-to-use, array-oriented language that
combines numerical and graphical abilities, and runs on many platforms. Internaly,
IDL isalarge application that includes a compiler, an interpreter, graphics,
mathematical computation, user interface, and alarge amount of operating system-
dependent code.

The amount of knowledge required to effectively write internal code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have internal programming experience and
proficiency.

ActiveX

Tousethe IDL ActiveX control, alevel of understanding of ActiveX and COM is
necessary. Although IDL provides an abstracted interface to COM functionality,
some knowledge of COM isrequired to use the functionality.

What's New in IDL 5.5 Skills Required to Use COM Objects

140 Chapter 3: Using COM Objects in IDL

IDL COM Naming Schemes

IDL usestheidentifier for the underlying COM object to construct the IDL class
name. This then ensures each particular type of COM object has aunique IDL class
type. Since two types of classidentifiers exist in COM (class ID and program ID)
these must a'so be indicated during this class construction process. With thisin mind
the following naming scheme was devised:

<Base Class Name>$<ID Type>$<ID>
For | Dispatch based objects, the class name takes the following form:
Using aCOM Class ID

DL coml Dispatch$CL SID$<the Class ID>
Using aCOM Program ID

I DL coml Dispatch$PROGI D$<the Program ID>

Note
All IDispatch-based objects created in IDL sub-class from the intrinsic IDL class
IDLcomlDispatch.

For ActiveX based objects, the class name takes one of the following forms:
 UsingaCOM ClassID
IDLcomActiveX$CL SID$<the Class ID>
* UsingaCOM Program ID
IDLcomActiveX $PROGI D$<the Program | D>

Note
All ActiveX based objects created in IDL sub-class from theintrinsic IDL class
IDLcomActiveX, which is a sub-class from IDLcomlDispatch.

It should be noted that the COM Class ID separator (-) or the Program ID separator
(.) should be indicated using an underscore (_) when constructing the class name
for the particular object namein IDL.

About Obtaining COM Class Identifiers

The COM system depends on COM class identifiers and program identifiers to
instantiate or reference a particular control. These are often obtained from the control

IDL COM Naming Schemes What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 141

being used or documentation provided by a given control. This information can be
difficult to obtain, but Microsoft provides atool to determine the controls avail able
on aparticular computer and to retrieve the Class | dentifier for that particular control,
object, or type library. This downloadable tool (which has a so been known aso as
the OLE/COM Object Viewer) can be found at:

http://www.microsoft.com/com

What's New in IDL 5.5 IDL COM Naming Schemes

http://www.microsoft.com/com

142 Chapter 3: Using COM Objects in IDL

Using IDL IDispatch COM Objects

Creation, management, and destruction of | Dispatch-based COM objects that are not
being placed in an IDL Widget GUI are carried-out using standard IDL object-
management routines.

You can create an | Dispatch COM abject by using the OBJ_ NEW/() function. Either
the classidentifier or the program identifier is provided to indicate which object will
be created. For information on creating an | Dispatch COM object, see “IDispatch
Object Creation” on page 143.

Once creation is complete, the abject isthen usable and may be manipulated like any
other IDL object. Method calls are identical to any other IDL object. For information
on dispatching methods for an IDispatch COM object, see “IDispatch Method
Dispatching” on page 143 and for information on |Dispatch COM Object Property
Management see “ I Dispatch Property Management” on page 144.

You can destroy the abject by using the OBJ_DESTROY procedure. Thiswill release
the internal COM object and free any resources associated with it. For information on
destroying an |Dispatch COM object, see “|Dispatch COM Object Destruction” on
page 144.

IDL IDispatch Naming Schemes

IDL usestheidentifier for the underlying COM object to construct the IDL class
name. This ensures each particular type of COM object has aunique IDL classtype.
Since two types of classidentifiers exist in COM, those must also be included during
this class construction process. With thisin mind, the following naming schemeis
used:

<Base Class Name>$<ID Type>$<ID>
For | Dispatch-based objects, the class name takes the following form:
* UsingaCOM ClassID:
DL coml Dispatch$CL SID$<the Class ID>
* Using aCOM Program ID:
I DL coml Dispatch$PROGI D$<the Program ID>

Note
All IDispatch-based objects created in IDL subclass from theintrinsic IDL class
IDLcomlDispatch.

Using IDL IDispatch COM Objects What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 143

Note
The COM Class |D separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object namein IDL.

Note
The curly braces ({}) for COM Class IDs should not be included in the name of
the object. They areinvalid charactersfor IDL Class names.

IDispatch Object Creation

When working with IDispatch COM objectsin IDL, it isfirst necessary to learn the
method used to create an IDL object which representsa COM object which in turn
implements the | Dispatch interface.

Aswith any IDL object, an IDispatch COM object is created using the intrinsic IDL
function, OBJ_NEW(). Using the provided class or program ID, the underlying
implementation then employs theinternal IDL COM sub-system to instantiate the
desired COM object.

Note
OBJ_NEW should only be used to create non-ActiveX COM objects.
WIDGET_ACTIVEX isthe only method used to create an IDL object that
represents an ActiveX control. Creating an ActiveX control (an object based off the
class name prefix IDLcomActiveX$) using OBJ_NEW() is not supported and the
results are undefined.

IDispatch Method Dispatching
The - operator is used to invoke an IDispatch method asit iswith other IDL object
methods. The general pattern is:
IDLcomIDispatch-><MethodName>

Thereis no distinction between a procedure or a function in COM, so only the IDL
procedure interface is supported when calling |1 Dispatch methods.

When amethod is called on a COM-based IDL object, the method name and
arguments are passed to the internal IDL COM subsystem and are used to construct
the equivalent pair of calls IDispatch — GetlDsOfNames() and

IDispatch — Invoke() on the underlying COM object.

What's New in IDL 5.5 Using IDL IDispatch COM Objects

144 Chapter 3: Using COM Objects in IDL

Note
Aside from other COM-based objects, no complex types are supported as
parameters to procedure calls. Thisis due to the limitations imposed by the internal
data representations used in COM (VARIANTS).

Note
IDL objects use method names to identify and call object life cycle methods (INIT
and CLEANUP). Assuch, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP, those methods will be overridden by the IDL life cycle methods and
will not be accessible from IDL. Also, these ActiveX or |Dispatch abject cannot
have their own GetProperty or SetProperty method, since IDL uses these methods
to manage properties.

IDispatch COM Object Destruction

The OBJ_DESTROY procedure is used to destroy an | Dispatch COM object.

When OBJ DESTROY is called with a COM-based object as an argument, the
underlying reference to the COM object isreleased and IDL resourcesrelating to that
object are freed.

Destruction of the IDL object does not automatically cause the destruction of the
underlying COM object. Due to the method by which COM objects are implemented,
object destruction isleft to the component itself. A reference-counting methodology
isused in COM. Therefore, when the IDL COM object is destroyed, IDL will
decrement the reference count on the underlying object. It isthen left to the
underlying object to determine when to destroy itself based on other outstanding
reference counts.

IDispatch Property Management
The ability to set and get propertiesis also provided by the IDispatch interface. In
order to do these tasks, the following methods are defined:
IDL coml Dispatch -> GetProperty, <PROPERTY _NAME> = Value, [arg0, argl, ...]
IDL coml Dispatch -> SetProperty, <PROPERTY _NAME> = Value

Asisthe convention with other IDL objects, | Dispatch property names are mapped to
IDL keywords and the underlying property values are treated as IDL keyword values.

It is also important to realize that the provided keywords must map directly to a
property name or an error will be shown. Any keyword that is passed into either of

Using IDL IDispatch COM Objects What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 145

the property routines is assumed to be a fully-qualified IDispatch property name. As
such, the partial keyword name functionality provided by IDL is not valid with IDL
COM-based objects.

Some getable properties also require input parameters. Therefore, the GetProperty
method can take parameters. | f parametersare provided, only one property (keyword)
can be provided.

COM Objects Returning IDispatch Pointers to Other Objects

It is not uncommon for COM abjectsto return references to other COM objects. This
is done either through accessing a property or a method call. If an IDLcomlIDispatch
object returns a reference to another COM object’s | Dispatch interface, then the IDL
COM subsystem automatically converts the returned |Dispatch pointer into an

IDL coml Dispatch object for immediate use. For example:

obj1l - GetOtherObject, obj2
obj2 —» DoSomeMethod

The GetOtherObject() method for obj1 returns a reference to the IDispatch interface
for obj2. The IDL COM subsystem takes the | Dispatch reference and creates an
IDL coml Dispatch object for obj2.

Note
If an IDispatch reference is returned and an IDLcomlIDispatch object is
automatically created, the newly created object must be explicitly destroyed by
calling OBJ_DESTROY. For example, after using obj2 from the above example, it
must be destroyed by calling:

OBJ DESTROY, 0bj2

Example: Creating an IDispatch COM Object in IDL

In this example, an IDispatch COM object isusedin IDL.

All COM components and ActiveX controls must be registered on a machine before
they can be used by any client. A component (.dll or .exe) or acontrol (.ocx) can
be registered using the command line program regsvr32 , supplying it with name of
the component or control to register.

For example, if you had a COM component named RSIDemoComponent and it was
contained in afile named rsidemo.dll . Toinstall it in adirectory called

What's New in IDL 5.5 Using IDL IDispatch COM Objects

146 Chapter 3: Using COM Objects in IDL

C:\IDL_DIR\Demo and then useit, you would first need to register this component
by performing either of the following actions:

* Open acommand prompt window and type in the following:
regsvr32 'c:\idl_dir\demo\rsidemo.dll'

» Similarly, you could open a command prompt window, change directories to
C\idl_dir , thenjust say:

regsvr32 rsidemo.dll

Note
The* /s” parameter means to be silent during the registration. If the “ /s” isnot
specified, then apop-up dialog is presented saying the component was registered
correctly.

Now, an object called RSIDemoObj1 could be created. This object could be created
using either the Program ID or the Class ID. However, if the Class ID is used, the
hyphens (-) must be replaced with underscores (_) since hyphens are not valid
symbolsfor IDL identifiers.

1. The procedure would begin by creating a object from that component.

pro IDispatchDemo

obj1 = $
OBJ_NEW('IDLCOMIDispatch$PROGID$RSIDemoComponent.RSIDemoObj1')

or (with Class ID):

objl = OBJ_NEW($
'IDLCOMIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52)

2. Next, thefollowing line of code would be added to call the GetCL SID method,
which returns the Class ID for the component. (This should be: '{A77BC2B2-
88EC-4D2A-B2B3-F556ACB52E52} ")

objl -> GetCLSID, strCLSID
PRINT, strCLSID
Note
The GetCL SID returns the class identifier of the object using the standard
COM separators (-).

3. Next, to get the current value of the MessageStr property, you would enter:

objl -> GetProperty, MessageStr = outStr
PRINT, outStr

Using IDL IDispatch COM Objects What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 147

4,

10.

You could also set the MessageStr property of the object and display it:

objl -> SetProperty, MessageStr = 'Hello, world'
objl -> DisplayMessageStr

The Msg2InParams method can be used to take two input parameters and
concatenates them into the resultant string (the Output string should be:
String part of input25):

instr = 'String part of input'

val = 25L

objl -> Msg2InParams, instr, val, outStr
PRINT, outStr

The GetindexObject() method may return an object reference to three
possible objects (If theindex isnot 1, 2, or 3, it will return an error).

The three possible objects are:

e RSIDemoObjl, WHERE index = 1
* RSIDemoObj2, WHERE index = 2
e RSIDemoObj3, WHERE index = 3

You could get areference to one of these objects, RSIDemoObj3 for example:
objl -> GetindexObject, 3, obj3

Since al three objects have the 'GetCLSID ' method, they could now be used to
verify that the desired object was returned (The output should be:
{13AB135D-A361-4A14-B165-785B03AB5023}):

obj3 -> GetCLSID, obj3CLSID
PRINT, obj3CLSID

Always destroy aretrieved object when you are finished with it:
OBJ_DESTROY, o0bj3

Next, the GetArrayOfObjects() method could be used to return a vector
of object references to RSIDemoObj1, RSIDemoObj2, RSIDemoObj3,
respectively (The number of elementsin the vector is returned in the first
parameter and should be 3):

objl -> GetArrayOfObjects, cltems, objs
PRINT, cltems

What's New in IDL 5.5 Using IDL IDispatch COM Objects

148 Chapter 3: Using COM Objects in IDL

11. Since each object implements the 'GetCLSID() ' method, you could loop
through all the object references and get itsclass ID:
FOR i = 0, cltems-1 do begin
objs[i] -> GetCLSID, objCLSID
PRINT, 'Object[,i,] CLSID: ', objCLSID
ENDFOR
12. Always destroy object references when you are finished with them, and end
the procedure:
OBJ_DESTROY, objs

OBJ_DESTROQY, obj1
END

Using IDL IDispatch COM Objects What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 149

Using ActiveX Controls in IDL

The instantiation of an ActiveX control in IDL isvery different than typical

I Dispatch-based object instantiation. This is because ActiveX controls must be
placed in an IDL Widget hierarchy. In addition, events generated by the ActiveX
control are carried over into the IDL event model. Aside from these important
differences, the user then calls methods as they would with any other IDL object.

Note
IDL ActiveX control creation is available on the Windows NT/Windows 2000
platforms only.

ActiveX-based COM Naming Schemes

IDL usestheidentifier for the underlying COM object to construct the IDL class
name. This ensures each particular type of COM object has aunique IDL classtype.
Since two types of classidentifiers exist in COM, those must also be indented during
this class construction process. With thisin mind, the following naming schemeis
used:

<Base Class Name>$<ID Type>$< | D>
For ActiveX based objects, the class name takes the following form:
* UsingaCOM ClassID:
IDLcomActiveX$CLSID$< the C ass | D>
* UsingaCOM Program ID:

IDLcomActiveX$PROGID$< t he Program | D>

Note

All ActiveX-based objects created in IDL subclass from the intrinsic IDL class
IDLcomActiveX, which is a sub-class of DL coml Dispatch.

Note
The COM Class ID separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object namein IDL.

What's New in IDL 5.5 Using ActiveX Controls in IDL

150 Chapter 3: Using COM Objects in IDL

ActiveX Control Creation

The creation of an ActiveX control in IDL follows the model used with Object
Graphicsin draw widgets. The control is created using a procedural interface that is
exposed as part of the IDL Widget system. Methods of the ActiveX control are
accessed viathe underlying IDL object that represents the control. Essentialy, all
IDL Widget-related functionality is managed using the IDL Widget interface, while
COM method dispatching is handled using the underlying IDL object that represents
the ActiveX control.

The WIDGET_ACTIVEX function is used to create an ActiveX control in IDL and
also to placeit into an IDL widget hierarchy. The Program ID or Class ID of the
underlying IDL object that represents the ActiveX control is retrieved using the
GET_VALUE keyword to the WIDGET_CONTROL. Thisis similar to the
operations used to get the window object from an IDL draw widget.

Note
If you specify the class ID of a non-ActiveX component using
WIDGET_ACTIVEX(), theresults are unpredictable (thisis not recommended
since it may or may not work depending on the actual COM object.)

Note
WIDGET_ACTIVEX isthe only method used to create an IDL object that
represents an ActiveX control. OBJ_NEW should only be used to create non-
ActiveX COM objects. Creating an ActiveX control (an object based off the class
name prefix |DLcomActiveX$) using OBJ_NEW() is not supported and the results
are undefined.

ActiveX Control Access and Dispatching

Accessto the IDL object that represents the control isgained using the GET_VALUE
keyword to the WIDGET_CONTROL procedure after Widget realization. Once the
underlying IDL object isretrieved from the Widget that represents the ActiveX
control, methods are called using the same methodology and underlying technology
as | Dispatch-based COM objectsin IDL.

Events generated by the ActiveX control are also dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged into
an IDL structure that contains the ActiveX event parameters, and is dispatched using
the standard IDL widget event-dispatching methodologies. As such, user event-
handling routines are called with a structure that contains the ActiveX event
parameters.

Using ActiveX Controls in IDL What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 151

Note
IDL objects use method namesto identify and call object life cycle methods (INIT
and CLEANUP). Assuch, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP those methods will be overridden by the IDL life cycle methods and not
accessiblefrom IDL. The ActiveX or IDispatch object also cannot have a
GetProperty or SetProperty method, since DL uses these to manage properties.

Freeing Dynamic Resources

The HEAP_FREE routine frees all dynamic resources associated with the argument
which is passed to the routine. Thisroutine will traverse the data represented by the
variable, traversing arrays and structures. When an aobject value is encountered, it is
released using the OBJ_DESTROY routine. When a pointer value is encountered, its
contents are scanned, freeing any dynamic resources, and then the pointer itself is
released using the PTR_FREE routine. Thisis especially helpful with routines that
return dynamically alocated information.

HEAP_FREE may be used:

» To release the dynamic resources contained a structure returned from the
GetRecord method of an IDL dbRecordset object.

* Torelease any dynamic resources associated with an event generated by an
ActiveX control that isembedded in an IDL Widget hierarchy using
Widget_ActiveX().

Arrays can be contained in the events that are propagated from the ActiveX control.
If an event contains an array, the array is placed in an IDL pointer and that pointer is
contained in the event structure. Since this memory isin an IDL Pointer, it isthe
user’s responsibility to free the pointer using PTR_FREE or HEAP_FREE.

If itisunclear if the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when finished. Thiswill ensure that al dynamic portions of the structure are rel eased.

ActiveX Control Destruction

Destruction of an ActiveX control takes places in any of the following cases:
» When the widget hierarchy that it belongs to is destroyed.
* Whenacadl to WIDGET_CONTROL, /DESTRQY is made.
* When theunderlying IDL object is destroyed using OBJ_DESTROY.

What's New in IDL 5.5 Using ActiveX Controls in IDL

152 Chapter 3: Using COM Objects in IDL

Example: Embedding an ActiveX Control in IDL

Thefollowing example demonstrates just how you can embed and ActiveX control in
an IDL widget. This example creates a base widget that calls an ActiveX calendar

control (obtained from the Microsoft Office 2000 package). The result isaclickable
desktop IDL calendar.

Copy and paste the following text into an IDL Editor window. After saving thefile as
cal.pro , compile and run the program.

1. Giveyour program an identifying header:
pro cal_event, ev
2. Prepare the base widget:

WIDGET_CONTROL, ev.id, GET_VALUE = oCal
WIDGET_CONTROL, ev.top, GET_UVALUE = state
ocal->GetProperty, day=day, year=year, month = month
WIDGET_CONTROL, state.Day , SET_VALUE = STRTRIM(day,2)
WIDGET_CONTROL, state.year , SET_VALUE STRTRIM(year,2)
WIDGET_CONTROL, state.month , SET_VALUE = STRTRIM(month,2)

HEAP_FREE, ev
end

3. Now create an ActiveX control:

pro cal
wBase = WIDGET_BASE(COLUMN = 1, SCR_XSIZE = 400)
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, value = 'Month: ')
wMonth = WIDGET_LABEL(wSubBase, value = 'October’)
wSubBase = WIDGET_BASE(wBase, /ROW)

wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Day: ')
wDay = WIDGET_LABEL(wSubBase, VALUE = '22')
wSubBase = WIDGET_BASE(wBase, /ROW)

wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Year: ')
wYear = WIDGET_LABEL(wSubBase, VALUE = '1999)

WAX=WIDGET_ACTIVEX(WBASE, $
{8E27C92B-1264-101C-8A2F-040224009C02})

WIDGET_CONTROL, wBase, /REALIZE

WIDGET_CONTROL, wBase, $
SET_UVALUE = {month:wMonth, day:wDay, year:wYear}

; Should be IDispatch object for ActiveX control
WIDGET_CONTROL, wAx, GET_VALUE = 0AXx

0Ax->GetProperty, day = day, year = year, month = month

Using ActiveX Controls in IDL What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 153

WIDGET_CONTROL, wDay , SET_VALUE = STRTRIM(day, 2)
WIDGET_CONTROL, wyear , SET_VALUE = STRTRIM(year, 2)
WIDGET_CONTROL, wmonth , SET_VALUE = STRTRIM(month, 2)

XMANAGER, ‘cal', wBase
END

4. Now run this example. You should see the following results:

&YIDL [_[O]x]
Month 1

Dawl

‘Year 2001

January 2001 I.lanuary = 2001 ¥

Sun Mon Tue Wed Thu Fri Sat
31 2 3 4 5 B

7 I a 10 1 12 13
14 & 16 17 18 19 20
21 22 23 24 25 26 27
28 23 30 at 1 2 5)
4 &l [7 8 9 10

Figure 3-1: A Simple and Functional Calendar Created in IDL
with an ActiveX Widget

Example: Creating an Excel Spreadsheet in IDL

In the next example, WIDGET_ACTIVEX isused to create awidget which calls an
Excel spreadsheet (obtained from the Microsoft Office 2000 package) in IDL.

; excel_getSelection

; Purpose:

; Grab the data out of the current selection.

; Return 1 on success, 0 on error.

FUNCTION EXCEL_GETSELECTION, oExcel, aData

; Get the Selection collection of cells.
oExcel -> GetProperty, SELECTION = oSel
oSel -> GetProperty, COUNT = nCells
IF(nCells It 1)THEN BEGIN
OBJ_DESTROY, o0Sel
RETURN, 0
ENDIF

; Now get the size of the selection.
oSel -> GetProperty, COLUMNS = oCols, ROWS = oRows

What's New in IDL 5.5 Using ActiveX Controls in IDL

154

Chapter 3: Using COM Objects in IDL

oCols -> GetProperty, COUNT = nCols
OBJ_DESTROY, oCols
oRows -> GetProperty, COUNT = nRows
OBJ_DESTROY, oRows
aData = FLTARR (nCols, nRows,/NOZERO)
FOR i = 1, nCells DO BEGIN
oSel -> GetProperty, ITEM = oltem, i
oltem -> GetProperty, VALUE = vValue
aData[i-1] = vValue
OBJ_DESTROY, oltem
endfor
OBJ_DESTROY, o0Sel
RETURN,1
END

; excel_setData

; Purpose:
; Set or initialize the values in the spreadsheet.
PRO excel_setData , oExcel
; size of data
nX = 20
oExcel -> GetProperty, ActiveSheet=o0Sheet
im = BESELJ (dist(nX))
for i = 0, nx-1 do begin
for j = 0, nx-1 do begin
oSheet -> GetProperty, cells = oCell, i+1, j+1
oCell -> SetProperty, value = im(i,j)
OBJ_DESTROY, ocCell
ENDFOR
ENDFOR
OBJ_DESTROY, oSheet
end

; excel_event

; Purpose:
; Event Handler for the excel component.

pro excel_event, ev

WIDGET_CONTROL ,ev.top, GET_UVALUE = sState, /INO_COPY
IF(ev.dispid eq 1513)THEN BEGIN; Selection is changing

; Get the data for the selection

IF(excel_getSelection(sState.oExcel, aData) NE 0)THEN BEGIN

szData = SIZE (aData)
; Are we 2d?

IF(szData[0] GT 1 AND szData[l] GT 1 AND szData[2] GT 1)THEN $

SURFACE, aData $
ELSE $

Using ActiveX Controls in IDL

What's New in IDL 5.5

Chapter 3: Using COM Objects in IDL 155

PLOT, aData ; nope, 1 D
ENDIF
ENDIF

; Reset our state variable.

WIDGET_CONTROL, ev.top, SET_UVALUE = sState,/NO_COPY
HEAP_FREE, ev

END

;. Excel

; Purpose:
; Example that places the excel like spreadsheet
; control in an IDL widget and then plots the selected data.
PRO Excel
; Makes an ActiveX control.
IExcept = 0
wBase = WIDGET_BASE(COLUMN = 1, TITLE = "IDL Excel Example")
wAx = WIDGET_ACTIVEX (WBASE,$
'{0002E510-0000-0000-C000-000000000046}',$
SCR_XSIZE = 800, SCR_YSIZE = 600)
wTxt = WIDGET_TEXT(wBase, value = "
WIDGET_CONTROL, wBase,/REALIZE, SET_UVALUE = {wAX:wAX, wTXT:wTxt}
WIDGET_CONTROL, wAX, GET_VALUE = oExcel
oExcel->SetProperty, DisplayTitleBar = 0
excel_setData, oExcel
WIDGET_CONTROL, wBase, SET_UVALUE = {oExcel:0Excel, wText:wTxt}
XMANAGER, 'excel', wBase, /INO_BLOCK
END

Access to ActiveX Methods and Properties

InIDL, an ActiveX control is represented in a similar method as an IDispatch COM
object, as an IDL object. The user gains access to the object using
WIDGET_CONTROL with the GET_VALUE keyword, passing in the widget id
returned from WIDGET_ACTIVEX(). The GET_VALUE keyword returns an IDL
object that represents the ActiveX control. For example:

idAX = Widget_ActiveX(idParent, idClass)

WIDGET_CONTROL, idTLB, /REALIZE
WIDGET_CONTROL, idAX, GET_VALUE=0AX
0AX -> ActiveXMethod

Oncethe object is retrieved, methods are called just like any other IDL object
methods.

What's New in IDL 5.5 Using ActiveX Controls in IDL

156

Chapter 3: Using COM Objects in IDL

The object is destroyed by either calling OBJ_DESTROY on it, or when the Widget
is destroyed.

Note
If the initialization method for | Dispatch object creation uses a standard class name,
the class returned from GET_VALUE should also have a standard name. One
possibility isIDLcomActiveX.

Event Propagation

Events generated by an ActiveX control are propagated to the IDL user as with any
other IDL Widget event; a user event handler is called with an event structure.

For ActiveX controls, events are signaled by the control calling methods on the
ActiveX container that holdsthe control. The parametersto the called method contain
the attributes associated with the triggered event. To propagate this information to
IDL, this method call is converted into an IDL event structure.

As with other IDL Widget event structures, the first three fields contain the Widget
ID, Top ID and the Handler ID for the event. For event typing, the DISPID and
method name of the ActiveX event callback method are a so included in the structure.
Asfor the parameter information, it is placed in fields of the structure. The parameter
name is used to construct the field name and the associated datais placed in the field.
Because thisis dynamic, an anonymous structure is used for this event.

The following gives an idea of the basic format of an ActiveX event structure:

{ID : oL,

TOP : 0L,

HANDLER . 0L,

DISPID : OL, ; The DISPID of the callback method
METHOD . ", The name of the callback method

<Paraml name> : <Paraml value>,
<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>

}

Using ActiveX Controls in IDL What's New in IDL 5.5

Chapter 4.

Using the Shortcut
Menu Widget

This chapter describes the implementation of shortcut menus for use with the IDL Widget system.

Introduction to the Shortcut Menu Widget 158 Creating a List Widget Shortcut Menu . .. 166
Creating a Base Widget Shortcut Menu .. 160 Creating a Text Widget Shortcut Menu .. 170
Creating a Draw Widget Shortcut Menu . . 162

What's New in IDL 5.5 157

158 Chapter 4: Using the Shortcut Menu Widget

Introduction to the Shortcut Menu Widget

InIDL 5.5, anew shortcut menu widget (otherwise known as a context sensitive or
pop-up menu) has been added to enhance the IDL widget system. These menus are
available for:

» Basewidgets
o Text widgets
e Draw widgets
e List widgets

Figure 4-1: Widget Shortcut Menu

Shortcut menus are made available to the user in two separate components. The first
isashortcut menu event and the second is the creation and display of a shortcut menu
for a particular widget.

Shortcut menu events can be requested by setting the CONTEXT_EVENTS keyword
at the time of widget creation using WIDGET_CONTROL. The events can be turned
off for a particular widget by calling WIDGET_CONTROL with the
CONTEXT_EVENTS keyword set to 0.

To create a shortcut menu, use the CONTEXT_MENU keyword when creating a
widget base. The shortcut menu base must be a child of one of the widget types listed
previously. The shortcut menu base is a special base widget that can be used as a
parent to add menu buttons or regular push buttons. The use of this widget is similar
to the way a menu bar base is used as a parent for menu buttons. M ultiple shortcut
menu bases may be associated with a single widget.

Introduction to the Shortcut Menu Widget What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 159

Note

For shortcut menus, both plain buttons and menu buttons are allowed while for
menu bars only menu buttons are allowed.

Using WIDGET_DISPLAYCONTEXTMENU

The new WIDGET_DISPLAY CONTEXTMENU procedure displays a shortcut
(context sensitive or pop-up) menu. After creating buttons for the shortcut menu, it
can be displayed using WIDGET_DISPLAY CONTEXTMENU. Thisis normally
called in an event handler that has processed a shortcut menu event or a button event
from adraw widget. This procedure takes the ID of the widget that isthe parent of the
shortcut menu, the x and y location to display the menu, and the ID of the shortcut
menu base. The ID would normally be the event.id value of the shortcut menu event,
and the x and y locations also come from the shortcut event. As stated above, there
may be multiple shortcut menus for a particular widget. The last parameter of
WIDGET_DISPLAY CONTEXTMENU allows the user to specify which menu to
display. In the case of adraw widget that isthe parent of a shortcut menu, thex and y
locations can be obtained from the button event structure.

When WIDGET_DISPLAY CONTEXTMENU iscalled it displays the shortcut menu
and handles the native event if the user selects a button. If a button is selected, a
button event is generated and the menu is dismissed. If no button is selected (the user
clicks el sewhere on the screen) then the menu is dismissed and no event is generated.
Normally no further processing would be done in the shortcut event or draw event
handler after calling WIDGET_DISPLAY CONTEXTMENU. The new user event is
queued and will be handled in anew call to the event handler.

What's New in IDL 5.5 Introduction to the Shortcut Menu Widget

160 Chapter 4: Using the Shortcut Menu Widget

Creating a Base Widget Shortcut Menu

A base widget allows you to create the base upon which you can incorporate other
widgets. With new functionality in IDL, you can add a shortcut menu to your base
widget. Since abase widget does not usually cause events, you do hot need to specify
when a context event occurs as shown in the following example:

; Event handler routine for the "Selection 1" button in
; the context menu of the top level base.
PRO FirstEvent, event

; Output that the "Selection 1" button has been pressed.
PRINT, "'
PRINT, 'Selection 1 Pressed'

END

; Event handler routine for the "Selection 2" button in
; the context menu of the top level base.
PRO SecondEvent, event

; Output that the "Selection 1" button has been pressed.
PRINT, "'
PRINT, 'Selection 2 Pressed'

END

; Event handler routine for the "Done" button in
; the context menu of the top level base.
PRO DoneEvent, event

; Output that the "Done" button has been pressed.
PRINT, "'
PRINT, 'Done Pressed'

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END
; Event handler routine for the context menu of the
; top level base. This event handler routine is called

; when the user right-clicks on the top level base.
PRO ContextTLBaseExample_Event, event

Creating a Base Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 161

; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.id, $
FIND_BY_UNAME = 'contextMenu')

; Display the context menu and send its events to the

; other event handler routines.

WIDGET_DISPLAYCONTEXTMENU, event.id, eventx, $
eventy, contextBase

END

: Main Routine: GUI creation routine.
PRO ContextTLBaseExample

; Initialize the top level (background) base. This base

; contains context events. In other words, the user

; can right-click on the base to obtain a context

; menu.

topLevelBase = WIDGET_BASE(/COLUMN, XSIZE = 100, $
YSIZE = 100, /CONTEXT_EVENTS)

: Initialize the base for the context menu.
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $
UNAME = ‘contextMenu')

; Initialize the buttons of the context menu.
firstButton = WIDGET_BUTTON(contextBase, $
VALUE = 'Selection 1', EVENT_PRO = 'FirstEvent’)
secondButton = WIDGET_BUTTON(contextBase, $
VALUE = 'Selection 2', EVENT_PRO = 'SecondEvent’)
doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $
/SEPARATOR, EVENT_PRO = 'DoneEvent’)

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.
XMANAGER, 'ContextTLBaseExample', topLevelBase

END

What's New in IDL 5.5 Creating a Base Widget Shortcut Menu

162 Chapter 4: Using the Shortcut Menu Widget

Creating a Draw Widget Shortcut Menu

A draw widget contains a rectangular area which functions as a standard |DL
graphics window. Using the new IDL functionality, shortcut menu options can be
added to adraw widget allowing for such choices as changing the color tables of an
image (as is demonstrated in the following example).

Note
The CONTEXT_EVENTS keyword may not be used with WIDGET_DRAW.
Draw widgets already support button events. When using a draw widget, enable
button events and then check for EVENT.REL EASE EQ 4 to indicate aright mouse
button rel ease event.

; Event handler routine for the "XLOADCT" button in
; the context menu of the draw widget.
PRO LoadCTEvent, event

; Display the XLOADCT utility to allow the user to
; change the current color table.
XLOADCT, /BLOCK, GROUP = event.id

; Obtain the window ID of the draw widget.
imageDraw = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'imageDisplay')
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Obtain the image to redisplay it with the updated
; color table from XLOADCT utility.
WIDGET_CONTROL, event.top, GET_UVALUE = image

; Redisplay the image with the updated color table.
WSET, windowDraw
TV, image

END

; Event handler routine for the "XPALETTE" button in
; the context menu of the draw widget.

PRO PaletteEvent, event

; Display the XPALETTE utility to allow the user to

; modify some or all of the current color table.
XPALETTE, /BLOCK, GROUP = event.id

Creating a Draw Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 163

; Obtain the window ID of the draw widget.
imageDraw = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'imageDisplay')
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Obtain the image to redisplay it with the updated
; color table from XPALETTE utility.
WIDGET_CONTROL, event.top, GET_UVALUE = image

; Redisplay the image with the updated color table.
WSET, windowDraw
TV, image

END

; Event handler routine for the "Done" button in
; the context menu of the top level base.
PRO DoneEvent, event

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

; Event handler routine for the events of the draw

; widget. This event handler routine is called

; when the user left- or right-clicks on the draw widget.
PRO DrawEvents, event

; If either a left- or right-click occurs, obtain the image to
; determine the value of the pixel at the location under the
; cursor.

WIDGET_CONTROL, event.top, GET_UVALUE = image

; If either a left- or right-click occurs, output the location
; and value of the pixel under the cursor.

PRINT, "'

PRINT, 'Column: ', event.x

PRINT, 'Row: ', eventy

PRINT, 'Value: ', image[event.x, event.y]

What's New in IDL 5.5 Creating a Draw Widget Shortcut Menu

164

Chapter 4: Using the Shortcut Menu Widget

; If a right-click occurs, display the context menu and send

; its events to the other event handler routines.

IF (event.release EQ 4) THEN BEGIN
; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = ‘drawContext’)
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, eventy, $
contextBase

ENDIF

END

: Main Routine: GUI creation routine.
PRO ContextDrawExample

; Determine the path to the file containing the image.
file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = [‘examples', 'data’])

; Initialize the image size parameter.
imageSize = [360, 360]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)

; Initialize the draw widget to contain the display

; of the image. This draw widget enables buttons events. In

; other words, the user can left- or right-click on the image

; display to obtain the location of the pixel under the

; cursor or to obtain a context menu, respectively.

imageDraw = WIDGET_DRAW(topLevelBase, /BUTTON_EVENTS, $
XSIZE = imageSize[0], YSIZE = imageSize[l], $
EVENT_PRO = 'DrawEvents’, UNAME = ‘'imageDisplay")

; Initialize the base for the context menu.
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $
UNAME = ‘drawContext’)

Creating a Draw Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 165

; Initialize the buttons of the context menu.
loadCTButton = WIDGET_BUTTON(contextBase, $
VALUE = 'XLOADCT', EVENT_PRO = 'LoadCTEvent)
paletteButton = WIDGET_BUTTON(contextBase, $
VALUE = 'XPALETTE', EVENT_PRO = 'PaletteEvent’)
doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $
/SEPARATOR, EVENT_PRO = 'DoneEvent’)

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Set the UVALUE of the top level base to the image so
; it can be accessed within the event handler routines.
WIDGET_CONTROL, topLevelBase, SET_UVALUE = image

; Obtain the window ID of the draw widget.
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Set the display to the window within the draw
; widget.
WSET, windowDraw

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 5

; Display the image in the window of the draw
; widget.
TV, image

; Determine the center location of the image display.
column = imageSize[0]/2
row = imageSize[1]/2

; Initially show the cursor in the center of the image

; display.

TVCRS, column, row

; Handle the events from the GUI.

XMANAGER, 'ContextDrawExample', topLevelBase, $
/NO_BLOCK

END

What's New in IDL 5.5 Creating a Draw Widget Shortcut Menu

166 Chapter 4: Using the Shortcut Menu Widget

Creating a List Widget Shortcut Menu

A list widget allows the use of alist of selectable text elements. An item can be
selected by pointing with the mouse cursor and selecting atext element. With
shortcut menu functionality, a right mouse click on this text element can alow for
further choices as is shown in the following example widget:

Note
You can determineif a context menu event occurred with a list widget by the name
of the event structure asin the following statement fragment:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT)...

; Event handler routine for the "Rotate 90 Degrees" button in
; the context menu of the top level base.
PRO Rotate90Event, event

; Output that the "Rotate 90 Degrees" button has been pressed.
PRINT, "'
PRINT, 'Rotate 90 Degrees Pressed’

END

; Event handler routine for the "Rotate 180 Degrees" button in

; the context menu of the top level base.

PRO Rotate1l80Event, event

; Output that the "Rotate 180 Degrees" button has been pressed.
PRINT, "'

PRINT, 'Rotate 180 Degrees Pressed'

END

; Event handler routine for the "Rotate 270 Degrees" button in

; the context menu of the top level base.

PRO Rotate270Event, event

; Output that the "Rotate 270 Degrees" button has been pressed.
PRINT, "'

PRINT, 'Rotate 270 Degrees Pressed'

END

Creating a List Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 167

; Event handler routine for the "Shift One Quarter" button in
; the context menu of the top level base.
PRO Shift025Event, event

; Output that the "Shift One Quarter" button has been pressed.
PRINT, "'
PRINT, 'Shift One Quarter Pressed'

END

; Event handler routine for the "Shift One Half' button in
; the context menu of the top level base.
PRO ShiftO50Event, event

; Output that the "Shift One Half" button has been pressed.
PRINT, "'
PRINT, 'Shift One Half Pressed'

END

; Event handler routine for the "Shift Three Quarters" button in
; the context menu of the top level base.

PRO Shift075Event, event

; Output that the "Shift Three Quarters" button has been pressed.
PRINT, "'

PRINT, 'Shift Three Quarters Pressed'

END

; Event handler routine for the "Done" button in

; the context menu of the top level base.

PRO DoneEvent, event

; Output that the "Done" button has been pressed.

PRINT, "'

PRINT, 'Done Pressed'

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

What's New in IDL 5.5 Creating a List Widget Shortcut Menu

168 Chapter 4: Using the Shortcut Menu Widget

; Event handler routine for the events of the draw
; widget. This event handler routine is called
; when the user left- or right-clicks on the draw widget.

PRO ListEvents, event

; If either a left- or right-click occurs, obtain the selection
; index to determine the type of geometry change to occur.
selection = WIDGET_INFO(event.id, /LIST_SELECT)

; Output resulting selection.
PRINT, "'
PRINT, 'Selection = ', selection

; If a right-click occurs display the appropriate context menu.
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN $
BEGIN
. If "Rotate" is selected, then use the rotate context menu.
IF (selection EQ 0) THEN BEGIN
; Obtain the widget ID of the rotate context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'contextRotate')
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $
event.y, contextBase
ENDIF
. If "Shift" is selected, then use the shift context menu.
IF (selection EQ 1) THEN BEGIN
; Obtain the widget ID of the shift context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'contextShift")
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $
event.y, contextBase
ENDIF
ENDIF

END

: Main Routine: GUI creation routine.
PRO ContextListExample

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)

Creating a List Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 169

; Initialize the geometry transform list. This list widget enables

; context events. In other words, the user can left- or right-click

; on the list to obtain a general selection or to make a specific

; selection, respectively.

list = ['Rotate’, 'Shift']

geometryList = WIDGET_LIST(topLevelBase, VALUE = list, $
/CONTEXT_EVENTS, EVENT_PRO = 'ListEvents')

; Initialize the base for the rotate context menu.

contextRotateBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $
UNAME = 'contextRotate')

; Initialize the buttons of the rotate context menu.
rotate90Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 90 Degrees', EVENT_PRO = 'Rotate90Event’)
rotate180Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 180 Degrees', EVENT_PRO = 'Rotate180Event’)
rotate270Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 270 Degrees', EVENT_PRO = 'Rotate270Event’)
doneButton = WIDGET_BUTTON(contextRotateBase, VALUE = 'Done’, $

/ISEPARATOR, EVENT_PRO = 'DoneEvent’)

: Initialize the base for the shift context menu.

contextShiftBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $
UNAME = ‘contextShift')

; Initialize the buttons of the shift context menu.
shift025Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift One Quarter', EVENT_PRO = 'Shift025Event’)
shift050Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift One Half', EVENT_PRO = 'Shift0O50Event')
shift075Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift Three Quarter', EVENT_PRO = 'Shift075Event’)
doneButton = WIDGET_BUTTON(contextShiftBase, VALUE = 'Done’, $

/SEPARATOR, EVENT_PRO = 'DoneEvent’)

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.

XMANAGER, 'ContextListExample’, topLevelBase

END

What's New in IDL 5.5 Creating a List Widget Shortcut Menu

170 Chapter 4: Using the Shortcut Menu Widget

Creating a Text Widget Shortcut Menu

Text widgets are used to display text and to get text input from the user. Text widgets
can be one or more lines and can even contain scroll bars. An example of
incorporating a shortcut menu into a text widget follows:

Note
You can determine if a context menu event occurred with atext widget by the name
of the event structure asin the following statement fragment:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT)...

; Event handler routine for the "Column" button in
; the context menu of the text widget.
PRO ColumnEvent, event

; Obtain the location variable from the UVALUE of the

; text widget.

locationText = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyText')
WIDGET_CONTROL, locationText, GET_UVALUE = location

; If location index is set to "Row" change it to "Column".

IF (location[2] EQ 1) THEN BEGIN
titteLabel = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyLabel’)
WIDGET_CONTROL, titleLabel, SET_VALUE = 'Column:
location[2] = 0

ENDIF ELSE RETURN

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, locationText, SET_UVALUE = location

END

: Event handler routine for the "Row" button in
; the context menu of the text widget.
PRO RowEvent, event

; Obtain the location variable from the UVALUE of the

; text widget.

locationText = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyText')
WIDGET_CONTROL, locationText, GET_UVALUE = location

Creating a Text Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 171

; If location index is set to "Column" change it to "Row".

IF (location[2] EQ 0) THEN BEGIN
titteLabel = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyLabel’)
WIDGET_CONTROL, titleLabel, SET_VALUE = 'Row: '
location[2] = 1

ENDIF ELSE RETURN

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, locationText, SET_UVALUE = location

END

; Event handler routine for the "Done" button in
; the context menu of the text widget.
PRO DoneEvent, event

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

; Event handler routine for the events of the text

; widget. This event handler routine is called

; when the user left- or right-clicks in the text widget.
PRO TextEvents, event

; If a right-click occurs display the context menu.
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN $
BEGIN

; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'contextMenu')

; Display the context menu and send its events to
; the other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, eventx, $
event.y, contextBase
ENDIF

; If text is edited, obtain new text inputed into widget.

WIDGET_CONTROL, event.id, GET_VALUE = textString

IF ((FIX(textString) GE 0) AND (FIX(textString) LE 360)) $
THEN textValue = FIX(textString) ELSE RETURN $
textValue = textValue[O]

What's New in IDL 5.5 Creating a Text Widget Shortcut Menu

172

Chapter 4: Using the Shortcut Menu Widget

; Output resulting inputed value.
PRINT, "'
PRINT, 'Text Value = ', textValue

; Obtain the location variable from the UVALUE of the
; text widget.
WIDGET_CONTROL, event.id, GET_UVALUE = location

; Determine if inputed value should be column or row.
IF(location[2] EQ 0) THEN location[0] = textValue $
ELSE location[1] = textValue

; Output resulting location.

PRINT, "'
PRINT, 'Column = ', location[0]
PRINT, 'Row = ', location[1]

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, event.id, SET_UVALUE = location

END

: Main Routine: GUI creation routine.
PRO ContextTextExample

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)

; Initialize location variable. This variable contains

; the column value, the row value, and a location index.

; The location index determines if the text value represents
; a column value, or it represents a row value.

column = 180

row = 180

locationindex = 0

location = [column, row, locationindex]

; Set initial title of the label for the text widget.
title = 'Column: '

; Initialize a base to contain the text widget and its label.
textBase = WIDGET_BASE(topLevelBase, /ROW, /FRAME)

; Initialize the label of the text widget.
titleLabel = WIDGET_LABEL(textBase, VALUE = title, $
/DYNAMIC_RESIZE, UNAME = 'xyLabel’)

Creating a Text Widget Shortcut Menu What's New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 173

; Initialize the text widget.

locationText = WIDGET_TEXT(textBase, VALUE = STRTRIM(column, 2), $
/EDITABLE, UNAME = 'xyText', /CONTEXT_EVENTS, $
UVALUE = location, EVENT_PRO = 'TextEvents')

: Initialize the base for the context menu.

contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $
UNAME = 'contextMenu’)

; Initialize the buttons of the context menu.

columnButton = WIDGET_BUTTON(contextBase, $
VALUE = 'Column’, EVENT_PRO = 'ColumnEvent’)

rowButton = WIDGET_BUTTON(contextBase, $
VALUE = 'Row', EVENT_PRO = 'RowEvent’)

doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $
/SEPARATOR, EVENT_PRO = 'DoneEvent’)

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.

XMANAGER, 'ContextTextExample', topLevelBase

END

What's New in IDL 5.5 Creating a Text Widget Shortcut Menu

174 Chapter 4: Using the Shortcut Menu Widget

Creating a Text Widget Shortcut Menu What's New in IDL 5.5

Chapter 5:

New Objects

This chapter provides documentation for IDL Objects introduced in IDL 5.5.

IDLcomIDispatch 176 IDLffMrSIDo,

What's New in IDL 5.5

175

176 Chapter 5: New Objects

IDLcomIDispatch

The IDLcomlDispatch object class creates a COM aobject that implements an
IDispatch interface. Using the provided class or program ID, the underlying
implementation will utilize the internal IDL COM sub-system to instantiate the
desired COM object.

Note
IDL objects use method names to identify and call object life cycle methods (INIT
and CLEANUP). Assuch, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP those methods will be overridden by the IDL life cycle methods and not
accessiblefrom IDL.

Subclasses

A dynamic sub-class of IDLcomlDispatch is created when the object is instantiated.
A dynamic class name is created to provide a unique name for each component type,
while providing the same super-class across al |Dispatch components.

Creation
See IDLcomlIDispatch::Init

Methods

* |DLcomlDispatch::Init
* |DLcomlDispatch::GetProperty
e |IDLcomlDispatch:: SetProperty

IDLcomIDispatch What's New in IDL 5.5

Chapter 5: New Objects 177

IDLcomIDispatch::Init

The IDLcomlDispatch::Init function method is used to initialize agiven COM object
and establish alink between the resulting IDL object and the I Dispatch interface of
the underlying COM abject.

Syntax

Obj = OBJ_NEW('IDLcomIDispatch$<IDTY PE>$ID")
Arguments

None
Class Names

To ensure that each particular type of COM object has a unique IDL class type, the
identifier for the underlying COM object is utilized to construct the IDL class name.
Since two types of class identifiers exist in COM, those must also be indicted during
this class construction process. With thisin mind the following naming scheme was
devised:

<Base Class Name>$<ID Type>$< | D>
For I Dispatch based objects, the class name takes the following form:
Using aCOM Class ID

IDLcomIDispatch$CLSID$< the C ass | D>
Using a COM Program ID

IDLcomIDispatch$PROGID$< t he Program | D>

Note
All IDispatch based objects created in IDL sub-class from the intrinsic IDL class
IDLcomlDispatch.

The COM Class ID separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object name. For example:

If the CLSID of an abject is:
A77BC2B2-88EC-4D2A-B2B3-FS56A CB52ES2

then using IDLcoml Dispatch to create an instance of the object would appear as:

What's New in IDL 5.5 IDLcomIDispatch

178 Chapter 5: New Objects

demobj = OBJ_NEW $
(‘'IDLcomIDispatch$CLSID$A77BC2B2-88EC_4D2A B2B3_FS56ACB52ES2)

Note
The curly braces ({}) for COM Class IDs should not be included in the name of
the object. They areinvalid charactersfor IDL Class names.

IDLcomIDispatch What's New in IDL 5.5

Chapter 5: New Objects 179

IDLcomIDispatch::GetProperty

The IDLcomlDispatch::GetProperty function method is used to get properties for a
particular IDispatch interface. The IDispatch property hames are mapped to IDL
keywords. The underlying property values are treated as IDL keyword values. This
follows conventions set forth by other IDL objects.

Note
The provided keywords must map directly to a property hame or an error will be
thrown. Any keyword that is passed into either of the property routinesis assumed
to be afully-qualified I Dispatch property name. As such, the partial keyword name
functionality provided by IDL isnot valid with IDL COM based objects.

Note
Some getable properties require input parameters. Assuch, the GetProperty method
can take parameters. |f parameters are provided, only one property can be provided.

Syntax
IDL coml Dispatch -> GetProperty, <PROPERTY _NAME> = Value, [arg0, argl, ...]
Arguments
Note

Some IDLcomlIDispatch GetProperty calls take arguments. The argument used, if
any, is dependent on the individual property.

What's New in IDL 5.5 IDLcomIDispatch

180 Chapter 5: New Objects

IDLcomIDispatch::SetProperty

The IDLcomlDispatch::SetProperty function method is used to set properties for a
particular IDispatch interface. The IDispatch property hames are mapped to IDL
keywords. The underlying property values are treated as IDL keyword values. This
follows conventions set forth by other IDL objects.

Note
The provided keywords must map directly to a property hame or an error will be
thrown. Any keyword that is passed into either of the property routinesis assumed
to be afully-qualified | Dispatch property name. As such, the partial keyword name
functionality provided by IDL isnot valid with IDL COM based objects.

Syntax
IDL coml Dispatch -> SetProperty, <PROPERTY _NAME> = Value
Arguments

None

IDLcomIDispatch What's New in IDL 5.5

Chapter 5: New Objects

IDLffMrSID

An IDLffMrSID object classis used to query information about and |oad image data
fromaMrSID (.sid) imagefile.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See IDLffMrSID::Init

Methods

This class has the following methods:

IDLffMrSID::Cleanup
IDLffMrSID::GetDimsAtL evel
IDLffMrSID::GetlmageData
IDLffMrSID::GetProperty
IDLffMrSID::Init

What's New in IDL 5.5

181

IDLffMrSID

182 Chapter 5: New Objects

IDLffMrSID::Cleanup

The IDLffMrSID::Cleanup procedure method deletes all MrSID objects, closing the
MrSID filein the process. It aso deletes the IDL objects used to communicate with
the MrSID library.

Syntax

OBJ_DESTROQY, Obj
or
Obj -> [IDLffMrSID::]Cleanup(Only in subclass’ Cleanup method.)

Arguments
None.
Keywords

None.

IDLffMrSID What's New in IDL 5.5

Chapter 5: New Objects 183

IDLffMrSID::GetDimsAtLevel

The IDLffMrSID::GetDimsAtLevel function method is used to retrieve the
dimensions of theimage at a given level. This can be used, for example, to determine
what level isrequired to fit the image into a certain area.

Syntax
Dims = Obj -> [IDLMrSID::]GetDimsAtLevel (Level)
Arguments

Level

Set this argument to a scalar integer that specifies the level at which the dimensions
are to be determined. This level must be in the range returned by the LEVELS
keyword of IDLffMrSID::GetProperty.

Keywords
None.
Example

PRO MrSID_GetDimsAtLevel

; Initialize the MrSID file object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH(test_gs.sid', $
SUBDIRECTORY = [‘examples', 'data’))

; Get the range of levels of resolution contained within the file.
oFile -> GetProperty, LEVELS = lvls

PRINT, Ivis

; IDL prints, -9, 4

; Print the image dimensions at the lowest image resolution
; where image level = 4.

imgLevelA = MAX(lvls)

dimsAtA = oFile-> GetDimsAtLevel(imgLevelA)

PRINT, 'Dimensions of lowest resolution image is', dimsAtA
;IDL prints, 32, 32

What's New in IDL 5.5 IDLffMrSID

184 Chapter 5: New Objects

; Print the image dimensions at full resolution

; where image level = 0

dimsAtFull = oFile -> GetDimsAtLevel(0)

PRINT, 'Dimensions of full resolution image is', dimsAtFull
;IDL prints, 512, 512

;Print the image dimensions at the highest resolution

; where image level = -9

highestLvl = MIN(lvls)

dimsAtHighest = oFile -> GetDimsAtLevel(highestLvl)

PRINT, 'Dimensions of highest resolution image is', dimsAtHighest
;IDL prints, 262144, 262144

; Clean up object references.
OBJ_DESTROY, [oFile]

END

IDLffMrSID What's New in IDL 5.5

Chapter 5: New Objects 185

IDLffMrSID::GetlmageData

The IDLffMrSID::GetlmageData function method extracts and returns the image
data from the MrSID file at the specified level and location.

Syntax

ImageData = Obj->[IDLMrSID::]GetimageData ([, LEVEL = Ivi]
[, SUB_RECT =rect])

Return Value

ImageData returns an n-by-w-by-h array containing the image datawherenis 1 for
grayscae or 3 for RGB images, wisthe width and h isthe height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-left corner of the image. This differs from how datais stored in the MrSID
file where the image is top-down, meaning the pixel at the start of the file islocated
at the top-left corner of the image.

Arguments
None.
Keywords

LEVEL
Set this keyword to an integer that specifies the level at which to read the image.

If this keyword is not set, the maximum level is used which returns the minimum
resolution (see the LEVELS keyword to IDLffMrSID::GetProperty).

SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID
image to return. Thisis useful for displaying portions of a high-resolution image.

If this keyword is not set, the whole image will be returned. This may require
significant memory if a high-resolution image level is selected.

What's New in IDL 5.5 IDLffMrSID

186

IDLffMrSID

Note
The elements of SUB_RECT are measured in pixels at the current level. This means
thepoint x =10,y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x=5y=5atlevel 2.

Chapter 5: New Objects

If the sub-rectangle is greater than the bounds of the image at the selected level the
area outside the image bounds will be set to black.

Example

PRO MrSID_GetimageData

; Initialize the MrSID file object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $
SUBDIRECTORY = [‘examples', 'data’))

; Get the range of levels of resolution contained within the file.
oFile -> GetProperty, LEVELS = lvis

PRINT, Ivis

; IDL prints, -9, 4

; Get the image data at level 0.

imgDataA = oFile -> GetlmageData(LEVEL = 0)

HELP, 'image array data at full resolution', imgDataA

;IDL prints, Array[1l, 512, 512] indicating a grayscale 512 x 512
array.

; Display the full resolution image.

olmgA = OBJ_NEW('IDLgrimage', imgDataA)

oModelA = OBJ_NEW('IDLgrModel’)

oModelA -> Add, olmgA

XOBJVIEW, oModelA, BACKGROUND = [0,0,0], $
TITLE = 'Full Resolution Image', /BLOCK

; Get the image data of a higher resolution image,

imgDataB = oFile -> GetlmageData(LEVEL = -2)

HELP, imgDataB

; IDL returns [1,2048,2048] indicating a grayscale 2048 x 2048
array.

What's New in IDL 5.5

Chapter 5: New Objects 187

; To save processing time, display only a 1024 x 1024 portion of
; the high resolution, using 512,512 as the origin..
imgDataSelect = oFile -> GetlmageData(LEVEL = -2,$
SUB_RECT = [512, 512, 1024, 1024])
olmgSelect = OBJ_NEW('IDLgrimage’, imgDataSelect)
oModel = OBJ_NEW('IDLgrModel’)
oModel -> Add, olmgSelect

XOBJVIEW, oModel, BACKGROUND = [0,0,0], $
TITLE = 'Detail of High Resolution Image', /BLOCK

; Clean up object references.
OBJ_DESTROY, [oFile, olmgA, oModelA, olmgSelect, oModel]

END

What's New in IDL 5.5 IDLffMrSID

188

Chapter 5: New Objects

IDLffMrSID::GetProperty

The IDLffMrSID::GetProperty function method is used to query properties
associated with the MrSID image.

Syntax

Obj->[IDLMrSID::]GetProperty [, CHANNEL S=nChannels]

[, DIMENSIONS=Dimg| [, LEVELS=Levels] [, PIXEL_TY PE=pixel Type]

[, TYPE=strType] [, GEO_VALID=geoValid] [, GEO_PROJTY PE=geoProjType]
[, GEO_ORIGIN=geoOrigin] [, GEO_RESOLUTION=geoRes]

Arguments
None.
Keywords

CHANNELS

Set this keyword to a named variable that will contain the number of image bands.
For RGB imagesthisis 3, for grayscaleitis 1.

DIMENSIONS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [width, height] that specifies the dimensions of the MrSID
image at level O (full resolution).

LEVELS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [minlvl, maxivl] that specifies the range of levels within the
current image. Higher levels are lower resolution. A level of 0 equals full resolution.
Negative values specify higher levels of resolution.

PIXEL_TYPE

Set this keyword to a named variable that will contain the IDL basic type code for a
pixel sample. For alist of the data typesindicated by each type code, see “IDL Type
Codes’ in the IDL Reference Guide.

IDLffMrSID What's New in IDL 5.5

Chapter 5: New Objects 189

TYPE

Set this keyword to a named variable that will contain a string identifying the file
format. This should always be MrSID.

GEO_VALID

Set this keyword to a named variable that will contain along integer that is set to:
e 1-IftheMrSID image contains valid georeferencing data.

* 0-IftheMrSID image does not contain georeferencing data or the dataisin an
unsupported format.

Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

GEO_PROJTYPE

Set this keyword to a named variable that will contain an unsigned integer that
specifiesthe geoTIFF projected coordinate system type code. For example, type code
32613 correspondsto PCS WGS84 _UTM_zone 13N.

For more information on the geoTIFF file type and avail able type codes see:

http://www.remotesensing.org/geotiff/geotiff.html
GEO_ORIGIN

Set this keyword to a named variable that will contain atwo-element double
precision array of the form [, y] that specifies the |ocation of the center of the upper-
left pixel.

GEO_RESOLUTION

Set this keyword to a named variable that will contain atwo-element double
precision array of the form [xres, yres] that specifies the pixel resolution.

Example
PRO MrSID_GetProperty
; Initialize the MrSID object.

oFile = OBJ_NEW('IDLffMrSID', FILEPATH(test_gs.sid', $
SUBDIRECTORY = [‘examples', 'data’))

What's New in IDL 5.5 IDLffMrSID

http://www.remotesensing.org/geotiff/geotiff.html

190

IDLffMrSID

Chapter 5: New Objects

; Get the property information of the MrSID file
oFile -> GetProperty, CHANNELS = chan, LEVELS = $
Ivls, Pixel_Type = pType, TYPE = fileType, GEO_VALID = geoQuery

; Print MrSID file information.
PRINT, 'Number of image channels = ', chan
; IDL returns 1 indicating one image band.

PRINT, 'Range of image levels = ', Ivls
; IDL returns -9, 4, the minimum and maximum level values.

PRINT, 'Type code of image pixels = ', pType
; IDL returns 1 indicating byte data type.

PRINT, 'Image file type = ', FileType
; IDL returns "MrSID"

PRINT, 'Result of georeferencing data query = ', geoQuery
; IDL returns O indicating that the image does not contain
; georeferencing data.

; Destroy object references.
OBJ_DESTROY, [oFile]

END

What's New in IDL 5.5

Chapter 5: New Objects 191

IDLffMrSID::Init

The IDLffMrSID::Init function method initializes an IDLffMrSID object containing
the image data from aMrSID imagefile.

Syntax
Result = OBJ_NEW(‘IDLffMrSID’, Filename[, /QUIET])
Arguments

Filename

Set this argument to a scalar string containing the full path and filename of aMrSID
file to be accessed through this IDLffMrSID object.

Note
Thisisarequired argument; it is not possible to create an IDLffMrSID object

without specifying avalid MrSID file.

Keywords

QUIET

Set this keyword to suppress error messages while congtructing the IDLffMrSID
object.

Example

oMrSID = OBJ_NEW('IDLffMrSID', FILEPATH('test _gs.sid’, $
SUBDIRECTORY = [‘examples', 'data’))

What's New in IDL 5.5 IDLffMrSID

192 Chapter 5: New Objects

IDLffMrSID What's New in IDL 5.5

Chapter 6:
New IDL Routines

This chapter describes IDL Routines introduced in IDL version 5.5.

What's New in IDL 5.5 193

194

CPU

CPU

Chapter 6: New IDL Routines

The CPU procedure controlsthe way IDL uses the system processor for calculations.
The results of using the CPU procedure are reflected in the state of the ! CPU system
variable.

Syntax

CPU [,TPOOL_MAX_ELTS = NumMaxElts] [, TPOOL_MIN_ELTS = NumMinElts]
[,TPOOL_NTHREADS = NumThreads] [,/VECTOR_ENABLE]

Keywords

TPOOL_MAX_ELTS

This keyword specifies the maximum number of data elements for computations that
use the thread pool. This keyword changes the value returned by
ICPU.TPOOL_MAX_ELTS. If the memory required for a given computation fitsin
physical memory, using the thread pool typically provides an increasein speed
compared to the single-threaded case. However, once the computation exceeds the
ability of the system’s physical memory to contain it, use of the thread pool can be
slower than the single-threaded case as the threads end up vying for access to system
memory. If the system variable !\CPU.TPOOL_MAX_ELTSisnon-zero, IDL will not
use the thread pool for any computation involving more than that number of
elements. The default for this value is 0, meaning no imposed limit.

TPOOL_MIN_ELTS

This keyword sets the minimum number of data elements for a computation that are
necessary before IDL will use the thread pool. For fewer than TPOOL_MIN_ELTS,
the main IDL thread will perform the computation without using the thread pool. Itis
important not to use the thread pool for small tasks since the overhead of using the
thread pool will not be offset by the overhead incurred by operation of the thread
pool, and the performance of the computation will be slower than if the thread pool
was not used.

TPOOL_NTHREADS

This keyword sets the number of threads that IDL will use in thread pool
computations. The default isto use 'CPU.HW_NCPU threads, so that each thread
will have the potential to run in paralel with the others. If you set
TPOOL_NTHREADS to 0, !CPU.HW_NCPU threads will be used. Setting this
keyword to 1 disables threading. For numerical computation, there is no benefit to

What's New in IDL 5.5

Chapter 6: New IDL Routines 195

using more threads than your system has CPUs. However, depending on the size of
the problem and the number of other programs running on the system, there may be a
performance advantage to using fewer CPUs.

VECTOR_ENABLE

Set this keyword to enable use of the system’s vector unit (e.g. Macintosh
Altivec/Velocity Engine). Set it to zero to disable such use. This keyword isignored
if the current system does not support a vector unit, which can be determined by the
value of the '\CPU.HW_VECTOR system variable.

Example

In the following example, we will:

» Savethe current thread pool settings from the |CPU system environment
variable.

* Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform afloating point computation.

» Perform afloating point computation.

* Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

» Perform adouble precision computation.
* Restore the thread pool settingsto their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool:

; Retrieve the current thread pool settings.
threadpool = ICPU

; Modify the thread pool settings.
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $
TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data.
theta = FINDGEN(361, 181)

; Perform computation, using 2 threads.
sineSquared = 1. - (COS(IDTOR*theta))"2

; Modify thread pool settings for new data type.
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000

What's New in IDL 5.5 CPU

196 Chapter 6: New IDL Routines

; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation.
sineSquared = 1. - (COS(IDTOR*theta))"2

;Return thread pool settings to their initial values.
CPU, TPOOL_MAX_ELTS = threadpool. TPOOL_MAX_ELTS, $

TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

See Also

ICPU, “Controlling the Thread Pool Settings for a Session or Group of
Computations” on page 129

CPU What's New in IDL 5.5

Chapter 6: New IDL Routines 197

DEFINE_MSGBLK

The DEFINE_MSGBLK procedure defines and loads a new message block into the
currently running IDL session. Once loaded, the M ESSAGE procedure can be used
to issue messages from this block.

A message block is a collection of messages that are loaded into IDL as asingle unit.
Each block contains the messages required for a specific application. At startup, IDL
contains asingle internal message block named IDL_MBLK_CORE, which contains
the standard messages required by the IDL system. Dynamically |oadable modules
(DLMs) usually define additional message blocks for their own needs when they are
loaded. At the IDL programming level, the DEFINE_MSGBLK or
DEFINE_MSGBLK_FROM_FILE procedures can be used to define message blocks.
You can use the HEL P, /IMESSAGES command to see the currently defined message
blocks.

Syntax

DEFINE_MSGBLK, BlockName, ErrorNames, ErrorFormats
[/IGNORE_DUPLICATE] [,PREFIX = PrefixSir]

Arguments

BlockName

A string giving the name of the message block to be defined. Block names must be
unique within the IDL system. We recommend that you follow the advice given in
“Advicefor Library Authors” in Chapter 12 of the Building IDL Applications manual
when selecting this name in order to avoid name conflicts. Use of the PREFIX
keyword is also recommended to enforce a consistent naming convention.

ErrorNames

An array of strings giving the names of the messages to be defined with the message
block.

ErrorFormats

An array of strings giving the formats for the messages to be defined with the
message block. Each format is matched with the corresponding name in Error Names.
For this reason, ErrorFormats should have the same number of elements as
ErrorNames. We recommend the use of the PREFIX keyword to enforce a consistent
naming scheme for your messages.

What's New in IDL 5.5 DEFINE_MSGBLK

198 Chapter 6: New IDL Routines

Error formats are simplified printf -style format strings. For more information on
format strings, see “C printf-Style Quoted String Format Code” in Chapter 8 of the
Building IDL Applications manual.

Keywords
IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error isissued and
execution continues. The original message block remains installed and available for
use.

PREFIX

It is acommon and recommended practice to give each message name defined in
ErrorNames acommon unique prefix that identifies it as an error from a specific
message block. However, specifying this prefix in each entry of ErrorNames is
tedious and error prone. The PREFIX keyword can be used to specify a prefix string
that will be added to each element of ErrorNames.

Example
This example defines a message block called ROADRUNNER that contains 2
messages:
name = [BADPLAN', 'RRNOTCAUGHT]
fmt = [Bad plan detected: %s., 'Road Runner not captured.]

DEFINE_MSGBLK, prefix = 'ACME_M_', 'ROADRUNNER’, name, fmt

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan', BLOCK = 'roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAINS$

The IDL command:
HELP, /STRUCTURES, 'ERROR_STATE
can be used to examine the effect of this message on IDL’s error state.

DEFINE_MSGBLK What's New in IDL 5.5

Chapter 6: New IDL Routines 199

See Also

DEFINE_MSGBLK_FROM_FILE, MESSAGE

What's New in IDL 5.5 DEFINE_MSGBLK

200

Chapter 6: New IDL Routines

DEFINE_ MSGBLK_FROM_FILE

The DEFINE_MSGBLK_FROM_FILE procedure reads the definition of a message
block from afile, and uses DEFINE_MSGBLK to load it into the currently running

IDL session. Once loaded, the MESSA GE procedure can be used to issue messages
from this block.

DEFINE_MSGBLK_FROM_FILE can be more convenient than
DEFINE_MSGBLK for large message blocks.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
define_msgblk_from_file.pro inthelib subdirectory of the IDL distribution.

Syntax

DEFINE_MSGBLK_FROM_FILE, Filename [,BLOCK = BlockName]
[, IGNORE_DUPLICATE] [,PREFIX = PrefixStr] [/VERBOSE]

Arguments

Filename

The name of the file containing the message bl ock definition. The contents of thisfile
must be formatted as described in the section “ Format of Message Definition Files”
which follows.

Keywords

BLOCK

If present, specifies the name of the message block. Normally, this keyword is not
specified, and an @IDENT line in the message file specifies the name of the block.
We recommend that you follow the advice given in “ Advice for Library Authors’ in
Chapter 12 of the Building IDL Applications manual when selecting this namein
order to avoid name clashes. Use of a prefix is aso recommended to enforce a
consistent naming convention.

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error isissued and

DEFINE_MSGBLK_FROM_FILE What's New in IDL 5.5

Chapter 6: New IDL Routines 201

execution continues. The original message block remains installed and available for
use.

PREFIX

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. Normally, this keyword is not specified, and an
@PREFIX linein the message file specifies the prefix string. We recommend the use
of aprefix to enforce a consistent naming scheme for your messages.

VERBOSE

If set, causes DEFINE_MSGBLK_FROM_FILE to print informational messages
describing the message block loaded.

Format of Message Definition Files

A message definition file has a simple structure designed to ease the specification of
message blocks. Any line starting with the character @ specifies information about
the message block. Any line not starting with an @ character isignored, and can be
used for comments, documentation, notes, or other human readable information. All
such text isignored by DEFINE_MSGBLK_FROM_FILE.

There are three different types of lines starting with @ allowed in a message
definition file:

@IDENT name

Specifies the name of the message block being defined. There should be exactly one
such linein every message definition file. If the BLOCK keyword to
DEFINE_MSGBLK_FROM_FILE isspecified, the @ DENT lineisignored and can
be omitted. RSI recommends aways specifying an @IDENT line.

@PREFIX PrefixStr

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. There should be at most one such line in every message
definition file. If the PREFIX keyword to DEFINE_MSGBLK_FROM_FILE is
specified, the @PREFIX lineisignored and can be omitted. RSI recommends always
specifying an @PREFIX line.

@ MessageName MessageFormat

Specifies a single message name and format string pair. The format string should be
delimited with double quotes. A message definition file should contain one such line
for every message it defines.

What's New in IDL 5.5 DEFINE_MSGBLK_FROM_FILE

202 Chapter 6: New IDL Routines

Example

The following exampl e uses the same message block as in the example given for
“DEFINE_MSGBLK” on page 197, but uses a message definition file to create the
message block. The first step isto create a message definition file called
roadruner.msg containing the following lines:

; Message definition file for ROADRUNNER message block
@IDENT roadrunner

@PREFIX ACME_M_

@ BADPLAN "Bad plan detected: %s."

@ RRNOTCAUGHT "Road Runner not captured.”

If you are currently in IDL, exit out and restart. Then, within IDL, you can use the
following statement to load in the message bl ock:

DEFINE_MSGBLK_FROM_FILE, 'roadrunner.msg'

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan’, BLOCK="roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAINS$

The IDL command:
HELP, /STRUCTURES, !'ERROR_STATE

can be used to examine the effect of this message on IDL’s error state.
See Also

DEFINE_MSGBLK, MESSAGE

DEFINE_MSGBLK_FROM_FILE What's New in IDL 5.5

Chapter 6: New IDL Routines 203
ERF

The ERF function returns the value of the error function:
X

erf(x) = %ﬂj _tzdt
0

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERF
function does nat work with complex arguments.

Syntax
Result = ERF(X)
Arguments

X
The expression for which the error function isto be evaluated.

Example

To find the error function of 0.4 and print the result, enter:
PRINT, ERF(0.4D)

IDL prints:
0.42839236

See Also

ERFC, ERFCX, GAMMA, IGAMMA, EXPINT

What's New in IDL 5.5 ERF

204 Chapter 6: New IDL Routines

ERFC

The ERFC function returns the value of the complimentary error function:

2 ¢ %
erfc(x) = 1—erf(x) = —Ie dt
JTt
X

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERFC
function does nat work with complex arguments.

Syntax
Result = ERFC(X)
Arguments

X
The expression for which the complimentary error function is to be evaluated.

Example

To find the complimentary error function of 0.4 and print the result, enter:
PRINT, ERFC(0.4D)

IDL prints:
0.57160764

See Also

ERF, ERFCX

ERFC What's New in IDL 5.5

Chapter 6: New IDL Routines 205

ERFCX

The ERFCX function returns the value of the scaled complimentary error function:

2

erfcx(x) = € erfc(x)

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERFCX
function does nat work with complex arguments.

Syntax
Result = ERFCX (X)
Arguments

X
The expression for which the complimentary error function is to be evaluated.

Example

To find the scaled complimentary error function of 0.4 and print the result, enter:
PRINT, ERFCX(0.4D)

IDL prints:
0.67078779

See Also

ERF, ERFC

What's New in IDL 5.5 ERFCX

206

Chapter 6: New IDL Routines

FILE_INFO

The FILE_INFO function returns status information about a specified file.

Syntax

Result = FILE_INFO(Path, /NOEXPAND_PATH)

Return Value

FILE_INFO

The FILE_INFO function returns a structure expression of type FILE_INFO
containing status information about a specified file or files. The result will contain
one structure for each input element.

Fields of the FILE_INFO Structure

The following descriptions are of fields in the structure returned by the FILE_INFO
function. They are not keywordsto FILE_INFO.

NAM E — The name of thefile.
EXISTS— True (1) if thefile exists. False (0) if it does not exist.

READ — True (1) if thefileis exists and is readable by the user. False (0) if it
is not readable.

WRITE — True (1) if the file exists and is writable by the user. False (0) if it
isnot writable.

EXECUTE — True (1) if thefile exists and is executable by the user. False (0)
if it isnot executable. The source of thisinformation differs between operating
systems:

UNIX and VM S: IDL checks the per-file information (the execute bit)
maintained by the operating system.

Microsoft Windows: The determination is made on the basis of the file
name extension (e.g. .exe).

M acintosh: Files of type APPL (proper applications) are reported as
executable; this corresponds to Double Clickable applications.

REGULAR — True (1) if thefile exists and isaregular disk file and not a
directory, pipe, socket, or other special file type. False (0) if it is not aregular
disk file (it maybe a directory, pipe, socket, or other specid file type).

What's New in IDL 5.5

Chapter 6: New IDL Routines 207

» DIRECTORY — True (1) if thefile existsand isadirectory. False (0) if itis
not a directory.

* BLOCK_SPECIAL — True (1) if thefile exists and isa UNIX block special
device. On non-UNIX operating systems, this field will always be False (0).

» CHARACTER_SPECIAL — True (1) if thefile existsand isa UNIX
character special device. On non-UNIX operating systems, this field will
always be False (0).

* NAMED_PIPE — True (1) if thefileexistsand is a UNIX named pipe (fifo)
device. On non-UNIX operating systems, this field will always be False (0).

e SETGID — True (2) if thefile exists and hasits Set-Group-1D bit set. On non-
UNIX operating systems, thisfield will always be False (0).

e SETUID — True (2) if the file exists and has its Set-User-1D hit set. On non-
UNIX operating systems, thisfield will always be False (0).

e SOCKET — True (1) if thefile exists and isa UNIX domain socket. On non-
UNIX operating systems, thisfield will always be False (0).

e STICKY_BIT — True (1) if thefile exists and has its sticky bit set. On non-
UNIX operating systems, thisfield will always be False (0).

* SYMLINK — True (2) if thefile exists and isa UNIX symboalic link. On non-
UNIX operating systems, thisfield will always be False (0).

* DANGLING_SYMLINK — True (1) if thefile existsand isa UNIX
symbolic link that points at a non-existent file. On non-UNIX operating
systems, this field will always be False (0).

* ATIME,CTIME, MTIME — The date of |ast access, date of creation, and
date of last modification given in seconds since 1 January 1970 UTC. Use the
SY STIME function to convert these dates into a textual representation.

Note
Some file systems do not maintain all of these dates (e.g. MS DOS FAT file
systems), and may return 0. On some non-UNIX operating systems, accesstimeis
not maintained, and ATIME and MTIME will always return the same date.

» SIZE — The current length of thefilein bytes. If Path isnot to aregular file
(possibly to adirectory, pipe, socket, or other special file type), the value of
SIZE will not contain any useful information.

What's New in IDL 5.5 FILE_INFO

208 Chapter 6: New IDL Routines

Arguments

Path

The path of the file about which information is required. This parameter can be a
scalar or array of type string.

Keywords

NOEXPAND_PATH

If specified, FILE_INFO uses Path exactly as specified, without applying the usual
file path expansion.

Examples

To get information on thefile dist.pro withinthe IDL User Library:

HELP,/STRUCTURE, FILE_INFO(FILEPATH(dist.pro', $
SUBDIRECTORY = 'lib'))

Executing the above command will produce output similar to:
** Structure FILE_INFO, 21 tags, length=72:

FILE_INFO

NAME STRING 'fusr/local/rsi/idl/lib/dist.pro’
EXISTS BYTE 1
READ BYTE 1
WRITE BYTE 0
EXECUTE BYTE 0
REGULAR BYTE 1
DIRECTORY BYTE 0
BLOCK_SPECIAL BYTE 0
CHARACTER_SPECIAL
BYTE 0
NAMED_PIPE BYTE 0
SETGID BYTE 0
SETUID BYTE 0
SOCKET BYTE 0
STICKY_BIT BYTE 0
SYMLINK BYTE 0
DANGLING_SYMLINK
BYTE 0
MODE LONG 420
ATIME LONG64 970241431
CTIME LONG64 970241595
MTIME LONG64 969980845
SIZE LONG64 1717

What's New in IDL 5.5

Chapter 6: New IDL Routines 209

See Also

FILE_TEST, FSTAT

What's New in IDL 5.5 FILE_INFO

210 Chapter 6: New IDL Routines

FILE_SEARCH

The FILE_SEARCH function returns a string array containing the names of al files
matching the input path specification. Input path specifications may contain wildcard
characters, enabling them to match multiplefiles. All matched filenames are returned
in astring array, one file name per array element. If no files exist with names
matching the input arguments, anull scalar string is returned instead of a string array.
FILE_SEARCH has the ability to perform standard, or recursive searching:

» Standard: When called with a single Path_Specification argument,
FILE_SEARCH returnsall files that match that specification. Thisisthe same
operation, sometimes referred to as file globbing, performed by most operating
system command interpreters when wildcard characters are used in file
specifications.

* Recursive: When called with two arguments, FILE_SEARCH performs
recursive searching of directory hierarchies. In arecursive search,
FILE_SEARCH looks recursively for any and all subdirectoriesin the file
hierarchy rooted at the Dir_Specification argument. Within each of these
subdirectories, it returns the names of al files that match the pattern in the
Recur_Pattern argument. This operation is similar to that performed by the
UNIX find(1) command.

Note

To avoid going into an infinite loop, the FILE_SEARCH routine does not search for
files designated by symbolic links.

A relative path is afile path that can only be unambiguously interpreted by basing it
relative to some other known location. Usually, this location is the current working
directory for the process. A fully qualified path is a complete and unambiguous path
that can be interpreted directly. For example, bin/idl isarelative path, while
{usr/local/rsi/idl/bin/idl isafully qualified path. By default,
FILE_SEARCH followsthe format of the input to decide the form of returned paths.
If theinput is relative, the results will be relative. If theinput isfully qualified, the
results will also be fully qualified. If you specify the FULLY_QUALIFY_PATH
keyword, the results will be fully qualified no matter which form of input is used.

The wildcards understood by FILE_SEARCH are based on those used by standard
UNIX tools. They are described in the “ Supported Wildcards and Expansions’ on
page 218.

FILE_SEARCH What's New in IDL 5.5

Chapter 6: New IDL Routines 211

Note

Research Systems strongly recommends the FILE_SEARCH function be used
rather than the FINDFILE function. FILE_SEARCH is ultimately intended as a
replacement for FINDFILE.

Syntax

Result = FILE_SEARCH (Path_Specification)
or for recursive searching,
Result = FILE_SEARCH(Dir_Specification, Recur_Pattern)

Keywords: [, COUNT=variable] [, /EXPAND_ENVIRONMENT]
[,/EXPAND_TILDE][,/FOLD_CASE][, /FULLY_QUALIFY_ PATH]

[, /ISSUE_ACCESS ERROR] [, /IMARK_DIRECTORY]
[,/MATCH_INITIAL_DOT |/MATCH_ALL_INITIAL_DOT] [, /NOSORT]
[,/QUOTE][,/TEST_DIRECTORY][, /TEST_EXECUTABLE]

[,/TEST READ][, /TEST REGULAR] [, /TEST WRITE]

[,/TEST ZERO_LENGTH]

UNIX-Only Keywords: [, /TEST_BLOCK_SPECIAL]

[,/TEST_ CHARACTER_SPECIAL] [, /TEST_DANGLING_SYMLINK]
[,/TEST GROUP] [, /TEST_NAMED_PIPE][,/TEST_SETGID]
[,/TEST SETUID][, /TEST_SOCKET] [, /TEST_STICKY_BIT]
[,/TEST_SYMLINK][, /TEST_USER]

Arguments

Any of the arguments described in this section can contain wildcard characters, as
described in the Supported Wildcards and Expansions section bel ow.

Path_Specification

A scalar or array variable of string type, containing file paths to match. If
Path_Specification isnot supplied, or if itissupplied asanull string, FILE_SEARCH
uses adefault pattern of * and matches all filesin the current directory.

Dir_Specification

A scalar or array variable of string type, containing directory paths within which
FILE_SEARCH will perform recursive searching for files matching the
Recur_Pattern argument. FILE_SEARCH examines Dir_Specification, and any
directory found below it, and returns the paths of any filesin those directories that

What's New in IDL 5.5 FILE_SEARCH

212

Chapter 6: New IDL Routines

match Recur_Pattern. If Dir_Specification is supplied asanull string,
FILE_SEARCH searches the current directory.

Recur_Pattern

A scalar string containing a pattern for files to match in any of the directories
specified by the Dir_Specification argument. If Recur_Pattern is supplied as anull
string, FILE_SEARCH uses a default pattern of * and matches al filesin the
specified directories.

Keywords

COUNT

A named variable into which the number of files found is placed. If no files are
found, avalue of O isreturned.

EXPAND_ENVIRONMENT

By default, FILE_SEARCH follows the conventions of the underlying operating
system to determineif it expands environment variable referencesin input file
specification patterns. The default is to do such expansions under UNIX, and not to
do them on the Macintosh or Microsoft Windows. The EXPAND_ENVIRONMENT
keyword is used to change this behavior. Set it to a non-zero value to cause
FILE_SEARCH to perform environment variable expansion on all platforms. Set it to
zero to disable such expansion.

Note
M acintosh users should note that the Macintosh operating system does not support
the concept of an environment, and as such, environment variable expansion is
likely to be of little use. One significant exception to thisisto use the
IDL_TMPDIR environment variable to generate paths to temporary files. See the
description of the GETENV function for further details.

The syntax for expanding environment variablesin an input file pattern is based on
that supported by the standard UNIX shell (/bin/sh), as described in the Supported
Wildcards and Expansions section bel ow.

EXPAND_TILDE

Users of the UNIX C-shell (/bin/csh), and other toolsinfluenced by it, are familiar
with the use of atilde (~) character at the beginning of a path to denote a home
directory. A tilde by itself at the beginning of the path (e.g. ~/directory/file)is

FILE_SEARCH What's New in IDL 5.5

Chapter 6: New IDL Routines 213

equivalent to the home directory of the user executing the command, while atilde
followed by the name of a user (e.g. ~user/directory/file) is expanded to the
home directory of the named user.

By default, FILE_SEARCH follows the conventions of the underlying operating
system in deciding whether to expand aleading tilde or to treat it asaliteral character.
Hence, the default isto expand them under UNIX, and not on Macintosh or Microsoft
Windows. The EXPAND_TILDE keyword is used to change this behavior.

Set it to zero to disable tilde expansion on al platforms. Set it to a non-zero value to
enable tilde expansion.

Note
Microsoft Windows users should note that only the plain form of tildeis recognized
by Windows IDL. Attempts to use the ~user form will cause IDL to issue an error.
IDL usesthe HOME and HOMEPATH environment variables to obtain a home
directory for the current Windows user.

Note
M acintosh users should note that the FILE_SEARCH quietly ignores the
EXPAND_TILDE keyword. Thereis no support for tilde expansion on that
platform.

FOLD_CASE

By default, FILE_SEARCH follows the case sensitivity policy of the underlying
operating system. Matches are case sensitive on UNIX platforms, and case
insensitive on Macintosh and Microsoft Windows platforms. The FOLD_CASE
keyword is used to change this behavior. Set it to a non-zero value to cause
FILE_SEARCH to do dl file matching case insensitively. Set to zero to cause all file
matching to be case sensitive.

FULLY_QUALIFY_PATH

If set, FILE_SEARCH expands all returned file paths so that they are complete.
Under UNIX, thismeansthat all files are specified relative to the root of thefile
system. On Macintosh and Windows platforms, it means that all files are specified
relative to the Drive/Volume on which they are located. By default, FILE_SEARCH
returns fully qualified paths when the input specification is fully qualified, and
returns relative paths otherwise. For example:

What's New in IDL 5.5 FILE_SEARCH

214

Chapter 6: New IDL Routines

CD, ‘'lusr/local/rsi/idl/bin'

PRINT, FILE_SEARCH(idl"

idl

PRINT, FILE_SEARCH(idI'/FULLY_QUALIFY_PATH)
fusr/local/rsi/idl/bin/idl

Under Microsoft Windows, any use of adrive letter colon (:) character implies full
qualification, even if the path following the colon does not start with a slash
character.

ISSUE_ACCESS_ERROR

If the IDL process | acks the necessary permission to access a directory included in
the input specification, FILE_SEARCH will normally skip over it quietly and not
include it in the generated results. Set ISSUE_ACCESS_ERROR to cause an error to
be issued instead.

MARK_DIRECTORY

If set, al directory paths are returned with a path separator character appended to the
end. Thisalowsthe caller to concatenate a file name directly to the end without
having to supply a separator character first. Thisis convenient for cross-platform
programming, as the separator characters differ between operating systems:

PRINT, FILE_SEARCH(!DIR)

lusr/local/rsi/idl

PRINT, FILE_SEARCH(!DIR, /MARK_DIRECTORY)
lusr/local/rsifidl/

MATCH_ALL_INITIAL_DOT

By default, wildcards do not match leading dot (.) characters, and FILE_SEARCH
does not return the names of files that start with the dot (.) character unlessthe
leading dot is actually contained within the search string. Set
MATCH_ALL_INITIAL_DOT to change this policy so that wildcardswill match all
files gtarting with adot, including the special “.” (current directory) and “.."” (parent
directory) entries. RSl recommends the use of the MATCH_INITIAL_DOT keyword

instead of MATCH_ALL_INITIAL_DOT for most purposes.
MATCH_INITIAL_DOT

MATCH_INITIAL_DOT serves the same function as
MATCH_ALL_INITIAL_DOT, except that the special “.” (current directory) and “..”
(parent directory) directories are not included.

FILE_SEARCH What's New in IDL 5.5

Chapter 6: New IDL Routines 215

NOSORT

If set, FILE_SEARCH will not sort the resulting files. On some operating systems,
particularly UNIX, this can make FILE_SEARCH execute faster. By default,
FILE_SEARCH sorts the results from each element of the input file specification
together, and places the results from each input element into the result in the order
they are found. Hence, the statement:

Result = FILE_SEARCH([**.c’, *.hY)

returnsal of the C filesin the current directory in lexical order, followed by all of the
H files, also sorted lexically among themselves. In contrast, the statement:

Result = FILE_SEARCH(*.[ch]))

returnsal of the C and H files sorted together into lexical order. Thisversionismore
efficient that the previous one, because the directory is only searched once.

QUOTE

FILE_SEARCH usualy treats all wildcards found in the input specification as having
the special meanings described in “ Supported Wildcards and Expansions’ on

page 218. This means that such characters cannot normally be used as plain litera
charactersin file names. For example, it is not possible to match afilethat contains a
literal asterisk character in its name because asterisk is interpreted as the “match zero
or more characters’ wildcard.

If the QUOTE keyword is set, the backslash character can be used to escape any
character so that it is treated as a plain character with no special meaning. In this
mode, FILE_SEARCH replaces any two character sequence starting with abackslash
with the second character of the pair. In the process, any specia wildcard meaning
that character might have had disappears, and the character istreated as aliteral.

If QUOTE is set, any literal backdash charactersin your path must themselves be
escaped with a backdash character. Thisis especially important for Microsoft
Windows users, because the directory separator character for that platform isthe
backslash. Windows IDL also accepts UNIX-style forward slashes for directory
separators, so Windows users have two choicesin handling this issue:

Result
Result

TEST_DIRECTORY

FILE_SEARCH('C:\\home\\bob*.dat', /QUOTE)
FILE_SEARCH('C:/home/bob/*.dat', /QUOTE)

Only include a matching fileif it isadirectory.

What's New in IDL 5.5 FILE_SEARCH

216 Chapter 6: New IDL Routines

TEST_EXECUTABLE

Only include amatching fileif it is executable. The source of thisinformation differs
between operating systems:

UNIX: IDL checks the per-file information (the execute bit) maintained
by the operating system.

Microsoft Windows: The determination is made on the basis of the file
name extension (e.g. .exe).

M acintosh: Files of type APPL (proper applications) are reported as
executable; this corresponds to double-clickable applications.

TEST_READ
Only include a matching fileif it is readable by the user.

Note
This keyword does not support Access Control Listing (ACL) settings for files.

TEST_REGULAR

Only include a matching fileif it isaregular disk file and not a directory, pipe,
socket, or other special file type.

TEST_WRITE
Only include a matching fileif it iswritable by the user.

Note
This keyword does not support Access Control Listing (ACL) settings for files.

TEST_ZERO_LENGTH

Only include a matching fileif it has zero length.

Note
The length of adirectory is highly system dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report anon-zero length. RSI does not recommend using the
TEST_ZERO_LENGTH keyword on directories, as the information returned
cannot be used in a meaningful way.

FILE_SEARCH What's New in IDL 5.5

Chapter 6: New IDL Routines 217

UNIX-Only Keywords
TEST_BLOCK_SPECIAL

Only include amatching fileif it isablock special device.
TEST_CHARACTER_SPECIAL

Only include a matching fileif it is a character special device.
TEST_DANGLING_SYMLINK

Only include a matching file if it isa symbolic link that points at a non-existent file.
TEST_GROUP

Only include amatching fileif it belongsto the same effective group ID (GID) asthe
IDL process.

TEST_NAMED_PIPE

Only include a matching file if it isa named pipe (fifo) device.
TEST_SETGID

Only include a matching fileif it hasits Set-Group-1D bit set.
TEST_SETUID

Only include a matching fileif it hasits Set-User-1D bit set.
TEST_SOCKET

Only include a matching fileif it isa UNIX domain socket.
TEST_STICKY_BIT

Only include a matching fileif it hasits sticky bit set.
TEST_SYMLINK

Only include a matching fileif it isasymbolic link that points at an existing file.
TEST_USER

Only include a matching file if it belongs to the same effective user ID (UID) asthe
IDL process.

What's New in IDL 5.5 FILE_SEARCH

218

Chapter 6: New IDL Routines

Supported Wildcards and Expansions

The wildcards understood by FILE_SEARCH are based on those used by the
standard UNIX shell /bin/sh (*?[], environment variables) with some
enhancements commonly found in the C-shell /bin/csh (~ and {}). These
wildcards are processed identically across al IDL supported platforms. The
supported wildcards are shown in the following table:

Wildcard Description
* Matches any string, including the null string.
? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by “-" matches any character lexically
between the pair, inclusive. If the first character following the
opening bracket ([) isa! or #, any character not enclosed is
matched.

{gtr, str, ...} Expand to each string (or filename-matching pattern) in the
comma-separated list.
~ If used at start of input file specification, is replaced with the
~user path to the appropriate home directory. See the description of
the EXPAND_TILDE keyword for details.

$var Replace with va ue of named environment variable. See the
description of the EXPAND_ENVIRONMENT keyword for
full details.

${var} Replace ${ var} with the value of the var environment

variable. If var isnot found in the environment, ${ var} is
replaced with anull string. Thisformat is useful when the
environment variable reference sits directly next to unrelated
text, asthe use of the {} brackets make it possible for IDL to
determine where the environment variable ends and the
remaining text starts (e.g. ${ mydir} other text).

${ var:-alttext}

If environment variable var is present in the environment and
has anon-NULL value, then substitute that value. If var is not
present, or hasa NULL value, then substitute the aternative
text (alttext) provided instead.

Table 6-1: Supported Wildcards and Expansions

FILE_SEARCH

What's New in IDL 5.5

Chapter 6: New IDL Routines 219

Wildcard Description

${ var-alttext} If environment variable var is present in the environment
(evenif it hasaNULL value) then substitute that value. If var
is not present, then substitute the alternative text (attext)
provided instead.

Table 6-1: Supported Wildcards and Expansions (Continued)

These wildcards can appear anywherein an input file specification, with the
following exceptions:

Tilde ()

Thetilde character is only considered to be awildcard if it isthe first character inthe
input file specification, and only if allowed by the EXPAND_TILDE keyword.
Otherwise, it istreated as aregular character.

Microsoft Windows UNC Paths

On alocal area network, Microsoft Windows offers an alternative to the drive letter
syntax for accessing files. The Universal Naming Convention allows specifying paths
on other hosts, using the syntax:

\\hostname\sharename\din\dir\Z...\file

UNC paths are distinguished from normal paths by the use of two initial slashesin
the path. FILE_SEARCH can process such paths, but wildcard characters are not
allowed in the hostname or sharename segments. Wildcards are alowed for
specifying directories and files. For performance reasons, RSI does not recommend
using therecursive form of FILE_SEARCH with UNC paths on very large directory
trees.

When using FILE_SEARCH, you should be aware of the following issues:
Initial Dot Character

The default is for wildcards not to match the dot (.) character if it occurs as the first
character of a directory or file name. This follows the convention of UNIX shells,
which treat such names as hidden files. In order to match such files, you can take any
of the following actions:

» Explicitly include the dot character at the start of your pattern (e.g. “.*").

What's New in IDL 5.5 FILE_SEARCH

220

Chapter 6: New IDL Routines

Specify the MATCH_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot

won w o n

(except for the specia “.” and “..” directories).

Specify the MATCH_ALL_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot

won

(including the special “.” and “..” directories).

File Path Syntax

The syntax allowed for file paths differs between operating systems. FILE_SEARCH
always processes file paths using the syntax rules for the platform on which the IDL
session isrunning. As aconvenience for Microsoft Windows users, Windows IDL
accepts UNIX style forward dashes as well as the usual backslashes as path
Separators.

Differing Defaults Between Platforms

The different operating systems supported by IDL have some conventions for
processing file paths that are inherently incompatible. If FILE_SEARCH attempted
to force an identical default policy for these features across all platforms, the
resulting routine would be inconvenient to use on all platforms. FILE_SEARCH
resolves thisinherent tension between convenience and control in the following way:

FILE_SEARCH

These features are controlled by keywords which are listed in the table bel ow.
If akeyword is not explicitly specified, FILE_SEARCH will determine an
appropriate default for that feature based on the conventions of the underlying
operating system. Hence, FILE_SEARCH will by default behave in away that
is reasonable on the platform it is used on.

If one of these keywordsis explicitly specified, FILE_SEARCH will use its
value to determine support for that feature. Hence, if the keyword is used,
FILE_SEARCH will behave identically on al platforms. If maximum cross-
platform control is desired, you can achieve it by specifying all the relevant
keywords.

What's New in IDL 5.5

Chapter 6: New IDL Routines 221

The keywords that have different defaults on different platforms are listed in the

following table:
. Default | Default | Default
Wildcard Keyword Mac UNIX Win
$var
${var} EXPAND_ENVIRONMENT no yes no
${ var:-dttext}
${ var-alttext}
~ EXPAND_TILDE no yes no
FOLD_CASE yes no yes

Table 6-2: Differing Defaults on Different Platforms
TEST_* Keywords

The keywords with names that start with the TEST_ prefix allow you to filter the list
of resulting file paths based on various criteria. If you removethe TEST _ prefix from
these keywords, they correspond directly to the same keywords to the FILE_TEST
function, and are internally implemented by the same test code. One could therefore
use FILE_TEST instead of the TEST _ keywordsto FILE_SEARCH. For example,
the following statement locates all subdirectories of the current directory:

Resul t = FI LE_SEARCH(/ TEST_DI RECTCORY)
It is equivalent to the following statements, using FILE_TEST:

result = FILE_SEARCH()
i dx = where(FI LE_TEST(result, /D RECTCORY), count)
result = (count eq 0) ? "' : result[idx]

The TEST_* keywords are more succinct, and can be more efficient in the common
casein which FILE_SEARCH generates along list of results, only to have
FILE_TEST discard most of them.

Examples

Example 1

Find al filesin the current working directory:
Resul t = FI LE_SEARCH()

What's New in IDL 5.5 FILE_SEARCH

222

Chapter 6: New IDL Routines

Example 2

Find al IDL program (*.pro) files in the current working directory:
Result = FILE _SEARCH(' *. pro')

Example 3

Under Microsoft Windows, find all filesin the top level directories of all drives other
than the floppy drives:
Resul t =FI LE_SEARCH(' [!ab]:*")
This example relies on the following:
* FILE_SEARCH alows wildcards within the drive letter part of an input file
specification.
» Drives A and B are aways floppies, and are not used by Windows for any
other type of drive.
Example 4
Find al filesin the user’s home directory that start with the letters A-D. Match both
upper and lowercase letters:
Result = FILE_SEARCH(' ~/[a-d]*', /EXPAND TILDE, /FOLD_CASE)
Example 5
Find all directoriesin the user’s home directory that start with the letters A-D. Match
both upper and lowercase | etters:

Result = FILE_SEARCH(' ~/[a-d]*', /EXPAND_TILDE, /FOLD CASE, $
/ TEST_DI RECTCRY)

Example 6

Recursively find al subdirectories found underneath the user’s home directory that
do not start with adot character:

Result = FILE_SEARCH(' $HOVE', '*', /EXPAND_ENVI RONMENT, $
/ TEST_DI RECTCRY)

FILE_SEARCH What's New in IDL 5.5

Chapter 6: New IDL Routines 223

Example 7

Recursively find al subdirectories found underneath the user’s home directory,

wn “w o n

including those that start with a dot character, but excluding the special “.” and “..
directories:

Resul t = FI LE_SEARCH(' $HOVE', '*', /MATCH_INITIAL_DOT, $
/ EXPAND_ENVI RONVENT, / TEST DI RECTCRY)

Example 8
Find al .pro and .sav filesin aUNIX IDL library search path, sorted by directory, in
the order IDL searches for them:

Result = FI LE_SEARCH(STRSPLI T(! PATH, ':', /EXTRACT) + $
"/*. {pro,sav}')

Colon () isthe UNIX path separator character, so the call to STRSPLI T breaks the
IDL search path into an array of directories. To each directory name, we concatenate
the wildcards necessary to match any .pro or .sav filesin that directory. When this
array ispassed to FILE_SEARCH, it locates al files that match these specifications.
FILE_SEARCH sorts all of the filesfound by each input string. Thefiles for each
string are then placed into the output array in the order they were searched for.

Example 9

Recursively find al directoriesin your IDL distribution:
Result = FILE_SEARCH(!DI R, '*', /TEST_DI RECTCRY)

See Also

FILE_TEST, FILEPATH, FINDFILE, GETENV

What's New in IDL 5.5 FILE_SEARCH

224 Chapter 6: New IDL Routines

GRID_INPUT

The GRID_INPUT procedure preprocesses and sorts two-dimensional scattered data
points, and removes duplicate values. This procedure is also used for converting
spherical coordinates to Cartesian coordinates.

Syntax

GRID_INPUT, X, Y, F, X1, Y1, F1[, DUPLICATES=string] [, EPSILON=value]
[, EXCLUDE=vector]

or

GRID_INPUT, Lon, Lat, F, Xyz, F1, /SPHERE [, /IDEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

or

GRID_INPUT, R, Theta, F, X1, Y1, F1, /POLAR [, /DEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

Arguments

X, Y

These areinput arguments for scattered data points, where X, and Y are location. All
of these arguments are N point vectors.

F
The function value at each location in the form of an N point vector.
Lon, Lat

These are input arguments representing scattered data points on a sphere, specifying
location (longitude and latitude). All are N point vectors. Lon, Lat are in degrees or
radians (default).

R, Theta

These are scattered data point input arguments representing the R and Theta polar
coordinate location in degrees or radians (default). All arguments are N point vectors.

GRID_INPUT What's New in IDL 5.5

Chapter 6: New IDL Routines

X1, Y1, F1

225

These output arguments are processed and sorted single precision floating point data
which are passed as the input points to the GRIDDATA function.

Xyz

Upon return, a named variable that contains a 3-by-n array of Cartesian coordinates
representing points on a sphere.

Keywords

DEGREES

By default, al angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DUPLICATES

Set this keyword to a string indicating how duplicate data points are handled per the
following table. The case (upper or lower) isignored. The default setting for

DUPLICATESIis“First”.

String Meaning

“First” Retain only the first encounter of the duplicate
locations.

“Last” Retain only the last encounter of the duplicate
locations.

“All” Retainsall locations, which isinvalid for any gridding
technique that requiresa TRIANGULATION. Some
methods, such as Inverse Distance or Polynomial
Regression with no search criteria can handle
duplicates.

“Avg’ Retain the average F value of the duplicate |ocations.

“Midrange” Retain the average of the minimum and maximum
duplicate locations (Max(F) + Min (F)) / 2).

“Min” Retain the minimum of the duplicate locations
(Min(F)).

“Max” Retain the maximum of the duplicate locations

(Max(F)).

What's New in IDL 5.5

GRID_INPUT

226

Chapter 6: New IDL Routines

EPSILON

The tolerance for finding duplicates. Points within EPSILON distance of each other
are considered duplicates. For spherical coordinates, EPSILON isin units of angular
distance, as set by the DEGREES keyword.

EXCLUDE

An N-point vector specifying the indices of the points to exclude.
POLAR

Set to indicate inputs are in polar coordinates.

SPHERE

Set to indicate inputs are in spherical coordinates. In this case, the output argument
Xyzis set to a 3-by-n array containing the spherical coordinates converted to 3-
dimensional Cartesian points on a sphere.

Example

The following example usesthe datafrom thei rreg_gri d1. t xt ASCII file. This
file contains scattered elevation data of amodel of aninlet. This scattered elevation
data contains two duplicate locations. The GRID_INPUT procedure is used to omit
the duplicate locations.

| nport the Data:

Deternmine the path to the file.
file = FILEPATH('irreg_gridl.txt', $
SUBDI RECTCRY = [' exanples', 'data'])

I nport the data fromthe file into a structure.
dat aStructure = READ ASCI | (file)

Get the inported array fromthe first field of
the structure.
dat aArray = TRANSPOSE(dataStructure.fieldl)

Initialize the variables of this exanple from
the inported array.

x = dataArray[*, O]

y = dataArray[*, 1]

data = dataArray[*, 2]

Di spl ay the Data:

GRID_INPUT What's New in IDL 5.5

Chapter 6: New IDL Routines 227

; Scale the data to range from1l to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = !D. TABLE_SI ZE - 4) + 1B

; Load the color table. |If you are on a TrueCol or, set the
; DECOVWPOSED keyword to the DEVICE command before running a
; color table related routine.

DEVI CE, DECOMPCSED = 0

LOADCT, 38

; Open a display wi ndow and plot the data points.

W NDOW O

PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE =1, $
TITLE = '"Oiginal Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE ="'y’

; Now display the data values with respect to the color table.
FORi = OL, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM= -1, $
SYMSI ZE = 2., COLOR = scal ed[i]

; Preprocess and sort the data. GRID_INPUT will
; renove any duplicate |ocations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Display the results from GRID_|I NPUT:

; Scale the resulting data.
scal ed = BYTSCL(dataSorted, TOP = ! D TABLE SIZE - 4) + 1B

; Open a display wi ndow and plot the resulting data points.

W NDOW 1

PLOT, xSorted, ySorted, /XSTYLE, /YSTYLE, LINESTYLE =1, $
TI TLE = ' The Data Preprocessed and Sorted, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE ="'y’

; Now display the resulting data values with respect to the col or

; table.
FOR i = OL, (N _ELEMENTS(xSorted) - 1) DO PLOTS, $
xSorted[i], ySorted[i], PSYM= -1, COLOR = scaled[i], $
SYMBI ZE = 2.
See Also
GRIDDATA

What's New in IDL 5.5 GRID_INPUT

228

Chapter 6: New IDL Routines

GRIDDATA

The GRIDDATA function interpol ates scattered data val ues and locations sampled on
aplane or a sphere to aregular grid. Thisis accomplished using one of severa
available methods. The function result is a two-dimensional floating point array.
Computations are performed in single precision floating point. Interpolation methods
supported by this function are as follows:

Syntax

GRIDDATA

* Inverse Distance (default) » Natural Neighbor

» Kriging * Nearest Neighbor

* Linear * Polynomial Regression

e Minimum Curvature e Quintic

* Modified Shepard’'s » Radial Basis Function
Interleaved

Result = GRIDDATA(X, F)

Planar

Result = GRIDDATA(X, Y, F)

Sphere From Cartesian Coordinates
Result = GRIDDATA(X, Y, Z, F, ISPHERE)
Sphere From Spherical Coordinates
Result = GRIDDATA(Lon, Lat, F, /SPHERE)

I nver se Distance Keywords:

[, METHOD="InverseDistance' | INVERSE_DISTANCE]

[, ANISOTROPY =vector] [, /IDEGREES] [, DELTA=vector]

[, DIMENSION=vector | [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]

[, SEARCH_ELLIPSE=vector]] [, FAULT_POLY GONS=vector |

[, FAULT_XY=array] [, /GRID, XOUT=vector, Y OUT=vector]

[, MISSING=value] [, POWER=value] [, SECTORS={1]2|3]|4|5|6|7|8} 1]
[, SMOOTHING=value] [, /[SPHERE] [, START=vector]

What's New in IDL 5.5

Chapter 6: New IDL Routines 229

Kriging Keywords: METHOD=Kriging' | /KRIGING [, ANISOTROPY =vector]
[, DELTA=vector] [, DIMENSION=vector]

[, TRIANGLES=array [, EMPTY_SECTORS=value]

[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]

[, SEARCH_ELLIPSE=vector]] [, FAULT_POLY GONS=vector]

[, FAULT_XY=array] [, /GRID, XOUT=vector, Y OUT=vector]

[, MISSING=value] [, SECTORS={1|2|3|4|5|6|7|8}][, /SPHERE]

[, START=vector] [, VARIOGRAM=vector]

Linear Interpolation Keywords:

METHOD-='Linear' | /LINEAR , TRIANGLES=array [, DELTA=vector]
[, DIMENSION=vector] [, /IGRID, XOUT=vector, Y OUT=vector]

[, MISSING=value] [, START=vector]

Minimum Curvature K eywor ds:
METHOD="MinimumCurvature' | /MIN_CURVATURE [, DELTA=vector]
[, DIMENSION=vector] [, START=vector]

M odified Shepard’s Keywords: METHOD="ModifiedShepards' | /'SHEPARDS,
TRIANGLES=array [, ANISOTROPY =vector] [, DELTA=vector]

[, DIMENSION=vector] [, EMPTY_SECTORS=value]

[, FAULT_POLY GONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector | [, MAX_PER_SECTOR=value] [, MIN_POINTS=value]

[, MISSING=value] [, NEIGHBORHOOD=array] [, SEARCH_ELLIPSE=vector]
[,SECTORS={1]2|3]|4|5|6|7|8}][, START=vector]

Natural Neighbor Keywords:

METHOD="NaturalNeighbor' | /NATURAL_NEIGHBOR, TRIANGLES=array
[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]

[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]

[, /SPHERE] [, START=vector]

Nearest Neighbor Keywords:

METHOD="NearestNeighbor' |/ NEAREST_NEIGHBOR, TRIANGLES=array

[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]

[, FAULT_POLY GONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector] [, MISSING=value] [, /SPHERE] [, START=vector]

What's New in IDL 5.5 GRIDDATA

230

Chapter 6: New IDL Routines

Polynomial Regression Keywords:

METHOD="PolynomialRegression' | /POLY NOMIAL_REGRESSION,

[, DELTA=vector] [, DIMENSION=vector]

[, TRIANGLES=array [, EMPTY_SECTORS=value]

[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]

[, SEARCH_ELLIPSE=vector 1] [, FAULT_POLY GONS=vector]

[, FAULT_XY=array] [, /GRID, XOUT=vector, Y OUT=vector]

[, MISSING=value] [, POWER=value] [, SECTORS={1]|2|3]|4|5|6|7|8}]
[, START=vector]

Quintic Keywords: METHOD='Quintic' | /QUINTIC, TRIANGLES=array
[, DELTA=vector] [, DIMENSION=vector] [, MISSING=value]
[, START=vector]

Radial Basis Function Keywords:

METHOD='RadialBasisFunction' | /RADIAL_BASIS FUNCTION,

[, ANISOTROPY =vector | [, /DEGREES] [, DELTA=vector]

[, DIMENSION=vector] [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]

[, SEARCH_ELLIPSE=vector |] [, FAULT_POLY GONS=vector]

[, FAULT _XY=array] [, FUNCTION_TYPE={ 0|1]2|3]4}]

[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]

[, SECTORS={1|2|3|4|5|6|7|8}][, SMOOTHING=value] [, /SPHERE]
[, START=vector]

Return Value

Result is atwo-dimensional floating point array. Computations are preformed in
single precision floating point.

Arguments

GRIDDATA

X[YL 2]

The point locations. If only oneinput coordinate parameter is supplied, the points are
interleaved; for the Cartesian coordinate system the points are 2-by-n dimensions;
and 3-by-n for a sphere in Cartesian coordinates.

F

The function value at each location in the form of an n-point vector.

What's New in IDL 5.5

Chapter 6: New IDL Routines 231

Lon, Lat

These arguments contain the locations (on a sphere) of the data points (similar to X,
and Y) but are in degrees or radians (default) depending on the use of the keyword
DEGREES.

Keywords

ANISOTROPY

This keyword is avector describing an ellipse (see the description for the
SEARCH_ELLIPSE keyword). All points on the circumference of the ellipse have an
equal influence on apoint at the center of the ellipse.

For example, assume that atmospheric data are being interpolated, with one
dimension being altitude, and the other dimension representing distance from a point.
If the vertical mixing is half that of the horizontal mixing, a point 100 units from an
interpolate and at the same level has the same influence as a point 50 units above or
below the interpolate at the same horizontal location. This effect requires setting the
ANISOTROPY keywordto[2, 1, 0] whichformsan ellipse with an X-axislength
twice aslong as its Y-axis length.

DEGREES

By default, al angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DELTA

A two-element array specifying the grid spacing in X, and Y. If this keyword is not
specified, then the grid spacing is determined from the values of the DIMENSION
and START keywords. These keywords have default values of 25 and [min(x),
min(y)], respectively. The spacing derived from these keywords creates agrid of
DIMENSION cells, enclosing arectangle from START, to [max(x), max(y)]. This
keyword can also be set to a scalar value to be used for the grid size in both X and Y.

Thiskeyword isignored if the GRID, XOUT and YOUT keywords are specified.
DIMENSION

A two element array specifying the grid dimensionsin X and Y. Default value is 25
for each dimension. This keyword can also be set to ascalar value to be used for the
grid spacing in both X and Y.

Thiskeyword isignored if the GRID, XOUT and YOUT keywords are specified.

What's New in IDL 5.5 GRIDDATA

232

GRIDDATA

Chapter 6: New IDL Routines

EMPTY_SECTORS

This keyword defines the search rules for the maximum number of sectors that may
be empty when interpolating at each point. If this number or more sectors contain ho
data points, considering the search ellipse and/or the fault polygons, the resulting
interpolant is the missing data value.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

FAULT_POLYGONS

Set this keyword to an array containing one or more polygon descriptions. A polygon
description is an integer or longword array of theform: [n, ig, iq, ..., in_1], wherenis
the number of vertices that define the polygon, and ig...i,_; areindicesinto the
FAULT_XY vertices. The FAULT_POLY GON array may contain multiple polygon
descriptions that have been concatenated. To have this keyword ignore an entry in the
FAULT_POLY GONS array, set the vertex count, n, and all associated indicesto 0. To
end the drawing list, even if additional array space is available, set nto —1. If this
keyword is not specified, a single connected polygon is generated from FAULT_XY.

Note
FAULT_POLY GONS are not supported with spherical gridding.

FAULT XY
The a 2-by-n array specifying the coordinates of points on the fault lines/polygons.

Note
FAULT_XY is not supported with spherical gridding.

What's New in IDL 5.5

Chapter 6: New IDL Routines 233
FUNCTION_TYPE

Note
This keyword is only used with the Radial Basis Function method of interpolation.

Set this keyword to one of the values shown in the following table to indicate which
basis function to use. Default is 0, the Inverse Multiquadric function.

Value Function Type Used Equation
0 Inverse Multiquadric B(h) = 1/(« h? + Rz)
1 Multilog B(h) = log(h®+ R%)
2 Multiquadric B(h) = « h? + R
. . 2, 52032
3 Natural Cubic Spline B(h) = (h"+R")
. . 2, 52 2, 52
4 Thin Plate Spline B(h) = (h"+R%)log(h” + R")

Note - In the equations, h = the anisotropically scaled distance from the interpol ant
to the node, and R? = the value of the SMOOTHING keyword.

GRID

The GRID keyword controls how the XOUT and Y OUT vectors specify where
interpolates are desired.

If GRID is set, XOUT and YOUT must also be specified. Interpolation is performed
on aregular or irregular grid specified by the vectors XOUT with m elements and
YOUT with n elements. The Result is an m-by-n grid with point [i, j] resulting from
the interpolation at (XOUT]i], YOUT(j]). When XOUT and YOUT are used, the
DELTA, DIMENSION and START keywords are ignored.

INVERSE_DISTANCE

Selects the Inverse Distance method of interpolation.

What's New in IDL 5.5 GRIDDATA

234

GRIDDATA

Chapter 6: New IDL Routines

KRIGING

Selects the Kriging method of interpolation. The variogram type for the Kriging
method is set by default, however the VARIOGRAM keyword can be used to set
variogram parameters.

LINEAR

Selects the Linear method of interpolation. The TRIANGLES keyword is required
when the LINEAR keyword is used.

MAX_PER_SECTOR

This keyword defines the search rules for the maximum number of data points to
include in each sector when interpolating. Search rules effectively limit the number
of data points used in computing each interpolate. For example, to use the nearest n
nodes to compute each interpolant, specify MAX_PER_SECTOR = n and use the
TRIANGLES keyword.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

METHOD

A string containing one of the method names as shown in the following table. The
default for METHOD is*InverseDistance’.

Note
The interpolation method can be chosen using the METHOD keyword set to the
specific string, or by setting the corresponding method name keyword.

Note
There are no spaces between words in the method strings and the strings are case
insensitive.

Method String Meaning

“InverseDistance’ Data points closer to the grid points have more effect
than those which are further away.

What's New in IDL 5.5

Chapter 6: New IDL Routines

235

Method String

Meaning

“Kriging” Data points and their spatial variance are used to
determine trends which are applied to the grid points.
“Linear” Grid points are linearly interpolated from triangles

formed by Delaunay triangulation.

“MinimumCurvature’

A plane of grid pointsis conformed to the data points
while trying to minimize the amount of bending in the
plane.

“ModifiedShepards’

Inverse Distance weighted with the least squares
method.

“Natural Neighbor” Each interpolant is alinear combination of the three
vertices of its enclosing Delaunay triangle and their
adjacent vertices.

“NearestNei ghbor” The grid points have the same value as the nearest

data point.

”

“Polynomial Regression

Each interpolant is a least-squares fit of a polynomial
inX andY of the specified power to the specified data
points.

“Quintic” Grid points are interpolated with quintic polynomials
from triangles formed by Delaunay triangulation.
“RadialBasisFunction” The effects of data points are weighted by a function

of their radial distance from agrid point.

MIN_CURVATURE

Selects the Minimum Curvature method of interpolation.

MIN_POINTS

If fewer than this number of data points are encountered in all sectors, the value of the
resulting grid point is set to the value of the MISSING keyword.

What's New in IDL 5.5

GRIDDATA

236

GRIDDATA

Chapter 6: New IDL Routines

The MIN_POINTS keyword also indicates the number of closest points used for each
local fit, if SEARCH_ELLIPSE isn't specified.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

MISSING

Set this keyword to the value to use for missing data values. Default is 0.
NATURAL_NEIGHBOR

Selects the Natural Neighbor method of interpolation.

Note

The TRIANGLES keyword is required when the NATURAL_NEIGHBOR
keyword is used.

NEAREST_NEIGHBOR
Selects the Nearest Neighbor method of interpolation.
Note

The TRIANGLES keyword is required when the NEAREST_NEIGHBOR
keyword is used.

NEIGHBORHOOD

Note
The NEIGHBORHOOD keyword is only used for the Modified Shepard's method
of interpolation.

A two-element array, [Ng, Nw] defining the quadratic fit, Ng, and weighting, Nw,
neighborhood sizes for the Modified Shepard's method. The default for Nq is the
smaller of 13 and the number of points minus 1, with aminimum of 5. The default for
Nw is the smaller of 19 and the number of points. The Modified Shepard’s method
first computes the coefficients of aquadratic fit for each input point, using its Nq
closest neighbors.

What's New in IDL 5.5

Chapter 6: New IDL Routines 237

When interpolating an output point, the quadratic fits from the Nw closest input
points are weighted inversely by afunction of distance and then combined. The size
of the neighborhood used for Shepard’s method interpolation may also be specified
by the search rules keywords.

POLYNOMIAL_REGRESSION

Selects the Polynomial Regression method for interpolation. The power of the
polynomial regression is set to 2 by default, however the POWER keyword can be
used to change the power to 1 or 3.

The function fit to each interpolant corresponding to the POWER keyword set equal
to 1, 2 (default), and 3 respectively is asfollows:

F(xy) = ag+tax+ay

F(XY) = ag+aX+ay +ax +ay’+axy (default)
F(xy) = aygtax+ay+ a3x2 + a4y2 +agXy + a6x3 + a7y3 + a8x2y + agxy2

By inspection, aminimum of three data points are required to fit the linear
polynomial, six data points for the second polynomial equation (where POWER = 2),
and ten data points for the third polynomia (POWER = 3). If not enough data points
exist for a given interpolant, the missing data values are set to the value of the
MISSING keyword.

POWER

The weighting power of the distance, or the maximum order in the polynomial fitting
function. For polynomial regression, thisvalue iseither 1, 2 (the default), or 3.

Note
The POWER keyword is only used for the Inverse Distance and Polynomial
Regression methods of interpolation.

QUINTIC
Selects the triangul ation with Quintic interpolation method.

Note
The TRIANGLES keyword is required when the QUINTIC keyword is used.

What's New in IDL 5.5 GRIDDATA

238 Chapter 6: New IDL Routines

RADIAL_BASIS_FUNCTION
Selects the Radial Basis Function method of interpolation.
SEARCH_ELLIPSE

This keyword defines the search rules as a scalar or vector of from 1 to 3 elements
that specify an ellipse or circlein the form [R1], [R1, R2], or [R1, R2, Theta]. R1 is
one radius, R2 the other radius, and Theta describes the angle between the X-axisto
the R1-axis, counterclockwise, in degrees or radians as specified by the DEGREES
keyword. Only data points within this ellipse, centered on the location of the
interpolate, are considered. If not specified, or O, this distance test is not applied.
Search rules effectively limit the number of data points used in computing each
interpolate.

For example, to only consider data points within a distance of 5 units of each
interpolant, specify the keyword as SEARCH_EL LIPSE = 5.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

SECTORS

This keyword defines the search rules for the number of sectors used in applying the
MAX_SECTOR, EMPTY_SECTORS, and MIN_POINTS tests, an integer from 1
(the default setting) to 8.

SHEPARDS

Selects the Modified Shepard’s method of interpolation. The parameters for the
Modified Shepard’s method are set by default, however the NEIGHBORHOOD
keyword can be used to modify the parameters.

Note
The TRIANGLES keyword is required when the SHEPARDS keyword is used.

GRIDDATA What's New in IDL 5.5

Chapter 6: New IDL Routines 239

SMOOTHING

A scalar value defining the smoothing radius. For the Radial Basis Function method,
if SMOOTHING is not specified, the default valueis equal to the average point
spacing, assuming a uniform distribution. For the Inverse Distance method, the
default valueis 0, implying no smoothing.

Note
The SMOOTHING keyword is used only for the Inverse Distance and Radial Basis
Function methods of interpolation.

SPHERE
If set, data points lie on the surface of a sphere.
START

A scalar or atwo-element array specifying the start of the grid in X, and Y. Default
value is[min(x), min(y)].

Thiskeyword isignored if the GRID, XOUT and YOUT keywords are specified.
TRIANGLES

A 3-by-nt longword array describing the connectivity of the input points, as returned
by TRIANGULATE, where nt is the number of triangles. If duplicate point locations
are input and the TRIANGLES keyword is present, only one of the pointsis
considered.

Note
The TRIANGLES keyword isrequired for the Natural Neighbor, Nearest Neighbor,
Modified Shepard's, Linear, and Quintic | nterpolation methods.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

VARIOGRAM

Specifies the variogram type and parameters for the Kriging method. This parameter
isavector of one to four elementsin the form of: [Type, Range, Nugget, Scale]. The
Typeisencoded as: 1 for linear, 2 for exponential, 3 for gaussian, 4 for spherical.

What's New in IDL 5.5 GRIDDATA

240

GRIDDATA

Chapter 6: New IDL Routines

Defaults values are: Typeis exponential, Range is 8 times the average point spacing
assuming auniform distribution, Nugget is zero, and Scaleis 1.

Note
The VARIOGRAM keyword is only used with the Kriging method of interpolation.

XOUT

If the GRID keyword is set, use XOUT to specify irregularly spaced rectangular
output grids. If XOUT is specified, YOUT must a so be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elementsas XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT([i], Y OUT]i]).

YOUT

If the GRID keyword is set, use YOUT to specify irregularly spaced rectangular
output grids. If YOUT is specified, XOUT must al so be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elements as XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT([i], Y OUTIi]).

What's New in IDL 5.5

Chapter 6: New IDL Routines 241

Example 1

This example interpolates a data set measured on an irregular grid. Various types of
the Inverse Distance interpolation method (the default method) are used in this

example.
; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ; For consi st ency
x = RANDOMJ seed, n)
y = RANDOMJ seed, n)

; Create a dependent variable in the forma function of (X,y)
; with peaks & valleys.
f =3 * EXP(-((9*x-2)"2 + (7-9*y)"2)/4) + $

3 * EXP(-((9*x+1)"2)/49 - (1-0.9*y)) + $

2 * EXP(-((9*x-7)"2 + (6-9*y)"2)/4) - $

EXP(-(9*x-4)"2 - (2-9*y)"2)

; Initialize display.
W NDOW 0, XSIZE = 512, YSIZE = 768, TITLE = 'Inverse D stance'
'P. MULTI =[]0, 1, 3, 0, O]

; Inverse distance: Sinplest default case which produces a 25 x
; 25 grid.

grid = GRIDDATA(X, y, f)

SURFACE, grid, CHARSIZE = 3, TITLE = 'Sinple Exanple'

; Default case, Inverse distance.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DI MENSION = 51)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Larger Gid'

; I nverse di stance + snoot hing.

grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
SMOOTH = 0. 05)

SURFACE, grid, CHARSIZE = 3, TITLE = ' Snoot hi ng'

; Set systemvariable back to default val ue.
I'P. MULTI = 0

What's New in IDL 5.5 GRIDDATA

242 Chapter 6: New IDL Routines

Example 2

This example uses the same data as the previous one, however in this example we use
the Radial Basis Function and the Modified Shepard’s interpolation methods.

; Create a dataset of N points.

n = 100 ;# of scattered points
seed = -121147L ; For consi st ency

x = RANDOMJ seed, n)

y = RANDOMJ seed, n)

; Create a dependent variable in the formof a function of (x,y)
; with peaks & valleys.
f =3 * EXP(-((9*x-2)"2 + (7-9*y)"2)/4) + $

3 * EXP(-((9*x+1)"2)/49 - (1-0.9*y)) + $

2 * EXP(-((9*x-7)"2 + (6-9*y)"~2)/4) - $

EXP(-(9*x-4)"2 - (2-9*y)"2)

; Initialize display.

W NDOW 0, XSIZE = 512, YSIZE = 512, $
TITLE = 'Different Methods of Gidding'

IP.MULTI = [0, 1, 2, 0, 0]

; Use radial basis function with nultilog basis function.

grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
/ RADI AL_BASI S_FUNCTI ON, FUNCTI ON_TYPE = 1)

SURFACE, grid, CHARSIZE = 3, TITLE = 'Radial Basis Function'

; The follow ng exanpl e requires triangul ation.
TRl ANGULATE, x, vy, tr

; Use Modified Shepard's nethod.

grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
TRI ANGLES = tr, / SHEPARDS)

SURFACE, grid, CHARSIZE = 3, TITLE = "Mbodified Shepard's Method"

; Set systemvariable back to default val ue.
I'P. MULTI = 0

GRIDDATA What's New in IDL 5.5

Chapter 6: New IDL Routines 243

Example 3

This example uses the same data as the previous ones, however in this example we
use various types of the Polynomial Regression interpolation method.

; Create a dataset of N points.

n = 100 ;# of scattered points
seed = -121147L ; For consi st ency

x = RANDOMJ seed, n)

y = RANDOMJ seed, n)

; Create a dependent variable in the forma function of (X,y)
; with peaks & valleys.
f =3 * EXP(-((9*x-2)"2 + (7-9*y)"2)/4) + $

3 * EXP(-((9*x+1)"2)/49 - (1-0.9*y)) + $

2 * EXP(-((9*x-7)"2 + (6-9*y)"2)/4) - $

EXP(-(9*x-4)"2 - (2-9*y)"2)

; Initialize display.

W NDOW 0, XSIZE = 512, YSIZE = 768, $
TI TLE = ' Pol ynom al Regression

I P. MULTI [0, 1, 3, 0, 0]

; The follow ng exanples require the triangul ation.
TRl ANGULATE, x, vy, tr

; Fit with a 2nd degree polynomial in x and y. This fit considers

; all points when fitting the surface, obliterating the individua

; peaks.

grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
TRI ANGLES = tr, /POLYNOM AL_REGRESSI ON)

SURFACE, grid, CHARSIZE = 3, TITLE = 'd obal Degree 2 Pol ynom al'

; Fit with a 2nd degree polynomial in x and y, but this time use

; only the 10 cl osest nodes to each interpolant. This provides a

; relatively smooth surface, but still shows the individual peaks.

grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DI MENSION = 51, $
TRIANGLES = tr, /POLYNOM AL_REGRESSI ON, MAX_PER_SECTOR = 10)

SURFACE, grid, CHARSIZE = 3, TITLE = 'Local Polynom al, 10 Point

; As above, but use only the nodes within a distance of 0.4 when
; fitting each interpol ant
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
TRI ANGLES = tr, /POLYNOM AL_REGRESSI O\, SEARCH ELLI PSE = 0. 4)
SURFACE, grid, CHARSIZE = 3, $
TI TLE = ' Local Polynom al, Radius = 0.4

; Set systemvariable back to default val ue.
I'P. MULTI =0

What's New in IDL 5.5 GRIDDATA

244

Chapter 6: New IDL Routines

Example 4

GRIDDATA

This example uses the same data as the previous ones, however in this example we
show how to speed up the interpolation by limiting the interpolation to the local area
around each interpol ate.

; Create a dataset of N points.\.

n = 100 ;# of scattered points
seed = -121147L ; For consi st ency

x = RANDOMJ seed, n)

y = RANDOMJ seed, n)

; Create a dependent variable in the forma function of (Xx,Yy)
; with peaks & valleys.
f =3 * EXP(-((9*x-2)"2 + (7-9*y)"2)/4) + $

3 * EXP(-((9*x+1)"2)/49 - (1-0.9*y)) + $

2 * EXP(-((9*x-7)"2 + (6-9*y)"2)/4) - $

EXP(-(9*x-4)"2 - (2-9*y)"2)

; Note: the inverse distance, kriging, polynom al regression, and
; radial basis function nmethods are, by default, global methods in
; whi ch each input node affects each output node. Wth these

; methods, |arge datasets can require a prohibitively long tinme to
; conpute unless the scope of the interpolation is linmted to a

; local area around each interpol ate by specifying search rul es.

; In fact, the radial basis function requires tine proportional to
; the cube of the nunber of input points

; For exanple, with 2,000 input points, a typical workstation

; required 500 seconds to interpolate a 10,000 point grid using

; radial basis functions. By limting the size of the fit to the
; 20 closest points to each interpolate, via the MN_PO NTS

; keyword, the tinme required dropped to |l ess than a second.

; Initialize display.
W NDOW 0, XSIZE = 512, YSIZE = 512, $

TI TLE = ' Radi al Basis Function'
IP. MULTI = [0, 1, 2, 0, 0]
; Sl ow way:

grid = GRIDDATA(X, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
/ RADI AL_BASI S_FUNCTI ON)
SURFACE, grid, CHARSIZE = 3, TITLE = 'All Points'

; The follow ng exanpl e requires triangul ation.
TRl ANGULATE, x, vy, tr

What's New in IDL 5.5

Chapter 6: New IDL Routines 245

; Faster way:

grid = GRIDDATA(X, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $
/ RADI AL_BASI S _FUNCTION, M N_PO NTS = 15, TRIANGLES = tr)

SURFACE, grid, CHARSIZE = 3, TITLE = 'Nearest 15 Points'

; Set systemvariable back to default val ue.
I'P. MULTI = 0

Example 5
This example interpol ates a spherical data set measured on an irregular grid. We use

the Kriging and Natural Neighbors interpolation methods in this example.

; Create a 100 scattered points on a sphere and forma function
; of their latitude and longitude. Then grid themto a 2 degree
; grid over the sphere, display a Mdl | weide projection map, and
; overlay the contours of the result on the map.

; Create a dataset of N points.

n = 100
; A 2 degree grid with grid di mensions.
delta = 2

dins = [360, 180]/delta

; Longi tude and | atitudes

| on = RANDOMJ(seed, n) * 360 - 180

| at = RANDOMJ(seed, n) * 180 - 90

; The lon/lat grid |ocations

lon_grid FI NDGEN(di ns[0]) * delta - 180
lat_grid FI NDGEN(di ms[1]) * delta - 90

; Create a dependent variable in the formof a snoothly varying
; function.
f = SIN(2*lon*! DTOR) + COS(lat*!DTOR) ;

; Initialize display.
W NDOW 0, XSIZE = 512, YSIZE = 768, TITLE = ' Spherical Gidding'
'P. MULTI = [0, 1, 3, 0, O]

; Kriging: Sinplest default case.

z = CRIDDATA(lon, lat, f, /KRIG NG /DEGREES, START = 0, /SPHERE, $
DELTA = delta, DI MENSION = dims)

MAP_SET, /MOLLWEIDE, /1SOTROPIC, /HORIZON, /CGRID, CHARSIZE = 3, $
TI TLE = ' Sphere: Kriging'

CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

What's New in IDL 5.5 GRIDDATA

246

Chapter 6: New IDL Routines

; This exanple is the sanme as above, but with the addition of a

; call to QHULL to triangulate the points on the sphere, and to

; then interpolate using the 10 closest points. The gridding

; portion of this exanple requires about one-fourth the tine as

; above.

QHULL, lon, lat, tr, /DELAUNAY, SPHERE = s

z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $
DI MENSI ON = dims, TRIANGLES = tr, M N PONTS = 10, /KRRA NG $
| SPHERE)

MAP_SET, /MOLLWEIDE, /1SOTRCPIC, /HORIZON, /GRID, /ADVANCE, $
CHARSI ZE = 3, TITLE = 'Sphere: Kriging, 10 O osest Points'

CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; This exanpl e uses the natural nei ghbor nethod, which is about

; four times faster than the above exanpl e but does not give as

; smooth a surface.

z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $
DI MENSI ON = di ms, / SPHERE, /NATURAL_NEI GHBOR, TRI ANGLES = tr)

MAP_SET, /MOLLWEIDE, /1SOTROPIC, /HORIZON, /GRID, /ADVANCE, $
CHARSI ZE = 3, TITLE = 'Sphere: Natural Neighbor'

CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; Set systemvariable back to default val ue.
I'P. MULTI =0

Example 6

GRIDDATA

The following example usesthe datafrom thei rreg_gri d1. t xt ASCII file. This
file contains scattered elevation data of amodel of an inlet. This scattered elevation
data contains two duplicate locations.

The GRID_INPUT procedureis used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the Radi al Basi sFunct i on string, although it could easily be done using
the RADIAL_BASIS FUNCTION keyword.

; I nport the Data:

; Determine the path to the file.

file = FILEPATH('irreg_gridl.txt', $
SUBDI RECTCRY = [' exanples', 'data'])

; Inport the data fromthe file into a structure.
dataStructure = READ_ASCII (file)

What's New in IDL 5.5

Chapter 6: New IDL Routines 247

; Get the inported array fromthe first field of
; the structure.
dat aArray = TRANSPOSE(dataStructure.fieldl)

; Initialize the variables of this exanple from
; the inported array.

x = dataArray[*, O]

y = dataArray[*, 1]

data = dataArray[*, 2]

; Display the Data:

; Scale the data to range from1l to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = ! D. TABLE_SI ZE - 4) + 1B

; Load the color table. |If you are on a TrueCol or, set the
; DECOVPCSED keyword to the DEVI CE command before running a
; color table related routine.

DEVI CE, DECOMPCSED = 0

LQADCT, 38

; Open a display wi ndow and plot the data points.

W NDOW O

PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE =1, $
TITLE = '"Oiginal Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE ="'y’

; Now display the data values with respect to the color table.
FORi = 0L, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM= -1, $
SYMSI ZE = 2., COLOR = scal ed[i]

; Gidthe Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; renove any duplicate |ocations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid paraneters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid paranmeters to
; deternmine the x of the resulting grid.

slope = (MAX(xSorted) - MN(xSorted))/(gridSize[0] - 1)
intercept = M N(xSorted)

x&id = (slope*FI NDGEN(gri dSi ze[0])) + intercept

What's New in IDL 5.5 GRIDDATA

248

GRIDDATA

Chapter 6: New IDL Routines

Use the equation of a straight line and the grid paraneters to
determine the y of the resulting grid.
slope = (MAX(ySorted) - MN(ySorted))/(gridSize[1l] - 1)
intercept = M N(ySorted)
yGid = (slope*FI NDGEN(gri dSi ze[1])) + intercept

Gid the data with the Radi al Basis Functi on nethod.
grid = GRI DDATA(xSorted, ySorted, dataSorted, $
DI MENSI ON = gri dSize, METHOD = ' Radi al Basi sFunction')

Open a display wi ndow and contour the Radial Basis Function

; results.

W NDOW 1

scaled = BYTSCL(grid, TOP = ! D. TABLE_SI ZE - 4) + 1B

CONTOUR, scaled, xGid, Y&Gid, /XSTYLE, /YSTYLE, /FILL, $
LEVELS = BYTSCL(| NDGEN(18), TOP = !D.TABLE SIZE - 4) + 1B, $
C COLORS = BYTSCL(I NDGEN(18), TOP = !D.TABLE SIZE - 4) + 1B, $
TITLE = ' The Resulting Gid with Radial Basis Function', $
XTITLE = 'x', YTITLE ="'y’

Example 7

The following example usesthe datafrom thei rreg_gri d1. t xt ASCII file. This
file contains scattered elevation data of amodel of aninlet. This scattered elevation
data contains two duplicate locations. The same data is used in the previous example.

The GRID_INPUT procedureis used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the Radi al Basi sFunct i on string, although it could easily be done using
the RADIAL_BASIS FUNCTION keyword.

Faulting is also applied in thisexample. First, afault areais placed around the right
side of the dataset. This fault area contains data points. The data points within this
area are gridded separately from the points outside of the fault area.

Then, afault areais defined within an region that does not contain any data points.
Since this fault area does not contain any points, the grid within this region simply
resultsto the value defined by the MISSING keyword. The points outside of the fault
area are gridded independent of the fault region.

| nport the Data:
Deternmine the path to the file.

file = FILEPATH('irreg_gridl.txt', $
SUBDI RECTCRY = [' exanples', 'data'])

What's New in IDL 5.5

Chapter 6: New IDL Routines 249

; Inport the data fromthe file into a structure.
dataStructure = READ_ASCII (file)

; Get the inported array fromthe first field of
; the structure.
dat aArray = TRANSPOSE(dataStructure.fieldl)

; Initialize the variables of this exanple from
; the inported array.

x = dataArray[*, O]

y = dataArray[*, 1]

data = dataArray[*, 2]

; &idthe Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; renove any duplicate |ocations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid paraneters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid paraneters to
; deternmine the x of the resulting grid.

slope = (MAX(xSorted) - MN(xSorted))/(gridSize[0] - 1)
intercept = M N(xSorted)

x&id = (slope*FI NDGEN(gridSi ze[0])) + intercept

; Use the equation of a straight line and the grid paraneters to
; deternmine the y of the resulting grid.

slope = (MAX(ySorted) - MN(ySorted))/(gridSize[1l] - 1)
intercept = M N(ySorted)

yGid = (slope*FI NDGEN(gridSi ze[1])) + intercept

; Initialize display.

DEVI CE, DECOMPCSED = 0

LOADCT, 38

W NDOW 0, XSIZE = 600, YSIZE = 600, $
TITLE = ' The Resulting Gid fromthe Radial Basis Function '+ $
"Met hod with Faul ting'

IP.MULTI = [0, 1, 2, 0, 0]

; Define a fault area, which contains data points.
faultVertices = [[2200, 4000], [2200, 3000], [2600, 2700], $
[2600, -50], [5050, -50], [5050, 4000], [2200, 4000]]

faul t Connectivity =[7, 0, 1, 2, 3, 4, 5, 6, -1]

What's New in IDL 5.5 GRIDDATA

250 Chapter 6: New IDL Routines

; Gidthe data with faulting using the Radi al Basis Function

; met hod.

grid = GRI DDATA(xSorted, ySorted, dataSorted, $
DI MENSI ON = gri dSize, METHOD = ' Radi al Basi sFunction', $
FAULT_XY = faul tVertices, FAULT_POLYGONS = faul t Connectivity, $
M SSING = M N(dat aSorted))

; Display grid results.

CONTOUR, BYTSCL(grid), xGid, Y&id, /XSTYLE, /YSTYLE, /FILL, $
LEVELS = BYTSCL(| NDGEN(18)), C _COLORS = BYTSCL(|NDGEN(18)), $
TITLE = 'Fault Area Contains Data ' + $
'"(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = "y’

; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Define a fault area, which does not contain data points.
faultVertices = [[2600, -50], [2800, -50], [2800, 2700], $
[2400, 3000], [2400, 4000], [2200, 4000], [2200, 3000], $
[2600, 2700], [2600, -50]]
faul t Connectivity =19, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1]

; Gidthe data with faulting using the Radi al Basis Function

; met hod.

grid = GRI DDATA(xSorted, ySorted, dataSorted, $
DI MENSI ON = gri dSize, METHOD = ' Radi al Basi sFunction', $
FAULT_XY = faul tVertices, FAULT_POLYGONS = faul t Connectivity, $
M SSING = M N(dat aSorted))

; Display grid results.

CONTOUR, BYTSCL(grid), xGid, Y&id, /XSTYLE, /YSTYLE, /FILL, $
LEVELS = BYTSCL(| NDGEN(18)), C _COLORS = BYTSCL(|NDGEN(18)), $
TITLE = ' Fault Area Does Not Contain Data '+ $
'"(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = "y’

; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Set systemvariable back to default val ue.
I'P. MULTI =0

GRIDDATA What's New in IDL 5.5

Chapter 6: New IDL Routines 251

References
Kriging

Isagks, E. H., and Srivastava, R. M., An Introduction to Applied Geostatistics,
Oxford University Press, New York, 1989.

Minimum Curvature

Barrodale, |., et a, "Warping Digital Images Using Thin Plate Splines’, Pattern
Recognition, Vol 26, No 2, pp. 375-376., 1993.

Powell, M.J.D., "Tabulation of thin plate splines on a very fine two-dimensional
grid", Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
1992.

Modified Shepard’s

Franke, R., and Nielson, G. , "Smooth Interpolation of Large Sets of Scattered Data’,
International Journal for Numerical Methodsin Engineering, v. 15, 1980, pp. 1691-
1704.

Renka, R. J., Algorithm 790 - CSHEP2D: Cubic Shepard Method for Bivariate
Interpolation of Scattered Data, Robert J. Renka, ACM Trans. Math Softw. 25, 1
(March 1999), pp. 70-73.

Shepard, D., "A Two Dimensional Interpolation Function for Irregularly Spaced
Data", Proc. 23rd Nat. Conf. ACM, 1968, pp. 517-523.

Natural Neighbor

Watson, D. F., Contouring: A Guide to the Analysis and Display of Spatial Data,
Pergamon Press, ISBN 0 08 040286 0, 1992.

Watson, D. F., Nngridr - An Implementation of Natural Neighbor Interpolation,
David Watson, PO. Box 734, Clarement, WA 6010, Australia, 1994.

Quintic

Akima, H., Algorithm 761 - Scattered-data Surface Fitting that has the Accuracy of a
Cubic Polynomial, Hiroshi Akima, ACM Trans. Math. Softw. 22, 3 (Sep. 1996), pp.
362 - 371.

Renka, R.J., "A Triangle-based C1 Interpolation Method", Rocky Mountain Journal
of Mathematics, Vol 14, No. 1, 1984.

What's New in IDL 5.5 GRIDDATA

252 Chapter 6: New IDL Routines

Radial Basis Function

Franke, R., A Critical Comparison of Some Methods for Interpolation of Scattered
Data, Naval Postgraduate School, Technical Report, NPS 53-79-003, 1979.

Hardy, R.L., "Theory and Applications of the Multiquadric-biharmonic Method",
Computers Math. With Applic, v 19, no. 8/9, 1990, pp.163-208.

See Also

GRID_INPUT

GRIDDATA What's New in IDL 5.5

Chapter 6: New IDL Routines 253

HDF_VD_ATTRFIND

The HDF_VD_ATTRFIND function returns an attribute's index number given the
name of an attribute associated with the specified vdata or vdata/field pair. If the
attribute cannot be located, —1 is returned.

Syntax

Result = HDF_VD_ATTRFIND(VData, FieldID, Name)
Arguments

VData

The VData handle returned by aprevious call to HDF_VD_ATTACH.
FieldID

A zero-based index specifying the field, or astring containing the name of the field
within the VData to which the attribute is attached. Setting FieldID to —1 specifies
that the attribute is attached to the vdata itself.

Name

A string containing the name of the attribute whose index is to be returned.
Example

For an example using this routine, see the documentation for HDF_VD_ATTRSET.

See Also

HDF_VD_ATTRINFO, HDF_VD_ATTRSET, HDF VD_ISATTR,
HDF_VD_NATTRS

What's New in IDL 5.5 HDF_VD_ATTRFIND

254 Chapter 6: New IDL Routines

HDF_VD_ATTRINFO

The HDF_VD_ATTRINFO procedure reads or retrieves information about a vdata
attribute or avdata field attribute from the currently attached HDF vdata structure. If
the attribute is not present, an error message s printed.

Syntax

HDF_VD_ATTRINFO, VData, FieldID, AttrID, Values[, COUNT=variable]
[, DATA=variable] [, HDF_TYPE=variable] [, NAME=variable]
[, TYPE=variable]

Arguments

VData
The VData handle returned by aprevious call to HDF_VD_ATTACH.
FieldID

A zero-based index specifying the field, or astring containing the name of the field
within the V Data whose attribute is to be read. Setting FieldID to -1 specifies that the
attribute to be read is attached to the vdata itself.

AttrID

A zero-based integer index specifying the attribute to beread, or a string containing
the name of that attribute.

Values
The attribute value(s) to be written.

Keywords

COUNT

Set thiskeyword to anamed variable in which the number of data values (order of the
attribute) is returned.

DATA

Set this keyword to a named variable in which the attribute data is returned.

HDF_VD_ATTRINFO What's New in IDL 5.5

Chapter 6: New IDL Routines 255

HDF_TYPE

Set this keyword to a named variable in which the HDF data type of the attributeis
returned as a scalar string.

NAME
Set this keyword to a named variable in which the name of the attribute is returned.
TYPE

Set this keyword to a named variable in which the IDL type of the attributeis
returned as a scalar string.

Example
For an example using this routine, see the documentation for HDF_VD_ATTRSET.
See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRSET, HDF VD_ISATTR,
HDF_VD_NATTRS

What's New in IDL 5.5 HDF_VD_ATTRINFO

256

Chapter 6: New IDL Routines

HDF_VD ATTRSET

TheHDF_VD_ATTRSET procedure writes a vdata attribute or a vdata field attribute
to the currently attached HDF vdata structure. If no data type keyword is specified,
the datatype of the attribute value is used.

Syntax

HDF_VD_ATTRSET, VData, FieldID, Attr_Name, Values [, Count] [, /BY TE]
[,/DFNT_CHARS] [, /DFNT_FLOAT32] [, /DFNT_FLOAT64] [, [IDFNT_INTS]
[,/DFNT_INT16] [, /DFNT_INT32] [, /DFNT_UCHARS] [, /DFNT_UINTS]
[,/DFNT_UINT16] [, /DFNT_UINT32] [, /DOUBLE] [, /FLOAT] [, /INT]
[,/LONG] [, /SHORT] [, /STRING] [, /UINT] [, /ULONG |

Arguments

VData
The VData handle returned by aprevious call to HDF_VD_ATTACH.

Note
The vdata structure must have been attached in write mode in order for attributes to
be correctly associated with avdata or one of itsfields. If the vdatais not write
accessible, HDF does not return an error; instead, the attribute information is
written to the file but is not associated with the vdata.

FieldID

A zero-based index specifying the field, or astring containing the name of the field
within the VData whose attribute is to be set. If FieldID is set to -1, the attribute will
be attached to the vdata itself.

Attr_Name

A string containing the name of the attribute to be written.

HDF_VD_ATTRSET What's New in IDL 5.5

Chapter 6: New IDL Routines 257

Values

The attribute value(s) to be written.

Note
Attributes to be written as characters may not be a multi-dimensional array (e.g. if
being converted from byte values) or an array of IDL strings.

Count

An optional integer argument specifying how many values are to be written. Count
must be less than or equal to the number of elementsin the Values argument. If not
specified, the actual number of values present will be written.

Keywords

BYTE

Set this keyword to indicate that the attribute is composed of bytes. Datawill be
stored with the HDF DFNT_UINT8 data type. Setting this keyword is the same as
setting the DFNT_UINTS8 keyword.

DFNT_CHARS

Set this keyword to create an attribute of HDF type DFNT_CHARS. Setting this
keyword is the same as setting the STRING keyword.

DFENT_FLOAT32

Set this keyword to create an attribute of HDF type DFNT_FLOAT32. Setting this
keyword is the same as setting the FLOAT keyword.

DFENT_FLOAT64

Set this keyword to create an attribute of HDF type DFNT_FL OAT64. Setting this
keyword is the same as setting the DOUBLE keyword.

DFNT_INTS8
Set this keyword to create an attribute of HDF type DFNT_INTS.
DFNT_INT16

Set this keyword to create an attribute of HDF type DFNT_INT16. Setting this
keyword is the same as setting either the INT keyword or the SHORT keyword.

What's New in IDL 5.5 HDF_VD_ATTRSET

258

Chapter 6: New IDL Routines

DFNT_INT32

Set this keyword to create an attribute of HDF type DFNT_INT32. Setting this
keyword is the same as setting the LONG keyword.

DFENT_UCHARS8
Set this keyword to create an attribute of HDF type DFNT_UCHARS.
DENT_UINTS

Set this keyword to create an attribute of HDF type DFNT_UINTS. Setting this
keyword is the same as setting the BY TE keyword.

DFNT_UINT16

Set this keyword to create an attribute of HDF type DFNT_UINT16.
DFNT_UINT32

Set this keyword to create an attribute of HDF type DFNT_UINT32.
DOUBLE

Set this keyword to indicate that the attribute is composed of double-precision
floating-point values. Data will be stored with the HDF type DFNT_FL OAT64.
Setting this keyword is the same as setting the DFNT_FL OAT64 keyword.

FLOAT

Set this keyword to indicate that the attribute is composed of single-precision
floating-point values. Data will be stored with the HDF type DFNT_FLOAT32 data
type. Setting this keyword is the same as setting the DFNT_FLOAT32 keyword.

INT

Set this keyword to indicate that the attribute is composed of 16-bit integers. Data
will be stored with the HDF type DFNT_INT16 data type. Setting this keyword isthe
same as setting either the SHORT keyword or the DFNT_INT16 keyword.

LONG

Set this keyword to indicate that the attribute is composed of longword integers. Data
will be stored with the HDF type DFNT_INT32 data type. Setting this keyword isthe
same as setting the DFNT_INT32 keyword.

HDF_VD_ATTRSET What's New in IDL 5.5

Chapter 6: New IDL Routines 259

SHORT

Set this keyword to indicate that the attribute is composed of 16-bit integers. Data
will be stored with the HDF type DFNT_INT16 data type. Setting this keyword isthe
same as setting either the INT keyword or the DFNT_INT16 keyword.

STRING

Set this keyword to indicate that the attribute is composed of strings. Data will be
stored with the HDF type DFNT_CHARS8 data type. Setting this keyword is the same
as setting the DFNT_CHARS keyword.

UINT

Set this keyword to indicate that the attribute is composed of unsigned 2-byte
integers. Datawill be stored with the HDF type DFNT_UINT16 data type. Setting
this keyword is the same as setting the DFNT_UINT16 keyword.

ULONG

Set this keyword to indicate that the attribute is composed of unsigned longword
integers. Data will be stored with the HDF type DFNT_UINT32 data type. Setting
this keyword is the same as setting the DFNT_UINT32 keyword.

Example

Open an HDF file.
fid = HDF_OPEN(FI LEPATH(' vattr_exanpl e. hdf', $
SUBDI RECTCORY = [' exanples', 'data']), /RDWR)

Locate and attach an existing vdata.
vdref = HDF_VD_FIND(fid, 'MetChs')
vdid = HDF_VD ATTACH(fid, vdref, /WR TE)

; Attach two attributes to the vdata.

HDF_VD_ATTRSET, vdid, -1, 'vdata_contents', $
'Ground station neteorol ogi cal observations.'

HDF_VD ATTRSET, vdid, -1, 'numstations', 10

; Attach an attribute to one of the fields in the vdata.
HDF_VD_ATTRSET, vdid, 'TenpDP', 'field_contents', $
' Dew point tenperature in degrees Celsius.'

Get the nunber of attributes associated with the vdata.
numyvdattr = HDF_VD NATTRS(vdid, -1)
PRI NT, 'Nunber of attributes attached to vdata MetQos: ', $
num vdattr

What's New in IDL 5.5 HDF_VD_ATTRSET

260

; Get

Chapter 6: New IDL Routines

information for one of the vdata attributes by first finding

; the attribute' s i ndex number.
attr_index = HDF_VD_ATTRFI ND(vdid, -1, 'vdata_contents')
HDF_VD ATTRINFO, vdid, 1, attr_index, $

NAME = attr_name, DATA = netobs_contents

HELP,

; Get

attr_nanme, metobs_contents

information for another vdata attribute using the

; attribute' s nane.
HDF_VD_ATTRI NFO, vdid, -1, 'numstations', DATA = numstations, $
HDF_TYPE = hdftype, TYPE = idltype

HELP, num stations, hdftype,idltype

PRI NT, num stations

; Get the nunber of attributes attached to the vdata field

: TenpDP.

num fdattr = HDF_VD_NATTRS(vdid, ' TenpDP')

PRI NT, 'Nunber of attributes attached to field TenpDP: ', $
num fdattr

; Get the information for the vdata field attribute.

HDF_VD _ATTRI NFQO, vdid, 'TenpDP', 'field_contents', $
COUNT = count, HDF_TYPE = hdftype, TYPE = idltype, $
DATA = dptenp_attr

HELP,

count, hdftype, idltype, dptenp_attr

: End access to the vdata.
HDF_VD_DETACH, vdid

; Attach a vdata which stores one of the attribute val ues.

vdi d

; Get

HDF_VD_ATTACH(fid, 5)

the vdata's nanme and check to see that it is indeed storing

;an attribute.
HDF_VD_GCET, vdid, NAME = vdnane

isattr

HELP,

= HDF_VD_| SATTR(vdi d)
vdnane, isattr

: End access to the vdata and the HDF file.
HDF_VD_DETACH, vdid
HDF_CLOSE, fid

IDL Output
Nunber of attributes attached to vdata Met Qbs: 2
ATTR_NAME STRI NG = 'vdata_contents'

METOBS_CONTENTS STRI NG

'"Ground station neteorol ogical

observations.'

HDF_VD_ATTRSET

What's New in IDL 5.5

Chapter 6: New IDL Routines 261

NUM_STATI ONS | NT = Array[1]
HDFTYPE STRI NG = ' DFNT_I NT16'
| DLTYPE STRI NG = "INT
10
Number of attributes attached to field TenpDP: 1
COUNT LONG = 41
HDFTYPE STRI NG = ' DFNT_CHARS'
| DLTYPE STRI NG = ' STRI NG
DPTEMP_ATTR STRI NG = 'Dew point tenperature in degrees
Cel sius.'
VDNAVE STRI NG = 'field_contents'
| SATTR LONG = 1
See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ISATTR,
HDF_VD_NATTRS

What's New in IDL 5.5 HDF_VD_ATTRSET

262 Chapter 6: New IDL Routines

HDF_VD_ISATTR

The HDF_VD_ISATTR function returns TRUE (1) if the vdatais storing an attribute,
FAL SE (0) otherwise. HDF stores attributes as vdatas, so this routine provides a
means to test whether or not a particular vdata contains an attribute.

Syntax
Result = HDF_VD_ISATTR(VData)
Arguments

VData
The VData handle returned by aprevious call to HDF_VD_ATTACH.

Example
For an example using this routine, see the documentation for HDF_VD_ATTRSET.
See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ATTRSET,
HDF_VD_NATTRS

HDF_VD_ISATTR What's New in IDL 5.5

Chapter 6: New IDL Routines 263

HDF_VD NATTRS

The HDF_VD_NATTRS function returns the number of attributes associated with
the specified vdata or vdata/field pair if successful. Otherwise, —1 is returned.

Syntax
Result = HDF_VD _NATTRS(VData, FieldID)
Arguments
VData
The VData handle returned by a previous call to HDF_VD_ATTACH.
FieldID

A zero-based index specifying the field, or astring containing the name of the field,
within the VDatawhose attributes are to be counted. Setting Index to —1 specifiesthat
attributes attached to the vdata itself are to be counted.

Example
For an example using this routine, see the documentation for HDF_VD_ATTRSET.
See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ATTRSET,
HDF_VD_ISATTR

What's New in IDL 5.5 HDF_VD_NATTRS

264 Chapter 6: New IDL Routines

HEAP_FREE

The HEAP_FREE procedurerecursively frees al heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When avalid pointer or object referenceis
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variablesto befreed. In thisway, al heap variablesthat
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releasesthem in afinal pass. Pointers are
released asif the PTR_FREE procedure was called. Objects are released aswith acall
to OBJ DESTROY.

Aswith the related HEAP_GC procedure, there are some disadvantages to using
HEAP_FREE such as:

* When freeing object heap variables, HEAP_FREE calls OBJ_DESTROY
without supplying any plain or keyword arguments. Depending on the objects
being released, this may not be sufficient. In such cases, the caller must call
OBJ _DESTROY explicitly with the proper arguments rather than using
HEAP_FREE.

» HEAP_FREE releases the referenced heap variables in an unspecified order
which depends on the current state of the internal data structure used by IDL to
hold them. This can be confusing for object destructor methods that expect all
of their contained datato be present. If your application requires a specific
order for the release of its heap variables, you must explicitly free them in the
correct order. HEAP_FREE cannot be used in such cases.

» Thealgorithm used by HEAP_FREE to release variables requires examination
of every existing heap variable (that is, it isan O(n) algorithm). This may be
slow if an IDL session has thousands of current heap variables.

For these reasons, Research Systems recommends that applications keep careful track
of their heap variable usage, and explicitly free them at the proper time (for example,

using the object destructor method) rather than resorting to simple-looking but
potentially expensive expedients such as HEAP_FREE or HEAP_GC.

HEAP_FREE is recommended when:

* The data structuresinvolved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

* The data structures are opague, and the code cleaning up does not have
knowledge of the structure.

HEAP_FREE What's New in IDL 5.5

Chapter 6: New IDL Routines 265

Syntax
HEAP_FREE, Var [, /OBJ] [, /PTR] [, /VERBOSE]
Arguments

Var
The variable whose data is used as the starting point for heap variablesto be freed.

Keywords

OBJ

Set this keyword to free object heap variables only.
PTR

Set this keyword to free pointer heap variables only.

Note
Setting both the PTR and OBJ keywords is the same as setting neither.

VERBOSE

If this keyword is set, HEAP_FREE writes a one line description of each heap
variable, in the format used by the HEL P procedure, as the variable isreleased. This
isadebugging aid that can be used by program devel opers to check for heap variable
leaks that need to be located and eliminated.

Example

; Create a structure variable.

nmySubStructure = {pointer: PTR_NEW | NDGEN(100)), $
obj : OBJ_NEW' I dI _Container')}

nyStructure ={substruct:nySubStructure, $
ptrs: [PTR_NEW | NDGEN(10)), PTR_NEW | NDGEN(11))]}

; Look at the heap.
HELP, /HEAP_VARI ABLES

Now free the heap variables contained in nyStructure.

HEAP_FREE, nyStructure, /VERBCSE
HELP, /HEAP_VARI ABLES

What's New in IDL 5.5 HEAP_FREE

266 Chapter 6: New IDL Routines

See Also

HEAP GC

HEAP_FREE What's New in IDL 5.5

Chapter 6: New IDL Routines 267

INTERVAL_VOLUME

The new INTERVAL_VOLUME procedure is used to generate a tetrahedral mesh
from volumetric data. The generated mesh spans the portion of the volume where the
volume data samples fall between two constant data values. This can a so be thought
of as amesh constructed to fill the volume between two isosurfaces which are drawn
according to the two supplied constant data values. The algorithm isvery similar to
the ISOSURFACE algorithm and expands upon the SHADE_VOLUME algorithm.
A topologically-consistent tetrahedral mesh is returned by decomposing the volume
into oriented tetrahedra. This also allows the agorithm to find the interval volume of
any tetrahedral mesh.

If an auxiliary array isprovided, its datais interpolated onto the output verticesand is
returned. Thisauxiliary data array may have multiple values at each vertex. Any size-
leading dimension is alowed as long as the number of values in the subsequent
dimensions matches the number of elementsin the input data array.

For more information on the INTERVAL_VOLUME algorithm, see the paper,
“Interval Volume Tetrahedrization”, Nielson and Sung, Proceedings: |IEEE
Visualization, 1997.

Syntax

INTERVAL_VOLUME, Data, Value0, Valuel, Outverts, Outconn
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, GEOM_XYZ=array, TETRAHEDRA=array]

Arguments

Data
Input three-dimensional array of scalars that define the volume data.
ValueO

Input scalar iso-value. This value specifies one of the limits for the interval volume.
The generated interval volume encloses al volume samples between and including
ValueO and Valuel. ValueO may be greater than or |ess than Valuel, but the two values
may not be exactly equal. This value also cannot be aNaN, but can be +/- INF.

Valuel

Input scalar iso-value. This value specifies the other limit for the interval volume.
The generated interval volume encloses al volume samples between and including

What's New in IDL 5.5 INTERVAL_VOLUME

268

Chapter 6: New IDL Routines

ValueO and Valuel. Valuel may be greater than or |ess than Value0, but the two values
may not be exactly equal. This value also cannot be aNaN, but can be +/- INF.

Outverts

A named variable to contain an output [3, n] array of floating point vertices making
up the tetrahedral mesh.

Outconn

A named variable to contain an output array of tetrahedral mesh connectivity values.
Thisarray is one-dimensional and consists of a series of four vertex indices, where
each group of four indices describes a tetrahedron. The connectivity values are
indices into the vertex array returned in Outverts. If no tetrahedra are extracted, this
argument returns the array [-1].

Keywords

AUXDATA_IN

This keyword defines the input array of auxiliary data with trailing dimensions being
the number of valuesin Data.

Note
If you specify the AUXDATA_IN then you must specify AUXDATA_OUT.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If you specify AUXDATA_OUT then you must specify AUXDATA_IN.

GEOM_XYZ

Thiskeyword defines a[3, n] input array of vertex coordinates (one for each valuein
the Data array). This array is used to define the spatial location of each scaar. If this
keyword is omitted, Data must be a three-dimensional array and the scalar locations
are assumed to be on auniform grid.

INTERVAL_VOLUME What's New in IDL 5.5

Chapter 6: New IDL Routines 269

Note
If you specify GEOM_XY Z then you must specify TETRAHEDRA.

TETRAHEDRA

Thiskeyword defines an input array of tetrahedral connectivity values. If thisarray is
not specified, the connectivity is assumed to be arectilinear grid over the input three-
dimensional array. If this keyword is specified, the input data array need not be a
three-dimensional array. Each tetrahedron is represented by four valuesin the
connectivity array. Every four valuesin the array correspond to the vertices of a
single tetrahedron.

Note
If you specify TETRAHEDRA then you must specify GEOM_XYZ.

Example

The following example generates an interval volume and displays the surface of the
volume:

RESTORE, FILEPATH('clouds3d.dat', $
SUBDI RECTORY=[' exanpl es',"'data'])

| NTERVAL_VOLUME, rain, 0.1, 0.6, verts, conn

conn = TETRA_SURFACE(verts, conn)

oRain = OBJ_NEW' I DLgr Pol ygon', verts, POLYGONS=conn, $
COLOR=[255, 255, 255], SHADI NG=1)

XOBJVI EW oRai n, BACKGROUND=[150, 200, 255]

See Also

ISOSURFACE, SHADE_VOLUME, XVOLUME

What's New in IDL 5.5 INTERVAL_VOLUME

270 Chapter 6: New IDL Routines

PATH_SEP

The PATH_SEP function returns the proper file path segment separator character for
the current operating system. Thisisthe character used by the host operating system
for delimiting subdirectory namesin a path specification. Use of thisfunction instead
of hard wiring separators makes code more portable.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
pat h_sep. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = PATH_SEP([/PARENT_DIRECTORY] [, /SEARCH_PATH])
Arguments

None.
Keywords

PARENT_DIRECTORY

If set, PATH_SEP returns the standard directory notation used by the host operating
system to indicate the parent of a directory.

SEARCH_PATH
If set, PATH_SEP returns the character used to separate entries in a search path.

See Also

FILEPATH, FILE_SEARCH

PATH_SEP What's New in IDL 5.5

Chapter 6: New IDL Routines 271

QGRID3

The QGRID3 function linearly interpolates the dependent variable values to pointsin
aregularly sampled volume. Itsinputs are atriangulation of scattered data pointsin
three dimensions, and the value of a dependent variable for each point.

Syntax

Result = QGRID3(XYZ, F, Tetrahedra [, DELTA=vector] [, DIMENSION=vector]
[, MISSING=value] [, START=vector])

or

Result = QGRID3(X, Y, Z, F, Tetrahedra [, DELTA=array] [, DIMENSION=array]
[, MISSING=value] [, START=array])

Return Value

Result is a 3-dimensional array of either single or double precision floating type, of
the specified dimensions.

Arguments
XYZ
Thisisa3-by-n array containing the scattered points.
X, Y, Z
One-dimensional vectors containing the X, Y, and Z point coordinates.

Tetrahedra

A longword array containing the point indices of each tetrahedron, as created by
QHULL.

Keywords

Note
Any of the keywords may be set to ascalar if al elements are the same.

What's New in IDL 5.5 QGRID3

272

Chapter 6: New IDL Routines

DELTA

A scalar or three element array specifying the grid spacing in X, Y, and Z. If this
keyword is not specified, it is set to create agrid of DIMENSION cells, enclosing the
volume from START to [max(x), max(y), max(z)].

DIMENSION

A three element array specifying the grid dimensionsin X, Y, and Z. Default value is
25 for each dimension.

MISSING

The valueto be used for grid points that lie outside the convex hull of the scattered
points. The default is 0.

START

A three element array specifying the start of thegrid in X, Y, and Z. Default valueis
[min(x), min(y), min(2)].

Example 1

QGRID3

This example interpol ates a data set measured on an irregular grid.

Create a dataset of N points.

n = 200

x = RANDOMJ seed, n)
y = RANDOMJ seed, n)
z = RANDOMJ(seed, n)

Creat e dependent vari abl e.
f = x"r2 - x*y + 272 + 1

; Obtain a tetrahedra using the QHULL procedure.
QHULL, x, vy, z, tet, /DELAUNAY

Create a volune w th dimensions [51, 51, 51]
over the unit cube.

volume = QGRID3(x, vy, z, f, tet, START=0, DI MENSI ON=51, $
DELTA=0. 02)

Di spl ay the vol une.
XVOLUME, BYTSCL(vol une)

What's New in IDL 5.5

Chapter 6: New IDL Routines 273

Example 2

This example is similar to the previous one, however in this example we usea[3, n]
array of points.

Create a dataset of N points.
200
RANDOMJ(seed, 3, n)

n =
p =
; Create dependent variable.

f =p[0,*]"2- p[or*]*p[lr*] +p[21*]/\2+1

; Obtain a tetrahedra.
QHULL, p, tet, /DELAUNAY

; Create a volume with dinensions [51, 51, 51] over the unit cube.
volume = QGRID3(p, f, tet, START=0, DI MENSI ON=51, DELTA=0.02)

; Display the vol une.
XVOLUME, BYTSCL(vol une)

Example 3

The following example usesthe datafrom thei rreg_gri d2. t xt ASCII file. This
file contains scattered three-dimensional data. This file contains bore hole data for a
square mile of land. The QHULL procedure is used to triangulate the three-
dimensional locations. The QGRID3 function uses the results from QHULL to grid
the datainto a volume. The scattered data is displayed as symbol polyline objectsin
the XOBJVIEW utility. The resulting gridded volumeisdisplayed in the XVOLUME
utility:

; Import the Data:

; Determine the path to the file. This file contains bore hole
; data for a square mle of land. The bore hole sanples were
; roughly taken diagonally fromthe upper left corner of the
; square to the lower right corner.
file = FILEPATH('irreg_grid2.txt', $

SUBDI RECTCRY = [' exanples', 'data'])

; Inport the data fromthe file into a structure.
dat aStructure = READ_ASCII (file)

; Get the inported array fromthe first field of

; the structure.
dat aArray = TRANSPOSE(dataStructure.fieldl)

What's New in IDL 5.5 QGRID3

274

QGRID3

Chapter 6: New IDL Routines

Initialize the variables of this exanple from
the inported array.

dat aArray[*, 0]

dat aArray[*, 1]

dat aArray[*, 2]

a = dataArray[*, 3]

o

X
y
VA
da

; Determine nunber of data points.
nPoi nts = N_ELEVENTS(dat a)

; Triangul ate the Data with QHULL:

; Construct the convex hulls of the vol une.
QHULL, x, vy, z, tetrahedra, /DELAUNAY

; Gidthe Data and Display the Results:

; Initialize volume paraneters.
cubeSize = [51, 51, 51]
; Gidthe data into a vol une.
volume = QGRID3(x, y, z, data, tetrahedra, START = 0, $
DI MENSI ON = cubeSi ze, DELTA = 0.02)
; Scale the volune to be able to view the full data value range
; with the color tables provided in the XVOLUVE utility.
scal edVol une = BYTSCL(vol une)

; Display the results in the XVOLUVE utility.
XVOLUME, scal edVol une

; Derive the isosurface for mneral deposits with the data val ue
; of 2.5.
| SOSURFACE, volune, 2.5, vertices, connectivity

; Initialize a nmodel to contain the isosurface.
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the polygon object of the isosurface.
oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, COLOCR = [0, 0, 255])

Det erm ne the range in each direction.

xRange = [0, cubeSize[0]]
yRange = [0, cubeSize[1]]
zRange = [0, cubeSize[2]]

What's New in IDL 5.5

Chapter 6: New IDL Routines 275

: Initialize an axis for each direction.

o0Axes = OBJARR(3)

0Axes[0] = OBJ_NEW' IDLgrAxis', 0, RANGE = xRange, $
LOCATI ON = [xRange[0], yRange[0], zRange[O0]], /EXACT, $
TI CKLEN = (0. 02*(yRange[1] - yRange[0])))

oAxes[1] = OBJ_NEW'IDLgrAxis', 1, RANGE = yRange, $
LOCATI ON = [xRange[0], yRange[0], zRange[O0]], /EXACT, $
TI CKLEN = (0. 02*(xRange[1] - xRange[0])))

0Axes[2] = OBJ_NEW'IDLgrAxis', 2, RANGE = zRange, $
LOCATI ON = [xRange[0], yRange[1l], zRange[O0]], /EXACT, $
TI CKLEN = (0. 02*(xRange[1] - xRange[0])))

; Add the polygon and axes object to the nodel.
oMbdel -> Add, oPol ygon
oMbdel -> Add, oAxes
; Rotate the nodel for a better perspective.
oMbdel -> Rotate, [0, O, 1], 30.
oMbdel -> Rotate, [1, 0, 0], -45.
; Display the nodel, which contains the isosurface.
XOBJVI EW oModel , /BLOCK, SCALE = 0.75, $
TITLE = 'Isosurface at the Value of 2.5

; Cleanup object references.
OBJ_DESTROY, [oMbdel]

See Also

QHULL

What's New in IDL 5.5 QGRID3

276 Chapter 6: New IDL Routines

QHULL

The QHULL procedure constructs convex hulls, Delaunay triangulations, and
Voronoi diagrams of a set of points of 2-dimensions or higher. It uses and is based on
the program QHULL, which is described in Barber, Dobkin and Huhdanpaa, “ The
Quickhull Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No 4, December 1996, Pages 469-483.

For more information about QHULL see http://www.geom.umn.edu/software/ghull/.
Syntax
QHULL,V, Tr

or,

QHULL, VO, V1, [,V2...[,V6]], Tr [, BOUNDS=variable]
[, CONNECTIVITY=variable] [, /DELAUNAY] [, SPHERE=variable]
[, VDIAGRAM=array] [, VNORMALS=array] [, VVERTICES=array]

Arguments

Vv

An input argument providing an nd-by-np array containing the locations of np points,
in nd dimensions. The number of dimensions, nd, must be greater than or equal to 2.

VO, V1, V2, ..., V(N-1)

Input vectors of dimension np-by-1 elements each containing the i-th coordinate of
np pointsin nd dimensions. A maximum of seven input vectors may be specified.

Tr

An nd1-by-nt array containing the indices of either the convex hull (nd1 is equal to
nd), or the Delaunay triangulation (nd1 is equal to nd+1) of the input points.

Keywords

BOUNDS

If set to avariable name, return the indices of the points on the convex hull of the
input points.

QHULL What's New in IDL 5.5

http://www.geom.umn.edu/software/qhull/

Chapter 6: New IDL Routines 277

CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of the np
nodes isreturned. The list has the following form:

Each element i, 0 <i < np, contains the starting index of the connectivity list
(list) for node i within thelist array. To obtain the adjacency list for nodei,
extract the list elements from list[i] to list[i+1] — 1. The adjacency list is not
ordered. To obtain the connectivity list, either the DELAUNAY or SPHERE
keywords must also be specified.

For example, to perform a spherical triangulation, use the following procedure call:
QHULL, lon, lat, CONNECTIVITY = |ist

which returns the adjacency list in the variable list. The subscripts of the nodes

adjacent to lon[i] and lat[i] are contained in the array: list[list[i] :list[i+1] — 1].

DELAUNAY

Performs a Delaunay triangulation and returns the vertex indices of the resulting
polyhedra; otherwise, the convex hull of the data are returned.

SPHERE

Computes the Delaunay triangulation of the points which lie on the surface of a
sphere. The VO argument contains the longitude, in degrees, and V1 contains the
latitude, in degrees, of each paint.

VDIAGRAM

When specified, this keyword returns the connectivity of the VVoronoi diagram in a4-
by-nv integer array. For each Voronoi ridge, i, VDIAGRAM[0:1, i] contains the index
of the two input points the ridge bisects. VDIAGRAM[2:3, i] contains the indices of
the Voronoi vertices.

In the case of an unbounded half-space, VDIAGRAM][2, i] is set anegative inde, j,
indicating that the corresponding Voronoi ridge is unbounded, and that the equation
for theridge is contained in VNORMAL[*, -], and starts at Voronoi vertex [3, i].

VNORMALS

When specified, this keyword returns the normals of each Voronoi ridge that is
unbounded. See the description of VDIAGRAM.

VVERTICES

When specified, this keyword returns the VVoronoi vertices.

What's New in IDL 5.5 QHULL

278 Chapter 6: New IDL Routines

Example
For some examples using the QHUL L procedure, see the QGRID3 function.
See Also

QGRID3

QHULL What's New in IDL 5.5

Chapter 6: New IDL Routines 279

QUERY_MRSID

The QUERY_MRSID function allows you to obtain information about aMrSID
image file without having to read the file. It is a wrapper around the object interface
that presents MrSID image loading in afamiliar way to users of the QUERY _* image
routines. However this function is not as efficient as the object interface and the
object interface should be used whenever possible. See “IDLffMrSID” in Chapter 5
“New Objects’ for information about the object interface.

Syntax
Result = QUERY_MRSID(Filename [, Info] [, LEVEL=IVI])
Return Value

Result is along integer with the value of:
e 1-1If the query was successful (and the file type was correct).

* 0-If the query fails.
Arguments

Filename
A scalar string containing the full path and filename of the MrSID file to query.
Info

Returns an anonymous structure containing information about the image in the file.
The Info.TY PE field will return the value 'MrSID'.

The anonymous structure is detailed in the QUERY _* Routines documentation.
However, theinfo structure filled in by QUERY _MRSID has additional members
appended to the end:

* info.LEVELS-anamed variable that will contain a two-element integer
vector of the form [minlvl, maxIvl] that specifies the range of levelswithin the
current image. Higher levels are lower resolution. A level of 0 equals full
resolution. Negative values specify higher levels of resolution.

* Info.GEO_VALID —along integer with avaue of 1 if thefile containsvalid
georeferencing data, or 0 if the georeferencing data is nonexistent or
unsupported.

What's New in IDL 5.5 QUERY_MRSID

280

Chapter 6: New IDL Routines

Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

* Info.GEO_PROJTY PE — unsigned integer.
* Info.GEO_ORIGIN — 2-element double precision array.
* Info.GEO_RESOLUTION — 2-element double precision array.

See “IDLffMrSID::GetProperty” in Chapter 5 for more information on GEO_*
values.

Keywords

LEVEL

Set this keyword to an integer that specifies the level to which the DIMENSIONS
field of the info structure corresponds. This can be used, for example, to determine
what level isrequired to fit the image into acertain area. If this keyword is not
specified, the dimensions at level 0 are returned.

Example

; Select the image file.
file = QUERY_MRSI D(FI LEPATH(' test _gs.sid , $
SUBDI RECTORY=[' exanpl es', 'data']), info, LEVEL = -2)

HELP, file
; IDL returns 1 indicating the correct file type
; and successful query.

; Print the range of levels of resolution available within
; the file.
PRI NT, 'Range of image levels ="', info.LEVELS

; Print the image di mensions when the inmage level is set to -2
; as specified by LEVEL = -2 in the QUERY_MRSI D st at enent .

PRI NT, 'dinensions of image at LEVEL is -2 =", info.D MENSI ONS
; I DL returns 2048 by 2048

; Check for valid georeferencing data.

PRI NT, 'Result of georeferencing query', info.GEO VALID

; IDL returns O indicating that the file does not contain
; georeferencing data.

QUERY_MRSID What's New in IDL 5.5

Chapter 6: New IDL Routines 281

READ_MRSID

The new READ_MRSID function extracts and returns image datafrom aMrSID file
at the specified level and location. It is awrapper around the object interface that
presents MrSID image loading in a familiar way to users of the READ_* image
routines. However this function is not as efficient as the object interface and the
object interface should be used whenever possible. See “IDLffMrSID” in Chapter 5
for information about the object interface.

Syntax
Result = READ_MRSID (Filename[, LEVEL=IVI] [, SUB_RECT=rect])
Return Value

ImageData returns an n-by-w-by-h array containing the image datawherenis 1 for
grayscae or 3 for RGB images, w isthe width and h isthe height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-Ieft of the image. This differs from how datais stored in the MrSID file
where the image is top-down, meaning the pixel at the start of the file is located at
the top-left of the image.

Arguments

Filename

A scalar string containing the full path and filename of the MrSID file to read.
Keywords

LEVEL

Set this keyword to an integer that specifies the level at which to read the image. If
this keyword is not set, the maximum level (see QUERY _MRSID) is used which
returns the minimum resol ution.

SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID

What's New in IDL 5.5 READ_MRSID

282

Chapter 6: New IDL Routines

image to return. Thisis useful for displaying only a portion of the high-resolution
image. If this keyword is not set, the entire image will be returned. This may require
significant memory if a high-resolution level is selected. If the sub-rectangle is
greater than the bounds of the image at the selected level the area outside the image
bounds will be set to black.

Note

The elements of SUB_RECT are measured in pixels at the current level. This means
thepoint x =10,y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x=5y=5atleve 2.

Example

READ_MRSID

; Query the file.
result = QUERY_MRSI D(FI LEPATH(' test_gs.sid', $

SUBDI RECTCORY = [' exanples', 'data']), info)
; If result is not zero, read in an inage fromthe file and
; display it.
IF (result NE 0) THEN BEG N
PRI NT, info
i mgeData = READ_MRSI| D(FI LEPATH('test_gs.sid', $
SUBDI RECTORY = ['exanples', 'data']), SUB RECT = $

[0, O, 200, 200], LEVEL = 3)
ol mage = OBJ_NEW' I DLgrl nage', inageData, ORDER = 0)
XOBJVI EW ol mage, BACKGROUND = [255, 255, 0]
ENDI F

; Use the file access object to query the file.

oMSID = OBJ_NEW'IDLffMSID, FILEPATH('test_gs.sid', $
SUBDI RECTORY = [' exanples', 'data']))

oM SID -> GetProperty, PIXEL_TYPE=pt, $
CHANNELS = chan, DI MENSIONS = dins, $
TYPE = type, LEVELS = lvls

PRI NT, pt, chan, dins, type, lvls

; Use the object to read in an inage fromthe file.
Ivls = -3

dinmsatlvl = oM SID -> GetDi nsAt Level (Ivls)

PRI NT, dinsatl vl

i mmgeData = oM SID -> Cetl mageDat a(LEVEL = 3)

PRI NT, si ze(imgeDat a)

OBJ_DESTROY, ol mage

What's New in IDL 5.5

Chapter 6: New IDL Routines 283

REAL_PART

The REAL_PART function returns the real part of its complex-valued argument. If
the complex-valued argument is doubl e-precision, the result will be double-precision,
otherwise the result will be single-precision floating-point. If the argument is not
complex, then the result will be double-precision if the argument is double-precision,
otherwise the result will be single-precision.

Syntax

Result = REAL_PART(2)
Arguments

Z

A scalar or array for which the real part isdesired. Z may be of any numeric type.
Example

The following example demonstrates how you can use REAL_PART to obtain the
rea parts of an array of complex variables.

Create an array of conpl ex val ues:
cVal ues = COWLEX([1, 2, 3],[4, 5, 6])

Print just the real parts of each elenent in cValues:
PRI NT, REAL_PART(cVal ues)

IDL prints:
1. 00000 2.00000 3. 00000

See Also

COMPLEX, DCOMPLEX, IMAGINARY

What's New in IDL 5.5 REAL_PART

284 Chapter 6: New IDL Routines

REGION_GROW

The REGION_GROW function performs region growing for a given region within
an N-dimensiona array by finding all pixelswithin the array that are connected
neighbors to the region pixels and that fall within provided constraints. The
constraints are specified either as a threshold range (a minimum and maximum pixel
value) or as amultiple of the standard deviation of the region pixel values. If the
threshold is used (thisis the default), the region is grown to include all connected
neighboring pixelsthat fall within the given threshold range. If the standard deviation
multiplier is used, theregion is grown to include al connected neighboring pixels
that fall within the range of the mean (of the region's pixel values) plus or minusthe
given multiplier times the sample standard deviation. REGION_GROW returns the
vector of array indices that represent pixels within the grown region. The grown
region will not include pixels at the edges of the input array. If no pixelsfall within
the grown region, this function will return the value -1.

Syntax

Result = REGION_GROW(Array, ROIPixels[, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOL D=[min,max]])

Arguments

Array

An N-dimensional array of data values. Theregion will be grown according to the
data values within this array.

ROIPixels

A vector of indicesinto Array that represent theinitial region that isto be grown.
Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should be
considered during region growing (sometimes known as 8-neighbor searching when
the array istwo-dimensional). The default is to search only the neighbors that are
exactly one unit in distance from the current pixel (sometimes known as 4-neighbor
searching when the array is two-dimensional).

REGION_GROW What's New in IDL 5.5

Chapter 6: New IDL Routines 285

STDDEV_MULTIPLIER

Set this keyword to a scalar value that serves as the multiplier of the sample standard
deviation of the original region pixel values. The expanded region includes
neighboring pixels that fall within the range of the mean of the region’s pixel values
plus or minus the given multiplier times the sample standard deviation as follows:

Mean +/- StdDevMultiplier * StdDev

This keyword is mutualy exclusive of THRESHOLD. If both keywords are
specified, a warning message will be issued and the THRESHOLD value will be
used.

THRESHOLD

Set this keyword to a two-element vector, [min,max], of the inclusive range within
which the pixel values of the grown region must fall. The default isthe range of pixel
values within the initial region. This keyword is mutually exclusive of
STDDEV_MULTIPLIER. If both keywords are specified, awarning message will be
issued and the THRESHOLD value will be used.

Note
If neither keyword is specified, THRESHOLD is used by default. The range of
threshold values is based upon the pixel values within the original region and
therefore does not have to be provided.

Example

The following example demonstrates how you can grow a pre-defined region within
an image of human red blood cells.

Load an immge.
fname = FI LEPATH(' rbcel I s.jpg', SUBD R=['exanples','data'])
READ_JPEG, fnane, ing
i mgDi ns = S| ZE(i my, / DI MENSI ONS)
Define original region pixels.
X = FI NDGEN(16*16) MOD 16 + 276.
y = LINDGEN(16*16) / 16 + 254.
roi Pixels = x +y * ingDi ms[0]

; Grow the region.
newROl Pi xel s = REG ON_GROWNi ng, roi Pi xel s)

Load a grayscale color table.

What's New in IDL 5.5 REGION_GROW

286 Chapter 6: New IDL Routines

DEVI CE, DECOWPOSED = 0
LOADCT, 0

; Set the topnost color table entry to red.
topdr = !D TABLE SI ZE-1
TVLCT, 255, 0, 0, topCr

; Show the results.

tnplng = BYTSCL(inmg, TOP=(topCr-1))

tnplng[roi Pixels] = topClr

W NDOW 0, XSI ZE=i ngDi ms[0], YSIZE=i ngDi ms[1], $
TI TLE='" Ori gi nal Regi on'

TV, tnplng

tnplmg = BYTSCL(inmg, TOP=(topCdr-1))

t npl ng[newRO Pi xel s] = topClr

W NDOW 2, XSI ZE=i ngDi ms[0], YSIZE=ingDins[1], $
TI TLE=' G own Regi on'

TV, tnplng

REGION_GROW What's New in IDL 5.5

Chapter 6: New IDL Routines 287

SIMPLEX

The SIMPLEX function uses the simplex method to solve linear programming
problems. Given a set of N independent variables X;, wherei =1, ..., N, the simplex
method seeks to maximize the following function,

Z = X +taX,+ ayXy
with the assumption that X; = 0. The X; are further constrained by the following
equations:
bJ1X1+bJ2X2+...bJNXNSCJ j = 1,2,...,M1

by Xy +bpXp+ b Xy 2G j = My+1L M +2,., M+ M,

by Xy +bpXp+ b Xn= G J = M+ M+ LMy + M, 42, M

whereM = M4 + M, + M3 isthetotal number of equations, and the constraint values
¢; must all be positive.

To solve the above problem using the SIMPLEX function, the Z equation is rewritten
asavector:

Z squation = [al a, aN}

The constraint equations are rewritten as a matrix with N+1 columns and M rows,
where all of the b coefficients have had their sign reversed:

Constraints =

Note
The constraint matrix must be organized so that the coefficients for the less-than (<)
equations come first, followed by the coefficients of the greater-than (>) equations,
and then the coefficients of the equal (=) equations.

The Result isavector of N+1 elements containing the maximum Z value and the
values of the N independent X variables (the optimal feasible vector):

What's New in IDL 5.5 SIMPLEX

288

Chapter 6: New IDL Routines

Result = [Z, . X; Xpee Xy

The SIMPLEX function is based on the routine si npl x described in section 10.8 of
Numerical Recipesin C: The Art of Scientific Computing (Second Edition), published
by Cambridge University Press, and is used by permission.

Syntax

Result = SIMPLEX(Zeguation, Constraints, My, My, M3
[, Tableau [, Izrov [, Iposv] 1] [, /DOUBLE] [, EPS = value] [, STATUS = variable])

Arguments

SIMPLEX

Zequation
A vector containing the N coefficients of the Zggaion to be maximized.
Constraints

An array of N+1 columnsby M rows containing the constraint values and coefficients
for the constraint equations.

M1

An integer giving the number of less-than constraint equations contained in
Congtraints. M1 may be zero, indicating that there are no less than constraints.

M2

An integer giving the number of greater-than constraint equations contained in
Constraints. M2 may be zero, indicating that there are no greater than constraints.

M3

An integer giving the number of equal-to constraint equations contained in
Constraints. M3 may be zero, indicating that there are no equal to constraints. The
total of M1 + M2 + M3 should equal M, the number of constraint equations.

Tableau

Set this optional argument to a named variable in which to return the output array
from the simplex algorithm. For more detailed discussion about this argument, see
the write-up in section 10.8 of Numerical Recipesin C.

What's New in IDL 5.5

Chapter 6: New IDL Routines 289

lzrov

Set this optional argument to a named variable in which to return the output izrov
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipesin C.

[posv

Set this optional argument to a named variable in which to return the output iposv
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipesin C.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Set DOUBLE to 0 to use single-precision for computations and to
return a single-precision result. The default is/DOUBLE if any of the inputs are
double-precision, otherwise the default is 0.

EPS

Set this keyword to a number close to machine accuracy, which is used to test for
convergence at each iteration. The default is 1076,

STATUS
Set this keyword to a named variable to receive the status of the operation. Possible
status values are:
Value Description

0 Successful completion.

1 The objective function is unbounded.

2 No solution satisfies the given constraints.

3 The routine did not converge.

Table 6-3: SIMPLEX Function Status Values
Example

The following example is taken from Numerical Recipesin C.

What's New in IDL 5.5 SIMPLEX

290

Chapter 6: New IDL Routines

Find the Z value which maximizes the equation Z = X; + X5 + 3 X3 - 0.5 X4, with the

following constraints:

X, +2X5< 740
2X,—7X,<0
X+ X, +Xg+X, =9

To find the solution, enter the following code at the IDL command line;

; Set up the Zequation with the X coefficients.
Zequation =[1,1,3,-0.5]
; Set up the Constraints matrix.
Constraints = [$
[740, -1, 0, -2, 0], $
[0, 0O -2, 0, 7], $
[0.5, O, -1, 1, -2], $
[9 -1, -1, -1, -1]]
; Nunmber of |ess-than constraint equations.
m = 2
; Nunber of greater-than constraint equations.
n =1
; Nunber of equal constraint equations.
B =1
; Call the function.

result = SIMPLEX(Zequation, Constraints, ml, n2, nB)

; Print
PRI NT,
PRI NT,

PRI NT, result[1:*]

IDL prints:

Maxi mum Z val ue is:
X coefficients are:
0. 000000

out the results.
"Maxi mum Z value is: ',
"X coefficients are:

resul t [0]

17. 0250

3. 32500 4.72500

0. 950000

Therefore, the optimal feasible vector is X; = 0.0, X, = 3.325, X3 = 4.725, and

X4 =0.95.

See Also

SIMPLEX

AMOEBA, DFPMIN, POWELL

What's New in IDL 5.5

Chapter 6: New IDL Routines 291

WIDGET_ACTIVEX

The WIDGET_ACTIVEX function is used to create an ActiveX control in IDL and
also to placeit into an IDL widget hierarchy. The program or class ID of the
underlying IDL object that represents the ActiveX control is retrieved using the
GET_VALUE keyword of WIDGET_CONTROL. Thisis similar to the operations
used to get the window object from an IDL draw widget.

Note
IDL ActiveX functionality isonly supported on the Windows NT and Windows
2000 platforms.

Note
Thisisthe only method to create an IDL object that represents an ActiveX control.
Creating an ActiveX control (an object based off the class name prefix
IDLcomActiveX$) using OBJ_NEW() is not supported and the results are
undefined.

Note
All ActiveX based objects created in IDL sub-class from theintrinsic IDL class
IDLcomActiveX, which is a sub-class from IDLcomlDispatch.

Syntax

Result = WIDGET_ACTIVEX(Parent, COM_ID, [, /ALIGN_BOTTOM |,
/ALIGN_CENTER |, /ALIGN_LEFT |, /ALIGN_RIGHT |, /ALIGN_TOP]

[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[ID_TYPE=value] [, KILL_NOTIFY=string] [, /NO_COPY]

[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SENSITIVE] [, UNAME=string] [, UNITS={0|1|2}]

[, UVALUE=value] [, XOFFSET=value] [, XSIZE=value] [, Y OFFSET=value]

[, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget of the new ActiveX control.

What's New in IDL 5.5 WIDGET_ACTIVEX

292 Chapter 6: New IDL Routines

COM_ID

The class or program ID of the COM object to create.

Note
The provided Class ID or program ID must follow the standard Microsoft naming
convention. So Class IDs will contain '{}' brackets and use '-' as a separator and
Program IDswill usea".' for a separator. The use of '_" is only used with I Dispatch
objectsin the call to OBJ_NEW() because the object name must follow standard
IDL object naming syntax.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be aROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the |eft side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with theright side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

WIDGET_ACTIVEX What's New in IDL 5.5

Chapter 6: New IDL Routines 293

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

Note
If the base is atop-level base widget that is managed by the XMANAGER
procedure, any value specified viathe EVENT_PRO keyword is overridden by the
value of the EVENT_HANDLER keyword to XMANAGER. Note also that in this
situation, if EVENT_HANDLER is not specified in the call to XMANAGER, an
event-handler name will be created by appending the string “_event ” to the
application name specified to XMANAGER. This means that there is no reason to
specify thiskeyword for atop-level base that will be managed by the XMANAGER
procedure.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

ID_TYPE

The type of COM control 1D passed in (class or program). If setto 0, the ID isaclass
ID (the default) and if set to 1, the ID isaprogram ID.

The following keywords are accepted by all IDL Widget types and are also accepted
by WIDGET_ACTIVEX. The keywords are only enumerated in this specification.
For details on how they operate, consult the IDL Reference Guide.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string (* *).
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routineis called with the widget identifier asits only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require awidget ID are

What's New in IDL 5.5 WIDGET_ACTIVEX

294 Chapter 6: New IDL Routines

disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywordsto WIDGET_CONTROL, IDL

makes a second copy of the data being transferred. Although thistechniqueisfine for
small data, it can have a significant memory cost when the data being copied islarge.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a*“ set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a“get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string (* *).
The callback routine is called with the widget ID asits only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the X SIZE keyword.

WIDGET_ACTIVEX What's New in IDL 5.5

Chapter 6: New IDL Routines 295

SCR_YSIZE

Set this keyword to the desired “ screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the Y SIZE keyword.

SENSITIVE
Set this keyword to control theinitial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When awidget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When awidget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the widget
with the specified name.

UNITS

Set UNITS equal to O (zero) to specify that all measurements are in pixels (thisisthe
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE
The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
Thisvalueis not used by the widget in any way, but exists entirely for the

What's New in IDL 5.5 WIDGET_ACTIVEX

296 Chapter 6: New IDL Routines

convenience of the IDL programmer. This keyword allows you to set this value when
the widget isfirst created.

If UVALUE is not present, the widget'sinitial user valueis undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to aplain base widget. Note that it is best to avoid using this style of
widget layout.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
“hint” to the toolkit and may be ighored in some situations.

YOFFSET

The vertica offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to aplain base widget. Note that it is best to avoid using this style of
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
“hint” to the toolkit and may be ighored in some situations.

WIDGET_ACTIVEX What's New in IDL 5.5

Chapter 6: New IDL Routines 297

Examples

For examples using WIDGET_ACTIVEX, see Chapter 3, “Using COM Objects
inIDL".

What's New in IDL 5.5 WIDGET_ACTIVEX

298 Chapter 6: New IDL Routines

WIDGET_DISPLAYCONTEXTMENU

The WIDGET_DISPLAY CONTEXTMENU procedure displays a shortcut menu
(otherwise known as a context sensitive or pop-up menu). After buttons for the
context menu have been created a context menu can be displayed using
WIDGET_DISPLAYCONTEXTMENU. Thisisnormally caled in an event handler
that has processed a context menu event. This procedure takes the ID of the widget
that is the parent of the context menu, the x and y location to display the menu, and
the ID of the context menu base. The ID would normally be the event.id value of the
context menu event, and the x and y locations also come from the context event. As
stated above, there may be multiple context menus for a particular widget. The last
parameter of WIDGET_DISPLAY CONTEXTMENU allows the user to specify
which menu to display. In the case of a draw widget that is the parent of a context
menu, the x and y locations can be obtained from the button event structure.

When WIDGET_DISPLAY CONTEXTMENU iscalled it displays the context menu
and handles the native event if the user selects a button. If a button is selected a user
button event is generated and the menu is dismissed. If no button is selected (the user
clicks elsewhere on the screen) then the menu is dismissed and no user event is
generated. Normally no further processing would be done in the context event or
draw event handler after calling WIDGET_DISPLAY CONTEXTMENU. The new
user event is queued and will be handled in anew call to the event handler.

Syntax
WIDGET_DISPLAY CONTEXTMENU, Parent, X, Y, ContextBase_ID
Arguments

Parent

The widget ID of the parent of a context menu.

X

The x location, relative to the parent widget, to display the menu.
Y

They location, relative to the parent widget, to display the menu.

WIDGET_DISPLAYCONTEXTMENU What's New in IDL 5.5

Chapter 6: New IDL Routines 299

ContextBase_ID

The widget 1D of the context menu base that is the head of the menu to display. Use
the CONTEXT_MENU keyword to WIDGET_BA SE to create a context menu base.
This base must be a child of the widget supplied with the Parent argument.

Keywords
None.

Examples

For examples using WIDGET_DISPLAY CONTEXTMENU, see Chapter 4, “Using
the Shortcut Menu Widget”.

What's New in IDL 5.5 WIDGET_DISPLAYCONTEXTMENU

300 Chapter 6: New IDL Routines

XOBJVIEW_ROTATE

The XOBJVIEW_ROTATE procedure is used to programmatically rotate the object
currently displayed in XOBJVIEW. XOBJVIEW must be called prior to calling
XOBJVIEW_ROTATE. This procedure can be used to create animations of object
displays.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
xobj view rotate. prointhelib/utilities subdirectory of thel DL
distribution.

Syntax

XOBJVIEW_ROTATE, Axis, Angle [, /PREMULTIPLY]
Arguments

AXis

A 3-element vector of the form [x, y, Z] describing the axis about which the model is
to be rotated.

Angle
The amount of rotation, measured in degrees.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Example

The following example creates an animation of the test object (a surface) currently
displayed in XOBJVIEW. It does this by rotating the surface through 360 degreesin
increments of 10 degrees using XOBJVIEW_ROTATE, and writing the display
image to aBMP file for each increment using XOBJVIEW_WRITE_IMAGE.

XOBJVIEW_ROTATE What's New in IDL 5.5

Chapter 6: New IDL Routines

PRO Rot at eAndW i t eQbj ect

XOBJVI EW / TEST
FORi = 0, 359 DO BEG N
XOBJVI EW ROTATE, [0, 1, 0], 1,

XOBIJVIEWWRI TE_I| MAGE, 'ing’ + $
" bp’, " bnp’

STRCOVPRESS(i, / REMOVE_ALL) +
ENDFOR

END

See Also

XOBJVIEW, XOBIVIEW_WRITE_IMAGE

What's New in IDL 5.5

/ PREMULTI PLY;

301

XOBJVIEW_ROTATE

302

Chapter 6: New IDL Routines

XOBJVIEW_WRITE_IMAGE

The XOBIVIEW_WRITE_IMAGE procedureis used to write the object currently
displayed in XOBJVIEW to an image file with the specified name and file format.
XOBJIVIEW must be called prior to calling XOBIVIEW_WRITE_IMAGE.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
xobj view write_i mage. prointhelib/utilities subdirectory of thelDL
distribution.

Syntax

XOBJVIEW_WRITE_IMAGE, Filename, Format [, DIMENSIONS=[x,]]

Arguments

Filename
A scalar string containing the name of the file to write.
Format

A scalar string containing the name of the file format to write. See QUERY _IMAGE
for alist of supported formats.

Keywords

DIMENSIONS

Set this keyword to a 2-element vector of the form [X, y] specifying the size of the
output image, in pixels. If this keyword is not specified, the image will be written
using the dimensions of the current XOBJVIEW draw widget.

Example

See XOBJIVIEW_ROTATE.

See Also

XOBJVIEW, XOBJVIEW_ROTATE

XOBJVIEW_WRITE_IMAGE What's New in IDL 5.5

Chapter 6: New IDL Routines 303

XROI

The XROI procedureis an existing procedure but has been enhanced substantially in
IDL 5.5. This utility is used for interactively defining regions of interest (ROIs), and
obtaining geometry and statistical data about these ROISs.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
xroi.prointhelib/utilities subdirectory of the IDL distribution.

Syntax

XROI [, ImageData] [, R] [, G] [, B] [, /BLOCK]

[[, /FLOATING] , GROUP=widget_ID] [, /MODAL] [, REGIONS_IN=value]

[, REGIONS_OUT=value] [, REJECTED=variable] [, RENDERER={0 | 1}]

[, ROI_COLOR=[r, g, b] or variable] [, ROI_GEOMETRY =variable]

[, ROI_SELECT_COLOR=[r, g, b] or variable] [, STATISTICS=variabl€]

[, TITLE=string] [, TOOL S=string/string array { valid values are 'Trand ate-Scal €,
'Rectangle’, 'Ellipse, 'Freehand Draw', 'Polygon Draw’, and 'Selection'}]

Arguments

ImageData

ImageData is both an input and output argument. It is an array representing an 8-bit
or 24-bit image to be displayed. ImageData can be any of the following:

e [mn] — 8-bitimage
e [3, m, n] — 24-bit image
o [m, 3, n] — 24-bit image
* [m,n, 3] — 24-bit image

If ImageData is not supplied, the user will be prompted for afilevia
DIALOG_PICKFILE. On output, ImageData will be set to the current image data.
(The current image data can be different than the input image dataif the user
imported an image viathe File » Import | mage menu item.)

R, G,B

R, G, and B are arrays of bytes representing red, green, or blue color table values,
respectively. R, G, and B are both input and output arguments. On input, these values
are applied to theimage if theimage is 8-bit. To get thered, green, or blue color table
values for the image on output from XROI, specify a named variable for the

What's New in IDL 5.5 XROI

304

XROI

Chapter 6: New IDL Routines

appropriate argument. (If theimage is 24-bit, this argument will output a 256-element
byte array containing the values given at input, or BINDGEN(256) if the argument
was undefined on input.)

Keywords

BLOCK

Set this keyword to have XM ANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command lineif active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XROI
block, any earlier callsto XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

FLOATING

Set this keyword, along with the GROUP keyword, to create afloating top-level base
widget. If the windowing system provides Z-order control, floating base widgets
appear above the base specified as their group leader. If the windowing system does
not provide Z-order control, the FLOATING keyword has no effect.

Note
Floating widgets must have a group leader. Setting this keyword without also
setting the GROUP keyword causes an error.

GROUP

Set this keyword to the widget ID of the widget that calls XROI. When this keyword
is specified, the death of the caller resultsin the death of XROI.

MODAL

Set this keyword to block other IDL widgets from receiving events while XROI is
active.

What's New in IDL 5.5

Chapter 6: New IDL Routines 305

REGIONS_IN

Set this keyword to an array of IDLgrROI references. This alows you to open XROI
with previously defined regions of interest (see Example 3). Thisis also useful when
using aloop to open multipleimagesin XROI. By using the same hamed variable for
both the REGIONS _IN and REGIONS_OUT keywords, you can reuse the same
ROIsin multipleimages (see Example 2). This keyword also accepts—1, or
OBJ_NEW() (Null object) to indicate that there are no ROIs to read in. This allows
you to assign the result of a previous REGIONS_OUT to REGIONS_IN without
worrying about the case where the previous REGIONS_OUT is undefined.

REGIONS_OUT

Set this keyword to a named variable that will contain an array of IDLgrROI
references. This keyword is assigned the null object reference if there are no ROIs
defined. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2).

REJECTED

Set this keyword to a named variable that will contain those REGIONS _IN that are
not in REGIONS_OUT. The objects defined in the variable specified for REJECTED
can be destroyed with acall to OBJ_DESTROY, alowing you to perform cleanup on
objects that are not required (see Example 2). This keyword is assigned the null
object referenceif no REGIONS _IN are rejected by the user.

RENDERER

Set this keyword to an integer value to indicate which graphics renderer to use when
drawing objects within the window. Valid values are:

* 0= Platform native OpenGL
» 1=IDL’s software implementation (the default)
ROI_COLOR

This keyword is both an input and an output parameter. Set thiskeyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are not
selected. This color will be used by XROI unless and until the color is changed by the
user viathe “Unselected Outline Color” portion of the “ROI Outline Colors” dialog
(whichis accessed by selecting Edit - ROI Outline Colors). If this keyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.

What's New in IDL 5.5 XROI

306

XROI

Chapter 6: New IDL Routines

ROI_GEOMETRY

Set this keyword to a named variable that will contain an array of anonymous
structures, one for each ROI that is valid when this routine returns. The structures
will contain the following fields:

Field Description
area The area of the region of interest, in square pixels.
centroid The coordinates (X, y, Z) of the centroid of the region

of interest, in pixels.

perimeter The perimeter of the region of interest, in pixels.

Table 6-4: Fields of the structure returned by ROl_GEOMETRY

If there are no valid regions of interest when this routine returns, ROl_GEOMETRY
will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for ROI_GEOMETRY to be defined upon exit from XROI.
Otherwise, XROI will return before an ROI can be defined, and ROl_GEOMETRY
will therefore be undefined.

ROI_SELECT COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are
selected. This color will be used by XROI unless and until the color is changed by the
user viathe “ Selected Outline Color” portion of the “ROI Outline Colors” diaog
(which is accessed by selecting Edit -~ ROI Outline Colors). If thiskeyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.

What's New in IDL 5.5

Chapter 6: New IDL Routines 307

STATISTICS

Set this keyword to a named variable to receive an array of anonymous structures,
one for each ROI that is valid when this routine returns. The structures will contain
the following fields:

Field Description
count Number of pixelsin region.
minimum Minimum pixel value.
maximum Maximum pixel value.
mean Mean pixel value.
stddev Standard deviation of pixel values.

Table 6-5: Fields of the structure returned by STATISTICS

If ImageData is 24-bit, or if there are no valid regions of interest when the routine
exits, STATISTICS will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for STATISTICS to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and STATISTICS will therefore be
undefined.

TITLE
Set this keyword to a string to appear in the XROI title bar.
TOOLS

Set this keyword a string or vector of strings from the following list to indicate which
ROI manipulation tools should be supported when XROI is run:

» 'Trandate-Scale' — Tranglation and scaling of ROIs. Mouse down inside the
bounding box selects a region, mouse motion translates (repositions) the
region. Mouse down on a scale handle of the bounding box enables scaling
(stretching, enlarging and shrinking) of the region according to mouse motion.
Mouse up finishes the translation or scaling.

What's New in IDL 5.5 XROI

308

XROI

Chapter 6: New IDL Routines

* 'Rectangle’ — Rectangular ROI drawing. Mouse down positions one corner of
the rectangle, mouse motions creates the rectangle, positioning the rectangle’s
opposite corner, mouse up finishes the rectangular region.

* 'Ellipse’ — Elliptical ROI drawing. Mouse down positions the center of the
ellipse, mouse motion positions the corner of the ellipse’simaginary bounding
box, mouse up finishes the elliptical region.

» 'Freehand Draw' — Freehand ROI drawing. Mouse down begins aregion,
mouse motion adds vertices to the region (following the path of the mouse),
mouse up finishes the region.

» 'Polygon Draw' — Polygon ROI drawing. Mouse down begins aregion,
subsequent mouse clicks add vertices, double-click finishes the region.

* 'Selection' — ROI selection. Mouse down/up selects the nearest region. The
nearest vertex in that region is identified with a crosshair symbol.

If morethan one string is specified, aseries of bitmap buttons will appear at the top of
the XROI widget in the order specified (to the right of the fixed set of bitmap buttons
used for saving regions, displaying region information, copying to clipboard, and
flipping the image). If only one string is specified, no additional bitmap buttons will
appear, and the manipulation mode isimplied by the given string. If thiskeyword is
not specified, bitmap buttons for all three manipulation tools are included on the
XROI toolbar.

What's New in IDL 5.5

Chapter 6: New IDL Routines 309

Using XROI

XROI displays atop-level base with amenu, toolbar and draw widget. After defining
an ROI, the ROI Information window appears, as shown in the following figure:

&1 ROI I [=] 3
File Edit

Bl i| By xojo|s] |4

&1 ROl Information =] S

Fiegions of Interest:

Arear 842.00000
Perimeter: 139.02128
Pirelz: 906
Minirmurm: ~ 68.0000

M awirum: 180.000

Mean: 13121
Std. Dewv.: 21.3370
Marme: |Fiegion 1 Delete ROI
Cloze | Hiztogram |

Figure 6-1: The XROI Utility

As you move the mouse over an image, the x and y pixel locations are shown in the
status line on the bottom of the XROI window. For 8-bit images, the datavalue (2) is
also shown. If an ROI is defined, the status line also indicates the mouse position
relative to the ROI using the text “Inside”, “Outside”, “On Edge,” or “On Vertex.”

The XROI Toolbar

The XROI toolbar contains the following buttons:

Opensafile selection dialog for saving the currently defined

E Save: ROIsto asavefile.
j_ Info: Opensthe ROI Information window.
Copy: Copies the contents of the display areato the clipboard.

Flio: Flipsimage vertically. Note that only the image is flipped,;
T P any ROIs that have been defined do not move.

What's New in IDL 5.5 XROI

310 Chapter 6: New IDL Routines

Depending on the value of the TOOL S keyword, the XROI toolbar may also contain
the following buttons:

Click this button to translate or scale ROIs. Mouse down
inside the bounding box selects a region, mouse motion
Translate/ translates (repositions) the region. Mouse down on ascale
® Scale: handle of the bounding box enables scaling (stretching,
enlarging and shrinking) of the region according to mouse
motion. Mouse up finishes the translation or scaling.

Click this button to draw rectangular ROIs. Mouse down
Draw positions one corner of the rectangle, mouse motions creates
Rectangle: therectangle, positioning the rectangle’s opposite corner,
mouse up finishes the rectangular region.

Click this button to draw elliptical ROIs. Mouse down
Draw positions the center of the ellipse, mouse motion positions
= Ellipse: the corner of the ellipse'simaginary bounding box, mouse
up finishes the elliptical region.

Click this button to draw freehand ROIs. Mouse down

N Draw begins a region, mouse motion adds vertices to the region
Freehand: (following the path of the mouse), mouse up finishes the
region.
Click this button to draw polygon ROIs. Mouse down
Draw

begins aregion, subsequent mouse clicks add vertices,

{E‘ .
Polygon: double-click finishes the region.

Click thisbutton to select an ROI region. Clicking theimage
Jm Select: causesacross hairs symbol to be drawn at the nearest vertex
of the selected ROI.

Importing an Image into XROI

To import an image into XROI, select File — Import Image. Thisopensa
DIALOG_READ_IMAGE dialog, which can be used to preview and select an image.

Changing the Image Color Table

To change the color table properties for the current image, select Edit —» Image
Color Table. Thisopensthe CW_PALETTE_EDITOR dialog, which isacompound
widget used to edit color palettes. See CW_PALETTE_EDITOR for more
information. This menu item is grayed out if the image does not have a color palette.

XROI What's New in IDL 5.5

Chapter 6: New IDL Routines 311

Changing the ROI Outline Colors

To change the outline colors for selected and unselected ROIs, select Edit — ROI
Outline Colors. This opensthe ROl Outline Color sdialog, which consists of two
CW_RGBSLIDER widgets for interactively adjusting the ROI outline colors. The
left widget is used to define the color for the selected ROI, and the right widget is
used to define the color of unselected ROIs. You can select the RGB, CMY, HSV, or
HLS color system from the Color System drop-down list.

Viewing ROI Information

To view geometry and statistical data about the currently selected ROI, click the I nfo
button or select Edit — ROI Information. This opensthe ROI I nformation diaog,
which displays area, perimeter, number of pixels, minimum and maximum pixel
values, mean, and standard deviation. Values for statistical information (minimum,
maximum, mean, and standard deviation) appear as“N/A” for 24-bit images.

Viewing a Histogram Plot for an ROI

To view a histogram for an ROI, use either the shortcut menu or the ROI Information
dialog.

To view an ROI’s histogram plot using the shortcut menu:

1. Position the cursor on the line defining the boundary of an ROI in the drawing
window and click the right mouse button. This selects the region and brings up
its shortcut menu.

2. Select the Plot Histogram menu option from the shortcut menu.
To view an ROI’s histogram plot using the ROI Information dial og:

1. OpentheROI Information dialog by clicking the I nfo button or selecting Edit
- ROI Information.

2. Select aregion from the list and click the Histogram button on the ROI
Information dia og.

Either of the previous methods opensa LIVE_PLOT dialog showing the ROI's
histogram that can be used to interactively control the plot properties.

Note
XROI's histogram plot feature now supports RGB images.

What's New in IDL 5.5 XROI

312

XROI

Chapter 6: New IDL Routines

Growing an ROI

Once aregion has been created, it may be used as a source ROI for region growing.
Region growing is a process of generating one or more new ROIs based upon the
image pixel values that fall within the source ROI and the values of the neighboring
pixels. New pixels are added to the new grown region if those image pixel values fal
within a specified threshold.

Note
This option is an interactive implementation of the REGION_GROW function.

To create a new, grown region, do the following:

1. Withinthe draw area, click the right mouse button on the ROI that isto be
grown. Thiswill select the region and bring up its shortcut menu.

2. Select Grow Region — By threshold or select Grow Region — By std. dev.
multiple from the shortcut menu to control how the region is grown.

The By threshold option grows the region to include all neighboring pixels
that fall within a specified threshold range. By default, the range is defined by
the minimum and maximum pixel values occurring within the original region.
To specify a different threshold range, see Using the Region Grow Properties
Dialog in the following section.

The By std. dev. multiple option grows aregion to include all neighboring
pixelsthat fall within the range of:

Mean +/- StdDevMultiplier * StdDev

where Mean isthe mean value of the pixel values within the source ROI,
St dDevMul ti pli er isamultiplier that is set using the Region Grow
Properties dialog (described below), and St dDev is the sample standard
deviation of the pixel values within the original region.

Using the Region Grow Properties Dialog

The Region Grow Properties dialog allows you to view and edit the properties
associated with aregion growing process. To bring up the Region Grow Properties
dialog, do one of the following:

» Click theright mouse button on an ROI in the drawing window and select
Grow Region - Properties... shortcut menu option.

* Select Edit —~ Region Grow Properties... from the XROI menu bar.

What's New in IDL 5.5

Chapter 6: New IDL Routines 313

This brings up the Region Grow Properties dialog, shown in the following figure.

&l Region Grow Properties - O] x|

Pixel search method: ' 4-neighbor © B-neighbor

Threshold Range: Fin EI =5

¥ Use source ROI threshold

Stardard desviation multipler |1.00000

For RGE images, use:

& Luminosity
 Fed charinel
" Green chaninel

7 Blug channel

Acceptance criteria:

M aximum number of regions:

Minimum area per region: (0.000000 | [device units)

™ Accept all regions

Cloze |

Figure 6-2: XROI's Region Grow Properties Dialog

The Region Grow Properties dialog offers the following options:

Option Description
Pixel search Describes which pixels are searched when growing the
method: origina ROI. The option are:

* 4-neighbor — Searches only the four neighboring
pixelsthat share acommon edge with the current pixel.
Thisisthe default.

» 8-neighbor — Searches all eight neighboring pixels,
including those that are located diagonaly relative to
the original pixel and share a common corner.

Table 6-6: Options of the Region Grow Properties Dialog

What's New in IDL 5.5 XROI

314

Chapter 6: New IDL Routines

Option

Description

Threshold range:

Represents the minimum and maximum image pixel values
that are to be included in the grown region when using the
Grow Region — By threshold option (described in
“Growing an ROI"” on page 312). By default, the range of
pixel values used are those occurring in the ROI to be
grown.

To change the threshold values, uncheck Use source ROI
threshold and enter the minimum and maximum threshold
valuesintheMin: and Max: fields provided.

Standard deviation
multiplier:

Represents the factor by which the sample standard
deviation of the original ROI’s pixel valuesis multiplied.
Thisfactor only applies when the Grow Region — By std.
dev. multiple option (described in “ Growing an ROI” on
page 312) is used.

Change the multiplier value by typing the value into the
Standard deviation multiplier field provided.

For RGB image,
use:

Determines the basis of region growing for an RGB (rather
than indexed) image. The image data values used when
growing a RGB region can be one of the following:

* Luminosity — Uses the luminosity values associated
with an RGB image. Thisis the default method.
Luminosity is computed as:

Luminosity = (0.3 * Red) + (0.59 * Green) + (0.11 *
Blue)

* Red Channdl, Green Channel or Blue Channel —
Uses the ROI’sred, green or blue channel as a basis for
region growing. Click the channel’s associated button to
specify the channel to be used.

Note - For indexed images, theimage dataitself is aways
used for region growing.

Table 6-6: Options of the Region Grow Properties Dialog (Continued)

XROI

What's New in IDL 5.5

Chapter 6: New IDL Routines 315

Option Description

Acceptance criteria: | Determines which contours of the grown region are
accepted as new regions, (which will also be displayed in
the draw area and in the ROI Information dialog list of
regions). The region growing process can result in alarge
number of contours, some of which may be considered
insignificant. By default, no more than two regions (those
with the greatest geometrical area) are accepted. Modify the
acceptance criteria by atering the following values:

* Maximum number of regions: — Specifies the upper
[imit of the number of regions to create when growing
an ROI.

* Minimum area per region: — Specifiesthat only
contours having a geometric area (computed in device
coordinates) of at |east the val ue stated are accepted and
displayed.

» Accept all regions: — Select this option to accept all
generated contours, regardless of count or area.

Table 6-6: Options of the Region Grow Properties Dialog (Continued)
Deleting an ROI

An ROI can be deleted using either the shortcut menu or using the ROI Information
diaog.

To delete an ROI using the shortcut menu:

1. Click theright mouse button on the line defining the boundary of the ROI in
the drawing area that you wish to delete. This selects the region and bring up
the shortcut menu.

2. Select the Delete menu option from the shortcut menu.
To delete an ROI using the ROI Information dial og:

1. Click theInfo button or select Edit — ROI Information. This opens the ROI
Information dialog.

2. IntheROI Information dialog, select the ROI you wish to delete from the list
of ROIs. You can also select an ROI by clicking the Select button on the XROI
toolbar, then clicking on an ROI on the image.

What's New in IDL 5.5 XROI

316 Chapter 6: New IDL Routines

3. Click the Delete ROI button.
Examples

Example 1

This example opens asingleimage in XROI:

i mage = READ PNG(FI LEPATH(' mi neral .png', $
SUBDI R=[' exanpl es', 'data']))
XROl, image

Example 2

This example reads 3 images from the file nt _abdomen. dcm and calls XROI for
each image. A singlelist of regions is maintained, saving the user from having to
redefine regions on each image:

; Read 3 images from nr_abdomen. dcm and open each one in XRO :
FOR i =0,2 DO BEG N
i mmge = READ_DI COM FI LEPATH(' nr _abdoren. dcm , $
SUBDI R=[' exanpl es', 'data']), | MAGE_I NDEX=i)
XRO, imge, r, g, b, REQONS_IN = regions, $
REG ONS_QUT = regions, $
RO _SELECT_COLCOR = roi_select_color, $
RO _COLOR = roi_color, REJECTED = rejected, /BLOCK
OBJ_DESTROY, rejected
ENDFOR

OBJ_DESTROY, regions
Perform the following steps:

1. Draw an ROI on the first image, then close that XROI window. Note that the
next image contains the ROI defined in the first image. This is accomplished
by setting REGIONS _IN and REGIONS_OUT to the same named variable in
the FOR loop of the above code.

2. Draw another ROI on the second image.

3. Click the Select button and select the first ROI. Then click the I nfo button to
open the ROI Information window, and click the Delete ROI button.

4. Close the second X ROI window. Note that the third image contains the ROI
defined in the second image, but not the ROI deleted on the second image.
This example sets the REJECTED keyword to a named variable, and calls
OBJ _DESTROY on that variable. Use of the REJECTED keyword is not

XROI What's New in IDL 5.5

Chapter 6: New IDL Routines 317

necessary to prevent deleted ROIs from appearing on subsequent images, but
allows you perform cleanup on objects that are no longer required.

Example 3

XROI'sFile » Save ROIs option alows you to save selected regions of interest.
This example shows how to restore such a save file. Suppose you have afile named
m ner al Roi . sav that contains regions of interest selected in the mi ner al . png
image file. You would need to complete the following steps to restore the file:

1. First, restore thefile, m ner al Roi . sav. Provide avalue for the RESTORE
procedure’'s RESTORED_OBJECTS keyword. Using the scenario stated
above, you could enter the following:

RESTORE, 'nmineral Roi.sav', RESTORED_OBJECTS = nyRoi

2. Passtherestored object data containing your regions of interest into XROI by
specifying myRoi asthe value for REGIONS_IN asfollows:

XROl, READ_PNG(FI LEPATH(' ni neral . png', SUBDI RECTORY = $
['exanples', '"data'])), REG ONS_IN = nyRoi

This opens the previoudy selected regions of interest in the XROI utility.

What's New in IDL 5.5 XROI

318 Chapter 6: New IDL Routines

XROI What's New in IDL 5.5

Chapter 7:

New Examples

This chapter includes new documentation of some IDL examplesintroduced in IDL 5.5.

Overview of New Examples 320
Mapping an Image Onto a Surface 322
Centering an Image Object
AlphaBlending: Creating a Transparent Image
Object ... 328

Working with Mesh Objects and Routines 332

Copying and Printing Objects 351
Capturing IDL Direct Graphics Displays . 359
Creating and Restoring .sav Files 363

What's New in IDL 5.5

Handling Table WidgetsinGUIs 368
Finding Straight LinesinImages 374
Color Density Contrasting inan Image .. 376

Removing Noise from an Image with FFT 379

Using Double and Triple Integration 381
Obtaining Irregular Grid Intervals 385
Calculating Incomplete Beta and Gamma

Functions 387

Determining Bessel Function Accuracy .. 390

319

320 Chapter 7: New Examples

Overview of New Examples

This chapter contains new examples highlighting awide range of functionality in
IDL. These examples provide code that can be easily followed and adapted when
developing your own routines using the covered functionality.

Tip
You can copy and paste the text of each examplein this chapter into the IDL Editor
window and save it has a.pro file with the same name as the example routine. You
can then compile and run the program to reproduce each example.

Note
If you are running IDL on UNIX, you should use only lowercase characters when
naming your .pro files. For example, if you have a routine defined as PRO
MyExanpl e, (on UNIX) you should save this routine in a file named
nmyexanpl e. pro.

The examples are arranged into three broad categories, covering the topics described
in the following table.

Category Example Topics

Object Graphics | “Mapping an Image Onto a Surface” on page 322 describes
mapping an image onto elevation data.

“Centering an Image Object” on page 325 describes the
centering of image objects using a viewplane rectangle and
coordinate conversions.

“Alpha Blending: Creating a Transparent Image Object” on
page 328 describes how to create and apply an alpha channel.

“Working with Mesh Objects and Routines’ on page 332
includes clipping, decimating, merging, smoothing, and
advanced, combination mesh examples.

“Copying and Printing Objects” on page 351 includes copying
and printing plot and image object displays.

Table 7-1: Topics of New Examples

Overview of New Examples What's New in IDL 5.5

Chapter 7: New Examples

321

Category

Example Topics

Language and
Visualization

“Capturing IDL Direct Graphics Displays’ on page 359
includes examples of capturing Direct Graphics displays on
TrueColor and PseudoCol or devices.

“Creating and Restoring .sav Files’ on page 363 describes
how to create and restore binary .sav files containing
variables and routines.

“Handling Table Widgetsin GUIS” on page 368 describes how
toinsert atable widget into a GUI.

Analysis

“Finding Straight Linesin Images” on page 374 describes
using the HOUGH transform to detect straight lines.

“Color Density Contrasting in an Image” on page 376 usesthe
RADON transform to find outlines within an image.

“Removing Noise from an Image with FFT” on page 379
describes using FFT to detect and remove image noise.

“Using Double and Triple Integration” on page 381 describes
integrating over surfaces and volumes.

“Obtaining Irregular Grid Intervals’ on page 385 shows how
to obtain irregular intervals from the TRIGRID routine using
the XOUT and YOUT keywords.

“Calculating Incomplete Beta and Gamma Functions” on
page 387 describes using tolerances and iteration controls
when computing the incomplete beta and gamma functions.

“Determining Bessel Function Accuracy” on page 390
includes analyzing Bessel and Modified Bessel functions of
thefirst and second kind.

What's New in IDL 5.5

Table 7-1: Topics of New Examples (Continued)

Overview of New Examples

322 Chapter 7: New Examples

Mapping an Image Onto a Surface

The following example maps a satellite image from the Los Angeles, California
vicinity onto aDEM (Digita Elevation Model) containing the area’s topographical
features. The realism resulting from mapping the image onto the corresponding
elevation data (also known as texture mapping) provides a more informative view of
the area s topography. This Object Graphics example creates an image object,
containing the satellite image, and a surface object, containing the DEM data. The
image is then mapped to the surface using the IDL grSurface:: SetProperty
TEXTURE_MAP keyword.

Note
To map high resolution images onto geometric surfaces, set the
TEXTURE_HIGHRES keyword to IDLgrSurface::Init. See “High-Resolution
Textures Supported by IDLgrSurface” in Chapter 1 for more information.

PRO Text ur eMap

State the path to image file.
imge_file = FILEPATH('elev_t.jpg', $
SUBDI RECTORY=[' exanples', 'data'])

I nport inage file.
READ JPEG, inmage_file, image

State the path to DEM data file.
data_file = FI LEPATH(' el evbin.dat', $
SUBDI RECTORY=[' exanples', 'data'])

| mport el evati on dat a.
dem data = BYTARR(64, 64)
OPENR, unit, data_file, /GET_LUN
READU, unit, dem data
FREE_LUN, unit
Increase size of data for visibility.
dem data = CONGRI D(dem data, 128,128, /| NTERP)

Initialize the nodel, surface and i mage objects.
oMbdel = OBJ_NEW' | DLgr Model ')
oSurface = OBJ_NEW ' I DLgr Surface', demdata, STYLE = 2)
ol mage = OBJ_NEW' I DLgrl nmage', image, $
| NTERLEAVE = 0, /| NTERPOLATE)

Cal cul ate normal i zed conversion factors and
shift -.5 in every direction to center object

Mapping an Image Onto a Surface What's New in IDL 5.5

Chapter 7: New Examples 323

; in the w ndow.

; Keep in mind that your view default coordinate

; systemis [-1,-1], [1, 1]

oSurface -> GETPROPERTY, XRANGE = xr, $
YRANGE = yr, ZRANGE = zr

xs = NORM_COORD(xr)

xs[0] = xs[0] - 0.5

ys = NORM_ COORD(yr)

ys[0] = ys[0] - 0.5

zs = NORM_COCRD(zr)

zs[0] = zs[0] - 0.5

oSurface -> SETPROPERTY, XCOORD _CONV = xs, $
YCOORD_CONV = ys, ZCOORD = zs

; Apply the image to surface (texture mapping).
oSur f ace->Set Property, TEXTURE_MAP = ol mage, $
COLOR = [255, 255, 255]

; Add the surface to the nodel.
oMbdel -> Add, oSurface

; Rotate the nodel for better display of surface
; in the object w ndow.

oMbdel -> ROTATE, [1, 0, 0], -90

oMbdel -> ROTATE, [0, 1, 0], 30

oMbdel -> ROTATE, [1, 0, 0], 30

; Display results in XOBJVIEWuUtility to provide
; rotation, zoom and translation control.
XOBJVI EW oModel, /BLOCK, SCALE =1

; Cleanup object references.
OBJ_DESTROY, [ol nage, oMbdel]

END

What's New in IDL 5.5 Mapping an Image Onto a Surface

324 Chapter 7: New Examples

The result for this example is shown in the following figure.

&l Xobjview M= E3
File Edit iew

(2] o] [#[&] |

Figure 7-1: Result of Mapping an Image onto a Geometric Surface

Mapping an Image Onto a Surface What's New in IDL 5.5

Chapter 7: New Examples 325

Centering an Image Object

In many cases, Object Graphics allow you to choose from different methods to obtain
the same solution. An example of thistype of variety is shown when you try to center
an image object in a display window. While several methods for centering an image

object are availabl e, this example shows the two most common methods for centering
an image object within a display window.

The first method establishes a viewplane rectangle within aview object. Theimage
object is added to amodel object. The model object is then trand ated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

This example uses theimage from thewor | del v. dat filefound in the
exanpl es/ dat a directory.

PRO Cent eri ngAnl mage

; Deternmine path to file.
wor | del vFi |l e = FI LEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize image paraneters.
wor | del vSi ze = [360, 360]
wor | del vi mage = BYTARR(wor | del vSi ze[0], worl del vSi ze[1])

; Open file, read in inage, and close file.
OPENR, unit, worldelvFile, /GET_LUN

READU, unit, worldel vl mage

FREE_LUN, unit

; Initialize wi ndow paraneters.
wi ndowvargin = [70, 50]
wi ndowSi ze = worl del vSize + (2*wi ndowMar gi n)

; First Method: Defining the Viewplane and
; Transl ating the Mdel.

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $

DI MENSI ONS = wi ndowSi ze, $

TITLE = "Wirld Elevation: First Method')

What's New in IDL 5.5 Centering an Image Object

326

Chapter 7: New Examples

oView = OBJ_NEW ' I DLgrView , $
VI EWPLANE_RECT = [0., 0., wi ndowSi ze])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize palette with STD GAMVA-I1 color table and

; use it to initialize the imge object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPalette -> LOADCT, 5

ol mage = OBJ_NEW' I DLgr | nage', worl delvlinmage, $
PALETTE = oPal ette)

; Add inmage to nodel, which is added to view Model

; is translated to center the image within the w ndow.

; Then view is displayed in w ndow.

oMbdel -> Add, ol nage

oVi ew -> Add, oModel

oMbdel -> Transl ate, w ndowMargin[0], w ndowMvargin[1], O.
oW ndow -> Draw, oView

; Clean-up object references.
OBJ_DESTROY, [oView, oPalette]

; Second Met hod: Using Coordinate Conversions.

; Initialize objects required for an Object G aphics
; display.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = '"Wirld El evation: Second Method')
oView = OBJ_NEW ' | DLgr Vi ew)
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize palette with STD GAMVA-I1 color table and

; use it to initialize the imge object.

oPalette = OBJ_NEW' I DLgrPal ette')

oPalette -> LOADCT, 5

ol mage = OBJ_NEW' | DLgr | nage', worl delvlimage, $
PALETTE = oPal ette)

; Obtain initial coordinate conversions of inmage object.
ol mage -> GetProperty, XCOORD _CONV = xConv, $
YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange

; Qutput initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, "Initial yConv: ', yConv

; Applying margins to coordinate conversions.

Centering an Image Object What's New in IDL 5.5

Chapter 7: New Examples 327

xTransl ati on = (2. *FLOAT(w ndowMar gi n[0])/ wi ndowSi ze[0]) - 1.
xScal e = (-2.*xTransl ati on)/wor| del vSi ze[0]

xConv = [xTransl ation, xScal e]

yTransl ati on = (2. *FLOAT(w ndowMar gi n[1]) / wi ndowSi ze[1]) - 1.
yScale = (-2.*yTransl ati on)/wor| del vSi ze[1]

yConv = [yTransl ation, yScal e]

; Output resulting coordinate conversions.
PRI NT, 'Resulting xConv: ', xConv
PRI NT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the inmage object.
ol mage -> SetProperty, XCOORD _CONV = xConv, $
YCOORD_CONV = yConv

; Add inmage to nodel, which is added to view. D splay
: the view in the w ndow.

oMbdel -> Add, ol nage

oVi ew - > Add, oMbdel

oW ndow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END

What's New in IDL 5.5 Centering an Image Object

328 Chapter 7: New Examples

Alpha Blending: Creating a Transparent
Image Object

In Object Graphics, image transparency is created by adding an apha channel to an
image array. The aphachannel is used to define the level of transparency in animage
object. The following Object Graphics example uses the IDLgrlmage::Init method to
create an image object and employs the BLEND_FUNCTION keyword to specify
how the transparency of the alpha channel is applied. Other methods of applying a
transparent image object include using the TEXTURE_MAP keyword in conjunction
with either the IDLgrPolygon::Init or the IDLgrSurface::Init methods.

The following example creates two image objects of MRI dlices of a human head.
After adding an alpha channel to the second image object, it islayered over the first
image object as a transparency.

PRO Al phaBl end

Deternmine path to file.
headFi |l e = FI LEPATH(' head. dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize volune array and size paraneter.
headSi ze = [80, 100, 57]
head = BYTARR(headSi ze[0], headSi ze[1], headSi ze[2])
i mageSi ze = [240, 300]

Open file, read in volume, and close file.
OPENR, unit, headFile, /GET_LUN
READU, unit, head
FREE_LUN, unit

Initialize window and view objects to vertically
di spl ay two inmages.
oW ndow = OBJ_NEW ' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [i nageSi ze[0], 2*inmageSize[1]], $
TITLE=' MRl Slices')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., inmmgeSize[0], 2*inageSize[1l]])

Initialize a nodel object for each image.
oMbdel = [OBJ_NEW ' I DLgrMdel '), OBJ_NEW' I DLgrModel)]

Extract the first slice of data.

| ayer1 = CONGRI D(head[*, *, 30], imageSize[O0],ingeSize[1],$
/| NTERP)

Alpha Blending: Creating a Transparent Image Object What's New in IDL 5.5

Chapter 7: New Examples 329

; Initialize the first inmge |ayer.
oLayer1l = OBJ_NEW' I DLgrlmage', |ayerl)

: Extract the second slice of data.
| ayer 2 = CONGRI D(head[*, *, 43], imageSize[0],inugeSi ze[1],$
/| NTERP)

; Initialize second image | ayer with a palette.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LoadCT, 12

oLayer2 = OBJ_NEW' I DLgrlmage', layer2, PALETTE = oPal ette)

; Add the layers to the nodel.
oMbdel [0] -> Add, olLayerl
oMbdel [1] -> Add, olLayer2

; Translate the first layer to the top of the

; display. Initially, the lower left corner of both

; nodels are at the lower left corner of the display.
; The nodel of the first layer must be noved above the
; second | ayer nmodel to allow both to be displayed.
oMbdel [0] -> Translate, 0., inageSize[l], O.

; Add the nodel to the view, and then display the view
; in the w ndow.

oVi ew - > Add, oMbdel

oW ndow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView]

; Get the red, green and bl ue values of the palette.
oPalette -> GetProperty, RED VALUES = red, $
GREEN_VALUES = green, BLUE_VALUES = bl ue

; Create a four channel array for al pha bl ending.
al pha = BYTARR(4, imageSize[0], inmageSize[1])

; Add the palette values to the first three channels.
al pha[0, *, *] = red[| ayer 2]

al pha[1, *,*] = green[l ayer 2]

al pha[2, *,*] = bl ue[l ayer 2]

; Create a nmask to renove | ower pixels values fromarray.
mask = layer2 GI 25

; Apply the mask to the alpha (fourth) channel of the
; array. Set transparency to 80. Range is O (conpletely

What's New in IDL 5.5 Alpha Blending: Creating a Transparent Image Object

330

Chapter 7: New Examples

; transparent)to 255 (conpl etely opaque).
al pha[3,*,*] = mask * 80

; Initialize the al pha inage object, setting blend function.
oAl pha = OBJ_NEW' | DLgr | nage', al pha, $
DI MENSI ONS = i mageSi ze, BLEND FUNCTION = [3, 4])

: Initialize the window, nodel and view.
oW ndow =OBJ_NEW' | DLgr W ndow , DI MENSI ONS = i nageSi ze, $
LOCATION = [300,0], RETAIN = 2,%
TI TLE =" Al pha Bl endi ng Exanple')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0, 0, i mageSi ze[0], imageSize[1]])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize a new i mage object for |ayerl.

oBase = OBJ_NEW' I DLgrlmage', |ayerl)

; Add the transparent inmage objects AFTER addi ng ot her
; image objects to the nodel.

oMbdel -> Add, oBase

oMbdel -> Add, oAl pha

oVi ew -> Add, oMbodel

; Display the transparent inage object.

oW ndow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END

Alpha Blending: Creating a Transparent Image Object What's New in IDL 5.5

Chapter 7: New Examples 331

The results for this example are shown in the following figure.

&l MBI Slices

&l Alpha Blending Example [O]]

Figure 7-2: Original Image Objects (left) and
Resulting Alpha Blended Image (right)

What's New in IDL 5.5 Alpha Blending: Creating a Transparent Image Object

332 Chapter 7: New Examples

Working with Mesh Objects and Routines

In DL, meshes are made up of alist of vertex locations and a description of vertex
connectivity. The vertex locations are usually represented by an array containing two
or three columns (one column for the x values, one for the y values, and optionally
one for the z values). The array of vertex locations is known as the vertices. The
vertex relationships are represented in the connectivity list, which is avector (a one-
dimensional array). The connectivity list contains the information for each individual
shape within the mesh. Thislist contains the number of vertices of each shapein the
mesh followed by the index of the vertices within that shape. For example, if vertices
number 0, 1, 2, and 3 make up the first shape, which is arectangle, and vertices
number 1, 2, and 4 make up the second shape, which is atriangle, then the
connectivity is[4,0,1,2,3,3,1,4,2].

IDL contains many mesh-related routines. This section provides examples for
clipping, decimating, merging, and smoothing meshes. This section aso includes an
advanced example using some of these routines together to produce an overall
display. These examples use DL polygon objectsto display the meshes. The polygon
object is designed for meshes. It contains a vertices input argument and a

POLY GONS keyword for connectivity lists.

This section includes examples of the following:
e “Clipping aMesh” on page 333
* “Decimating aMesh” on page 336
e “Merging Meshes’ on page 339
e “Smoothing aMesh” on page 342
e “Advanced Meshing: Combining Meshing Routines’ on page 345

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 333

Clipping a Mesh

This example clips a mesh of an octahedron (an eight-sided, three-dimensional shape
similar to a cut diamond). A mesh is clipped when an imaginary plane intersects the
mesh. The clipped mesh is either of the remaining sides of the original mesh after the
imaginary (clipping) plane intersects.

The original octahedron mesh in this example contains one rectangle and eight
triangles. The connectivity list is formed with the rectangle listed first followed by
the triangles. The mesh is placed in a polygon object, which isadded to amodel. The
model is displayed in the XOBJIVIEW utility. The XOBJVEW utility allowsyou to
click-and-drag the polygon object to rotate and translate it. See XOBJIVIEW in the
IDL Reference Guide for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. This display shows the mesh clipped with an oblique plane. Thefinal
XOBJVIEW display shows the results of using the TRIANGULATE routine to cover
the clipped area. See TRIANGULATE in the IDL Reference Guide for more
information in this routine.

PRO Cl i ppi ngAMesh

Create a nmesh of an octahedron.
vertices = [[O0, -1, 0], [1, O, O], [O, 1, O], $
[-1, O, O], [O, O, 1], [O, O, -1]]
connectivity = 1[4, 0, 1, 2, 3, 3, 0, 1, 4, 3, 1, 2, 4, %
3, 2, 3, 4 3, 3, 0, 4 3, 1, 0, 5, 3, 2, 1, 5 $
3, 3, 2, 5 3, 0, 3 5]
Initialize nodel for display.
oMbdel = OBJ_NEW' | DLgr Model ')

Initialize polygon and polyline outline to contain
; the mesh of the octahedron.
oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, SHADING = 1, $
COLOR = [0, 255, 0])
oPolyline = OBJ_NEW' | DLgrPol yline', vertices, $
POLYLI NES = connectivity, COLOR = [0, 0, 0])

; Add the polygon and the polyline to the nodel.
oMbdel -> Add, oPol ygon
oMbdel -> Add, oPolyline

Rot at e nodel for better initial perspective.
oMbdel -> Rotate, [-1, 0, 1], 22.5

What's New in IDL 5.5 Working with Mesh Objects and Routines

334

Chapter 7: New Examples

; Display nodel.
XOBJVI EW oModel , /BLOCK, SCALE =1, $
TITLE = ' Oiginal Cctahedron Mesh'

; Clip nesh.

clip = MSHCLIP([1., 1., 1., O0.], vertices, connectivity, $
clippedVertices, clippedConnectivity, $
CUT_VERTS = cut Verti cesl ndex)

; Update polygon with the resulting clipped nesh.
oPol ygon -> SetProperty, DATA = clippedVertices, $
POLYGONS = cl i ppedConnectivity

; Display the updated nodel .
XOBJVI EW oModel , /BLOCK, SCALE =1, $
TITLE = 'd i pped Cctahedron Mesh'

; Determine the vertices of the clipped plane.
cutVertices = clippedVertices[*, cutVerticeslndex]

; Derive the x and y conponents of the clipped plane's
vertices.

cutVertices[0, *]

cutVertices[1, *]

X =
y =
; Triangul ate the connectivity of the clipped plane.
TRI ANGULATE, x, y, triangles

; Derive the connectivity of the clipped plane fromthe
; results of the triangulation.

arraySi ze = SI ZE(tri angl es, /D MENSI ONS)

array = FLTARR(4, arraySize[1])

array[0, *] = 3

array[1, 0] = triangles

cut Connectivity = REFORM array, N_ELEMENTS(array))

; Initialize the clipped plane's polygon and pol yline.

oCut Pol ygon = OBJ_NEW' | DLgr Pol ygon', cutVertices, $
POLYGONS = cut Connectivity, SHADING = 1, $
COLOR = [0, 0, 255])

oCut Polyline = OBJ_NEW' | DLgr Pol yline', cutVertices, $
POLYLI NES = cut Connectivity, COLOR = [255, 0, 0], $
THICK = 3.)

; Add polyline and pol ygon to nodel .
oMbdel -> Add, oCutPol yline
oMbdel -> Add, oCutPol ygon

; Display updated nodel .

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples

XOBJVI EW oModel, /BLOCK, SCALE = 1, $
TITLE = ' A i pped Cctahedron Mesh with Cipping Plane'

; Clean-up object references.
OBJ_DESTROY, [oMbdel]

END

The results for this example are shown in the following figure.

&l Clipped Octahedion Mesh [-[O]x]

File Edt View

ErEEE - |

&l Original Octahedron Wesh
CFle Edt Miew

W] [Rlels]

Bl &1 Ciipped Octahedron Mesh with Clipping Plane
Fie Edi View i

T

335

Figure 7-3: The Original Octahedron (left) and the Two Clipped Results (right)

What's New in IDL 5.5 Working with Mesh Objects and Routines

336 Chapter 7: New Examples

Decimating a Mesh

This example decimates a DEM (digital elevation model) mesh. Decimation reduces
either the number of vertices or the number of connections within a mesh while
trying to maintain the overall shape of the mesh. Very large meshes usually contain
redundant or useless information, which may slow down any interactive displays of
the mesh. Decimation hel ps to reduce the size of these large meshes.

The DEM in this example comes from the el evbi n. dat file found in the

exanpl es/ dat a directory. The DEM is converted into a mesh with the MESH_OBJ
procedure. The results of thisroutine are placed in a polygon object, which is added
to amodel. The models are displayed in the XOBJVIEW utility. The XOBJVEW
utility allows you to click-and-drag the polygon object to rotate and translate it. See
XOBJVIEW in the IDL Reference Guide for more information on this utility.

Thefirst display contains awire outline of the DEM as a mesh. When you quit out of
the first XOBJVIEW display, the second XOBJVIEW display will appear showing a
filled mesh. The colors correspond to the change in elevation. Thethird display isthe
result of decimating the mesh down to 20 percent of the original number of vertices.
Thefinal display is the resulting mesh filled with the elevation colors.

PRO Deci mati ngAMesh

Determine path to data file.
el evbinFile = FI LEPATH(' el evbin.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize data paraneters.
el evbi nSi ze [64, 64]
el evbi nDat a BYTARR(el evbi nSi ze[0], el evbi nSi ze[1])

Open file, read in data, and close file.
OPENR, unit, elevbinFile, /GET_LUN
READU, unit, elevbinData
FREE_LUN, unit

Convert data into a nesh, which is defined by
vertice locations and their connectivity.
MESH OBJ, 1, vertices, connectivity, elevbinData

Initialize a nmodel for display.
oModel = OBJ_NEW' | DLgr Model ')

Form a pol ygon from the nesh.
oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, SHADING = 1.5, $
COLOR = [0, 255, 0], STYLE = 1)

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 337

; Add polygon to nodel .
oMbdel -> Add, oPol ygon

; Rotate nodel for better initial perspective.
oMbdel -> Scale, 1, 1, 0.25
oMbdel -> Rotate, [-1, 0, 1], 45.

; Display nodel in the XOBIJVIEWuUtility.
XOBJVI EW oMbdel , /BLOCK, SCALE = 1., $
TITLE = " Oiginal Mesh from El evation Data'

; Derive a color table for the filled pol ygon.
oPalette = OBJ_NEW' I DLgrPal ette')
oPal ette -> LOADCT, 29

; Fill in the polygon mesh with the colors of the table
; (the colors correspond to the z-val ues of the polygon).
oPol ygon -> SetProperty, STYLE = 2, $

VERT_COLORS = BYTSCL(vertices[2, *]), $

PALETTE = oPal ette

; Display nodel in the XOBIJVIEWuUtility.
XOBJVI EW oMbdel , /BLOCK, SCALE = 1., $
TITLE = "Filled Oiginal Mesh'

; Decimate the mesh down to 20 percent of the original

; number of vertices.

number Vertices = MESH DECI MATE(vertices, connectivity, $
deci mat edConnectivity, VERTICES = deci mat edVertices, $
PERCENT_VERTI CES = 20)

; Update the polygon with the resulting deci nated mesh.

oPol ygon -> SetProperty, DATA = decimatedVertices, $
POLYGONS = deci mat edConnectivity, STYLE = 1, $
VERT_COLORS = 0, COLOR = [0, 255, 0]

; Display updated nodel in the XOBIVIEWuUtility.
XOBJVI EW oMbdel , /BLOCK, SCALE = 1., $
TITLE = ' Deci nati on Results (by 80%'

; Fill in the updated polygon mesh with the colors of
; the table (the colors correspond to the z-values of
; the updated polygon).
oPol ygon -> SetProperty, STYLE = 2, $
VERT_COLORS = BYTSCL(deci nat edVertices[2, *]), $
PALETTE = oPal ette

; Display nodel in the XOBIVIEWuUtility.

What's New in IDL 5.5 Working with Mesh Objects and Routines

338 Chapter 7: New Examples

XOBJVI EW oModel , /BLOCK, SCALE = 1., $
TITLE = '"Fill ed Deci mation Results'

; Cleanup all the objects by destroying the nodel.
OBJ_DESTROY, [oModel, oPalette]

END

The results for this example are shown in the following figure.

Figure 7-4: Before Decimating (top row) and After Decimating (bottom row)

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 339

Merging Meshes

This example merges two simple meshes: a single square and a single right triangle.
Theright side of the square isin the same location asthe | eft side of thetriangle. Each
mesh is originally its own polygon object. These objects are then added to a model
object. The model is displayed in the XOBJVIEW utility. The XOBJVEW utility
allows you to click-and-drag the polygon object to rotate and translate it. See
XOBJVIEW in the IDL Reference Guide for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The meshes are merged into a single polygon object. After you quit out
of the second display, the final display shows the results of decimating the merged
mesh to obtain the least number connections for these vertices. Decimation can often
be used to refine the results of merging.

PRO Mer gi ngMeshes

Create a nmesh of a single square (4 vertices
connect ed counter-cl ockwi se fromthe |ower |eft
corner of the mesh.

vertices = [[-2., -1., 0.], [0., -1., 0.], $
[0., 1., O.], [-2., 1., 0O.]]

connectivity = 1[4, 0, 1, 2, 3]

Create a separate nmesh of a single triangle (3
vertices connected counter-clockwi se fromthe | ower
| eft corner of the nesh.

triangl evertices = [[0., -1., 0.], [2., -1., 0.], $
[0., 1., 0.]]

triangl eConnectivity = [3, 0, 1, 2]

Initialize nodel for display.
oModel = OBJ_NEW' | DLgr Model ')

Initialize polygon for the square nesh.

oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, COLOR = [0, 128, 0], $
STYLE = 1)

Initialize polygon for the triangle nmesh.
oTri angl ePol ygon = OBJ_NEW' | DLgr Pol ygon', $
triangl eVertices, POLYGONS = triangl eConnectivity, $
COLOR = [0, 0, 255], STYLE = 1)
; Add both pol ygons to the nodel.
oMbdel -> Add, oPol ygon
oMbdel -> Add, oTriangl ePol ygon

What's New in IDL 5.5 Working with Mesh Objects and Routines

340

Chapter 7: New Examples

; Display the nodel in the XOBIJVIEWutility.
XOBJVI EW oMbdel , /BLOCK, $
TITLE = ' Two Separate Meshes'

; Merge the square and triangle into a single mesh.
nunber Tri angl es = MESH_MERGE(vertices, $
connectivity, triangleVertices, $
triangl eConnectivity, /COVBI NE_VERTI CES)

; Qutput nunmber of resulting vertices and triangles.
nurmber Vertices = Sl ZE(vertices, /D MENSI ONS)
PRI NT, 'nunberVertices ="', nunberVertices[1]
PRI NT, 'nunberTriangles ="', nunberTriangles

; Cleanup triangle polygon object, which is no | onger
; needed.
OBJ_DESTROY, [oTri angl ePol ygon]

; Updat e remai ning pol ygon object with the results from
; merging the two neshes together.
oPol ygon -> SetProperty, DATA = vertices, $

POLYGONS = connectivity, COLOR = [0, 128, 128]

; Display results.
XOBJVI EW oMbdel , /BLOCK, $
TITLE = 'Result of Merging the Meshes into One'

; Decimate polygon to 75 percent of the original

; number of vertices.

nunmber Tri angl es = MESH_DECI MATE(vertices, connectivity, $
deci mat edConnectivity, PERCENT_POLYGONS = 75)

; Qutput nunber of resulting triangles.
PRI NT, 'After Decimation: nunberTriangles ="', nunberTriangles

; Update polygon with results from deci mating.
oPol ygon -> SetProperty, DATA = vertices, $
POLYGONS = deci nat edConnectivity, COLOR = [0, 0, O]

; Display decimation results.
XOBJVI EW oMbdel , /BLOCK, $
TITLE = ' Deci mati on of Mesh'

; Cleanup object references.
OBJ_DESTROY, [oMbdel]

END

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 341

The results for this example are shown in the following figure.

Fle Edt View Fle Edi View Fie Edi View

[_Ja=]a || [J&[e]s] | [l R[] w

] L

Figure 7-5: Original (left), Merged (center), and Decimated Meshes (right)

What's New in IDL 5.5 Working with Mesh Objects and Routines

342 Chapter 7: New Examples

Smoothing a Mesh

This example smooths a rectangular mesh containing a spike. First, arectangle mesh
is created. Thismesh is made up 10 columns and 5 rows of vertices. The vertices are
connected with right triangles. The mesh is placed in a polygon object, which is
added to a model object. The model is displayed in the XOBJVIEW utility. The
XOBJIVEW dtility allows you to click-and-drag the polygon object to rotate and
translateit. See XOBJVIEW in the I DL Reference Guide for more information on this
utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The center vertex of the top row is displaced in the y-direction. This
displacement causes the center of the top to spike out away from the mesh. After you
quit out of the second display, the third display shows the result of smoothing the
entire mesh. The final display shows the results of smoothing the spike with all the
other vertices fixed.

PRO Snoot hi ngMeshes

Initialize mesh size paraneters.
nX = 10
nyY = 5

Initialize the x coordinates of the nesh's vertices.
xVertices = FINDGEN(nX) # REPLI CATE(1l., nY)
PRI NT, 'xVertices:
PRI NT, xVertices, FORMAT = '(10F6.1)"

Initialize the y coordinates of the nmesh's vertices.
yVertices = REPLI CATE(1., nX) # FI NDGEN(nY)
PRI NT, 'yVertices:
PRI NT, yVertices, FORMAT = '(10F6.1)"

Derive the overall vertices of the nesh.
vertices = FLTARR(3, (nX*nY))
vertices[0, *] = xVertices
vertices[1l, *] = yVertices
PRI NT, 'vertices:
PRI NT, vertices, FORMAT = '(3F6.1)'

Triangul ate the mesh to establish connectivity.
TRI ANGULATE, xVertices, yVertices, triangles
triangl esSize = SIZE(triangl es, /D MENSI ONS)
pol ygons = LONARR(4, trianglesSize[1])
pol ygons[0, *] = 3
pol ygons[1, 0] = triangles
PRI NT, ' polygons:

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 343

PRI NT, pol ygons, FORMAT = ' (416)"

; Derive connectivity fromthe resulting triangulation.
connectivity = REFORM pol ygons, N_ELEMENTS(pol ygons))

; Initialize a nodel for the display.
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize a polygon object to contain the nmesh.

oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, COLOR = [0, 128, 0], $
STYLE = 1)

; Add the polygon to the nodel.
oMbdel -> Add, oPol ygon

; Display the nodel.
XOBJVI EW oMbdel , /BLOCK, $
TITLE = ' Oiginal Mesh'

; Introduce an irregular vertex by drastically changing
; a single y coordinate.
vertices[1, 45] = 10.

; Update pol ygon with new vertices.
oPol ygon -> SetProperty, DATA = vertices

; Display change.
XOBJVI EW oModel , /BLOCK, $
TITLE = ' Mesh with New Irregul ar Vertex'

; Smooth entire nesh to reduce the effect of the
; irregular vertex.
snoot hedVertices = MESH SMOOTH(vertices, connectivity)

; Updat e pol ygon and display results.
oPol ygon -> SetProperty, DATA = snpoot hedVertices
XOBJVI EW oModel , /BLOCK, $

TITLE = ' Sroothing with No Fixed Vertices'

; Determine which vertices should be fixed. Basically,
; all of the vertices should be fixed except for the

; irregular vertex.

fixed = LINDGEN((nX*nY) - 1)

fixed[45] = fixed[45:*] + 1

; Smooth mesh with resulting fixed vertices.

snoot hedVertices = MESH SMOOTH(vertices, connectivity, $
FI XED_VERTI CES = fi xed)

What's New in IDL 5.5 Working with Mesh Objects and Routines

344

Working with Mesh Objects and Routines

Chapter 7: New Examples

; Update pol ygon and display results.
oPol ygon -> SetProperty, DATA = snoot hedVertices
XOBJVI EW oMbdel , /BLOCK, $

TITLE = ' Sroothing with Al nost All Vertices Fixed

; Cleanup object references.
OBJ_DESTROY, [oMbdel]

END

The results for this example are shown in the following figure.

@) Smoathing with No Fixed Ventices
Fie Edi View

BRI

&l Mesh with New Inegular Vertex
Fle Edi View

[t 13]®] %]

&1 Smoothing with Almost All Vertices Fixed
File Edit iew

2] _|a[=[h]

Figure 7-6: The Spiked Mesh (left) and the Two Smoothed Meshes (right)

What's New in IDL 5.5

Chapter 7: New Examples 345

Advanced Meshing: Combining Meshing Routines

This example uses world elevation image data (found in thewor | del v. dat filein
the exanpl es/ dat a directory) to create a spherical mesh of the earth. The
MESH_OBJroutineis used to convert the world elevation image to a spherical mesh.
The elevation is exaggerated so it can be seen on the mesh. Thismeshisplacedina
polygon object, which is added to amodel object. The model is displayed in the
XOBJIVIEW utility. The XOBJVEW utility allows you to click and drag the polygon
object to rotate and trandate it. See XOBJIVIEW inthe DL Reference Guide for more
information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. This display contains the world polygon clipped at the equator. The data
from the clipping process is used to define a plane polygon object. Earth mantle
convection data (found in the convec. dat fileintheexanpl es/ dat a directory) is
placed on the planar polygon after making the background transparent. The
convection data was measured along O degrees longitude so it is placed vertically at
that longitude. And finaly, in the third XOBJVIEW display, the lower hemisphereis
decimated to allow quicker rotations within the XOBJVIEW utility.

PRO Wor | del vMesh

Determine path to imge file.
wor | del vFi |l e = FI LEPATH(' worl delv.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize i nage paraneters.
wor | del vSi ze = [360, 360]
wor | del vl mage = BYTARR(wor | del vSi ze[0], worl del vSi ze[1])

Open file, read in inage, and close file.
OPENR, unit, worldelvFile, /GET_LUN
READU, unit, worldel vl mage
FREE_LUN, unit

Resi ze inmage to obtain data for a 1 degree interval in
both directions.
wor | del vl mage = CONGRI D(wor | del vl mage, 360, 180, /| NTERP)

Initialize display objects.
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = [wor | del vSi ze[0], worldel vSize[1]/2], $
TITLE = "Original Elevation |Imge')
oView = OBJ_NEW' I DLgrView, VIEWLANE RECT = [0., 0., $
wor | del vSi ze[0], worl del vSize[1]/2])
oMbdel = OBJ_NEW' | DLgr Model ')

What's New in IDL 5.5 Working with Mesh Objects and Routines

346

Chapter 7: New Examples

; Initialize and set palette to the STD GAMVA-11 col or
; table.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LoadCT, 5

; Initialize image object.
ol mage = OBJ_NEW' I DLgr | nage', worl delvlinmage, $
PALETTE = oPal ette)

; Add the image to the nodel, which is added to the

; view, and then the view is displayed in the w ndow.
oMbdel -> Add, ol nage

oVi ew - > Add, olbdel

oW ndow -> Draw, oView

; Clean-up unused object references.
OBJ_DESTROY, [oView]

; Scale image values to the earth radius. Miltiple
; scaling by 50 to exaggerate el evation.
wor | del vi mage = 50.*1. 77*(wor | del vl mage/ 255.)

; Add the earth's radius to the inage. The image only
; contains elevation information fromthe deepest parts
; of the oceans. The earth's radius is added to obtain
; a sphere with snall changes in elevation on its

; surface.

radii = worl delvlimage + REPLI CATE(1275.6, 360, 180)

; Derive a mesh fromthe exaggerated i mage data and the
; radius of the earth.
MESH OBJ, 4, vertices, connectivity, radii, /CLOSED

; Initialize a nodel to display.
oModel = OBJ_NEW' | DLgr Model ')

; Determine the radius of each vertex to provide col or

; at each vertex.

spheri cal Coordi nates = CV_COORD(FROM RECT = vertices, $
/ TO_SPHERE)

el evati on = REFORM spheri cal Coordi nates[2, *], $
N_ELEMENTS(spheri cal Coordi nates[2, *]))

; Initialize polygon to contain nesh.

oPol ygon = OBJ_NEW' | DLgr Pol ygon', vertices, $
POLYGONS = connectivity, SHADING = 1, $
VERT_COLORS = BYTSCL(el evation), $
PALETTE = oPal ette)

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 347

; Add polygon to nodel .
oMbdel -> Add, oPol ygon

; Rotate npodel to place view at O degrees |atitude.
oMbdel -> Rotate, [1., 0., 0.], -90.

; Display nodel.
XOBJVI EW oMbdel , /BLOCK, SCALE =1, $
TI TLE = ' Exaggerated Earth El evati on'

; Clip earth polgyon along the equator.

pl aneCoefficients = [0., 0., 1., 0.]

number Vertices = MESH CLI P(pl aneCoefficients, $
vertices, connectivity, $
clippedVertices, clippedConnectivity, $
CUT_VERTS = cut Verti cesl ndex)

; Determine the radius of each vertex to provide col or
; at each vertex.
spherical Coordi nates = CV_COORD($
FROM RECT = cli ppedVertices, /TO_SPHERE)
el evati on = REFORM spheri cal Coordi nates[2, *], $
N_ELEMENTS(spheri cal Coordi nates[2, *]))

; Update polygon with results fromclipping.

oPol ygon -> SetProperty, DATA = clippedVertices, $
POLYGONS = cl i ppedConnectivity, $
VERT_COLORS = BYTSCL(el evati on)

; Display updated nodel .
XOBJVI EW oModel, /BLOCK, SCALE = 1, $
TITLE = "Earth Cipped at the Equator'

; Determine clipped plane's vertices.

cutVertices = clippedVertices[*, cutVerticeslndex]
X cutVertices[0, *]

y cutVertices[1, *]

z cutVertices[2, *]

; Compute the center vertex of the clipped plane.
center X = TOTAL(x)/N_ELEMENTS(x)
centerY = TOTAL(y)/N_ELEVENTS(y)
centerZ = TOTAL(z)/N_ELEMENTS(z)

; Determine the inner radius of the earth polygon.

spheri cal Coordi nates = CV_COORD(FROM RECT = cutVertices, $
/ TO_SPHERE)

el evati on = REFORM spheri cal Coordi nates[2, *], $

What's New in IDL 5.5 Working with Mesh Objects and Routines

348 Chapter 7: New Examples

N_ELEMENTS(spheri cal Coordi nates[2, *]))
i nner Radi us = M N(el evati on)

; Derive the corner vertices of the clipping plane.
pl aneVertices = $

[[centerX - innerRadius, 0, centerZ - innerRadius], $
[center X + innerRadius, 0, centerZ - innerRadius], $
[center X + innerRadius, O, centerZ + innerRadius], $
[centerX - innerRadius, 0, centerZ + innerRadius]]

pl aneConnectivity = [4, 0, 1, 2, 3]

; Determine the path to the earth's mantl e convection
; data file
convecFile = FILEPATH(' convec.dat', $

SUBDI RECTCRY = [' exanples', 'data'])

; Initialize convection image and paraneters.
convecSi ze = [248, 248]

convecl mage = BYTARR(convecSi ze[0], convecSize[1])
convecData = BYTARR(convecSi ze[0], convecSize[l], 4)

; Open file, read in inage, and close file
OPENR, unit, convecFile, /GET_LUN

READU, unit, convecl mage

FREE_LUN, unit

; Create mask of inmage. Mask out the background (zero
; values of the inmmge, and apply nask to the al pha

; channel

mask = BYTSCL(convecl nage GT 0)

convecData[*, *, 3] = mask

; Convert indexed inmage to RGB i nage
DEVI CE, DECOMPOSED = 0

LQADCT, 27

TVLCT, red, green, blue,/GET
convecData[*, *, 0] red[convecl nage]
convecData[*, *, 1] gr een[convecl nage]
convecData[*, *, 2] = bl ue[convecl mage]

; Initialize an inage object of the resulting RGB i mage
; to be used as a texture map placed on the clipping
; plane.
oPl anel mage = OBJ_NEW' | DLgr | nage', convecData, $
| NTERLEAVE = 2, BLEND FUNCTION = [3, 4])

; Initialize polygon of clipping plane, which contains

; the texture map of the inage
oPl anePol ygon = OBJ_NEW' | DLgr Pol ygon', $

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 349

pl aneVertices, POLYGONS = pl aneConnectivity, $
SHADING = 0, COLOR = [255, 255, 255], $
TEXTURE_MAP = oPl anel nage, $

TEXTURE_COORD = [[O, O], [1, O], [1, 1], [O, 1]])

; Add the clipping plane's polygon to the nodel.
oMbdel -> Add, oPl anePol ygon

; Display results.
XOBJVI EW oModel , /BLOCK, SCALE =1, $
TITLE = "Earth El evation and Mantl e Convection'

; Decimate clipped earth polygon.
number Tri angl es = MESH_DECI MATE(cl i ppedVertices, $
cl i ppedConnectivity, deci matedConnectivity, $
VERTI CES = deci matedVertices, PERCENT_VERTI CES = 10)

; Determine the radius of each vertex to provide col or
; at each vertex.
spheri cal Coordi nates = CV_COORD($
FROM RECT = deci mat edVertices, /TO_SPHERE)
el evati on = REFORM spheri cal Coordi nates[2, *], $
N_ELEMENTS(spheri cal Coordi nates[2, *]))

; Update polygon with results from deci mating.

oPol ygon -> SetProperty, DATA = decimatedVertices, $
POLYGONS = deci mat edConnectivity, $
VERT_COLORS = BYTSCL(el evati on)

; Display decimation results.
XOBJVI EW oModel, /BLOCK, SCALE =1, $
TI TLE = 'Deci nated Earth and Mantl e Convection'

; Cleanup the object references.
OBJ_DESTROY, [oModdel, oPal ette, oPl anel mage]

END

What's New in IDL 5.5 Working with Mesh Objects and Routines

350 Chapter 7: New Examples

The results for this example are shown in the following figure.

1| Exaggerated Earth Elevation
Fie Edi View

L] _|a]®]&)

&l Earth Clipped at the Equator
File Edi View

[] _J&]#] K |

Figure 7-7: Original Image and Resulting Mesh (top row) and Clipped Mesh and
Added Mantle Plane (bottom row)

Working with Mesh Objects and Routines What's New in IDL 5.5

Chapter 7: New Examples 351
Copying and Printing Objects

IDL’s Object Graphics system contains five destination objects: window, buffer,
VRML, clipboard, and printer. The window object is used to display to the screen.
The clipboard object is used to display to the operating system’s clipboard. The
printer object is used to display to the system’s printer. The window object is simple
to use, but the use of the clipboard and printer objects depend on the type of objectsto
be displayed. This section covers the following topics:

e “Copying a Plot Display to the Clipboard” in the following section
e “Printing aPlot Display” on page 353

* “Copying an Image Display to the Clipboard” on page 355

e “Printing an Image Display” on page 357

Copying a Plot Display to the Clipboard

This example displays a damped sine wave plot in awindow object and a clipboard
object. The damped sine wave data comes from the danp_sn2. dat filefoundinthe
exanpl es/ dat a directory. The resolution of the clipboard is based on the resolution
of the screen. The plot is displayed from the system’s clipboard to a platform-rel ated
graphicsfile (PostScript file on UNIX, Enhanced Metafile on Windows, or aPICT
file on Macintosh) and an encapsulated PostScript file on all the platforms.

PRO Sendi ngPl ot ToCl i pboard

Deternmine the path to the "danp_sn2.dat" file.
signal File = FILEPATH(' danp_sn2.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Initialize the paraneters of the data within the file.
signal Size = 512
signal = BYTARR(si gnal Si ze)

; Open the file, read in data, and then close the file.
OPENR, unit, signalFile, /GET_LUN

READU, unit, signal

FREE_LUN, unit

Det er mi ne vi ewpl ane si ze and nargins.
of f set Scal e = 150.
viewdffset = offsetScale*[-1., -1., 1., 1.]
si gnal Range = MAX(signal) - M N(signal)

Initialize the display objects.

What's New in IDL 5.5 Copying and Printing Objects

352 Chapter 7: New Examples

wi ndowSi ze = [512, 384]
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TI TLE = ' Danped Sine Wave with Noise')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., signal Size, signal Range] + $
vi ewS f set)
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the plot object.
oPlot = OBJ_NEW'IDLgrPlot', signal, COLOR = [0, 0, 255])

; Obtain plot ranges.
oPl ot -> GetProperty, XRANGE = xPl ot Range, $
YRANGE = yPl ot Range

; Initialize axes objects, which are based on the plot

; ranges.

oXTitle = OBJ_NEW'IDLgrText', 'Time (seconds)')

0XAxi s = OBJ_NEW'IDLgrAxis', 0, RANGE = xPl ot Range, $
LOCATI ON = [xPl ot Range[0], yPl ot Range[0]], /EXACT, $
TITLE = oXTitle, TICKDR = 0, $
TI CKLEN = (0. 02*(yPl ot Range[1] - yPl ot Range[0])))

oYTitle = OBJ_NEW' | DLgrText', 'Anplitude (centineters)')

OYAxis = OBJ_NEW' IDLgrAxis', 1, RANGE = yPl ot Range, $
LOCATI ON = [xPl ot Range[0], yPl ot Range[0]], /EXACT, $
TITLE = oYTitle, TICKDR = 0, $
TI CKLEN = (0. 02*(xPl ot Range[1] - xPl ot Range[0])))

; Add plot and axes to nmodel, which is added to the
; view, and then displayed in the w ndow.

oMbdel -> Add, oPl ot

oMbdel -> Add, oXAxis

oMbdel -> Add, oYAXxis

oVi ew -> Add, oMbdel

oMbdel -> Translate, -50., -50., O.

oW ndow -> Draw, oView

; Determine the centinmeter to pixel resolution of the
; plot on the screen.
oW ndow -> Get Property, RESCOLUTION = screenResol ution

; Initialize clipboard destination object.

oCd i pboard = OBJ_NEW' I DLgrd i pboard', QUALITY = 2, $
DI MENSI ONS = wi ndowSi ze, $
RESOLUTI ON = screenResol ution)

; Determine the type of export file, which depends on
; the screen device.

Copying and Printing Objects What's New in IDL 5.5

Chapter 7: New Examples 353

screenDevi ce = | D. NAVE
CASE screenDevice OF
"X : fileExtension = '.ps'
"WN : fileExtension '.enf’
"MAC : fil eExtension '.pict'
ELSE: RETURN
ENDCASE
clipboardFile = 'danp_sn2' + fil eExtension

; Display the viewwithin the clipboard destination,

; which exports to an PS, EM~, or PICT file.

od i pboard -> Draw, oView, FILENAME = clipboardFile, $
/ VECTOR

od i pboard -> Draw, oView, FILENAME = 'danp_sn2.eps', $
/ POSTSCRI PT, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oClipboard, oView, oXTitle, oYTitle]

END
Printing a Plot Display

This example sends a damped sine wave plot to awindow object and a printer object.
The damped sine wave data comes from the danp_sn2. dat filefoundin the
exanpl es/ dat a directory. The resolution of the printed page is based on the
resolution of the screen. The model object in the printer object must be scaled to

mai ntain the same size as displayed on the screen. The location of the view must a so
be changed to center the display on the page.

PRO Pri nti ngAPI ot

; Determine the path to the "danp_sn2.dat" file.
signal File = FILEPATH(' danp_sn2.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the parameters of the image with the file.
signal Size = 512
signal = BYTARR(si gnal Si ze)

; Open the file, read in the image, and then close the
; file.

OPENR, unit, signalFile, /GET_LUN

READU, unit, signal

FREE_LUN, unit

; Determine viewplane size and nargins.
of f set Scal e = 150.

What's New in IDL 5.5 Copying and Printing Objects

354 Chapter 7: New Examples

viewdf fset = offsetScale*[-1., -1., 1., 1.]
signal Range = MAX(signal) - M N(signal)

; Initialize the display objects.
wi ndowSi ze = [512, 384]
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TI TLE = ' Danped Sine Wave with Noise')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., signal Size, signal Range] + $
vi ewf f set)
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the plot object.
oPlot = OBJ_NEW'IDLgrPlot', signal, COLOR = [0, 0, 255])

; Obtain plot ranges.
oPl ot -> GetProperty, XRANGE = xPl ot Range, $
YRANGE = yPl ot Range

; Initialize axes objects, which are based on the plot

; ranges.

oXTitle = OBJ_NEW'IDLgrText', 'Time (seconds)')

0XAxi s = OBJ_NEW'IDLgrAxis', 0, RANGE = xPl ot Range, $
LOCATI ON = [xPl ot Range[0], yPl ot Range[0]], /EXACT, $
TITLE = oXTitle, TICKDR = 0, $
TI CKLEN = (0. 02*(yPl ot Range[1] - yPl ot Range[0])))

oYTitle = OBJ_NEW' I DLgrText', 'Anplitude (centineters)')

OYAxis = OBJ_NEW' IDLgrAxis', 1, RANGE = yPl ot Range, $
LOCATI ON = [xPl ot Range[0], yPl ot Range[0]], /EXACT, $
TITLE = oYTitle, TICKDR = 0, $
TI CKLEN = (0. 02*(xPl ot Range[1] - xPl ot Range[0])))

; Add plot and axes to nodel, which is added to the
; view, and then displayed in the w ndow.

oMbdel -> Add, oPl ot

oMbdel -> Add, oXAxis

oMbdel -> Add, oYAXxis

oView -> Add, oModel

oMbdel -> Translate, -50., -50., O.

oW ndow -> Draw, oView

; Determine the centinmeter measurenents of the plot
; on the screen.

screenResolution = [ID.X_PXCM !D.Y_PX_CM

wi ndowSi zeCM = wi ndowSi ze/ scr eenResol ution

; Initialize printer destination object.
oPrinter = OBJ_NEW' IDLgrPrinter', PRINT_QUALITY = 2, $

Copying and Printing Objects What's New in IDL 5.5

Chapter 7: New Examples 355

QUALITY = 2)

; Obtain page paraneters to determ ne the page

; size in centineters.

oPrinter -> GetProperty, DI MENSIONS = pageSize, $
RESOLUTI ON = pageResol ution

pageSi zeCM = pageSi ze*pageResol uti on

; Calculate a ratio between screen size and page size.
pageScal e = wi ndowSi zeCM pageSi zeCM

; Use ratio to scale the nodel within the printer to the
; sanme size as the nodel on the screen.
oMbdel -> Scal e, pageScal e[0], pageScal e[1], 1.

; Determine the center of the page and the screen
; display in pixels.
centering = (((pageSizeCM - wi ndowSi zeCM/4.) $

/ pageResol ution) - offsetScale

; Move the view to center the page.
oView -> SetProperty, LOCATION = centering

; Display the viewwithin the printer destination.
oPrinter -> Draw, oView, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oPrinter, oView, oXTitle, oYTitle]

END
Copying an Image Display to the Clipboard

This example displays an image of the Earth’s mantle convection in awindow object
and a clipboard object. The convection image data comes from theconvec. dat file
found in the exanpl es/ dat a directory. The resolution of the clipboard is based on
the resolution of the screen, which isvery similar to copying aplot display. The
image is displayed from the system'’s clipboard to a platform-related graphicsfile
(PostScript file on UNIX, Enhanced Metafile on Windows, or a PICT file on

M acintosh) and an encapsulated PostScript file on al the platforms.

PRO Sendi ngl mrageTod i pboard
; Determine the path to the "convec.dat" file.
convecFile = FILEPATH(' convec.dat', $

SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the parameters of the image with the file.

What's New in IDL 5.5 Copying and Printing Objects

356 Chapter 7: New Examples

convecSi ze = [248, 248]
convecl mage = BYTARR(convecSi ze[0], convecSize[1])

; Open the file, read in the image, and then close the
; file.

OPENR, unit, convecFile, /GET_LUN

READU, unit, convecl mage

FREE_LUN, unit

; Initialize the display objects.
wi ndowSi ze = convecSi ze
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = 'Earth Mantle Convection')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., wi ndowSize])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the image object with its palette.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LOADCT, 27

ol mage = OBJ_NEW' I DLgr | mage', conveclnage, $
PALETTE = oPal ette)

; Add inmge to nodel, which is added to the view, and
; then the viewis displayed in the w ndow.

oMbdel -> Add, ol nage

oVi ew - > Add, oMbdel

oW ndow -> Draw, oView

; Determine the centinmeter to pixel resolution of the
; image on the screen.
screenResolution = [1./!D.X_PXCM 1./!D Y_PXCM

; Initialize clipboard destination object.

oC i pboard = OBJ_NEW' I DLgrd ipboard', QUALITY = 2, $
DI MENSI ONS = wi ndowSi ze, $
RESOLUTI ON = screenResol ution)

; Determine the type of export file, which depends on
; the screen device.

screenDevi ce = ! D. NAME

CASE screenbDevice OF

"X : fileExtension = '.ps'
"WN : fileExtension = "'.enf'
"MAC : fileExtension = '.pict'
ELSE: RETURN
ENDCASE
clipboardFile = 'convec' + fileExtension

Copying and Printing Objects What's New in IDL 5.5

Chapter 7: New Examples 357

; Display the viewwithin the clipboard destination,

; which exports to an PS, EM~, or PICT file.

od i pboard -> Draw, oView, FILENAME = clipboardFile, $
/ VECTOR

od i pboard -> Draw, oView, FILENAME = 'convec.eps', $
/ POSTSCRI PT, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oClipboard, oView, oPalette]

END
Printing an Image Display

This example sends an image of the Earth’s mantle convection to a window object
and a printer object. The convection image data comes from the convec. dat file
found in the exanpl es/ dat a directory. The resolution of the printed page is based
on the resolution of the screen. The model object in the printer object must be scaled
to maintain the same size as displayed on the screen. The location of the view must
also be changed to center the display on the page.

PRO Pri nti ngAnl nage

; Determine the path to the "convec.dat" file.
convecFile = FILEPATH(' convec.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize the parameters of the image with the file.
convecSi ze = [248, 248]
convecl mage = BYTARR(convecSi ze[0], convecSize[1])

; Open the file, read in the image, and then close the
; file.

OPENR, unit, convecFile, /GET_LUN

READU, unit, convecl mage

FREE_LUN, unit

; Initialize the display objects.
wi ndowSi ze = convecSi ze
oW ndow = OBJ_NEW' | DLgr Wndow , RETAIN = 2, $
DI MENSI ONS = wi ndowSi ze, $
TITLE = 'Earth Mantle Convection')
oView = OBJ_NEW'IDLgrView, $
VI EWPLANE_RECT = [0., 0., wi ndowSize])
oMbdel = OBJ_NEW' | DLgr Model ')

; Initialize the image object with its palette.

What's New in IDL 5.5 Copying and Printing Objects

358

Chapter 7: New Examples

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LOADCT, 27

ol mage = OBJ_NEW' I DLgrl mage', conveclnage, $
PALETTE = oPal ette)

; Add inmage to nodel, which is added to the view, and
; then the viewis displayed in the w ndow.

oMbdel -> Add, ol nage

oVi ew - > Add, oMbdel

oW ndow -> Draw, oView

; Determine the centinmeter measurenents of the inage
; on the screen.

screenResolution = [ID.X_PX CM !D. Y_PX_CM

wi ndowSi zeCM = wi ndowSi ze/ scr eenResol ution

; Initialize printer destination object.
oPrinter = OBJ_NEW' IDLgrPrinter', PRINT_QUALITY = 2, $
QUALITY = 2)

; Obtain page paraneters to determ ne the page

; size in centineters.

oPrinter -> GetProperty, DI MENSIONS = pageSi ze, $
RESOLUTI ON = pageResol ution

pageSi zeCM = pageSi ze*pageResol uti on

; Calculate a ratio between screen size and page size.
pageScal e = wi ndowSi zeCM pageSi zeCM

; Use ratio to scale the nodel within the printer to the
; sanme size as the nodel on the screen.
oMbdel -> Scal e, pageScal e[0], pageScal e[1], 1.

; Deternmine the center of the page and the inmage in
; pixels.
centering = ((pageSi zeCM - wi ndowSi zeCM/2.) $

/ pageResol uti on

; Move the view to center the inage.
oView -> SetProperty, LOCATION = centering

; Display the viewwithin the printer destination.
oPrinter -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oPrinter, oView, oPalette]

END

Copying and Printing Objects What's New in IDL 5.5

Chapter 7: New Examples 359

Capturing IDL Direct Graphics Displays

An IDL display isusually written to an image file by first capturing it into an image
array and then writing the array to an image file. Successful capture of an IDL display
in the Direct Graphics system depends on the visual class of your current device. If
your current device has a PseudoColor visua class, the display should be captured as
an indexed image. If your current device has a TrueColor visual class, the display
should be captured as a RGB (red, green, and blue) image (a three-channel image).
IDL's TVRD routine has the ahility to capture either indexed or RGB images. See
TVRD in the IDL Reference Guide for more information on this routine. This section
includes the following examples:

e “Capturing Direct Graphics Displays on PseudoColor Devices’ in the
following section

» “Capturing Direct Graphics Displays on TrueColor Devices’ on page 360
Capturing Direct Graphics Displays on PseudoColor Devices

This example changes the current device from the screen to the Z-buffer. The
Z-buffer device isaPseudoColor device. A contour of the elev data (from the

mar bel | s. dat savefile) isdisplayed with acolor table in the Z-buffer device. The
display is captured with the TVRD routine. TVRD does not require any arguments or
keywords to be set when capturing a display from a PseudoColor device.

PRO Capt uri ngADi spl ayi nPseudoCol or
Deternmine path to file.

mar bel | sFile = FILEPATH(' narbel | s.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

Restore "elev" contained with file, which is an IDL
; save file.
RESTORE, nmrbell sFile

Initialize wi ndow paraneters.
wi ndowSi ze = [512, 384]

Determ ne name (' MAC, "WN, or 'X') of screen device.
screenDevi ce = | D. NAVE

Change display device to the Z-buffer, which is a
pseudocol or device regardl ess of system settings.
SET_PLOT, 'z'

Set size of Z-buffer device to be the sanme as the

What's New in IDL 5.5 Capturing IDL Direct Graphics Displays

360 Chapter 7: New Examples

; expected screen w ndow si ze.
DEVI CE, SET_RESOLUTI ON = wi ndowSi ze

; Load a color table.
LOADCT, 38

; Display data. The "elev" variable is scaled to only

; show the data above 2666 feet.

CONTOUR, elev > 2666, /XSTYLE, /YSTYLE, NLEVELS = 18, $
/ FILL

; Capture display.
contourDisplay = TVRD()

; Close Z-buffer device and switch back to the
; screen device.

DEVI CE, /CLOSE

SET_PLOT, screenDevice

; If the screen device is TrueCol or, set the DECOVPOSED
; keyword to O before using any color table related

; routines.

DEVI CE, DECOMPOSED = 0

; Load a color table.
LOADCT, 38

; Initialize the display w ndow.
W NDOW 0, XSIZE = wi ndowSi ze[0], YSIZE = wi ndowSi ze[1], $
TI TLE = ' Maroon Bells El evation Data'

; Display the captured inmage.
TV, contourDispl ay

END
Capturing Direct Graphics Displays on TrueColor Devices

This example requires a TrueColor display. If your screen is not a TrueColor device,
you are probably running on a PseudoColor device. For capturing adisplay on a
PseudoColor device, see “Capturing Direct Graphics Displays on PseudoColor
Devices’ on page 359.

In this example, a contour of the elev data (from the mar bel | s. dat savefile) is
displayed with a color table. The TVRD routine is used with the TRUE keyword set
to 1 to capture the display as a pixel-interleaved RGB image. TVRD requiresthe
TRUE keyword to be set when capturing a display from a TrueColor device.

Capturing IDL Direct Graphics Displays What's New in IDL 5.5

Chapter 7: New Examples 361

PRO Capt uri ngADi spl ayi nTrueCol or

; NOTE: this exanple requires a TrueCol or display. |If
; you do not have a TrueCol or display, see the

; "capturingADi spl ayi nPseudoCol or" exanpl e routi ne

; for nore information.

; Determine path to file.
mar bel | sFile = FILEPATH(' narbel | s.dat', $
SUBDI RECTCRY = [' exanples', 'data'])

: Restore "elev" contained with file, which is an IDL
; save file.
RESTORE, nmrbell sFile

; Initialize wi ndow paraneters.
wi ndowSi ze = [512, 384]

; If the screen device is TrueCol or, set the DECOVPOSED
; keyword to O before using any color table related

;. routines.

DEVI CE, DECOMPOSED = 0

; Load in a color table.
LOADCT, 38

; Initialize display w ndow.
W NDOW 0, XSIZE = wi ndowSi ze[0], YSI ZE
TI TLE = ' Maroon Bells El evation Data'

wi ndowSi ze[1], $

; Display data. The "elev" variable is scaled to only

; show the data above 2666 feet.

CONTOUR, elev > 2666, /XSTYLE, /YSTYLE, NLEVELS = 18, $
/ FILL

; Incorrect capture of display. This use of TVRD

; assumes a PseudoCol or display. In other words, only
; one visual channel is being captured as an indexed
;i mage.

i ncorrectCapture = TVRD()

; Correct capture of display. Since the display is

; TrueColor, the resulting capture should contain all

; of the channels to capture all of the color

; information within the display. In other words, since
; the display is TrueColor, the resulting capture

; should be a RGB i mage.

correct Capture = TVRD(TRUE = 1)

What's New in IDL 5.5 Capturing IDL Direct Graphics Displays

362

Chapter 7: New Examples

; Display incorrect results.

W NDOW 1, XSIZE = wi ndowSi ze[0], YSIZE = wi ndowSi ze[1], $
TITLE = '"Incorrect Captured Display'

TV, incorrectCapture

; Set the DECOWPOSED keyword to 1 displaying a RGB inmage.
DEVI CE, DECOVMPCSED = 1

; Display correct results.

W NDOW 2, XSIZE = wi ndowSi ze[0], YSIZE = wi ndowSi ze[1], $
TI TLE = ' Correct Captured D splay'

TV, correctCapture, TRUE = 1

END

Capturing IDL Direct Graphics Displays What's New in IDL 5.5

Chapter 7: New Examples 363

Creating and Restoring .sav Files

Using the SAVE procedure, you can easily create reusable custom templates, save
variable data, or share a utility or program you have created with other IDL users by
packaging routines or datainto abinary . sav file. This section includes the
following examples of using SAVE and RESTORE:

e “Customizing and Saving an ASCII Template” in the following section
* “Saving and Restoring the XROI Utility and Image ROI Data” on page 365

Warning
While files containing IDL variables can be restored by any version of IDL that
supports the data types of the variables (in particular, by any version of IDL later
than the version that created the SAVE file), files containing I DL routines can only
be restored by versions of IDL that share the same internal code representation.
Since theinternal code representation changes regularly, you should always archive
the IDL language source files (. pr o files) for routinesyou are placingin IDL . sav
files so you can recompile the code when a new version of IDL isreleased.

Customizing and Saving an ASCIl Template

When importing an ASCII datafileinto IDL, you must first describe the format of the
data using the interactive ASCII_TEMPLATE function. If you have a number of
ASCII files that have the same format, you can create and save a customized ASCI|
template using the SAVE procedure. After creating a. sav file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCII files that have the same structure.

1. AtthelIDL command line, enter the following to create the variable
plotTemplate, which will contain your custom ASCII template:

pl ot Tenpl ate = ASCI | _TEMPLATE()
A dialog box appears, prompting you to select afile.
2. Selectpl ot. t xt located in theexanpl es/ dat a directory.

Note
Another way to import ASCII dataisto use the Import ASCI| File toolbar button
on the IDLDE toolbar. To use this feature, simply click the button and select
pl ot .t xt from thefile selection diaog.

What's New in IDL 5.5 Creating and Restoring .sav Files

364 Chapter 7: New Examples

3. After selecting the file, the Define Data Type/Range dialog appears. First,
choose the field type. Since the datafile is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Linefield, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of the file. Click Next to continue.

4. IntheDefine Delimiter /Fields dialog box, select Tab as the delimiter between
data elements since it is known that tabs were used in the original file. Click
Next.

5. Inthe Field Specification dialog box, name each field as follows:
* Click onthefirst row (row 1). In the Namefield, enter t i me.
e Select the second row and enter t enper at ur el.
e Select the third row and enter t enper at ur e2.
Click Finish.

Typethefollowing line at the IDL command lineto read inthepl ot . t xt file
using the custom template, pl ot Tenpl at e:

PLOT_ASCI| = READ ASCl | (FI LEPATH(' plot.txt', SUBDI RECTORY = $
["exanples', '"data']), TEMPLATE = pl ot Tenpl at e)

8. Enter the following lineto print the pl ot . t xt file data:
PRI NT, PLOT_ASC |

The file contents are printed in the Output Log window. Your output will resemble
the following display.

nnn
nnn

Name Twe | Value
PLOTTEMPLATE STRUCT { <Anongmous> }
PLOT_ASEI STAUCT {<Anonymous> }

Figure 7-8: PLOT_ASCII Printout

9. Createabinary . sav file of your custom template by entering the following:
SAVE, plot Tenpl ate, FILENAME=' nyPl ot Tenpl ate. sav'

Creating and Restoring .sav Files What's New in IDL 5.5

Chapter 7: New Examples 365

10. To restore the template so that you can read another ASCI| file, enter:
RESTORE, 'nyPl ot Tenpl at e. sav'

Thisfile contains your custom ASCII template information stored in the
structure variable, pl ot Tenpl at e.

Note
If you are attempting to restore afile that isnot in your current working directory or
the IDL search path, you will need to specify a path to the file. See RESTORE in
the IDL Reference Guide for more information.

11. After restoring your custom template, you can read another ASCI| file that is
delimited in the same way as the original file by using the READ_ASCI|
function and specifying pl ot Tenpl at e for the TEMPLATE:

PLOT_ASCI| = READ ASCI | (FI LEPATH('plot.txt', $
SUBDI RECTORY = ['exanples', 'data']), $
TEMPLATE = pl ot Tenpl at e)

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

PRI NT, PLOT_ASC |
Saving and Restoring the XROI Utility and Image ROI Data

You can easily share your own IDL routines or utilitieswith other IDL users by using
the SAVE routine to create a binary file of your compiled code. The following
example creates a . sav file of the XROI utility (a. pro file) and from within this
file, restores asecondary . sav file containing selected regions of interest.

1. Type XRO at the command line to open the XROI utility.

2. Inthefile selection dialog, select mi ner al . png located in the
exanpl es/ dat a directory.

3. Select the Draw Polygon toolbar button and roughly outline the three large,
angular aress of theimage.

4. Select File - Save ROlsand namethefilemi neral RO . sav. Thiscreatesa
. sav file containing the regions of interest selected within the image.

5. InanIDL Editor or text editor, enter the following routine:
PRO nyXRoi

What's New in IDL 5.5 Creating and Restoring .sav Files

366 Chapter 7: New Examples

Restore RO object data by specifying a value for the
RESTORED _OBJECTS keywor d.
RESTORE, 'nmineral RO .sav', RESTORED_OBJECTS = myRO

Open XRO, specifying the previously defined value for the
restored object data as the value for "REG ONS_I N'.

XROl, READ_PNG(FI LEPATH(' mi neral . png', $

SUBDI RECTORY = ['exanples', 'data'])), $

REGIONS_IN = nmyRO, /BLOCK

END
Save the routine as my XRoi . pr o

6. Exitandrestart IDL or enter .FULL RESET SESSION at the IDL command
line before creating a. sav fileto avoid saving unwanted session information.

7. After re-opening the myXRoi routine, compile the program you just created:
. COWPI LE nyXRoi . pro
8. Use RESOLVE_ALL toiteratively compile any uncompiled user-written or

library procedures or functions that are called in any already-compiled
procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve class methods, nor procedures or functions that
are called via quoted strings such as CALL_PROCEDURE, CALL_FUNCTION,
or EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these routines.

9. Createa. sav file named nyXRoi . sav, containing all of the XROI utility
routines. When the SAVE procedure is called with the ROUTINES keyword
and no arguments, it createsa. sav file containing all currently compiled
routines. Because the routines associated with the XROI utility are the only
ones that are currently compiled in our IDL session, we can create a. sav file
asfollows:

SAVE, /ROQUTINES, FILENAME=' nyXRoi .sav'

10. Itis not necessary to use RESTORE to open nmy XRoi . sav. If themain level
routineis named the same asthe . sav file, and al necessary files (in this case,
m neral RO . sav and nyXRoi . sav) are stored in the current working
directory or the IDL search path, simply type the name of the file, minusthe
. sav extension, at the command line:

Creating and Restoring .sav Files What's New in IDL 5.5

Chapter 7: New Examples

nmy XRoi

367

The following figure will appear, showing the selected regions of interest.

&l ROI H[=] B3
File Edit

(BIifel e[s]]

.' s __\s-\'\\ = g

Figure 7-9: Example of Restoring the XROI Utility and ROI Image Data

What's New in IDL 5.5

Creating and Restoring .sav Files

368 Chapter 7: New Examples

Handling Table Widgets in GUIs

This example shows how to handle the events issued by atable widget within a
graphical user interface (GUI) written in IDL. The example GUI presents an image
from theabnor m dat filein adraw widget. The abnor m dat fileisin the

exanpl es/ dat a directory. The table widget in the GUI contains the values of the
image's array. You can change the values within the table and the image display will
be updated with that value. The GUI aso provides label s (text) showing what events
have occurred within the table. See WIDGET_TABLE in the IDL Reference Guide
for more information about the eventsto IDL’s table widget.

Each widget within the GUI hasits own related event handler routine. Since the GUI
is contained in asingle program, the event handler routines appear before the GUI-
creation routine. The file containing this program should be named the same as the
GUI-creation (main) routine at the bottom of the program. Thisroutineis called

Wor r ki ngW t hTabl esl nGUl s. ThedoneEvent routine handlesthe event from the
Done button and the Tabl eEvent routine handles the events from the table.

; NOTE: IDL GUI progranms usually contain nore than one
; routine; one routine creates the interface and other
; routines handl e the events created by the interface.
; The "wor ki ngWthTabl eslnGUl s" routine is the main

; routine within this exanple programand is |ocated at
: the bottomof this file. The main routine should

; always be at the end of the programfile, and should
; be naned the same as the programfile nanme. You

; should | ook at the main routine first before trying

; to understand the event handling routines.

; Aroutine to handle the event issued by clicking on
; "Done" button.
PRO DoneEvent, event

; Destroy the QU .
W DGET_CONTROL, event.top, /DESTROY

END

; Aroutine to handle the events caused by the table.
PRO Tabl eEvent, event

; Obtain the current inmage array fromthe table to
; redisplay the inage when an table event occurs to
; show any updates in the table within the inage.

W DGET_CONTROL, event.id, GET_VALUE = inage

Handling Table Widgets in GUIs What's New in IDL 5.5

Chapter 7: New Examples 369

; Determine the size of the image.
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)
; Redisplay image resized to fit the w ndow.
TV, CONGRI D(REVERSE(i mage, 2), $
6*i mageSi ze[0], 6*i mageSize[1])

; Initialize descriptions of event types to be used
; within the type |abel.
CASE event.type COF

0: description ="' (Insert Single Character)’
1: description ="' (Insert Miultiple Characters)'
2: description = ' (Delete Text)'
3: description ="' (Text Selection)’
4: description ="' (Cell Selection)'
6: description ="' (Row Height Changed)'
7: description ="' (Colum Wdth Changed)'
8: description ="' (Invalid Data)'
ENDCASE
; Derive the | abel based on the event type that occured.
typel ndex = 'Type: ' + STRTRIMevent.type, 2) + $

description
; Find the reference to the type |abel.
typeLabel = WDGET_I NFQ(event.top, $
FI ND_BY_UNAME = 'type')
; Use the reference to update the type label with the
; event type that occured.
W DGET_CONTROL, typelabel, SET_VALUE = typel ndex

; If the event type is 4, a cell or cells have been

; selected. |If a cell or cells have been selected, the
; selection label is updated to show a change in
; sel ection.

| F (event.type EQ 4) THEN BEG N
; Derive the |abel based on the new sel ection.
left = STRTRI M event. sel _|eft, 2)
top = STRTRI M event.sel _top, 2)
right = STRTRI M event.sel _right, 2)
bott om = STRTRI M event.sel _bottom 2)

sel ectionValue = 'Left ="' + left +', Top ="' + §$
top +', Right ="' + right +', and Bottom=" + $
bott om

; Find the reference to the selection |abel.
sel ecti onLabel = WDGET_I NFO(event.top, $
FI ND_BY_UNAME = 'sel ection')
; Use the reference to update the selection |abel
; with the new selection that occured.
W DGET_CONTROL, sel ectionLabel, $
SET_VALUE = sel ecti onVal ue
ENDI F

What's New in IDL 5.5 Handling Table Widgets in GUls

370

Chapter 7: New Examples

END

; The main routine used to create the interface and
; start the event handlers.
PRO Wor ki ngW t hTabl esl nGUI s

; Deternmine path to file.
abnornFile = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize display paraneters.
abnor nfi ze = [64, 64]
abnorm mage = BYTARR(abnor nSi ze[0], abnor nSi ze[1])

; Open file, read in image, and close file.
OPENR, unit, abnornfile, /CGET_LUN

READU, unit, abnorm nage

FREE_LUN, unit

; Create background base to contain the entire

; interface. This type of base is usually referred to

; as a "top level base". WDGETs are displayed in the

; order in which they are created. Since the "top |evel"
; (background) is a colum base, the WDGETs in this

; programw || be stacked fromtop to bottom

; W DGET_DRAW ('t he i nage di spl ay)
; W DGET_TABLE (the table of inmage val ues)
; W DGET_LABELs (text describing events)
; W DGET_BUTTON (t he done button)
t opLevel Base = W DGET_BASE(/ COLUWN, $
TI TLE = ' Gated Bl ood Pool ")

; Create a draw WDGET to display the inage.
abnor nDraw = W DGET_DRAWt opLevel Base, $
XSI ZE = 6*abnor nSi ze[0], YSIZE = 6*abnor nSi ze[1])

; Create a table WDGET to view the values within the
; image's array.
abnor nTabl e = W DGET_TABLE(t opLevel Base, $
; The image's rows are reversed to match the inmage's
; display.
VALUE = REVERSE(abnorm mage, 2), $
; The row | abel s are changed to match the val ues of
; the reversed-rowed image.
ROW LABELS = STRTRI M (abnornSi ze[1] - 1) - &
| NDGEN(abnor nSi ze[1]), 2), $
; All events are specified to show all the possible

Handling Table Widgets in GUIs What's New in IDL 5.5

Chapter 7: New Examples 371

; events associated with the table. The cells are
; table are nade editable to show howto link a table
; to an inmage display.

/ ALL_EVENTS, /ED TABLE, $

; Allow scrolling within the table, which will be
; 4 colums by 10 rows in size.

/ SCROLL, X SCROLL_SIZE = 4, Y_SCROLL_SIZE = 10, $
; Associate an event handling routine specifically
; just for the table events to naintain structure
; Wthin this program

EVENT_PRO = ' Tabl eEvent')

; Create a | abel to show what type of table event is

; occuring.
t ypeLabel = W DGET_LABEL(toplLevel Base, /ALIGN_CENTER, $
VALUE = ' Type: ', /DYNAM C _RESIZE, UNAME = 'type')

; Create a title for the selection |abel.
selectionTitle = WDGET_LABEL(t opLevel Base, $
/ ALl GN_LEFT, VALUE = 'Selection Information:")

; Create a label to show the current cell selection of

; the table.

sel ecti onLabel = W DGET_LABEL(topLevel Base, $
/ ALl GN_CENTER, /DYNAM C_RESI ZE, UNAME = 'sel ection', $
VALUE = 'Left = 0, Top = 0, Right = 0, and Bottom = 0")

; Create a button to the user to quit out of the

; interface.

doneButton = W DGET_BUTTON(t opLevel Base, $
; The "VALUE" is the |abel displayed on the button.
VALUE = ' Done', $
; Associate an event handling routine specifically
; just for the done event to mmintain structure
; Wthin this program
EVENT_PRO = ' DoneEvent"')

; Display the interface.
W DGET_CONTROL, topLevel Base, / REALIZE

; Determine the nunber reference of the window within
; the draw WDGET. The number will be used to set the
; display to the draw WDGET before inage is shown.

W DGET_CONTROL, abnornDraw, GET_VALUE = abnor miW ndow

; Set the display to the draw WDGET' s w ndow.
WSET, abnor mW ndow

; If you are on a TrueCol or display, set

What's New in IDL 5.5 Handling Table Widgets in GUls

372 Chapter 7: New Examples

; the DECOVPOSED keyword to O before using any col or
; table related routines.
DEVI CE, DECOMPOSED = 0

; Load a color table.
LOADCT, 5

; Display the image resized to fit the w ndow
TV, CONGRI D(abnorm mage, 6*abnornSi ze[0], $
6* abnor nSi ze[1])

; Start the event handling routines.
XVANAGER, 'Wor ki ngWthTabl esl nGUl s', topLevel Base

END

Handling Table Widgets in GUIs What's New in IDL 5.5

Chapter 7: New Examples 373

The resulting GUI is similar to the following figure.

il Gated Blood Pool =] E3

7
|
7
(EE | 10 | |
58 2 5 | 9
57 4 1 10 g
56 7 1 | g
55 12 7 | 4
54 | 12 7 | -
< o

Type: O (Insert Single Character]
Selection Infarmation:
Left =2, Top = 2, Right = 2, and Bottom =

Done |

Figure 7-10: Example of a GUI Containing a Table

What's New in IDL 5.5 Handling Table Widgets in GUls

374 Chapter 7: New Examples

Finding Straight Lines in Images

This example uses the Hough transform to find straight lines within an image. The
image comes from ther ockl and. png file found in the exanpl es/ dat a directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lines longer than 100 pixels. The scaled results
are then backprojected by the Hough transform to produce an image of only the
power (straight) lines.

PRO Fi ndi ngPower Li nesl nRockl andME

; Deternmine path to file.
file = FILEPATH(' rockl and. png', $
SUBDI RECTCRY = [' exanples', 'data'])

; Import inmage fromfile into |DL.
i mmge = READ_PNG(file)

; Deternmine size of inmmge.
i mgeSi ze = S| ZE(i mage, /DI MENSI ONS)

; Display cropped inage

DEVI CE, DECOMPOSED = 1

W NDOW 0, XSIZE = imageSize[1l], YSIZE = inmageSize[2], $
TI TLE = ' Rockl and, Mai ne'

TV, image, TRUE = 1

; Use layer fromgreen channel as the intensity of the
;i mage.
intensity = REFORMimage[1l, *, *])

; Determine size of intensity inage.
intensitySize = Sl ZE(intensity, /D MENSI ONS)

; Mask intensity inmage to highlight power I|ines.
mask = intensity GT 240

; Transform mask.
transform = HOUGH(mask, RHO = rho, THETA = theta)

; Scale transformto obtain just the power I|ines.
transform = (TEMPORARY(transform - 100) > O

Finding Straight Lines in Images What's New in IDL 5.5

Chapter 7: New Examples 375

; Backproject to conmpare with original inmage.
backprojecti on = HOUGH(transform /BACKPRQIECT, $
RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

; Reverse color table to clarify lines. If you are on
; a TrueCol or display, set the DECOMPOSED keyword to O
; before using any color table related routines.

DEVI CE, DECOMPOSED = 0

LOADCT, 0

TVLCT, red, green, blue, /GET

TVLCT, 255 - red, 255 - green, 255 - blue

; Display results.
WNDOW 1, XSIZE = intensitySize[0], $
YSIZE = intensitySize[1l], $
TI TLE = ' Resulting Power Lines'
TVSCL, backprojection

END
The results for this example are shown in the following figure.

5 - i . — i

Figure 7-11: Original Image (left) and Filtered Image (right)

What's New in IDL 5.5 Finding Straight Lines in Images

376

Chapter 7: New Examples

Color Density Contrasting in an Image

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocel | . j pg filefound in
the exanpl es/ dat a directory. The image is a photomicrograph of cultured
endothelia cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is applied to the filtered image. The high intensity values
within the triangle of the center of the transform represent high color density within
the filtered and original image. The transform is scaled to only include the values
above the mean of the transform. The scaled results are backprojected by the Radon
transform. The resulting backprojection is used as a mask on the original image. The
final resulting image shows more color contrast bounded by the edges of the filtered
image.

PRO ContrastingCells

; Deternmine path to file.
file = FILEPATH(' endocel | .jpg', $
SUBDI RECTCRY = [' exanples', 'data'])

; Import inmage within file into I DL.
READ_JPEG file, endocelllmge

; Determine image's size, but divide it by 4 to reduce
; the inmage.
i mgeSi ze = Sl ZE(endocel | 1 mage, /DI MENSIONS)/ 4

; Resize image to quarter its original length and wi dth.
endocel | mage = CONGRI D(endocel | | mrage, $
i mgeSi ze[0], inageSi ze[1])

; If you are on a truecol or display, set the DECOVPOSED
; keyword to the DEVICE command to zero before using

; any color table related routines.

DEVI CE, DECOMPOSED = 0

; Load in the STD GAMMA-I| col or table.
LQADCT, 5

; Initialize the display.
W NDOW 0, XSIZE = 2*inmageSi ze[0], YSIZE = i mageSi ze[1], $
TITLE = "Oiginal (left) and Filtered (right)'

; Display original inmage.
TV, endocelllnage, O

Color Density Contrasting in an Image What's New in IDL 5.5

Chapter 7: New Examples 377

; Filter original image to clarify the edges of the
; cells.
i mage = ROBERTS(endocel | | nage)

; Display filtered i mage.
TVSCL, inmge, 1

; Transformthe filtered image.
transform = RADON(i mage, RHO = rho, THETA = theta)

; Display transforns of the inmage.
transfornSize = SI ZE(transform /D MENSI ONS)
WNDOW 1, TITLE = 'Oiginal Transform (top) and ' + $
'Scal ed Transform (bottom', $
XSI ZE = transfornSi ze[0], YSIZE = 2*transfornSi ze[1]
TVSCL, transform O

; Scale the transformto include only the density
; val ues above the nean of the transform
scal edTransform = transform > MEAN(tr ansform

; Display scaled transform
TVSCL, scal edTransform 1

; Backproject the scaled transform

backproj ecti on = RADON(scal edTransform /BACKPROJIECT, $
RHO = rho, THETA=theta, NX = i nmageSi ze[0], $
NY = inmageSi ze[1])

; Initialize another display.
W NDOW 2, XSIZE = 2*inmageSize[0], YSIZE = i mageSi ze[1], $
TI TLE = ' Backproject (left) and Final Result (right)’

; Display backprojection.
TVSCL, backprojection, 0

; Use the backprojection as a nmask to provide
; a color density contrast of the original image.
constrastingl nage = endocel | | mage*backproj ecti on

; Display resulting contrast inmage.
TVSCL, endocel | | rage*backprojection, 1

END

What's New in IDL 5.5 Color Density Contrasting in an Image

378 Chapter 7: New Examples

The results for this example are shown in the following figure.

ult (right) B

Figure 7-12: Original and Filtered Images (left), Original and Scaled Transforms
(middle), and Backprojection and Final Resulting Contrast (right)

Color Density Contrasting in an Image What's New in IDL 5.5

Chapter 7: New Examples 379

Removing Noise from an Image with FFT

This example uses the FFT transform to remove noise from an image. The image
comes from the abnor m dat filefound in the exanpl es/ dat a directory. The first
display contains the original image and its FFT transform. The noiseis very evident
in theimage. A surface of the transform helpsto determine the threshold necessary to
remove the noise from theimage. In the surface of the transform, the noise appears
random and below aridge containing aspike. Theridge and spike represent the actual
datawithin theimage. A mask is applied to the transform to remove the noise and the
inverse transform is applied resulting in a clearer image.

PRO Renovi ngNoi seFr omAnl mageW t hFFT

; Determine the path to the file.
file = FILEPATH(' abnormdat', $
SUBDI RECTCRY = [' exanples', 'data'])

; Initialize size paraneter and inmge array.
i mageSi ze = [64, 64]
i mage = BYTARR(i nageSi ze[0], inmageSize[1])

; Open file, read in image, and close file.
OPENR, unit, file, /GET_LUN

READU, unit, inage

FREE_LUN, unit

; Initialize display paraneters, including a color
; table. If you are on a TrueCol or display, set
; the DECOVPOSED keyword to O before using any col or
; table related routines.
di spl aySi ze = [128, 128]
DEVI CE, DECOMPCSED = 0
LOADCT, 5
W NDOW 0, XSIZE = 2*displ aySi ze[0], $
YSI ZE = displ aySi ze[1], $
TITLE = "Original I nmage : Transfornmation'

; Display original image.
TVSCL, CONGRI D(i nage, displaySize[0], displaySize[l], $
/I NTERP), O

; Transform i mage.
transform = ALOZ SH FT(FFT(i mage), (inmageSize[0]/2), $
(i mageSi ze[1]/2)))

; Display transformation.
TVSCL, CONGRID(transform displaySize[0], $

What's New in IDL 5.5 Removing Noise from an Image with FFT

380

Chapter 7: New Examples

di spl aySi ze[1], /INTERP), 1

; Scal e transform nmake its mninumvalue equal to zero.
scal edTransform = transform - M N(transform

; Display results of scaling.
WNDOW 1, TITLE = 'Transform Scaled to a Zero M ni num
SURFACE, scal edTransform /XSTYLE, /YSTYLE, $

TITLE = ' Transform Scaled to a Zero M ni numi

; Filter scaled transformto only include high

; frequency data.

mask = FLOAT(scal edTransform GT 6.

filteredTransform = (scal edTransforntnask) + $
M N(transform

; Initialize display.
W NDOW 2, XSIZE = 2*di spl aySi ze[0], $
YSI ZE = displ aySi ze[1], $
TI TLE "Filtered Transformation : Results'

; Display filtered transform
TVSCL, CONGRI D(FLOAT(filteredTransform, displaySize[0], $
di spl aySi ze[1], /INTERP), O

; Apply inverse transfornation to filtered transform
i nverseTransform = ABS(FFT(EXP(filteredTransform, $
/| NVERSE))

; Display results of inverse transformation.
TVSCL, CONGRI D(inverseTransform displaySize[0], $
di spl aySi ze[1], /INTERP), 1

END

The results for this example are shown in the following figure.

i Original Image: Transformation [Ei[=] E3 i Filtered Transformation: Results [Ei[=] E3

Figure 7-13: Original Image and FFT Transform (left) and Filtered FFT Transform

and Resulting Image (right)

Removing Noise from an Image with FFT What's New in IDL 5.5

Chapter 7: New Examples 381

Using Double and Triple Integration

You can use the QROMB, QROMO, and QSIM P routines within the user-supplied
function of these same routines. This ability alows you to perform double and triple
integration. Each term of an integrand (the equation within the integral) can contain
another integration method. The double and triple integrations are performed over
each term of the integrand. The following two examples use double integration to
determine the volume under a surface defined by a two-dimensional eguation and
triple integration to determine the mass of avolume with a density defined by athree-
dimensional equation, respectively.

This section includes the following topics:

e “Integrating to Determine the Volume Under a Surface (Double I ntegration)”
in the following section

* “Integrating to Determine the Mass of aVolume (Triple Integration)” on
page 382

Integrating to Determine the Volume Under a Surface
(Double Integration)

This example evaluates the volume under a surface by using the following double
integration:

11 5,
volume = I I (9x"y™ + 4xy + 1)dxdy
0”0

A surfaceis defined by atwo-dimensional equation. The volume under this surface
can be determined by performing a double integration over a specific region
(boundary). This example performs the double integration over the range 0 to 1inthe
x-direction and 0 to 1 in the y-direction. The correct solution to thisintegration is 3.

This example program is made up of four routines: the main routine, the integration
in they direction, the second integration of the x coefficient, and the second
integration of the x? coefficient. The main routine is the last routine in the program.
The file containing this program should be named the same as the main routine.

FUNCTI ON XSquar edCoef, x
Integration of the x squared coefficient.

secondl ntegrati on = 9. *x"2
RETURN, secondl nt egration

What's New in IDL 5.5 Using Double and Triple Integration

382

Chapter 7: New Examples

END

FUNCTI ON XCoef, x
; Integration of the linear x coefficient.
secondl ntegration = X
RETURN, secondl nt egration

END

FUNCTION YDirection, y
; Re-write equation to consider both x coefficents.
firstintegration = QROVB(' XSquar edCoef', 0., 1.)*y"2 $
+ 4. *(QROMB(' XCoef', 0., 1.))*y + 1.
RETURN, firstlntegration

END

PRO Doubl el nt egrati on
; Determ ne the volume under the surface represented
; by 9x”2y~2 + 4xy + 1 over a specific region.

volunme = QROVB(' YDirection', 0., 1.)

; Qutput results.
PRI NT, 'Resulting Volunme: ', volune

END

Integrating to Determine the Mass of a Volume (Triple
Integration)

Thisexampl e evaluates the mass of avolume by using the following triple integration
on a three-dimensional equation representing its density:

111 5,
mass = I I I (9x7y” + 8xyz + 1)dxdydz
070%0

The density of avolumeisdefined by athree-dimensional equation. The mass of this
volume can be determined by performing atriple integration over a specific region
(boundary). This example performs the triple integration over the range 0 to 1 in the
x-direction, 0 to 1in they-direction, and O to 1 in the z-direction. The correct solution
to thisintegration is 3.

Using Double and Triple Integration What's New in IDL 5.5

Chapter 7: New Examples 383

This example program is made up of six routines: the main routine, the integration in
the z-direction, the second integration of the xy coefficient, the second integration of
the second x?y? coefficient, the third integration in the x coefficient, and the third
integration in the x2 coefficient. The main routine is the last routine in the program.
The file containing this program should be named the same as the main routine.

FUNCTI ON XSquar edCoef, x
; Integration of the x squared coefficient.
thirdintegration = 9. *x"2
RETURN, thirdlntegration

END

FUNCTI ON XCoef, x
; Integration of the linear x coefficient.
thirdintegration = x
RETURN, thirdlntegration

END

FUNCTI ON XSquar edYSquar edCoef , y
; Integration of the y squared coefficient.
secondl ntegrati on = QROVB(' XSquar edCoef', 0., 1.)*y"2
RETURN, secondl nt egration

END

FUNCTI ON XYCoef, y
; Integration of the linear y coefficient.
secondl ntegrati on = QROVB(' XCoef', 0., 1.)*y
RETURN, secondl nt egration

END

FUNCTION ZDi rection, z
; Re-write equation to consider all the x and y
; coefficients.
firstintegration = QROVMB(' XSquar edYSquar edCoef', 0., 1.) + $
8. *(QROVB(' XYCoef', 0., 1.))*z + 1.
RETURN, firstlntegration

END

What's New in IDL 5.5 Using Double and Triple Integration

384 Chapter 7: New Examples

PRO Tripl el ntegration

Determ ne the mass of the density represented
; by 9x"2y~2 + 8xyz + 1 over a specific region.
mass = QROVB(' ZDirection', 0., 1.)

; Qutput results.
PRI NT, 'Resulting Mass: ', mmss

END

Using Double and Triple Integration What's New in IDL 5.5

Chapter 7: New Examples 385

Obtaining Irregular Grid Intervals

The XOUT and YOUT keywords allow you to obtain an irregular interval from the
TRIGRID routine. This example creates an irregularly-gridded dataset of a Gaussian
surface. A grid isformed from these points with the TRIANGULATE and TRIGRID
routines. The inputs to the XOUT and YOUT keywords are determined at random to
produce an irregular interval. These inputs are sorted before setting them to XOUT
and YOUT because these keywords reguire monotonically ascending or descending
values. Thelines of theresulting surface are spaced at the irregular intervals provided
by the settings of the XOUT and YOUT keywords. See TRIANGULATE and
TRIGRID in the IDL Reference Guide for more information on these routines.

PRO Griddi nglrregularlntervals

; Make 100 normal x, y points:
x = RANDOWN(seed, 100)
y = RANDOWN(seed, 100)
PRINT, M N(x), MAX(x)
PRI NT, MN(y), MAX(y)

; Make a Gaussian surface:
z = EXP(-(x"2 + y"2))

; Obtain triangulation:
TRI ANGULATE, x, y, triangles, boundary

; Create random x values. These values will be used to
; formthe x locations of the resulting grid.

gri dX = RANDOWN(seed, 30)

; Sort x values. Sorted values are required for the XOUT
; keyword.

sortX = UNIQ(gridX, SORT(gridX))

gridX = gridX[sortX]

; Output sorted x values to be used with the XOQUT

; keyword.

PRI NT, 'gridX:'

PRI NT, gridX

; Create randomy values. These values will be used to
; formthe y locations of the resulting grid.

gridY = RANDOWN(seed, 30)

; Sort y values. Sorted values are required for the YOUT
; keyword.

sortY = UNIQ(gridY, SORT(gridY))

gridY = gridY[sortY]

; Output sorted y values to be used with the YOQUT

What's New in IDL 5.5 Obtaining Irregular Grid Intervals

386

Chapter 7: New Examples

; keyword.
PRI NT, 'gridY:'
PRI NT, gridY

; Derive grid of initial values. The location of the

; resulting grid points are the inputs to the XOUT and

; YOUT keywords.

grid = TRGRID(x, vy, z, triangles, XOUT = gridX $
YOUT = gridY, EXTRAPOLATE = boundary)

; Display resulting grid. The grid lines are not

; at regul ar intervals because of the randomess of the
; inputs to the XOUT and YOUT keywords.

SURFACE, grid, gridX, gridyY, /XSTYLE, /YSTYLE

END

A possible result for this exampleis shown in the following figure.

:IDL D [H[=] B3

Figure 7-14: A Possible Irregular Interval Result

Obtaining Irregular Grid Intervals What's New in IDL 5.5

Chapter 7: New Examples 387

Calculating Incomplete Beta and Gamma
Functions

Tolerance controls allow you to calculate the accuracy of the incomplete beta and
gamma functions. More accuracy usually provides better results, but can cause
slower computation speeds. If faster speeds are important, a less accurate cal culation
may be more desirable. This trade-off can be maintained through tolerances.

Iteration controls alow you to expand the computation enough to convergeto a
result. Calculation of these functions may not converge to a result within the default
number of iterations. If the number of iterationsisincreased, the calculation may
converge.

This section includes the following topics:

* “Working With Tolerances in the Incomplete Beta Function” in the following
section

* “Working With Iteration Controlsin the Incomplete Gamma Function” on
page 388

Working With Tolerances in the Incomplete Beta Function

This example shows the difference in accuracy between the incompl ete beta function
computed with a low tolerance and the incompl ete beta function computed with a
high tolerance. The resulting surfaces show the relative errors of each. The relative
error of the low tolerance ranges from 0 to 0.002 percent. The relative error of the
high tolerance ranges from 0 to 0.0000000004 percent.

PRO Usi ngl BETAwi t hEPS

Define an array of paranmetric exponents.
paraneter A = (DI NDGEN(101)/100. + 1.D) # REPLI CATE(1.D, 101)
par amet er B = REPLI CATE(1.D, 101) # (DI NDGEN(101)/10. + 1.D)

Define the upper limts of integration.
upperLimts = REPLI CATE(O. 1D, 101, 101)

Conpute the inconplete beta functions.
bet aFuncti ons = | BETA(paraneter A, paraneterB, $
upperLimts)

Conpute the inconplete beta functions with a | ess

accurate tol erance set.
| aBet aFuncti ons = | BETA(par anet er A, paraneterB, $

What's New in IDL 5.5 Calculating Incomplete Beta and Gamma Functions

388 Chapter 7: New Examples

upperLinmts, EPS = 3.0e-4)

; Conpute relative error.
relativeError = 100.* $
ABS((bet aFuncti ons - | aBetaFunctions)/betaFunctions)

; Display resulting relative error.

WNDOW O, TITLE = 'Conpare |IBETA with Less Accurate EPS

SURFACE, rel ativeError, paraneterA, paranmeterB, $
/| XSTYLE, /YSTYLE, TITLE = 'Rel ative Error', $
XTITLE = ' Parameter A, YTITLE = 'Paraneter B
ZTI TLE "Percent Error (%', CHARSIZE = 1.5

. %

; Conpute the inconplete beta functions with a nore

; accurate tol erance set..

maBet aFuncti ons = | BETA(par anet er A, paraneterB, $
upperlLinmits, EPS = 3. 0e-10)

; Conpute relative error.
relativeError = 100.* $
ABS((maBet aFuncti ons - betaFunctions)/ maBet aFuncti ons)

; Display resulting relative error.
W NDOW 1, TITLE = ' Conpare | BETA with Mire Accurate EPS
SURFACE, rel ativeError, paraneterA, paranmeterB, $

/| XSTYLE, /YSTYLE, TITLE = 'Rel ative Error', $

XTI TLE = ' Paraneter A, YTITLE = 'Paraneter B', $
ZTITLE = 'Percent Error (%', CHARSIZE = 1.5
END

Working With Iteration Controls in the Incomplete Gamma
Function

This example shows how increasing the maximum number of iterations can change
the outcome of computing the incomplete gamma function. Normally, the cal culation
of theincomplete gammafunction will not converge within 100 iterations (the default
number of iterations) when the parametric exponent is set to 400 and the upper limit
isset to 400. The ITMAX keyword to the IGAMMA routineis set to 200 to alow the
calculation to converge to a value of 0.506686 within 101 iterations.

PRO Usi ngl GAMVAWI t hl TMAX

; Define paranetric exponent.
par ameter A = 400.

; Define the upper limt of integration.

Calculating Incomplete Beta and Gamma Functions What's New in IDL 5.5

Chapter 7: New Examples 389

upperLinmts = 400.

; NOTE: with the above parameter and limt, | GAMVA will
; not converge unless the number of iterations is
; increased above the default of 100.

; Conpute the inconplete ganma functi on.
gammaFunction = | GAMVA(par aneter A, upperlLimts, $
| TMAX = 200, |TER = nunberlteration)

; Qut put results.

PRI NT, 'Resulting Gamma Function: ', gammaFunction
PRI NT, 'Nunber of Iterations: ', nunberlteration
END

What's New in IDL 5.5 Calculating Incomplete Beta and Gamma Functions

390 Chapter 7: New Examples

Determining Bessel Function Accuracy

Different orders between Bessel functions have recurrence relationships to each
other. These relationships can be used to determine how accurately IDL is computing
the Bessel functions. In the following examples, the recurrence relationships at each
order are set to zero and the left side of the equations are plotted. These plots show
how close the left side of the equations are to zero, and therefore, how accurate the
Bessel functions are computed within IDL.

This section includes the following topics:
» “Analyzing the Bessel Function of the First Kind” in the following section
* “Anayzing the Bessel Function of the Second Kind” on page 392
* “Anayzing the Modified Bessel Function of the First Kind” on page 394
* “Anayzing the Modified Bessel Function of the Second Kind” on page 396

Analyzing the Bessel Function of the First Kind

This example uses the following recurrence relationship:
X(J,_1(X)+ 3,4 1(X))=2nJ(x) = O

where J(x) isthe Bessel function of the first kind of order n—1, n, or n+ 1. The
resulting plots are for n equal to 1 through 6. All of these plots show that this Bessel
function is calculated within machine tolerance.

PRO Anal yzi ngBESELJ

Derive x val ues.
x = (DI NDGEN(1000) + 1.)/100.

Initialize display w ndow.
W NDOW 0, TITLE = 'Bessel Functions'

Display the first 8 orders of the Bessel function of
; the first kind.
PLOT, x, BESELJ(x, 0), /XSTYLE, /YSTYLE, $
XTITLE = 'x', YTITLE = "f(x)', $
TI TLE = ' Bessel Functions of the First Kind'

OPLOT, x, BESELJ(x, 1), LINESTYLE =1
OPLOT, x, BESELJ(X, 2), LINESTYLE = 2
OPLOT, x, BESELJ(x, 3), LINESTYLE = 3
OPLOT, x, BESELJ(x, 4), LINESTYLE = 4
OPLOT, x, BESELJ(x, 5), LINESTYLE =5

Determining Bessel Function Accuracy What's New in IDL 5.5

Chapter 7: New Examples 391

OPLOT, x, BESELJ(x, 6), LINESTYLE
OPLOT, x, BESELJ(x, 7), LINESTYLE

0
1

; Initialize display window for recurrence rel ations.
W NDOW 1, XSIZE = 896, YSIZE = 512, $

TITLE = ' Testing the Recurrence Rel ations'
I'P. MULTI [0, 2, 3, 0, 0]

; Initialize title variable.
nString =['0, "2", 2", "3, "4, '5 ['6", '7]

; Display recurrence rel ationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n =1, 6 DO BEG N
equation = x*(BESELJ(x, (n - 1)) + $
BESELJ(x, (n + 1))) - 2.*FLOAT(n)*BESELJ(x, n)
PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $

TITLE ='n =" + nString[n] +"': Orders of ' + $
nString[n - 1] + ', ' + nString[n] +', and ' + %
nString[n + 1]
PRINT, 'n ="' + nString[n] +'
PRINT, 'minimum=", M N(equation)
PRI NT, 'nmaximum ="', MAX(equation)
ENDFOR

; Return display window back to its default setting, one
; display per w ndow.
I'P. MULTI =0

END

What's New in IDL 5.5 Determining Bessel Function Accuracy

392

Chapter 7: New Examples

The results for this example are shown in the following figure.

n = 1: Diders of 0O,

1, ond 2

n= 3 Orders of 1, 2, ond 3

|_5!1D_15 E
roeip” SR

sovin S E

ERST]

|,UND_15 E

z a

n = 3 Orders of 2,

& & 1o

3, and 4

FA T o

-serp "B E

7 4

n = G Orders of 4,

& & e

5, and &

n =6 Ordersal G, 6 and 7

5™

—5vip” "8

—teipm 1%

1ot 15

5\"5715

—gv1p 18

Figure 7-15: Recurrence Relationship for J(x)

Analyzing the Bessel Function of the Second Kind

This example uses the following recurrence relationship:

X(Yo1(X)+Y, ,1(X))=2nY (x) = O

n+1

where Y(x) isthe Bessel function of the second kind of order n- 1, n,or n+ 1. The
resulting plots are for n equal to 1 through 6. All of these plots show that this Bessel
function is calculated within machine tolerance.

PRO Anal yzi ngBESELY

; Derive x val ues.
x = (DI NDGEN(1000) + 1.)/200. + 5.

; Initialize display w ndow.
W NDOW 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of

; the second kind.
PLOT, x, BESELY(X,

0), /XSTYLE, $

Determining Bessel Function Accuracy What's New in IDL 5.5

Chapter 7: New Examples

/ YSTYLE, YRANGE = [-1.3, 0.4],
XTITLE = 'x', YTITLE = 'f(x)"',
TI TLE = ' Bessel Functions of the Second Kind'

OPLOT, x, BESELY(x, 1)

OPLOT, x, BESELY(x, 2)
OPLOT, x, BESELY(x, 3)
OPLOT, x, BESELY(x, 4)
OPLOT, x, BESELY(x, 5)
OPLOT, x, BESELY(xX, 6)
OPLOT, x, BESELY(x, 7)

LI NESTYLE
LI NESTYLE
LI NESTYLE
LI NESTYLE
LI NESTYLE
LI NESTYLE
LI NESTYLE

; Initialize display wi ndow for r
W NDOW 1, XSIZE = 896, YSIZE = 512, $

TI TLE
I'P. MULTI

; Initialize title variable.

nString = ['0, '1',

‘o

-

393

$
$

| T | O VO { B 1 |
PO h~WDNLER

ecurrence rel ations.

'Testing the Recurrence Rel ations'
[0, 2, 3, 0, 0] ; for

mul tiple displays

, '5', "6, 7]

; Display recurrence rel ationships for order 1 to 6.
; NOTE: the results of these relationships should be

; very close to zero.
FOR n =1, 6 DO BEG N

equation = x*(BESELY(x, (n - 1)) + $
BESELY(X, (n + 1))) - 2.*FL

QAT(n) *BESELY(X, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE ='n =" + nString[n] +': Orders of ' + $
nString[n - 1] + ', ' + nString[n] +', and ' + %
nString[n + 1]

PRINT, 'n ="' + nString[n] +'

PRINT, 'minimum=", M N(equation)

PRI NT, 'nmaximum ="', MAX(equation)

ENDFOR

; Return display window back to its default setting, one

; display per w ndow.
I'P. MULTI =0

END

What's New in IDL 5.5

Determining Bessel Function Accuracy

394 Chapter 7: New Examples

The results for this example are shown in the following figure.

n = 1: Diders of 0, 1, ond 2 n= 3 Orders of 1, 2, ond 3

3\(1D715 -
7!1[}_15 -
term SR

—teip™ "

—pwip 3R

5
seip” B ||
7"‘[)_15

—peip 1%

7 & E 0

no= 3 Orders of 2, 3, and 4 ho=4; Ordersof 3,4, and 5

—awipT 8L
—ger "B 1 v
] 7]] 10

n =% Orders of 4, 5, and B n =B Orders of §, 6 and 7

160719

s 1%

—5eip 8

—1wip” 1%

Figure 7-16: Recurrence Relationship for Y(x)

Analyzing the Modified Bessel Function of the First Kind

This example uses the following recurrence relationship:
X(1q_1(X)=1,41(X))=2nl,(x) = 0

where I(X) isthe modified Bessel function of the first kind of order n- 1, n,orn+ 1.
The resulting plots are for n equal to 1 through 6. All of these plots show that this
Bessel function is calculated within machine tolerance.

PRO Anal yzi ngBESELI

; Derive x val ues.
X = (DI NDGEN(1000) + 1.)/200.

; Initialize display w ndow.
WNDOW O, TITLE = ' Modified Bessel Functions'

; Display the first 8 orders of the nodified Bessel

; function of the first kind.
PLOT, x, BESELI(x, 0), /XSTYLE, /YSTYLE, $

Determining Bessel Function Accuracy What's New in IDL 5.5

Chapter 7: New Examples 395

XTITLE = "x', YTITLE = "f(x)"',

TITLE = ' Modi fi ed Bessel Functions of the First Kind'

$

o
OPLOT, x, BESELI(x, 1), LINESTYLE =1
OPLOT, x, BESELI(x, 2), LINESTYLE = 2
OPLOT, x, BESELI(x, 3), LINESTYLE = 3
OPLOT, x, BESELI(x, 4), LINESTYLE = 4
OPLOT, x, BESELI(x, 5), LINESTYLE =5
OPLOT, x, BESELI(x, 6), LINESTYLE = 0
OPLOT, x, BESELI(x, 7), LINESTYLE =1

; Initialize display window for recurrence rel ations.
W NDOW 1, XSIZE = 896, YSIZE = 512, $

TITLE = ' Testing the Recurrence Rel ations'
I P. MULTI [0, 2, 3, 0, 0]

 Initialize title variable.
nString =['0, "2", 2", "3, "4, '5 ["6, '7]

; Display recurrence rel ationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n =1, 6 DO BEG N
equation = x*(BESELI(x, (n - 1)) - $
BESELI (x, (n + 1))) - 2.*FLOAT(n)*BESELI (x, n)
PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $

TITLE ='n =" + nString[n] +': Orders of ' + $
nString[n - 1] + ', ' + nString[n] +', and ' + $
nString[n + 1]
PRINT, 'n ="' + nString[n] +'
PRINT, 'minimum=", M N(equation)
PRI NT, 'nmaximum ="', MAX(equation)
ENDFOR

; Return display window back to its default setting, one
; display per w ndow.
I'P. MULTI =0

END

What's New in IDL 5.5 Determining Bessel Function Accuracy

396 Chapter 7: New Examples

The results for this example are shown in the following figure.

n = 1: Diders of 0, 1, ond 2 n= 3 Orders of 1, 2, ond 3
e M
e M
peipT L
1
o i)
o
T
14
el
— 14
—2eip”
e L
1 2 3 4 5 1 F 3 4 5
h = 3 Orders of 2, 3, and 4 o= d; Orders of 3, 4, and 5
1‘{‘57117
e ME
S 1SR
: y 0 e
~15
'nHD“‘1 E -IE E
_1Y||}_1‘—
_7!10‘1‘ E
1 H 3 4 E 1 z 3 4 5
n =5 rderz of 4,5, and @ n =B Orders of 5§, B, and 7
g™ 180 1weipm 15
PPN 11 i
o Y o s
_oeip-"SE e S E
_avipm 5L _avip 15E
1 2 3 4 5 [z 3 4 5

Figure 7-17: Recurrence Relationship for I(x)

Analyzing the Modified Bessel Function of the Second Kind

This example uses the following recurrence relationship:

X(K,_1(X) =K, 1(x)) +2nK (x) = 0

where K(x) isthe modified Bessel function of the second kind of order n- 1, n, or n +
1. The resulting plots are for n equal to 1 through 6. All of these plots show that this
Bessel function is calculated within machine tolerance.

PRO Anal yzi ngBESELK

; Derive x val ues.
x = (DI NDGEN(1000) + 1.)/200. + 5.

; Initialize display w ndow.
WNDOW O, TITLE = ' Modified Bessel Functions'

; Display the first 8 orders of the nodified Bessel

; function of the second kind.
PLOT, x, BESELK(x, 0), /XSTYLE, /YSTYLE, $

Determining Bessel Function Accuracy What's New in IDL 5.5

Chapter 7: New Examples 397

XTITLE = 'x', YTITLE = 'f(x)"',

TITLE = ' Modi fi ed Bessel Functions of the Second Ki nd'

$

o
OPLOT, x, BESELK(x, 1), LINESTYLE =1
OPLOT, x, BESELK(x, 2), LINESTYLE = 2
OPLOT, x, BESELK(x, 3), LINESTYLE = 3
OPLOT, x, BESELK(x, 4), LINESTYLE = 4
OPLOT, x, BESELK(x, 5), LINESTYLE =5
OPLOT, x, BESELK(x, 6), LINESTYLE = 0
OPLOT, x, BESELK(x, 7), LINESTYLE =1

; Initialize display window for recurrence rel ations.
W NDOW 1, XSIZE = 896, YSIZE = 512, $

TITLE = ' Testing the Recurrence Rel ations'
I'P. MULTI [0, 2, 3, 0, 0] ; for multiple displays

 Initialize title variable.
nString =['0, "2", 2", "3, "4, '5 ["6, '7]

; Display recurrence rel ationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n =1, 6 DO BEG N
equation = x*(BESELK(x, (n - 1)) - $
BESELK(x, (n + 1))) + 2.*FLOAT(n)*BESELK(x, n)
PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $

TITLE ='n =" + nString[n] +': Orders of ' + $
nString[n - 1] + ', ' + nString[n] +', and ' + $
nString[n + 1]
PRINT, 'n ="' + nString[n] +'
PRINT, 'minimum=", M N(equation)
PRI NT, 'nmaximum ="', MAX(equation)
ENDFOR

; Return display window back to its default setting, one
; display per w ndow.
I'P. MULTI =0

END

What's New in IDL 5.5 Determining Bessel Function Accuracy

398 Chapter 7: New Examples

The results for this example are shown in the following figure.

n = 1: Diders of 0, 1, ond 2 n= 3 Orders of 1, 2, ond 3
sovip” 1P 3
g 1B 3 L
P o i
—13
[RERTY 4
—1pep 3
—5uip” 1B -
2T 8 E
[7]) 10 [7 &] 0
h = 3 Orders of 2, 3, and 4 o= d; Orders of 3, 4, and 5
p 1T E
Terpm 17 E A
EEzT i
5vip~ 1B 3
]
| -
o ey Bl
_r
_5”0_13 Eradit
] 7]] 10 5 7 &] i
n =5 rderz of 4,5, and @ n =B Orders of 5§, B, and 7
— 16
2018 3
sy 15
1,510 E|
=17
2¢10 spep 18 E
o saen 17 E
e "7 © riberny
—17
_aeg 1T ERA Rl E
—1.0vp 18 E|

Figure 7-18: Recurrence Relationship for K(x)

Determining Bessel Function Accuracy What's New in IDL 5.5

Index

Symbols addi.ng software functionality. See COM ob-
. jects
sav file aphablending, 328
creating, 363, 364—365 aphachannel, 328
restoring, 363, 365 animating
.sid imagefiles, 181 isosurfaces, 57
volumes, 57
array
A creation routines, 135
ActiveX, IDL hosting manipulation routines, 136
COM uses, 139
creating control, 150
destroying control, 151 B
dispatch, 150 backprojection
embedded control, 138, 152 Hough, 374
event propagation, 156 Radon, 376
instantiating, 149
overview, 40

What's New in IDL 5.5 399

400

base widget shortcut menu
adding, 160
creating, 158
BESELI function, 394
BESEL J function, 390
BESELK function, 396
BESELY function, 392
Bessdl functions
first kind, 390
modified first kind, 390, 394
modified second kind, 390, 396
recurrence relationship, 390-392, 394—396
second kind, 390—-392
beta function, 387
binary, unary operators, 134
building software components. See COM ob-
jects
byte swapping routines, 136

C

centering image objects, 325
clipboard object, 351, 355
clipping meshes, 333
COM objects
ActiveX, IDL hosting, 139
class and program identifiers, 140, 149
creating, 176
example, 145
| Dispatch management, 142
IDLcomlDispatch object class, 176
naming conventions, 142, 149
naming scheme, 140
overview, 138
pointers, 145
reference counting, 144
referencing other COM objects, 145
uses, 138
component object model. See COM objects
computation speed. See multi-threading
connectivity list, 332—333

Index

context sensitive menu. See shortcut menus
convex hulls, 276

coordinate conversion, 325

copying to aclipboard, 351

CPU procedure, 194

creating a .sav file, 363, 364—365

D

data type conversion routines, 135

decimating amesh, 336

DEFINE_MSGBLK procedure, 197

DEFINE_MSGBLK_FROM_FILE procedure,

200

deleting aregion of interest, 315

display capture in Direct Graphics
PseudoColor, 359
TrueColor, 359—360

draw widget shortcut menu, 162

E

efficiency improvements. See multi-threading
encapsulated PostScript file, 351, 355
Enhanced Metafile, 351, 355

ERF function, 203

ERFC function, 204

ERFCX function, 205

event handler, 368

E

FFT
inverse transform, 379
transform, 379
file status, 32
FILE_INFO function, 206
FILE_SEARCH function, 210
format code
A, 31

What's New in IDL 5.5

C(, 31
column moves, 31
D, 31
E, 31
F, 31
G, 31
1,31
0,31
open parenthesis, 31
T,31
TL, 31
TR, 31
X, 31
Z,31
freeing
heap variables, 264
pointers, 151, 264
resources, 151

G

gamma function, 387—388
generating tetrahedral meshes, 13
GRID_INPUT procedure, 224
GRIDDATA function, 228
gridding irregular intervals, 385

H

HDF_VD_ATTRFIND function, 253
HDF_VD_ATTRINFO procedure, 254
HDF_VD_ATTRSET procedure, 256
HDF_VD_ISATTR function, 262
HDF_VD_NATTRS function, 263
heap variables

freeing, 264
HEAP_FREE procedure, 264
high resolution textures, 12
histogram view of ROI, 311

What's New in IDL 5.5

401

hosting ActiveX in IDL. See ActiveX, IDL
hosting
Hough
backprojection, 374
transform, 374

/

IBETA function, 387
IDispatch
COM Class ID, 140
COM Program ID, 140
get and set properties, 144
interface, 138
managing COM objects, 142
naming conventions, 142
pointer handling, 145
IDLcomlIDispatch
GetProperty method, 179
Init method, 177
object class, 176
SetProperty method, 180
IDLffMrSID
Cleanup method, 182
GetDimsAtLevel method, 183
Getl mageData method, 185
GetProperty method, 188
Init method, 191
object class, 181
IGAMMA function, 388
image object
centering, 325
transparent, 328
image processing routines, 135
incompl ete beta function, 387
incompl ete gamma function, 387-388
indexed image, 359
integration
double, 381
triple, 381-382

Index

402

interpolation
dependent variable to volume, 271
scattered data to regular, 228
INTERVAL_VOLUME procedure, 267
iteration controls, 388

L

limit relaxed
32-bit IDL, 27
A format code, 31
format code column, 31
format codes repetition count, 31
formatted 1/0O, 31
linear programming solutions, 287
list widget shortcut menu, 166

M

mapping images onto geometry, 322
mathematical routines, 134
merging meshes, 339
MESH_OBJ procedure, 336, 345
meshes
advanced example, 345
clipping, 333
decimating, 336
merging, 339
smoothing, 342
message block support, 28
modified Bessel functions
See also Bessel functions.
first kind, 390, 394
second kind, 390, 396
MrSID image files
deleting, 182
dimensions, 183
extracting data, 185
loading, 181
query, 181

Index

query properties, 188
multi-threading

array creation routines, 135

array manipulation routines, 136

byte swapping support, 136

calculation speed, 126

controlling with CPU procedure, 129

data type conversion routines, 135

disabling with CPU procedure, 129

image processing routines, 135

math routines, 134

operators, 134

overriding default use, 126, 133

overview, 20

N

naming conventions. See COM objects

(@)

object class enhancements, 60
obsolete routines, 122

obsoleted features, 122

OLE/COM Ohbject Viewer, 141
optimal feasible vector, 287
overriding multi-threading, 128, 133

P

path separation delimiters, 270
path specification, 210
PATH_SEP function, 270
performance enhancements, 20
PICT file, 351, 355
platforms supported, 124
pointers
COM object use, 145
freeing, 264

What's New in IDL 5.5

polygon object
See also meshes.
advanced example, 345
clipping meshes, 333
decimating meshes, 336
displaying meshes, 332
merging meshes, 339
smoothing meshes, 342
pop-up menu. See shortcut menus
PostScript file, 351, 355
printer object, 351, 353, 357
processing speed. See multi-threading
PseudoColor, 359

Q

QGRID3 function, 271
QHULL procedure, 276

QROMB function, 381

QROMO function, 381

QSIMP function, 381
QUERY_MRSID function, 279

R

Radon

backprojection, 376

transform, 376
READ_MRSID function, 281
REAL_PART function, 283
recursive file searching, 210
reference counting methodology, 144
referencing COM abjects, 145
region growing

properties dialog, 312

REGION_GROW overview, 14
region of interest (ROI). See ROI
REGION_GROW function, 284
relaxed limits, 27—31
RESOLVE_ALL procedure, 366

What's New in IDL 5.5

resources
freeing, 151
system, 126
RESTORE procedure, 366
restoring a .sav file, 363, 365
retrieving image dimensions, 183
RGB image, 359
ROI
deleting, 315
geometric and statistical data, 303
growing, 14, 312
histogram view, 311
using XROI procedure, 303
routines enhanced, 72
routines obsoleted, 122

S

sav file
creating, 363, 364—365
restoring, 363, 365
SAVE procedure, 365—366
searching subdirectories, 210
selectable list menu, 166
shortcut menus
creating a base, 160
creating adraw widget, 162
creating a text widget, 170
deleting an ROI, 315
displaying, 159
events, 158
selectable lists, 166
.sid imagefiles, 181
SIMPLEX function, 287
simplex method, 287
smoothing meshes, 342
string length limits, 27
supported platforms, 124
system variable enhancements, 121

403

Index

404

T

table widget, 368
tetrahedral meshes, 13
text widget shortcut menu, 170
texture mapping, 322
thread pool. See multi-threading
tolerance, 387
transforms

FFT, 379

Hough, 374

inverse FFT, 379

Radon, 376
transparency

alphachannel, 328

image object, 328
TRIANGULATE function, 333, 385
triangulation

Delaunay, 276

scattered data points, 271
TRIGRID function, 385
TrueColor, 359—360
TVRD function, 359360
type conversion routines, 135

%4

vertices, 332, 336, 339, 342
viewplane rectangle, 325

Index

Voronoi diagrams, 276

w

WIDGET_ACTIVEX function, 291
WIDGET_DISPLAY CONTEXTMENU func-
tion, 298
WIDGET_TABLE, 368
widgets
aligning keywords, 292
calbacks, 293, 294
sensitizing and de-sensitizing, 295

X

XOBJWVIEW_ROTATE procedure, 300
XOBJVIEW_WRITE_IMAGE procedure, 302
XROI

growing aregion, 312

importing images, 310

procedure, 303

using, 309

Z
Z-buffer, 359

What's New in IDL 5.5

	Online Guide
	Contents
	Overview of New Features in IDL 5.5
	Visualization Enhancements
	High-Resolution Textures Supported by IDLgrSurface
	New Enhancements to XOBJVIEW
	New XOBJVIEW_ROTATE Procedure
	New XOBJVIEW_WRITE_IMAGE Procedure
	New Procedure for Generating Tetrahedral Data
	New Support for Region Growing
	New XROI Functionality
	New TrueColor Support for Any Depth on UNIX
	How IDL Selects a Visual Class
	Setting a Visual Class with the DEVICE Routine
	Setting a Default Visual Class in Your .Xdefaults File
	How Color is Interpreted for a TrueColor Visual

	New Support for Resolving Stitching Artifacts in Object Graphics
	New QUIET Keyword for RECON3
	New Keyword for Smoother Results Using WARP_TRI

	Analysis Enhancements
	The IDL Thread Pool and Multi-Threading
	What is Multi-Threading?
	Platform Support for Multi-Threading

	New Functionality for Gridding and Interpolation
	New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL
	New REAL_PART Function
	New ERF, ERFC, and ERFCX Functions
	Support for SIMPLEX Method for Linear Programming
	BESELI, BESELJ, BESELK and BESELY Functionality Improvements
	New NaN Support for SMOOTH and CONVOL
	New LNORM Keyword for COND and NORM
	New DOUBLE Keyword for POLY_AREA
	New STATUS Keyword for POLYWARP Support
	New ACOS, ASIN, ATAN Support for Complex Input
	ATAN Function Support

	New Minimum/Maximum Operator Support for Complex Data
	New SMOOTH Function Multidimensional Width Support
	Example

	New Dimension-specific Transforming for FFT
	New Dimension-setting functionality for Arrays
	Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP
	New Histogram Cumulative Probability Distribution Functionality

	Language Enhancements
	Maximum String Length Limit Increased for 32-Bit IDL
	New MESSAGE Keywords and Message Block Support
	Example Using MESSAGE (Pre-IDL 5.5)
	New Message Block Support in IDL 5.5
	DEFINE_MSGBLK Example
	Example Using DEFINE_MSGBLK_FROM_FILE

	Relaxed Formatted Input/Output Record Length Limits
	New and Enhanced File Handling Routines
	New Functionality Frees Dynamic Resources
	New Ability to Check for Keyword Inheritance Errors
	Enhancements to IDL Path Expansion
	New Support for REFORM-Style Dimension Array
	New DOUBLE Keyword for COMPLEX
	New CENTER Keyword for CONGRID
	New SIGN Keyword for FINITE
	Improvements to Files Created with SAVE
	Improvements to UNIX Filename Expansion
	Pre-IDL 4.0 C Internals Compatibility Library Removed

	User Interface Toolkit Enhancements
	New COM and ActiveX Functionality for IDL
	New Shortcut Menu Widget
	Emulating System Colors in Application Widgets
	The WIDGET_SYSTEM_COLORS Structure

	New Functionality to Specify Slider Increments in IDL Widgets

	File Access Enhancements
	New PATH_SEP Function
	Enhanced TIFF Support
	Enhanced Support for 1-bit and 4-bit TIFF Images
	New Returned Information for TIFF Queries
	Improved TIFF Orientation Functionality
	New Unit-setting Functionality for WRITE_TIFF

	New Support for MrSID

	Development Environment Enhancements
	Improved Project Exporting

	Scientific Data Formats Enhancements
	HDF-EOS Data Output Enhancements
	New HDF Vdata Attribute Routines

	IDL ActiveX Control Enhancements
	Why Was a New Version of the Control Created?
	What Must You Change to Take Advantage of the Control?
	What About the Previous ActiveX Control?
	Why Should You Upgrade?

	IDL DataMiner Enhancements
	Platform Specific Information

	Documentation Enhancements
	Enhanced IDL Utilities
	Enhanced IDL Utilities
	New Keywords/Arguments to Existing IDL Utilities
	XOBJVIEW
	XROI

	New and Enhanced IDL Objects
	New Object Classes
	IDL Object Method Enhancements

	New and Enhanced IDL Routines
	New IDL Routines
	IDL Routine Enhancements
	Updates to Executive Commands

	New and Updated System Variables
	Features Obsoleted
	Obsoleted Routines
	Obsoleted Keywords and Arguments

	Platforms Supported in this Release

	Multi-Threading in IDL
	The IDL Thread Pool
	Benefits of the IDL Thread Pool
	Possible Drawbacks to the Use of the IDL Thread Pool

	Controlling the Thread Pool in IDL
	Using the Initial Settings of the Thread Pool
	Programatically Controlling the Settings of the Thread Pool
	Controlling the Thread Pool Settings for a Session or Group of Computations
	Controlling the Thread Pool Settings for a Specific Computation

	Disabling the Thread Pool

	Routines Supporting the Thread Pool
	Binary and Unary Operators:
	Mathematical Routines:
	Image Processing Routines:
	Array Creation Routines:
	Non-string Data Type Conversion Routines:
	Array Manipulation Routines:
	Programming and IDL Control Routines:

	Using COM Objects in�IDL
	Introduction to IDL COM Objects
	Skills Required to Use COM Objects
	ActiveX

	IDL COM Naming Schemes
	About Obtaining COM Class Identifiers

	Using IDL IDispatch COM Objects
	IDL IDispatch Naming Schemes
	IDispatch Object Creation
	IDispatch Method Dispatching
	IDispatch COM Object Destruction
	IDispatch Property Management
	COM Objects Returning IDispatch Pointers to Other Objects
	Example: Creating an IDispatch COM Object in IDL

	Using ActiveX Controls in IDL
	ActiveX-based COM Naming Schemes
	ActiveX Control Creation
	ActiveX Control Access and Dispatching
	Freeing Dynamic Resources
	ActiveX Control Destruction
	Example: Embedding an ActiveX Control in IDL
	Example: Creating an Excel Spreadsheet in IDL

	Access to ActiveX Methods and Properties
	Event Propagation

	Using the Shortcut Menu Widget
	Introduction to the Shortcut Menu Widget
	Using WIDGET_DISPLAYCONTEXTMENU

	Creating a Base Widget Shortcut Menu
	Creating a Draw Widget Shortcut Menu
	Creating a List Widget Shortcut Menu
	Creating a Text Widget Shortcut Menu

	New Objects
	IDLcomIDispatch
	IDLcomIDispatch::Init
	IDLcomIDispatch::GetProperty
	IDLcomIDispatch::SetProperty

	IDLffMrSID
	IDLffMrSID::Cleanup
	IDLffMrSID::GetDimsAtLevel
	Level

	IDLffMrSID::GetImageData
	LEVEL
	SUB_RECT

	IDLffMrSID::GetProperty
	CHANNELS
	DIMENSIONS
	LEVELS
	PIXEL_TYPE
	TYPE
	GEO_VALID
	GEO_PROJTYPE
	GEO_ORIGIN
	GEO_RESOLUTION

	IDLffMrSID::Init
	Filename
	QUIET

	New IDL Routines
	CPU
	DEFINE_MSGBLK
	DEFINE_MSGBLK_FROM_FILE
	ERF
	ERFC
	ERFCX
	FILE_INFO
	FILE_SEARCH
	GRID_INPUT
	GRIDDATA
	HDF_VD_ATTRFIND
	HDF_VD_ATTRINFO
	HDF_VD_ATTRSET
	HDF_VD_ISATTR
	HDF_VD_NATTRS
	HEAP_FREE
	INTERVAL_VOLUME
	PATH_SEP
	QGRID3
	QHULL
	QUERY_MRSID
	READ_MRSID
	REAL_PART
	REGION_GROW
	SIMPLEX
	WIDGET_ACTIVEX
	WIDGET_DISPLAYCONTEXTMENU
	XOBJVIEW_ROTATE
	XOBJVIEW_WRITE_IMAGE
	XROI

	New Examples
	Overview of New Examples
	Mapping an Image Onto a Surface
	Centering an Image Object
	Alpha Blending: Creating a Transparent Image Object
	Working with Mesh Objects and Routines
	Clipping a Mesh
	Decimating a Mesh
	Merging Meshes
	Smoothing a Mesh
	Advanced Meshing: Combining Meshing Routines

	Copying and Printing Objects
	Copying a Plot Display to the Clipboard
	Printing a Plot Display
	Copying an Image Display to the Clipboard
	Printing an Image Display

	Capturing IDL Direct Graphics Displays
	Capturing Direct Graphics Displays on PseudoColor Devices
	Capturing Direct Graphics Displays on TrueColor Devices

	Creating and Restoring .sav Files
	Customizing and Saving an ASCII Template
	Saving and Restoring the XROI Utility and Image ROI Data

	Handling Table Widgets in GUIs
	Finding Straight Lines in Images
	Color Density Contrasting in an Image
	Removing Noise from an Image with FFT
	Using Double and Triple Integration
	Integrating to Determine the Volume Under a Surface (Double Integration)
	Integrating to Determine the Mass of a Volume (Triple Integration)

	Obtaining Irregular Grid Intervals
	Calculating Incomplete Beta and Gamma Functions
	Working With Tolerances in the Incomplete Beta Function
	Working With Iteration Controls in the Incomplete Gamma Function

	Determining Bessel Function Accuracy
	Analyzing the Bessel Function of the First Kind
	Analyzing the Bessel Function of the Second Kind
	Analyzing the Modified Bessel Function of the First Kind
	Analyzing the Modified Bessel Function of the Second Kind

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Z

