; $Id: a_correlate.pro,v 1.13 2001/01/15 22:27:59 scottm Exp $ ; Copyright (c) 1995-2001, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; A_CORRELATE ; ; PURPOSE: ; This function computes the autocorrelation Px(L) or autocovariance ; Rx(L) of a sample population X as a function of the lag (L). ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; Result = A_correlate(X, Lag) ; ; INPUTS: ; X: An n-element vector of type integer, float or double. ; ; LAG: A scalar or n-element vector, in the interval [-(n-2), (n-2)], ; of type integer that specifies the absolute distance(s) between ; indexed elements of X. ; ; KEYWORD PARAMETERS: ; COVARIANCE: If set to a non-zero value, the sample autocovariance ; is computed. ; ; DOUBLE: If set to a non-zero value, computations are done in ; double precision arithmetic. ; ; EXAMPLE ; Define an n-element sample population. ; x = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57] ; ; Compute the autocorrelation of X for LAG = -3, 0, 1, 3, 4, 8 ; lag = [-3, 0, 1, 3, 4, 8] ; result = a_correlate(x, lag) ; ; The result should be: ; [0.0146185, 1.00000, 0.810879, 0.0146185, -0.325279, -0.151684] ; ; PROCEDURE: ; See computational formula published in IDL manual. ; ; REFERENCE: ; INTRODUCTION TO STATISTICAL TIME SERIES ; Wayne A. Fuller ; ISBN 0-471-28715-6 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, October 1994 ; Modified: GGS, RSI, August 1995 ; Corrected a condition which excluded the last term of the ; time-series. ; Modified: GGS, RSI, April 1996 ; Simplified AUTO_COV function. Added DOUBLE keyword. ; Modified keyword checking and use of double precision. ;- FUNCTION Auto_Cov, X, M, nX, Double = Double, XMEAN=Xmean ;Sample autocovariance function. if n_elements(Xmean) eq 0 then $ ;Compute mean if undefined. Xmean = TOTAL(X, Double = Double) / nX RETURN, TOTAL((X[0:nX - M - 1L] - Xmean) * (X[M:nX - 1L] - Xmean), $ Double = Double) END FUNCTION A_Correlate, X, Lag, Covariance = Covariance, Double = Double ;Compute the sample-autocorrelation or autocovariance of (Xt, Xt+l) ;as a function of the lag (l). ON_ERROR, 2 TypeX = SIZE(X) nX = TypeX[TypeX[0]+2] ;Check length. if nX lt 2 then $ MESSAGE, "X array must contain 2 or more elements." ;If the DOUBLE keyword is not set then the internal precision and ;result are identical to the type of input. if N_ELEMENTS(Double) eq 0 then $ Double = (TypeX[TypeX[0]+1] eq 5) nLag = N_ELEMENTS(Lag) if nLag eq 1 then Lag = [Lag] ;Create a 1-element vector. if Double eq 0 then Auto = FLTARR(nLag) else Auto = DBLARR(nLag) if KEYWORD_SET(Covariance) eq 0 then begin ;Compute Autocorrelation. for k = 0, nLag-1 do $ Auto[k] = Auto_Cov(X, ABS(Lag[k]), nX, Double = Double, XMEAN=xm) Auto = Auto / Auto_Cov(X, 0L, nX, Double = Double, XMEAN=xm) endif else begin ;Compute Autocovariance. for k = 0, nLag-1 do $ Auto[k] = Auto_Cov(X, ABS(Lag[k]), nX, Double = Double, XMEAN=xm) / nX endelse if Double eq 0 then RETURN, FLOAT(Auto) else $ RETURN, Auto END