# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include include include include include include "help.h" include "helpdir.h" .help helpdb .nf ___________________________________________________________________________ HELPDB -- Code to manage the help database. The help database is a set of compiled package help directories. Each help directory file is compiled with HD_OPEN and the resultant structure is saved in the database, indexed by the name of the directory file. At run time, instead of opening and interpreting multiple help directory files to expand templates, we merely read in the compiled database and search the index for the entry for the named package, returning a pointer to the compiled help directory structure for the package. The help database must be recompiled with HDB_COMPILE whenever the system help directory or a package help directory is modified. hdb_compile (root_helpdir_filename, database_filename) db = hdb_open (database) hdb_close (db) hp = hdb_load (db, help_directory_file) hdb_free (db, hp) There is no provision for updating the database; the whole thing must be recompiled with HDB_COMPILE. At HELP time the root help directory is opened with HDB_OPEN, naming either a raw root help directory file or a compiled help database file. Normally a precompiled help database is used, but if desired the help directory files will be accessed directly. The directory for an individual package is accessed with HDB_LOAD, which is functionally equivalent to HD_OPEN (helpdir.x). HDB_FREE is functionally equivalent to HD_CLOSE. Currently the entire database is read into memory to speed up database searches. In the future this implementation should be changed to use the DBIO faciltities if the database becomes large. .endhelp ______________________________________________________________________ define DATA_OFFSET 513 # offset to data area, chars define MAX_ENTRIES 100 # initial max db entries define INC_ENTRIES 50 # increment if overflow define MAX_DEPTH 20 # max nesting of packages define MAX_MENUSIZE 500 # max modules in a table define MAX_NAMELEN 20 # max chars in a module name in table define FIRST_COL 6 # indentation of tables # Help database header structure. Stored at the beginning of a help # database file. define LEN_HDBHEADER 14 define HDB_MAGICVAL 110104B define HDB_MAGIC Memi[$1] # helpdb file type code define HDB_RAW Memi[$1+1] # access compiled or raw database define HDB_RHD Memi[$1+2] # if raw, HP of root help directory define HDB_INDEX Memi[$1+3] # index of root help directory define HDB_CRDATE Meml[$1+4] # creation date define HDB_NENTRIES Memi[$1+5] # number of help directories in db define HDB_MAXENTRIES Memi[$1+6] # maximum no. of help directories in db define HDB_NMODULES Memi[$1+7] # count of the total number of modules define HDB_INDEXOFFSET Meml[$1+8] # file offset of index, chars define HDB_INDEXPTR Memi[$1+9] # pointer to loaded index, ty_struct define HDB_INDEXLEN Memi[$1+10] # length of index structure, su define HDB_DATAOFFSET Meml[$1+11] # file offset of data area, chars define HDB_DATAPTR Memi[$1+12] # pointer to loaded data area, ty_struct define HDB_DATALEN Memi[$1+13] # length of data area, struct units # Index structure. Identifies the contents of the database and tells where # they are stored. There is one index entry for each help directory, i.e., # for each package. define LEN_HDBINDEX 34 define SZ_DBIKEY 63 define LEN_DBIDATA 2 define DBI_KEY Memc[P2C($1)] # entry name define DBI_OFFSET Memi[$1+32] # offset of entry into data area, su define DBI_MTIME Meml[$1+33] # modification date of entry # HDB_COMPILE -- Compile a set of help directories to produce a new help # database. The root help directory is read first and entered into # the database, followed by each subdirectory named in the root help # directory. procedure hdb_compile (root_helpdir_file, helpdb_file, verbose) char root_helpdir_file[ARB] # name of root help directory file char helpdb_file[ARB] # name of new database file bool verbose # print informative messages pointer db, index, p1, p2, ix bool no_entries_interchanged int fd, temp[LEN_HDBINDEX], i int open() bool strgt(), streq() long clktime(), note(), fstatl() errchk open, note, seek, hdb_compile_rhd, mii_writec, mii_writei begin # Open the output database file. fd = open (helpdb_file, NEW_FILE, BINARY_FILE) # Allocate and initialize the database header and index structures. # The data area begins at a fixed offset and will be written out # as we go. The index and db header are written out after all # help directories have been processed. call calloc (db, LEN_HDBHEADER, TY_STRUCT) call calloc (index, MAX_ENTRIES * LEN_HDBINDEX, TY_STRUCT) HDB_MAGIC(db) = HDB_MAGICVAL HDB_MAXENTRIES(db) = MAX_ENTRIES HDB_CRDATE(db) = clktime (long(0)) # Write zeros into the header area of the file, so that the next # sequential write will place the first data record at the offset # DATA_OFFSET. We assume that the empty index is larger than the # header area. call write (fd, Memi[index], DATA_OFFSET - 1) HDB_DATAOFFSET(db) = note (fd) # Compile root directory followed by all subdirectories. # The root directory is expanded into a set of package help # directories which are compiled and written into the data # area of the database. The database descriptor and index # structures are returned. call hdb_compile_rhd (fd, root_helpdir_file, db, index, verbose) # Sort the index and append it to the database file. A simple # interchange sort is sufficient here; we have assumed that the # database is small in this implementation of helpdb. if (HDB_NENTRIES(db) > 1) repeat { no_entries_interchanged = true do i = 1, HDB_NENTRIES(db) - 1 { p1 = index + (i - 1) * LEN_HDBINDEX p2 = p1 + LEN_HDBINDEX if (strgt (DBI_KEY(p1), DBI_KEY(p2))) { call amovi (Memi[p1], temp, LEN_HDBINDEX) call amovi (Memi[p2], Memi[p1], LEN_HDBINDEX) call amovi (temp, Memi[p2], LEN_HDBINDEX) no_entries_interchanged = false } } } until (no_entries_interchanged) HDB_INDEXOFFSET(db) = note (fd) HDB_INDEXLEN(db) = HDB_NENTRIES(db) * LEN_HDBINDEX HDB_MAXENTRIES(db) = HDB_NENTRIES(db) # Get the offset into the index of the "_index" help directory # (package name list). do i = 1, HDB_NENTRIES(db) { ix = index + (i - 1) * LEN_HDBINDEX if (streq (DBI_KEY(ix), "_index")) { HDB_INDEX(db) = i break } } if (HDB_INDEX(db) == 0) call eprintf ("Help warning: cannot find _index\n") # Write the index structure to the database file. do i = 1, HDB_NENTRIES(db) { ix = index + (i - 1) * LEN_HDBINDEX call mii_writec (fd, DBI_KEY(ix), SZ_DBIKEY + 1) call mii_writei (fd, DBI_OFFSET(ix), LEN_DBIDATA) } # Update the database file header. call seek (fd, BOFL) call mii_writei (fd, Memi[db], LEN_HDBHEADER) call printf ("\nTotal of %d help modules in %d packages, ") call pargi (HDB_NMODULES(db)) call pargi (HDB_NENTRIES(db) - 1) call printf ("file size %d bytes\n") call pargl (fstatl (fd, F_FILESIZE) * SZB_CHAR) # All done; close files and deallocate buffers. call close (fd) call mfree (index, TY_STRUCT) call mfree (db, TY_STRUCT) end # HDB_COMPILE_RHD -- Compile the root help directory and all subdirectories # into the database. The package structure is hierarchical but the database # is linear. Subdirectories (subpackages) are recursively expanded starting # with all packages in the root help directory. Each subdirectory is entered # into the database as it is found. We end up with an inverted index keyed # by the filename of the help directory file for each package. Since the # key is a filename each key is guaranteed to be unique. procedure hdb_compile_rhd (fd, root_helpdir_file, db, index, verbose) int fd # database file, written sequentially char root_helpdir_file[ARB] # name of root help directory file pointer db # database descriptor pointer index # database index bool verbose # print notes on structure of database bool found_a_subpackage pointer hp_stk[MAX_DEPTH] # help directory pointer stack int pk_stk[MAX_DEPTH] # subpackage index stack char fname[SZ_FNAME] # helpdir filename int sp, pk, len_index pointer ix, hp, modname, data long mtime, fi[LEN_FINFO], savepos long note(), clktime() int hd_getname(), finfo() pointer hd_open(), hdb_make_rhd() errchk finfo, seek, note, mii_writei, malloc errchk hd_getname, hdb_make_rhd, hdb_getdata begin # Initialize the stacks and open the next help directory file to be # processed, i.e., the root directory file. sp = 0 pk = 1 call strcpy (root_helpdir_file, fname, SZ_FNAME) iferr (hp = hd_open (root_helpdir_file)) call error (2, "cannot open root help directory file") if (finfo (root_helpdir_file, fi) == ERR) call error (3, "cannot get finfo on root help directory file") mtime = FI_MTIME(fi) # We enter the compile loop ready to scan the next help directory file, # which has been pushed onto the top of the stack. The help directory # file is first entered into the database, then we scan the directory # until a subdirectory is found. If a subdirectory is found it is # opened and pushed onto the stack and the process repeats (hd_open # does not leave the physical file open so running out of file # descriptors is not a problem). When the end of a directory is # reached the stack is popped, closing the current directory, and # we continue to scan the previous directory until another subdirectory # is found. repeat { # Append the current compiled package help directory to the # database. Update index; make index larger if it overflows. HDB_NMODULES(db) = HDB_NMODULES(db) + HD_NMODULES(hp) HDB_NENTRIES(db) = HDB_NENTRIES(db) + 1 if (HDB_NENTRIES(db) > HDB_MAXENTRIES(db)) { HDB_MAXENTRIES(db) = HDB_MAXENTRIES(db) + INC_ENTRIES len_index = HDB_MAXENTRIES(db) * LEN_HDBINDEX iferr (call realloc (index, len_index, TY_STRUCT)) call fatal (1, "cannot reallocate index buffer") } ix = index + ((HDB_NENTRIES(db) - 1) * LEN_HDBINDEX) # Prepare the index entry for the help directory file. call strcpy (fname, DBI_KEY(ix), SZ_DBIKEY) DBI_MTIME(ix) = mtime DBI_OFFSET(ix) = HDB_DATALEN(db) # Write the compiled help directory structure to the database # file. The directory structure consists of the HD structure # and a string buffer. We write out the HD structure followed # by the string buffer. Each must be aligned to TY_STRUCT. # The offset of the string buffer from the start of the helpdir # struct is saved in the HD_NEXTCH field of the HD structure, # to be used when loaded and referenced to compute a pointer to # the buffer. HD_NEXTCH(hp) = HD_LENHD(hp) call mii_writei (fd, Memi[hp], HD_LENHD(hp)) call mii_writec (fd, Memc[HD_SBUF(hp)], HD_SZSBUF(hp)) # Keep track of the amount of struct storage that will be # required later to hold the UNPACKED helpdir data. HDB_DATALEN(db) = HDB_DATALEN(db) + HD_LENHD(hp) + ((HD_SZSBUF(hp) + SZ_STRUCT-1) / SZ_STRUCT) call printf ("%3d %15s (%s): %d help modules\n") call pargi (sp + 1) if (HD_PAKNAME(hp) != NULL) call pargstr (Memc[HD_SBUF(hp)+HD_PAKNAME(hp)]) else call pargstr ("") call pargstr (fname) call pargi (HD_NMODULES(hp)) call flush (STDOUT) # Now scan the directory for subdirectories. If one is found, # open it and push it on the stack, otherwise pop the stack and # resume scanning the previous directory. repeat { # Search for a module which is a subpackage. found_a_subpackage = false for (; pk <= HD_NMODULES(hp); pk=pk+1) { if (verbose) { modname = M_NAME(HD_MODULE(hp,pk)) call printf ("\t\t[%d.%02d] %s\n") call pargi (sp + 1) call pargi (pk) call pargstr (Memc[HD_SBUF(hp) + modname]) } if (hd_getname (hp, pk, TY_PKG, fname, SZ_FNAME) > 0) { found_a_subpackage = true break } } if (found_a_subpackage) { if (finfo (fname, fi) == ERR) { call eprintf ("\t\t%4w(cannot access `%s')\n") call pargstr (fname) # ...and continue searching the current helpdir pk = pk + 1 } else { # Got one; push it on the stack. Bump PK so that we # resume scanning the package with the module following # the subpackage. sp = sp + 1 if (sp > MAX_DEPTH) call fatal (3, "packages nested too deeply") hp_stk[sp] = hp pk_stk[sp] = pk + 1 iferr (hp = hd_open (fname)) { hp = hp_stk[sp] sp = sp - 1 call eprintf ("cannot open helpdir `%s'\n") call pargstr (fname) next } pk = 1 mtime = FI_MTIME(fi) break # go process new helpdir } } else { # Helpdir has been exhausted. Close it and pop the # stack, continue scanning on the previous helpdir. call hd_close (hp) if (sp > 0) { hp = hp_stk[sp] pk = pk_stk[sp] sp = sp - 1 if (verbose) call printf ("\t\t\t[end of package]\n") } else if (sp == 0) { # Root helpdir file has been fully expanded. Scan # all compiled helpdirs and produce a master helpdir # containing an entry for each package in the database. # This is similar to the root helpdir, but contains # entries for packages at all levels, not just at the # root. Note that we must save and restore the file # position since hdb_make_rhd accesses the file. call flush (fd) savepos = note (fd) # Load the database into memory. call seek (fd, HDB_DATAOFFSET(db)) call malloc (data, HDB_DATALEN(db), TY_STRUCT) call hdb_getdata (fd, data, HDB_DATALEN(db)) hp = hdb_make_rhd (db, data, index) pk = HD_NMODULES(hp) + 1 call strcpy ("_index", fname, SZ_FNAME) mtime = clktime (long (0)) sp = -1 call mfree (data, TY_STRUCT) call seek (fd, savepos) break } else return # ALL DONE } call flush (STDOUT) } } end # HDB_MAKE_RHD -- Make a dummy root help directory for the database. This # entry looks just like any other compiled help directory, but serves as an # index to all packages in the database. Each module in root is a package, # and every package in the system, regardless of its level in the package # hierarchy, has an entry in root. We could also use the database index # for this purpose, but it is keyed by filename not package name, and the # help code considers the root help directory to be conceptually just another # package help directory (the db index is in the wrong format). The root # directory is equivalent to the compiled lib$root.hd, except that it # contains entries for all subpackages as well. # # We purposely do NOT sort the package list, because the list is accessed # sequentially when templates are expanded, hence the order determines the # search order for the database. Since the order in which packages are # entered into the database is determined by the order in which they are # encountered in a depth first search of the package hierarchy, the order of # the packages in the root help directory determines the search order. # It is desirable to search those packages most visible to the user (e.g., # clpackage) before the more technical packages (e.g., sys). # # N.B.: This procedure is functionally similar to HD_OPEN and the HD_CLOSE # procedure may be used to close the HD structure returned by either. pointer procedure hdb_make_rhd (db, data, index) pointer db #I database descriptor pointer data #I data buffer (compiled help directories) pointer index #I database index int i, j, len_modlist, pos pointer hp, o_hp, mp, ix, sbuf, o_mp, c_modlist, hdfile bool streq() pointer coerce() int hd_putstr(), strncmp() errchk hdb_putmodule begin # Allocate and initialize descriptor and string buffer. Must init # nextch to 1 because 0 is the null index. call calloc (hp, LEN_HDSTRUCT, TY_STRUCT) call malloc (sbuf, SZ_SBUF, TY_CHAR) HD_SBUF(hp) = sbuf HD_DEFDIR(hp) = NULL HD_NEXTCH(hp) = 1 HD_SZSBUF(hp) = SZ_SBUF HD_LENHD(hp) = LEN_HDSTRUCT HD_MAXMODULES(hp) = MAX_MODULES # The root help directory is the first module. Since the root is # not a subpackage of any other package we cannot enter it in the # loop below. We must handcraft this first entry. HD_NMODULES(hp) = 1 mp = HD_MODULE(hp,1) call aclri (Memi[mp], LEN_MODSTRUCT) M_NAME(mp) = hd_putstr (hp, "_root") M_PKG(mp) = hd_putstr (hp, DBI_KEY(index)) # Examine each compiled helpdir for subpackages. Add each subpackage # found to the current directory. Do not add the index entries # themselves because they are already referenced in the help # directories. for (i=1; i <= HDB_NENTRIES(db); i=i+1) { ix = index + (i - 1) * LEN_HDBINDEX if (strncmp (DBI_KEY(ix), "_index", 6) == 0) next o_hp = data + DBI_OFFSET(ix) HD_SBUF(o_hp) = coerce (o_hp + HD_NEXTCH(o_hp), TY_STRUCT, TY_CHAR) for (j=1; j <= HD_NMODULES(o_hp); j=j+1) { mp = HD_MODULE(o_hp,j) if (M_PKG(mp) != NULL) call hdb_putmodule (hp, o_hp, j) } } # Our procedure for building the _index module list has changed the # ordering of the packages from the depth first order of the database # index. We want the depth first order to be our search order so # we must reorder the module list to agree with the DBI index. # Make a copy of the modlist, then write a new one, overwriting the # old, looking up each package in the index to determine its order # in the new modlist. len_modlist = HD_NMODULES(hp) * LEN_MODSTRUCT call malloc (c_modlist, len_modlist, TY_STRUCT) call amovi (Memi[HD_MODULE(hp,1)], Memi[c_modlist], len_modlist) pos = 0 do j = 1, HDB_NENTRIES(db) { # Find next valid index entry. ix = index + (j - 1) * LEN_HDBINDEX if (strncmp (DBI_KEY(ix), "_index", 6) == 0) next # Locate corresponding helpdir entry, if any. do i = 1, HD_NMODULES(hp) { o_mp = c_modlist + (i - 1) * LEN_MODSTRUCT hdfile = HD_SBUF(hp) + M_PKG(o_mp) if (Memc[hdfile] == EOS) next else if (streq (DBI_KEY(ix), Memc[hdfile])) { # Append entry to output helpdir. pos = pos + 1 call amovi (Memi[o_mp], Memi[HD_MODULE(hp,pos)], LEN_MODSTRUCT) } } } call mfree (c_modlist, TY_STRUCT) HD_NMODULES(hp) = pos # Return any unused space in string buffer. call realloc (HD_SBUF(hp), HD_NEXTCH(hp), TY_CHAR) HD_SZSBUF(hp) = HD_NEXTCH(hp) # Return any unused module descriptors. HD_LENHD(hp) = HD_LENHD(hp) - LEN_MODSTRUCT * (HD_MAXMODULES(hp) - HD_NMODULES(hp)) call realloc (hp, HD_LENHD(hp), TY_STRUCT) HD_MAXMODULES(hp) = HD_NMODULES(hp) return (hp) end # HDB_OPEN -- Open the help database. We can either read the precompiled # help database or the distributed, raw help database (.hd textfiles). # If the precompiled database is to be used access will be faster, but # packages and modules added since the database was compiled with not be # accessible. To use the precompiled database we read the database index # into memory; the actual help files are accessed via this index at runtime. # If multiple compiled databases are specified they are combined to form one # large database. pointer procedure hdb_open (database) char database[ARB] #I name of database to be opened bool no_entries_interchanged pointer sp, fname, files, hp, db, d_op, i_op, ix, p1, p2, db_save int nfiles, nints, list, fd, d_len, i_len, i, temp[LEN_HDBINDEX] long clktime() bool streq(), strgt() pointer hd_open(), hdb_make_rhd() int open(), mii_readi(), mii_readc() int envgets(), access(), fntopnb(), fntgfnb() errchk calloc, realloc, malloc, open, seek, syserrs errchk hd_open, fntopnb, fntgfnb, hdb_make_rhd, hdb_getdata define rejectfile_ 91 define readerr_ 92 begin call smark (sp) call salloc (files, SZ_HELPDB, TY_CHAR) call salloc (fname, SZ_FNAME, TY_CHAR) call salloc (hp, LEN_HDBHEADER, TY_STRUCT) call salloc (db_save, LEN_HDBHEADER, TY_STRUCT) # Allocate database descriptor. call calloc (db, LEN_HDBHEADER, TY_STRUCT) # If the database name is "helpdir", raw access is desired and the # name of the root help directory file is given by the environment # variable "helpdir". If the database name is "helpdb", the # precompiled database is to be used and the name of the database # file or files is given by the environment variable "helpdb". # Otherwise the database name is assumed to be the name of a raw or # precompiled database file. if (streq (database, "helpdir")) { HDB_RAW(db) = YES if (envgets ("helpdir", Memc[files], SZ_HELPDB) <= 0) call syserrs (SYS_ENVNF, "helpdir") } else if (streq (database, "helpdb")) { HDB_RAW(db) = NO if (envgets ("helpdb", Memc[files], SZ_HELPDB) <= 0) call syserrs (SYS_ENVNF, "helpdb") } else { HDB_RAW(db) = access (database, 0, TEXT_FILE) call strcpy (database, Memc[files], SZ_HELPDB) } # We now have the filename or file list; if it is a raw help directory # file, open it with HD_OPEN and we are all done for now. Otherwise # read the helpdb files and construct the help database index. if (HDB_RAW(db) == YES) { iferr (HDB_RHD(db) = hd_open (Memc[files])) call fatal (1, "cannot open root help directory file") call sfree (sp) return (db) } # Allocate and initialize empty database header and index structures. HDB_MAGIC(db) = HDB_MAGICVAL HDB_CRDATE(db) = clktime (long(0)) HDB_NENTRIES(db) = 0 HDB_MAXENTRIES(db) = MAX_ENTRIES HDB_NMODULES(db) = 0 HDB_DATAPTR(db) = NULL HDB_DATALEN(db) = 0 HDB_INDEXPTR(db) = NULL HDB_INDEXLEN(db) = 0 HDB_MAXENTRIES(db) = HDB_NENTRIES(db) # Link a binary help database; open each precompiled database and # link it into the full runtime database. list = fntopnb (Memc[files], YES) nfiles = 0 while (fntgfnb (list, Memc[fname], SZ_FNAME) != EOF) { iferr (fd = open (Memc[fname], READ_ONLY, BINARY_FILE)) { call eprintf ("Cannot open help database file %s\n") call pargstr (Memc[fname]) next } # Save descriptor in case we cannot read this file. call amovi (Memi[db], Memi[db_save], LEN_HDBHEADER) # Read the database file header. nints = LEN_HDBHEADER if (mii_readi (fd, Memi[hp], nints) < nints) { call eprintf ("Cannot read help database file header (%s)\n") call pargstr (Memc[fname]) goto rejectfile_ } # Verify the file type. if (HDB_MAGIC(hp) != HDB_MAGICVAL) { call eprintf ("Not a help database file (%s)\n") call pargstr (Memc[fname]) goto rejectfile_ } # Merge the headers. HDB_NENTRIES(db) = HDB_NENTRIES(db) + HDB_NENTRIES(hp) HDB_NMODULES(db) = HDB_NMODULES(db) + HDB_NMODULES(hp) HDB_MAXENTRIES(db) = HDB_NENTRIES(db) d_len = HDB_DATALEN(db) i_len = HDB_INDEXLEN(db) # Make room for the new data and index entries. iferr { HDB_DATALEN(db) = HDB_DATALEN(db) + HDB_DATALEN(hp) call realloc (HDB_DATAPTR(db), HDB_DATALEN(db), TY_STRUCT) HDB_INDEXLEN(db) = HDB_INDEXLEN(db) + HDB_INDEXLEN(hp) call realloc (HDB_INDEXPTR(db), HDB_INDEXLEN(db), TY_STRUCT) } then call erract (EA_WARN) d_op = HDB_DATAPTR(db) + d_len i_op = HDB_INDEXPTR(db) + i_len # Append the data area of the new database file to the end of # the data buffer. call seek (fd, HDB_DATAOFFSET(hp)) call hdb_getdata (fd, d_op, HDB_DATALEN(hp)) # Append the index area of the new database file to the end of # the index buffer. nints = HDB_INDEXLEN(hp) call seek (fd, HDB_INDEXOFFSET(hp)) do i = 1, HDB_NENTRIES(hp) { ix = i_op + (i - 1) * LEN_HDBINDEX if (mii_readc (fd, DBI_KEY(ix), SZ_DBIKEY + 1) < SZ_DBIKEY + 1) goto readerr_ if (mii_readi (fd, DBI_OFFSET(ix), LEN_DBIDATA) < LEN_DBIDATA) { readerr_ call eprintf ("Cannot read database index (%s)\n") call pargstr (Memc[fname]) goto rejectfile_ } # Patch the index entry to reflect the new offset of the # directory entry in the data buffer. Rename the _index # entries in the old (input) databases, since we will be # building a new _index for the final composite database. DBI_OFFSET(ix) = DBI_OFFSET(ix) + d_len if (streq (DBI_KEY(ix), "_index")) { call sprintf (DBI_KEY(ix), SZ_DBIKEY, "_index.%s") call pargstr (Memc[fname]) } } nfiles = nfiles + 1 call close (fd) next rejectfile_ # Could not read file; restore the descriptor to the state it # was in before we tried to read the file, to repair any damage. d_op = HDB_DATAPTR(db); i_op = HDB_INDEXPTR(db) call amovi (Memi[db_save], Memi[db], LEN_HDBHEADER) HDB_DATAPTR(db) = d_op; HDB_INDEXPTR(db) = i_op call close (fd) } # Verify that there was at least one valid file in the list. if (nfiles <= 0) call error (5, "invalid help database file list") # Build the package name index (root helpdir) for the new database. hp = hdb_make_rhd (db, HDB_DATAPTR(db), HDB_INDEXPTR(db)) # Append the compiled package help directory to the database. HDB_NMODULES(db) = HDB_NMODULES(db) + HD_NMODULES(hp) HDB_NENTRIES(db) = HDB_NENTRIES(db) + 1 # Append the compiled _index helpdir and associated string buffer # to the database data buffer, as if these data structures had been # read from the help database file (all helpdir access codes assume # this structure). d_len = HDB_DATALEN(db) nints = HD_LENHD(hp) + (HD_SZSBUF(hp) + SZ_STRUCT-1) / SZ_STRUCT HDB_DATALEN(db) = HDB_DATALEN(db) + nints call realloc (HDB_DATAPTR(db), HDB_DATALEN(db), TY_STRUCT) d_op = HDB_DATAPTR(db) + d_len HD_NEXTCH(hp) = HD_LENHD(hp) call amovi (Memi[hp], Memi[d_op], HD_LENHD(hp)) call amovc (Memc[HD_SBUF(hp)], Memi[d_op+HD_LENHD(hp)], HD_SZSBUF(hp)) # Add an index entry for the _index helpdir. if (HDB_NENTRIES(db) > HDB_MAXENTRIES(db)) { HDB_MAXENTRIES(db) = HDB_MAXENTRIES(db) + 1 nints = HDB_MAXENTRIES(db) * LEN_HDBINDEX iferr (call realloc (HDB_INDEXPTR(db), nints, TY_STRUCT)) call fatal (1, "cannot reallocate index buffer") } ix = HDB_INDEXPTR(db) + (HDB_NENTRIES(db) - 1) * LEN_HDBINDEX call strcpy ("_index", DBI_KEY(ix), SZ_DBIKEY) DBI_MTIME(ix) = clktime (long(0)) DBI_OFFSET(ix) = d_op - HDB_DATAPTR(db) # Free dedicated hp/sbuf, since descriptor is in data buffer now. call hd_close (hp) # Sort the index; a crude sort is adequate here. if (HDB_NENTRIES(db) > 1) { repeat { no_entries_interchanged = true do i = 1, HDB_NENTRIES(db) - 1 { p1 = HDB_INDEXPTR(db) + (i - 1) * LEN_HDBINDEX p2 = p1 + LEN_HDBINDEX if (strgt (DBI_KEY(p1), DBI_KEY(p2))) { call amovi (Memi[p1], temp, LEN_HDBINDEX) call amovi (Memi[p2], Memi[p1], LEN_HDBINDEX) call amovi (temp, Memi[p2], LEN_HDBINDEX) no_entries_interchanged = false } } } until (no_entries_interchanged) } # Get the index offset of the NEW "_index" help directory. HDB_INDEX(db) = 0 do i = 1, HDB_NENTRIES(db) { ix = HDB_INDEXPTR(db) + (i - 1) * LEN_HDBINDEX if (streq (DBI_KEY(ix), "_index")) { HDB_INDEX(db) = i break } } if (HDB_INDEX(db) == 0) call eprintf ("Help warning: cannot find _index") call fntclsb (list) call sfree (sp) return (db) end # HDB_CLOSE -- Close the help database. If raw database is being accessed, # this means close root help directory and free DB struct. If precompiled, # deallocate all buffers used by the database. procedure hdb_close (db) pointer db # database descriptor begin if (HDB_RAW(db) == YES) call hd_close (HDB_RHD(db)) else { call mfree (HDB_DATAPTR(db), TY_STRUCT) call mfree (HDB_INDEXPTR(db), TY_STRUCT) } call mfree (db, TY_STRUCT) end # HDB_LOAD -- Load the named help directory. Help directories are referred # to by the name of the directory file, and the database is keyed by the name # of the file. If the database is being accessed raw, we open and compile # the named file directly, otherwise we look up the compiled directory in the # database. In either case we return a HD pointer to the compiled directory. # The directory "_index" is special, being the package index directory for the # entire database. pointer procedure hdb_load (db, helpdir) pointer db # database descriptor char helpdir[ARB] # help directory to be accessed. bool index pointer hp, ix, sp, errmsg bool streq() int hdb_search() pointer hd_open(), coerce() errchk hdb_open begin call smark (sp) call salloc (errmsg, SZ_LINE, TY_CHAR) index = (streq (helpdir, "_index") || streq (helpdir, "_root")) if (HDB_RAW(db) == YES) { if (index) hp = HDB_RHD(db) else hp = hd_open (helpdir) } else { # Compute and return pointer to compiled HD. Fix up pointer to # the string buffer sbuf, since the pointer value depends on the # value of the pointer to the newly allocated data area. If not # found, return NULL pointer. if (index) { ix = HDB_INDEXPTR(db) + (HDB_INDEX(db) - 1) * LEN_HDBINDEX } else if (hdb_search (db, helpdir, ix) == ERR) { # There should be a better way to do this... Format error # message and pass to the error handling code, then restore # stack before taking the error action. call sprintf (Memc[errmsg], SZ_LINE, "help directory `%s' not found") call pargstr (helpdir) iferr (call error (6, Memc[errmsg])) { call sfree (sp) call erract (EA_ERROR) return (NULL) } } hp = HDB_DATAPTR(db) + DBI_OFFSET(ix) HD_SBUF(hp) = coerce (hp + HD_NEXTCH(hp), TY_STRUCT, TY_CHAR) } call sfree (sp) return (hp) end # HDB_FREE -- Free space for a help directory loaded with HDB_LOAD. If we are # using raw access, we let the helpdir package free what ever it wants to since # it did the allocating. If we are accessing the compiled database then there # is nothing to free, since everything is maintained in memory. procedure hdb_free (db, hp) pointer db # database descriptor pointer hp # help directory begin if (HDB_RAW(db) == YES) call hd_close (hp) end # HDB_SEARCH -- Search the database index for the given key. Since the index # has been sorted we can use a binary search. If the key is found we return # a pointer to the associated index as an output argument, and OK as the # function value. int procedure hdb_search (db, key, ix) pointer db # database descriptor char key[ARB] # filename key to be located pointer ix # pointer to index entry (output) int low, high, pos pointer ixoff bool strle(), streq() begin ixoff = HDB_INDEXPTR(db) low = 1 high = HDB_NENTRIES(db) # Cut range of search in half until range is narrowed to two values (if # we go until HIGH-LOW >= 1 an infinite loop can occur). while (high - low > 1) { pos = (high + low) / 2 if (strle (key, DBI_KEY(ixoff + (pos-1) * LEN_HDBINDEX))) high = pos else low = pos } ix = ixoff + (high - 1) * LEN_HDBINDEX if (streq (key, DBI_KEY(ix))) return (high) ix = ixoff + (low - 1) * LEN_HDBINDEX if (streq (key, DBI_KEY(ix))) return (low) return (ERR) end # HDB_EXAMINE -- Examine the structure of the compiled database. A description # of the contents is printed on the output file. procedure hdb_examine (fd, helpdb, verbose) int fd # output file char helpdb[ARB] # filename of database to be examined bool verbose # print menus as well int list, i long fi[LEN_FINFO] pointer sp, fname, date, db, ixoff, ix bool strne() pointer hdb_open() int finfo(), fntopnb(), fntgfnb() errchk hdb_open, hdb_printpack, fntopnb, fntgfnb begin call smark (sp) call salloc (date, SZ_DATE, TY_CHAR) call salloc (fname, SZ_FNAME, TY_CHAR) db = hdb_open (helpdb) ixoff = HDB_INDEXPTR(db) call cnvdate (HDB_CRDATE(db), Memc[date], SZ_DATE) list = fntopnb (helpdb, YES) while (fntgfnb (list, Memc[fname], SZ_FNAME) != EOF) { if (finfo (Memc[fname], fi) == ERR) { call eprintf ("Cannot get info on file `%s'\n") call pargstr (Memc[fname]) next } call fprintf (fd, "Help database %s created %s by %s, size=%d\n") call pargstr (Memc[fname]) call pargstr (Memc[date]) call pargstr (FI_OWNER(fi)) call pargl (FI_SIZE(fi)) } call fntclsb (list) call fprintf (fd, "Total of %d modules in %d packages\n") call pargi (HDB_NMODULES(db)) call pargi (HDB_NENTRIES(db) - 1) do i = 1, HDB_NENTRIES(db) { ix = ixoff + (i - 1) * LEN_HDBINDEX if (strne (DBI_KEY(ix), "_index")) call hdb_printpack (fd, db, ix, verbose) } call hdb_close (db) call sfree (sp) end # HDB_PRINTPACK -- Print a description of a single package on the output # file. procedure hdb_printpack (fd, db, ix, verbose) int fd # output file pointer db # database descriptor pointer ix # database index descriptor of package bool verbose # print menus int m pointer sp, hp, paknames, date long fi[LEN_FINFO] int hd_getname(), envgeti(), finfo() pointer hdb_load() errchk hd_getname begin call smark (sp) call salloc (paknames, MAX_MENUSIZE, TY_POINTER) call salloc (date, SZ_DATE, TY_CHAR) iferr (hp = hdb_load (db, DBI_KEY(ix))) { call erract (EA_WARN) call sfree (sp) return } call cnvdate (DBI_MTIME(ix), Memc[date], SZ_DATE) if (finfo (DBI_KEY(ix), fi) == ERR) FI_OWNER(fi) = EOS if (verbose) call fprintf (fd, "\n%s %s %s %s\n") else call fprintf (fd, "%-12s %s %-8s %s\n") if (HD_PAKNAME(hp) != 0) call pargstr (Memc[HD_SBUF(hp) + HD_PAKNAME(hp)]) else call pargstr ("") call pargstr (Memc[date]) call pargstr (FI_OWNER(fi)) call pargstr (DBI_KEY(ix)) if (verbose) { # Extract the names of the modules in the package. Save the # pointers in an array for the table print routine. for (m=0; m < MAX_MENUSIZE; m=m+1) { call salloc (Memi[paknames+m], MAX_NAMELEN, TY_CHAR) if (hd_getname (hp, m+1, TY_MODNAME, Memc[Memi[paknames+m]], MAX_NAMELEN) <= 0) break } # Now print the table. It is not necessary to sort the table, # because the "helpdir" code (which reads the help directory) has # already done so. call strtbl (fd, Memc, Memi[paknames], m, FIRST_COL, envgeti ("ttyncols"), MAX_NAMELEN, 0) } call hdb_free (db, hp) call sfree (sp) end # HDB_PUTMODULE -- Put a module (subpackage) into the root help directory. # Add new entry, increasing space if necessary. Expand all filenames to # remove help ldir references and place filenames in our string buffer, # sbuf offsets into module descriptor. Increase size of sbuf if it fills. procedure hdb_putmodule (hp, o_hp, pk) pointer hp # new help directory being extended pointer o_hp # old help directory int pk # module number in old directory int firstch, m pointer sp, fname, sbuf, o_sbuf, mp, o_mp, pakname int hd_getname(), hd_putstr() bool streq() begin call smark (sp) call salloc (fname, SZ_FNAME, TY_CHAR) sbuf = HD_SBUF(hp) o_sbuf = HD_SBUF(o_hp) o_mp = HD_MODULE(o_hp,pk) pakname = o_sbuf + M_NAME(o_mp) # Check if this is a redefinition of a module already defined. # If so, warn user that new package does not have a unique name, # and omit package. firstch = Memc[pakname] for (m=1; m <= HD_NMODULES(hp); m=m+1) { mp = HD_MODULE(hp,m) if (Memc[sbuf+M_NAME(mp)] == firstch) if (streq (Memc[sbuf+M_NAME(mp)], Memc[pakname])) { call eprintf ("package name `%s' (hd=%s) is not unique\n") call pargstr (Memc[pakname]) call pargstr (Memc[o_sbuf+M_PKG(o_mp)]) call sfree (sp) return } } # If we are out of space for modules, increase the descriptor # structure size to allow more module descriptors. if (m > HD_NMODULES(hp)) { if (m > HD_MAXMODULES(hp)) { HD_LENHD(hp) = HD_LENHD(hp) + (INC_MODULES * LEN_MODSTRUCT) call realloc (hp, HD_LENHD(hp), TY_STRUCT) HD_MAXMODULES(hp) = HD_MAXMODULES(hp) + INC_MODULES } HD_NMODULES(hp) = m } mp = HD_MODULE(hp,m) call aclri (Memi[mp], LEN_MODSTRUCT) # Put module name in string buffer and save index of string in module # descriptor. M_NAME(mp) = hd_putstr (hp, Memc[pakname]) # Extract all filenames and move into string buffer. Call hd_getname to # extract filenames from old directory, so that help-ldir references # are expanded. if (hd_getname (o_hp, pk, TY_HLP, Memc[fname], SZ_FNAME) > 0) M_HLP(mp) = hd_putstr (hp, Memc[fname]) if (hd_getname (o_hp, pk, TY_SYS, Memc[fname], SZ_FNAME) > 0) M_SYS(mp) = hd_putstr (hp, Memc[fname]) if (hd_getname (o_hp, pk, TY_SRC, Memc[fname], SZ_FNAME) > 0) M_SRC(mp) = hd_putstr (hp, Memc[fname]) if (hd_getname (o_hp, pk, TY_PKG, Memc[fname], SZ_FNAME) > 0) M_PKG(mp) = hd_putstr (hp, Memc[fname]) if (hd_getname (o_hp, pk, TY_MEN, Memc[fname], SZ_FNAME) > 0) M_MEN(mp) = hd_putstr (hp, Memc[fname]) call sfree (sp) end # HDB_GETDATA -- Read a stored series of compiled help directories, stored # externally in a machine independent format, into the given data buffer. # Each stored help directory consists of a fixed sized MII-32 header followed # by a MII byte packed string buffer of arbitrary length. Reading begins # at the current file position. procedure hdb_getdata (fd, obuf, buflen) int fd #I input file pointer obuf #O receives unpacked helpdir data int buflen #O max su out int nelem pointer op, hp int mii_readi(), mii_readc() errchk mii_readi, mii_readc define readerr_ 91 begin for (op=obuf; op < obuf+buflen; ) { hp = op # Get fixed size helpdir header. if (mii_readi (fd, Memi[op], LEN_BASEHD) < LEN_BASEHD) goto readerr_ # Get module entries. op = op + LEN_BASEHD nelem = HD_LENHD(hp) - LEN_BASEHD if (mii_readi (fd, Memi[op], nelem) < nelem) goto readerr_ # Get string buffer. op = op + nelem nelem = HD_SZSBUF(hp) if (mii_readc (fd, Memi[op], nelem) < nelem) goto readerr_ op = op + ((nelem + SZ_STRUCT-1) / SZ_STRUCT) } return readerr_ # Common read error code. call error (1, "Cannot read help database data\n") end