include include include include "rvpackage.h" include "rvflags.h" # DEBLEND -- Deblend up to 4 lines in a spectral region. procedure deblend (rv, gp, x1, x2, dx, wx1, wy1, pix, ans, nans) pointer rv #I RV struct pointer pointer gp #I GIO file descriptor real x1, x2, dx #I Coordinate scale real wx1, wy1 #I Cursor position real pix[ARB] #I Spectrum data char ans[2*SZ_LINE,4] #O Answer strings int nans #O Number of answer strings int i, j, i1, npts, nlines, maxlines, wc, key, op, stat double vobs, vhelio, verr real w, wxc, wyc, wx, wy, wx2, wy2, a[14], waves[4] real slope, height, flux, cont, sigma, eqw, scale, chisq real serr, shift, fwhm bool fit pointer sp, cmd, x, y, anti int scan(), clgcur(), clgkey(), rv_rvcorrect() errchk dofit include "fitcom.com" define done_ 99 define HELP "noao$lib/scr/deblend.key" define OP "Option (a=0p1s, b=1p1s, c=np1s, d=0pns, e=1pns, f=npns, q=quit):" define SQ2PI 2.5066283 begin call smark (sp) call salloc (cmd, SZ_FNAME, TY_CHAR) # Input cursor is first continuum point now get second continuum point. call printf ("d again:") if (clgcur ("cursor", wx2, wy2, wc, key, Memc[cmd], SZ_FNAME) == EOF) { call sfree (sp) return } call gctran (gp, wx2, wy2, wx2, wy2, wc, 2) if (RV_FITDONE(rv) == YES) { call rv_erase_fit (rv, false) RV_FITDONE(rv) = NO IS_DBLSTAR(rv) = NO } # Set pixel indices and determine number of points to fit. call fixx (wx1, wx2, wy1, wy2, x1, x2) call pixind (x1, dx, wx1, i1) call pixind (x1, dx, wx2, j) npts = j - i1 + 1 RV_IEND(rv) = j RV_ISTART(rv) = i1 if (npts < 3) { call rv_errmsg (rv, "At least 3 points are required\n") call sfree (sp) return } # Allocate space for the points to be fit. call salloc (x, npts, TY_REAL) call salloc (y, npts, TY_REAL) # Subtract the continuum and scale the data. wxc = wx1 wyc = wy1 slope = (wy2-wy1) / (wx2-wx1) scale = 0. do i = 1, npts { w = x1 + (i1+i-2) * dx Memr[y+i-1] = pix[i1+i-1] - (wyc + slope * (w-wxc)) scale = max (scale, abs (Memr[y+i-1])) Memr[x+i-1] = w } call adivkr (Memr[y], scale, Memr[y], npts) # Select the lines to be fit. If no lines return. maxlines = 4 nlines = 0 call printf ("Lines ('m' to mark, 't' to type, 'q' to quit):") while (clgcur ("cursor", wx, wy, wc, key, Memc[cmd], SZ_FNAME) != EOF) { switch (key) { case 'm': call gctran (gp, wx, wy, wx, wy, wc, 2) case 't': if (RV_DCFLAG(rv) == -1) { call printf ("shift: ") call flush (STDOUT) if (scan() != EOF) call gargr (wx) } else { call printf ("velocity: ") call flush (STDOUT) if (scan() != EOF) call gargr (wx) wx = wx / RV_DELTAV(rv) } call printf ("Lines ('m' to mark, 't' to type, 'q' to quit):") case 'q': call printf ("\n") break case 'I': call fatal (0, "Interrupt") default: call printf ( "Lines ('m' to mark, 't' to type, 'q' to quit):") next } for (i = 1; i <= nlines && wx != waves[i]; i = i + 1) ; if (i > nlines) { nlines = nlines + 1 waves[nlines] = wx call gmark (gp, wx, wy, GM_VLINE, 4., 4.) call gflush (gp) } if (nlines == maxlines) { call printf ("\n") break } } if (nlines == 0) goto done_ # Do fits. fit = false call printf (OP) while (clgcur ("cursor", wx, wy, wc, op, Memc[cmd], SZ_FNAME) != EOF) { switch (op) { case '?': call gpagefile (gp, HELP, "Rvxcor Deblending Options") call printf (OP) next case 'a', 'b', 'c', 'd', 'e', 'f': case 'q': call printf ("\n") break case 'I': call fatal (0, "Interrupt") default: call printf ("%s") call pargstr (OP) next } # Erase old deblended fit in case we've been here before. Fit is # erased above from when we first entered. if (IS_DBLSTAR(rv) == YES) { call gseti (gp, G_PLTYPE, GL_CLEAR) call rv_plt_deblend (rv, gp, NO) call gseti (gp, G_PLTYPE, GL_SOLID) } # Save some variables for later plotting. DBL_X1(rv) = wx1 DBL_X2(rv) = wx2 DBL_Y1(rv) = wy1 DBL_Y2(rv) = wy2 DBL_I1(rv) = i1 DBL_NFITP(rv) = npts DBL_SCALE(rv) = scale DBL_SLOPE(rv) = slope # Convert line postions to relative to first line. a[1] = waves[1] a[2] = 0.25 * abs (Memr[x+npts-1] - Memr[x]) / nlines do i = 1, nlines { call pixind (x1, dx, waves[i], j) a[3*i] = (pix[j] - (wyc + slope * (waves[i]-wxc))) / scale a[3*i+1] = waves[i] - waves[1] a[3*i+2] = 1. } switch (op) { case 'a': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } case 'b': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } case 'c': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('c', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } case 'd': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('d', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } case 'e': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('e', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } case 'f': iferr { call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('c', Memr[x], Memr[y], npts, a, nlines, chisq) call dofit ('f', Memr[x], Memr[y], npts, a, nlines, chisq) } then { call erract (EA_WARN) next } } fit = true RV_FITDONE(rv) = YES DBL_NSHIFTS(rv) = nlines call amovr (a, DBL_COEFFS(rv,1), 3*nlines+2) # Update parameters in the fitting common for the output log nfit = npts nfitpars = 3*nlines+2 binshift = INDEFI niter = 3 chisqr = INDEF ccfvar = INDEF mresid = INDEF sresid = INDEF # Compute model spectrum with continuum and plot. IS_DBLSTAR(rv) = YES call rv_plt_deblend (rv, gp, NO) # Print computed values on status line. i = 1 key = '' repeat { call flush (STDOUT) switch (key) { case '-': i = i - 1 if (i < 1) i = nlines case '+': i = i + 1 if (i > nlines) i = 1 case 'q': call printf ("\n") break } height = scale * a[3*i] w = a[1] + a[3*i+1] sigma = abs (a[2]*a[3*i+2]) flux = sigma * height * SQ2PI cont = wyc + slope * (w - wxc) if (cont > 0.) eqw = abs (flux) / cont else eqw = INDEF if (key == 'r') { call printf ("\nrms = %8.4g") call pargr (scale * sqrt (chisq / npts)) } else if (key == 'I') { call fatal (0, "Interrupt") } else if (key == 'v') { serr = 0.0 shift = w stat = rv_rvcorrect (rv, shift, serr, vobs, vhelio, verr) call printf ( "\n%d: shift = %8.4f Vo = %8.3f Vh = %8.3f fwhm = %6.4f") call pargi (i) call pargr (shift) call pargd (vobs) call pargd (vhelio) call pargr (2.35482 * sigma * RV_DELTAV(rv)) } else { call printf ( "\n%d: center = %8.6g, flux = %8.4g, eqw = %6.4g, fwhm = %6.4g") call pargi (i) call pargr (w) call pargr (flux) call pargr (eqw) call pargr (2.35482 * sigma) } call printf (" (+,-,v,r,q):") call flush (STDOUT) } until (clgkey ("ukey", key, Memc[cmd], SZ_FNAME) == EOF) # Log computed values nans = nlines do i = 1, nlines { w = a[1] + a[3*i+1] cont = wyc + slope * (w - wxc) height = scale * a[3*i] sigma = abs (a[2]*a[3*i+2]) flux = sigma * height * SQ2PI if (cont > 0.) eqw = abs (flux) / cont else eqw = INDEF call sprintf (ans[1,i], 2*SZ_LINE, " %9.7g %9.7g %9.6g %9.4g %9.6g %9.4g %9.4g\n") call pargr (w) call pargr (cont) call pargr (flux) call pargr (eqw) call pargr (height) call pargr (sigma) call pargr (2.35482 * sigma) # Now calculate and save the velocity information serr = 0.0 if (RV_DCFLAG(rv) != -1) { stat = rv_rvcorrect (rv, w, serr, vobs, vhelio, verr) call salloc (anti, RV_CCFNPTS(rv), TY_REAL) fwhm = 2.35482 * sigma call rv_antisym (rv, w, height, fwhm, WRKPIXY(rv,1), RV_CCFNPTS(rv), Memr[anti], ccfvar, verr, DBL_R(rv,i)) if (IS_INDEFD(vobs)) DBL_VOBS(rv,i) = INDEFR else DBL_VOBS(rv,i) = real (vobs) if (IS_INDEFD(vhelio)) DBL_VHELIO(rv,i) = INDEFR else DBL_VHELIO(rv,i) = real (vhelio) if (IS_INDEFD(verr)) DBL_VERR(rv,i) = INDEFR else DBL_VERR(rv,i) = real (verr) DBL_FWHM(rv,i) = 2.35482 * sigma * RV_DELTAV(rv) } else { DBL_VOBS(rv,i) = INDEFR DBL_VHELIO(rv,i) = INDEFR DBL_VERR(rv,i) = INDEFR DBL_FWHM(rv,i) = 2.35482 * sigma } DBL_HEIGHT(rv,i) = height DBL_SHIFT(rv,i) = w } call printf (OP) } done_ call sfree (sp) end # SUBBLEND -- Subtract last fit. procedure subblend (rv, gp, pix, x1, x2, dx, wx1, wy1) pointer rv #I RV struct pointer pointer gp #I Graphics descriptor real pix[ARB] #I CCF array real x1, x2, dx #I Coordinate scale real wx1, wy1 #I Cursor position int i, j, i1, wc, npts, key real w, wx2, wy2 pointer sp, cmd int clgcur() real model() begin call smark (sp) call salloc (cmd, SZ_FNAME, TY_CHAR) # Subtract continuum subtracted curve from spectrum if (RV_FITDONE(rv) == NO) { call sfree (sp) return } # Determine fit range call printf ("- again:") call flush (STDOUT) if (clgcur ("cursor", wx2, wy2, wc, key, Memc[cmd], SZ_FNAME) == EOF) { call sfree (sp) return } call fixx (wx1, wx2, wy1, wy2, x1, x2) call pixind (x1, dx, wx1, i1) call pixind (x1, dx, wx2, j) npts = j - i1 + 1 do i = 1, npts { w = x1 + (i1+i-2) * dx pix[i1+i-1] = pix[i1+i-1] - DBL_SCALE(rv) * model (w, DBL_COEFFS(rv,1), 3*DBL_NSHIFTS(rv)+2) } # Plot subtracted curve call gvline (gp, pix[i1], npts, wx1, wx2) call gflush (gp) RV_FITDONE(rv) = NO call sfree (sp) end # DOFIT -- Perform nonlinear iterative fit for the specified parameters. # This uses the Levenberg-Marquardt method from NUMERICAL RECIPES. procedure dofit (key, x, y, npts, a, nlines, chisq) int key #I Fitting option real x[npts] #I X data real y[npts] #I Y data int npts #I Number of points real a[ARB] #I Fitting parameters int nlines #I Number of lines real chisq #O Chi squared int i, np, nfit real mr, chi2 pointer sp, flags errchk mr_solve begin # Number of terms is 3 for each line plus common center and sigma. np = 3 * nlines + 2 call smark (sp) call salloc (flags, np, TY_INT) # Peaks are always fit. switch (key) { case 'a': # Solve one sigma. nfit = 1 + nlines Memi[flags] = 2 do i = 1, nlines Memi[flags+i] = 3 * i case 'b': # Solve one position and one sigma. nfit = 2 + nlines Memi[flags] = 1 Memi[flags+1] = 2 do i = 1, nlines Memi[flags+1+i] = 3 * i case 'c': # Solve independent positions and one sigma. nfit = 1 + 2 * nlines Memi[flags] = 2 do i = 1, nlines { Memi[flags+2*i-1] = 3 * i Memi[flags+2*i] = 3 * i + 1 } case 'd': # Solve for sigmas. nfit = 2 * nlines do i = 1, nlines { Memi[flags+2*i-2] = 3 * i Memi[flags+2*i-1] = 3 * i + 2 } case 'e': # Solve for one position and sigmas. nfit = 1 + 2 * nlines Memi[flags] = 1 do i = 1, nlines { Memi[flags+2*i-1] = 3 * i Memi[flags+2*i] = 3 * i + 2 } case 'f': # Solve for positions and sigmas. nfit = 3 * nlines do i = 1, nfit Memi[flags+i-1] = i + 2 } mr = -1. i = 0 chi2 = MAX_REAL repeat { call mr_solve (x, y, npts, a, Memi[flags], np, nfit, mr, chisq) if (chi2 - chisq > 1.) i = 0 else i = i + 1 chi2 = chisq } until (i == 3) mr = 0. call mr_solve (x, y, npts, a, Memi[flags], np, nfit, mr, chisq) call sfree (sp) end # MODEL -- Compute model from fitted parameters. # # I(x) = I(i) exp {[(x - xc - dx(i)) / (sig sig(i))] ** 2 / 2.} # # where the parameters are xc, sig, I(i), dx(i), and sig(i) (i=1,nlines). real procedure model (x, a, na) real x #I X value to be evaluated real a[na] #I Parameters int na #I Number of parameters int i real y, arg begin y = 0. do i = 3, na, 3 { arg = (x - a[1] - a[i+1]) / (a[2] * a[i+2]) if (abs (arg) < 7.) y = y + a[i] * exp (-arg**2 / 2.) } return (y) end # DERIVS -- Compute model and derivatives for MR_SOLVE procedure. # # I(x) = I(i) exp {[(x - xc - dx(i)) / (sig sig(i))] ** 2 / 2.} # # where the parameters are xc, sig, I(i), dx(i), and sig(i) (i=1,nlines). procedure derivs (x, a, y, dyda, na) real x #I X value to be evaluated real a[na] #I Parameters real y #O Function value real dyda[na] #O Derivatives int na #I Number of parameters int i real sig, arg, ex, fac begin y = 0. dyda[1] = 0. dyda[2] = 0. do i = 3, na, 3 { sig = a[2] * a[i+2] arg = (x - a[1] - a[i+1]) / sig if (abs (arg) < 7.) ex = exp (-arg**2 / 2.) else ex = 0. fac = a[i] * ex * arg y = y + a[i] * ex dyda[1] = dyda[1] + fac / sig dyda[2] = dyda[2] + fac * arg / a[2] dyda[i] = ex dyda[i+1] = fac / sig dyda[i+2] = fac * arg / a[i+2] } end # MR_SOLVE -- Levenberg-Marquardt nonlinear chi square minimization. # # Use the Levenberg-Marquardt method to minimize the chi squared of a set # of paraemters. The parameters being fit are indexed by the flag array. # To initialize the Marquardt parameter, MR, is less than zero. After that # the parameter is adjusted as needed. To finish set the parameter to zero # to free memory. This procedure requires a subroutine, DERIVS, which # takes the derivatives of the function being fit with respect to the # parameters. There is no limitation on the number of parameters or # data points. For a description of the method see NUMERICAL RECIPES # by Press, Flannery, Teukolsky, and Vetterling, p523. procedure mr_solve (x, y, npts, params, flags, np, nfit, mr, chisq) real x[npts] #I X data array real y[npts] #I Y data array int npts #I Number of data points real params[np] #U Parameter array int flags[np] #I Flag array indexing parameters to fit int np #I Number of parameters int nfit #I Number of parameters to fit real mr #O MR parameter real chisq #O Chi square of fit int i real chisq1 pointer new, a1, a2, delta1, delta2 errchk mr_invert begin # Allocate memory and initialize. if (mr < 0.) { call mfree (new, TY_REAL) call mfree (a1, TY_REAL) call mfree (a2, TY_REAL) call mfree (delta1, TY_REAL) call mfree (delta2, TY_REAL) call malloc (new, np, TY_REAL) call malloc (a1, nfit*nfit, TY_REAL) call malloc (a2, nfit*nfit, TY_REAL) call malloc (delta1, nfit, TY_REAL) call malloc (delta2, nfit, TY_REAL) call amovr (params, Memr[new], np) call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a2], Memr[delta2], nfit, chisq) mr = 0.001 } # Restore last good fit and apply the Marquardt parameter. call amovr (Memr[a2], Memr[a1], nfit * nfit) call amovr (Memr[delta2], Memr[delta1], nfit) do i = 1, nfit Memr[a1+(i-1)*(nfit+1)] = Memr[a2+(i-1)*(nfit+1)] * (1. + mr) # Matrix solution. call mr_invert (Memr[a1], Memr[delta1], nfit) # Compute the new values and curvature matrix. do i = 1, nfit Memr[new+flags[i]-1] = params[flags[i]] + Memr[delta1+i-1] call mr_eval (x, y, npts, Memr[new], flags, np, Memr[a1], Memr[delta1], nfit, chisq1) # Check if chisq has improved. if (chisq1 < chisq) { mr = 0.1 * mr chisq = chisq1 call amovr (Memr[a1], Memr[a2], nfit * nfit) call amovr (Memr[delta1], Memr[delta2], nfit) call amovr (Memr[new], params, np) } else mr = 10. * mr if (mr == 0.) { call mfree (new, TY_REAL) call mfree (a1, TY_REAL) call mfree (a2, TY_REAL) call mfree (delta1, TY_REAL) call mfree (delta2, TY_REAL) } end # MR_EVAL -- Evaluate curvature matrix. This calls procedure DERIVS. procedure mr_eval (x, y, npts, params, flags, np, a, delta, nfit, chisq) real x[npts] #I X data array real y[npts] #I Y data array int npts #I Number of data points real params[np] #I Parameter array int flags[np] #I Flag array indexing parameters to fit int np #I Number of parameters real a[nfit,nfit] #U Curvature matrix real delta[nfit] #U Delta array int nfit #I Number of parameters to fit real chisq #U Chi square of fit int i, j, k real ymod, dy, dydpj, dydpk pointer sp, dydp begin call smark (sp) call salloc (dydp, np, TY_REAL) do j = 1, nfit { do k = 1, j a[j,k] = 0. delta[j] = 0. } chisq = 0. do i = 1, npts { call derivs (x[i], params, ymod, Memr[dydp], np) dy = y[i] - ymod do j = 1, nfit { dydpj = Memr[dydp+flags[j]-1] delta[j] = delta[j] + dy * dydpj do k = 1, j { dydpk = Memr[dydp+flags[k]-1] a[j,k] = a[j,k] + dydpj * dydpk } } chisq = chisq + dy * dy } do j = 2, nfit do k = 1, j-1 a[k,j] = a[j,k] call sfree (sp) end # MR_INVERT -- Solve a set of linear equations using Householder transforms. procedure mr_invert (a, b, n) real a[n,n] #I Input matrix and returned inverse real b[n] #U Input RHS vector and returned solution int n #I Dimension of input matrices int krank real rnorm pointer sp, h, g, ip begin call smark (sp) call salloc (h, n, TY_REAL) call salloc (g, n, TY_REAL) call salloc (ip, n, TY_INT) call hfti (a, n, n, n, b, n, 1, 0.001, krank, rnorm, Memr[h], Memr[g], Memi[ip]) call sfree (sp) end # FIXX - Check for bounds on x's. procedure fixx (eqx1, eqx2, eqy1, eqy2, x1, x2) real eqx1, eqx2, eqy1, eqy2, x1, x2 real temp begin if ((x1 - x2) * (eqx1 - eqx2) < 0.) { temp = eqx2 eqx2 = eqx1 eqx1 = temp temp = eqy2 eqy2 = eqy1 eqy1 = temp } eqx1 = max (min (x1, x2), min (max (x1, x2), eqx1)) eqx2 = max (min (x1, x2), min (max (x1, x2), eqx2)) end # PIXIND -- Compute pixel index. procedure pixind (x1, dx, valx, i1) real x1, dx, valx int i1 begin # i1 = aint ((valx-x1)/dx +0.5) + 1 i1 = (valx - x1) / dx + 1.5 end