# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include "mwcs.h" .help WFZEA .nf ------------------------------------------------------------------------- WFZEA -- WCS function driver for the zenithal equal area projection. Driver routines: FN_INIT wf_zea_init (fc, dir) FN_DESTROY (none) FN_FWD wf_zea_fwd (fc, v1, v2) FN_INV wf_zea_inv (fc, v1, v2) .endhelp -------------------------------------------------------------------- # Driver specific fields of function call (FC) descriptor. define FC_IRA Memi[$1+FCU] # RA axis (1 or 2) define FC_IDEC Memi[$1+FCU+1] # DEC axis (1 or 2) define FC_LONGP Memd[P2D($1+FCU+2)] # LONGPOLE (rads) define FC_COLATP Memd[P2D($1+FCU+4)] # (90 - DEC) (rads) define FC_COSLATP Memd[P2D($1+FCU+6)] # cosine (90 - DEC) define FC_SINLATP Memd[P2D($1+FCU+8)] # sine (90 - DEC) define FC_SPHTOL Memd[P2D($1+FCU+10)] # trig tolerance define FC_RODEG Memd[P2D($1+FCU+12)] # RO (degs) define FC_2RODEG Memd[P2D($1+FCU+14)] # 2 * RO (degs) define FC_REC2RODEG Memd[P2D($1+FCU+16)] # 1 / 2 * RO (degs) define FC_BADCVAL Memd[P2D($1+FCU+18)] # bad coordinate value define FC_W Memd[P2D($1+FCU+20)+($2)-1] # CRVAL (axis 1 and 2) # WF_ZEA_INIT -- Initialize the zenithal equal area forward or inverse # transform. Initialization for this transformation consists of, determining # which axis is RA / LON and which is DEC / LAT, computing the celestial # longitude and colatitude of the native pole, reading in the the native # longitude of the pole of the celestial coordinate system LONGPOLE from the # attribute list, precomputing the Euler angles and intermediary functions # of the reference point, and reading in the projection parameter RO from the # attribute list. If LONGPOLE is undefined then a value of 180.0 degrees is # assumed. If RO is undefined a value of 180.0 / PI is assumed. In order to # determine the axis order, the parameter "axtype={ra|dec}{xlon|xlat}" must # have been set in the attribute list for the function. The LONGPOLE and RO # parameters may be set in either or both of the axes attribute lists, but # the value in the RA axis attribute list takes precedence. procedure wf_zea_init (fc, dir) pointer fc #I pointer to FC descriptor int dir #I direction of transform int i double dec pointer sp, atvalue, ct, mw, wp, wv int ctod() errchk wf_decaxis(), mw_gwattrs() begin # Allocate space for the attribute string. call smark (sp) call salloc (atvalue, SZ_LINE, TY_CHAR) # Get the required mwcs pointers. ct = FC_CT(fc) mw = CT_MW(ct) wp = FC_WCS(fc) # Determine which is the DEC axis, and hence the axis order. call wf_decaxis (fc, FC_IRA(fc), FC_IDEC(fc)) # Get the value of W for each axis, i.e. the world coordinates at # the reference point. wv = MI_DBUF(mw) + WCS_W(wp) - 1 do i = 1, 2 FC_W(fc,i) = Memd[wv+CT_AXIS(ct,FC_AXIS(fc,i))-1] # Get the celestial coordinates of the native pole which are in # this case the ra and 90 - dec of the reference point. dec = DDEGTORAD(90.0d0 - FC_W(fc,FC_IDEC(fc))) # Determine the native longitude of the pole of the celestial # coordinate system corresponding to the FITS keyword LONGPOLE. # This number has no default and should normally be set to 180 # degrees. Search both axes for this quantity. iferr { call mw_gwattrs (mw, FC_IRA(fc), "longpole", Memc[atvalue], SZ_LINE) } then { iferr { call mw_gwattrs (mw, FC_IDEC(fc), "longpole", Memc[atvalue], SZ_LINE) } then { FC_LONGP(fc) = 180.0d0 } else { i = 1 if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0) FC_LONGP(fc) = 180.0d0 if (IS_INDEFD(FC_LONGP(fc))) FC_LONGP(fc) = 180.0d0 } } else { i = 1 if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0) FC_LONGP(fc) = 180.0d0 if (IS_INDEFD(FC_LONGP(fc))) FC_LONGP(fc) = 180.0d0 } FC_LONGP(fc) = DDEGTORAD(FC_LONGP(fc)) # Precompute the trigomometric functions used by the spherical geometry # code to improve efficiency. FC_COLATP(fc) = dec FC_COSLATP(fc) = cos(dec) FC_SINLATP(fc) = sin(dec) # Fetch the RO projection parameter which is the radius of the # generating sphere for the projection. If RO is absent which # is the usual case set it to 180 / PI. Search both axes for # this quantity. iferr { call mw_gwattrs (mw, FC_IRA(fc), "ro", Memc[atvalue], SZ_LINE) } then { iferr { call mw_gwattrs (mw, FC_IDEC(fc), "ro", Memc[atvalue], SZ_LINE) } then { FC_RODEG(fc) = 180.0d0 / DPI } else { i = 1 if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0) FC_RODEG(fc) = 180.0d0 / DPI } } else { i = 1 if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0) FC_RODEG(fc) = 180.0d0 / DPI } FC_2RODEG(fc) = 2.0d0 * FC_RODEG(fc) FC_REC2RODEG(fc) = 1.0d0 / FC_2RODEG(fc) # Set the bad coordinate value. FC_SPHTOL(fc) = 1.0d-5 # Set the bad coordinate value. FC_BADCVAL(fc) = INDEFD # Free working space. call sfree (sp) end # WF_ZEA_FWD -- Forward transform (physical to world) for the zenithal # equal area projection. procedure wf_zea_fwd (fc, p, w) pointer fc #I pointer to FC descriptor double p[2] #I physical coordinates (x, y) double w[2] #O world coordinates (ra, dec) int ira, idec double x, y, r, phi, theta, costhe, sinthe, dphi, cosphi, sinphi, ra, dec, tol double dlng, z data tol /1.0d-12/ begin # Get the axis numbers. ira = FC_IRA(fc) idec = FC_IDEC(fc) # Compute native spherical coordinates PHI and THETA in degrees from # the projected coordinates. This is the projection part of the # computation. x = p[ira] y = p[idec] r = sqrt (x * x + y * y) # Compute PHI. if (r == 0.0d0) phi = 0.0d0 else phi = atan2 (x, -y) # Compute THETA. if (abs (r - FC_2RODEG(fc)) < tol) theta = -DHALFPI else theta = DHALFPI - 2.0d0 * asin (r * FC_REC2RODEG(fc)) # Compute the celestial coordinates RA and DEC from the native # coordinates PHI and THETA. This is the spherical geometry part # of the computation. costhe = cos (theta) sinthe = sin (theta) dphi = phi - FC_LONGP(fc) cosphi = cos (dphi) sinphi = sin (dphi) # Compute the RA. x = sinthe * FC_SINLATP(fc) - costhe * FC_COSLATP(fc) * cosphi if (abs (x) < FC_SPHTOL(fc)) x = -cos (theta + FC_COLATP(fc)) + costhe * FC_COSLATP(fc) * (1.0d0 - cosphi) y = -costhe * sinphi if (x != 0.0d0 || y != 0.0d0) { dlng = atan2 (y, x) } else { dlng = dphi + DPI } ra = FC_W(fc,ira) + DRADTODEG(dlng) # Normalize the RA. if (FC_W(fc,ira) >= 0.0d0) { if (ra < 0.0d0) ra = ra + 360.0d0 } else { if (ra > 0.0d0) ra = ra - 360.0d0 } if (ra > 360.0d0) ra = ra - 360.0d0 else if (ra < -360.0d0) ra = ra + 360.0d0 # Compute the DEC. if (mod (dphi, DPI) == 0.0d0) { dec = DRADTODEG(theta + cosphi * FC_COLATP(fc)) if (dec > 90.0d0) dec = 180.0d0 - dec if (dec < -90.0d0) dec = -180.0d0 - dec } else { z = sinthe * FC_COSLATP(fc) + costhe * FC_SINLATP(fc) * cosphi if (abs(z) > 0.99d0) { if (z >= 0.0d0) dec = DRADTODEG(acos (sqrt(x * x + y * y))) else dec = DRADTODEG(-acos (sqrt(x * x + y * y))) } else dec = DRADTODEG(asin (z)) } # Store the results. w[ira] = ra w[idec] = dec end # WF_ZEA_INV -- Inverse transform (world to physical) for the zenithal # equal area projection. procedure wf_zea_inv (fc, w, p) pointer fc #I pointer to FC descriptor double w[2] #I input world (RA, DEC) coordinates double p[2] #I output physical coordinates int ira, idec double ra, dec, cosdec, sindec, cosra, sinra, x, y, phi, theta, r, dphi, z begin # Get the axes numbers. ira = FC_IRA(fc) idec = FC_IDEC(fc) # Compute the transformation from celestial coordinates RA and # DEC to native coordinates PHI and THETA. This is the spherical # geometry part of the transformation. ra = DDEGTORAD (w[ira] - FC_W(fc,ira)) dec = DDEGTORAD (w[idec]) cosra = cos (ra) sinra = sin (ra) cosdec = cos (dec) sindec = sin (dec) # Compute PHI. x = sindec * FC_SINLATP(fc) - cosdec * FC_COSLATP(fc) * cosra if (abs(x) < FC_SPHTOL(fc)) x = -cos (dec + FC_COLATP(fc)) + cosdec * FC_COSLATP(fc) * (1.0d0 - cosra) y = -cosdec * sinra if (x != 0.0d0 || y != 0.0d0) dphi = atan2 (y, x) else dphi = ra - DPI phi = FC_LONGP(fc) + dphi if (phi > DPI) phi = phi - DTWOPI else if (phi < -DPI) phi = phi + DTWOPI # Compute THETA. if (mod (ra, DPI) ==0.0) { theta = dec + cosra * FC_COLATP(fc) if (theta > DHALFPI) theta = DPI - theta if (theta < -DHALFPI) theta = -DPI - theta } else { z = sindec * FC_COSLATP(fc) + cosdec * FC_SINLATP(fc) * cosra if (abs (z) > 0.99d0) { if (z >= 0.0) theta = acos (sqrt(x * x + y * y)) else theta = -acos (sqrt(x * x + y * y)) } else theta = asin (z) } # Compute the transformation from native coordinates PHI and THETA # to projected coordinates X and Y. r = FC_2RODEG(fc) * sin ((DHALFPI - theta) / 2.0d0) p[ira] = r * sin (phi) p[idec] = -r * cos (phi) end