# RG_SZFFT -- Compute the size of the required FFT given the dimension of the # image the window size and the fact that the FFT must be a power of 2. int procedure rg_szfft (npts, window) int npts #I the number of points in the data int window #I the width of the valid cross correlation int nfft, pow2 begin nfft = npts + window / 2 pow2 = 2 while (pow2 < nfft) pow2 = pow2 * 2 return (pow2) end # RG_RLOAD -- Procedure to load a real array into the real part of a complex # array. procedure rg_rload (buf, ncols, nlines, fft, nxfft, nyfft) real buf[ARB] #I the input data buffer int ncols, nlines #I the size of the input buffer real fft[ARB] #O the out array to be fft'd int nxfft, nyfft #I the dimensions of the fft int i, dindex, findex begin # Load the reference and image data. dindex = 1 findex = 1 do i = 1, nlines { call rg_rweave (buf[dindex], fft[findex], ncols) dindex = dindex + ncols findex = findex + 2 * nxfft } end # RG_ILOAD -- Procedure to load a real array into the complex part of a complex # array. procedure rg_iload (buf, ncols, nlines, fft, nxfft, nyfft) real buf[ARB] #I the input data buffer int ncols, nlines #I the size of the input buffer real fft[ARB] #O the output array to be fft'd int nxfft, nyfft #I the dimensions of the fft int i, dindex, findex begin # Load the reference and image data. dindex = 1 findex = 1 do i = 1, nlines { call rg_iweave (buf[dindex], fft[findex], ncols) dindex = dindex + ncols findex = findex + 2 * nxfft } end # RG_RWEAVE -- Weave a real array into the real part of a complex array. # The output array must be twice as long as the input array. procedure rg_rweave (a, b, npts) real a[ARB] #I input array real b[ARB] #O output array int npts #I the number of data points int i begin do i = 1, npts b[2*i-1] = a[i] end # RG_IWEAVE -- Weave a real array into the complex part of a complex array. # The output array must be twice as long as the input array. procedure rg_iweave (a, b, npts) real a[ARB] #I the input array real b[ARB] #O the output array int npts #I the number of data points int i begin do i = 1, npts b[2*i] = a[i] end # RG_FOURN -- Replaces datas by its n-dimensional discreter Fourier transform, # if isign is input as 1. NN is an integer array of length ndim containing # the lengths of each dimension (number of complex values), which must all # be powers of 2. Data is a real array of length twice the product of these # lengths, in which the data are stored as in a multidimensional complex # Fortran array. If isign is input as -1, data is replaced by its inverse # transform times the product of the lengths of all dimensions. procedure rg_fourn (data, nn, ndim, isign) real data[ARB] #I/O input data and output fft int nn[ndim] #I array of dimension lengths int ndim #I number of dimensions int isign #I forward or inverse transform int idim, i1, i2, i3, ip1, ip2, ip3, ifp1, ifp2, i2rev, i3rev, k1, k2 int ntot, nprev, n, nrem, pibit double wr, wi, wpr, wpi, wtemp, theta real tempr, tempi begin ntot = 1 do idim = 1, ndim ntot = ntot * nn[idim] nprev = 1 do idim = 1, ndim { n = nn[idim] nrem = ntot / (n * nprev) ip1 = 2 * nprev ip2 = ip1 * n ip3 = ip2 * nrem i2rev = 1 do i2 = 1, ip2, ip1 { if (i2 < i2rev) { do i1 = i2, i2 + ip1 - 2, 2 { do i3 = i1, ip3, ip2 { i3rev = i2rev + i3 - i2 tempr = data [i3] tempi = data[i3+1] data[i3] = data[i3rev] data[i3+1] = data[i3rev+1] data[i3rev] = tempr data[i3rev+1] = tempi } } } pibit = ip2 / 2 while ((pibit >= ip1) && (i2rev > pibit)) { i2rev = i2rev - pibit pibit = pibit / 2 } i2rev = i2rev + pibit } ifp1 = ip1 while (ifp1 < ip2) { ifp2 = 2 * ifp1 theta = isign * 6.28318530717959d0 / (ifp2 / ip1) wpr = - 2.0d0 * dsin (0.5d0 * theta) ** 2 wpi = dsin (theta) wr = 1.0d0 wi = 0.0d0 do i3 = 1, ifp1, ip1 { do i1 = i3, i3 + ip1 - 2, 2 { do i2 = i1, ip3, ifp2 { k1 = i2 k2 = k1 + ifp1 tempr = sngl (wr) * data[k2] - sngl (wi) * data[k2+1] tempi = sngl (wr) * data[k2+1] + sngl (wi) * data[k2] data[k2] = data[k1] - tempr data[k2+1] = data[k1+1] - tempi data[k1] = data[k1] + tempr data[k1+1] = data[k1+1] + tempi } } wtemp = wr wr = wr * wpr - wi * wpi + wr wi = wi * wpr + wtemp * wpi + wi } ifp1 = ifp2 } nprev = n * nprev } end # RG_FSHIFT -- Center the array after doing the FFT. procedure rg_fshift (fft1, fft2, nx, ny) real fft1[nx,ARB] #I input fft array real fft2[nx,ARB] #O output fft array int nx, ny #I fft array dimensions int i, j real fac begin fac = 1.0 do j = 1, ny { do i = 1, nx, 2 { fft2[i,j] = fac * fft1[i,j] fft2[i+1,j] = fac * fft1[i+1,j] fac = -fac } fac = -fac } end # RG_MOVEXR -- Extract the portion of the FFT for which the computed lags # are valid. The dimensions of the the FFT are a power of two # and the 0 frequency is in the position nxfft / 2 + 1, nyfft / 2 + 1. procedure rg_movexr (fft, nxfft, nyfft, xcor, xwindow, ywindow) real fft[ARB] #I the input fft int nxfft, nyfft #I the dimensions of the input fft real xcor[ARB] #O the output cross-correlation function int xwindow, ywindow #I the cross-correlation function window int j, ix, iy, findex, xindex begin # Compute the starting index of the extraction array. ix = 1 + nxfft - 2 * (xwindow / 2) iy = 1 + nyfft / 2 - ywindow / 2 # Copy the real part of the Fourier transform into the # cross-correlation array. findex = ix + 2 * nxfft * (iy - 1) xindex = 1 do j = 1, ywindow { call rg_extract (fft[findex], xcor[xindex], xwindow) findex = findex + 2 * nxfft xindex = xindex + xwindow } end # RG_EXTRACT -- Extract the real part of a complex array. procedure rg_extract (a, b, npts) real a[ARB] #I the input array real b[ARB] #O the output array int npts #I the number of data points int i begin do i = 1, npts b[i] = a[2*i-1] end