# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include include include include include include include "imexam.h" define BTYPES "|constant|nearest|reflect|wrap|project|" define SZ_BTYPE 8 # Length of boundary type string define NLINES 16 # Number of image lines in the buffer # IE_VIMEXAM -- Plot the vector of image data between two pixels. # There are two types of plot selected by the key argument. The # second cursor position is passed in the IMEXAM data structure. # The first position is either the middle of the vector or the starting # point. procedure ie_vimexam (gp, mode, ie, x, y, key) pointer gp # GIO pointer int mode # Graph mode pointer ie # IMEXAM pointer real x, y # Starting or center coordinate int key # 'u' centered vector, 'v' two endpoint vector int btype, nxvals, nyvals, nzvals, width pointer sp, title, boundary, im, x_vec, y_vec, pp real x1, y1, x2, y2, zmin, zmax, bconstant bool fp_equalr() int clgpseti(), clgwrd(), clopset() real clgpsetr() pointer ie_gimage() errchk malloc begin iferr (im = ie_gimage (ie, NO)) { call erract (EA_WARN) return } call smark (sp) call salloc (title, IE_SZTITLE, TY_CHAR) call salloc (boundary, SZ_BTYPE, TY_CHAR) # Get boundary extension parameters. if (IE_PP(ie) != NULL) call clcpset (IE_PP(ie)) IE_PP(ie) = clopset ("vimexam1") pp = IE_PP(ie) btype = clgwrd ("vimexam1.boundary", Memc[boundary], SZ_BTYPE, BTYPES) bconstant = clgpsetr (pp, "constant") nxvals = IM_LEN(im,1) nyvals = IM_LEN(im,2) if (!IS_INDEF (x)) IE_X1(ie) = x if (!IS_INDEF(y)) IE_Y1(ie) = y x1 = IE_X1(ie) x2 = IE_X2(ie) y1 = IE_Y1(ie) y2 = IE_Y2(ie) width = clgpseti (pp, "naverage") # Check the boundary and compute the length of the output vector. x1 = max (1.0, min (x1, real (nxvals))) x2 = min (real(nxvals), max (1.0, x2)) y1 = max (1.0, min (y1, real (nyvals))) y2 = min (real(nyvals), max (1.0, y2)) nzvals = int (sqrt ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))) + 1 # Check for cases which should be handled by pcols or prows. call malloc (x_vec, nzvals, TY_REAL) call malloc (y_vec, nzvals, TY_REAL) if (fp_equalr (x1, x2)) call ie_get_col (im, x1, y1, x2, y2, nzvals, width, btype, bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax) else if (fp_equalr (y1, y2)) call ie_get_row (im, x1, y1, x2, y2, nzvals, width, btype, bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax) else call ie_get_vector (im, x1, y1, x2, y2, nzvals, width, btype, bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax) # Convert endpoint plot coordinates to centered coordinates. if (key == 'u') { zmin = (IE_X1(ie) + IE_X2(ie)) / 2 zmax = (IE_Y1(ie) + IE_Y2(ie)) / 2 zmin = sqrt ((zmin-x1)**2 + (zmax-y1)**2) call asubkr (Memr[x_vec], zmin, Memr[x_vec], nzvals) } call sprintf (Memc[title], IE_SZTITLE, "%s: Vector %.1f,%.1f to %.1f,%.1f naverage: %d\n%s") call pargstr (IE_IMAGE(ie)) call pargr (x1) call pargr (y1) call pargr (x2) call pargr (y2) call pargi (width) call pargstr (IM_TITLE(im)) call ie_graph (gp, mode, pp, Memc[title], Memr[x_vec], Memr[y_vec], nzvals, "", "") # Finish up call mfree (x_vec, TY_REAL) call mfree (y_vec, TY_REAL) call sfree (sp) end # IE_GET_VECTOR -- Average a strip perpendicular to a given vector and return # vectors of point number and average pixel value. Also returned is the min # and max value in the data vector. procedure ie_get_vector (im, x1, y1, x2, y2, nvals, width, btype, bconstant, x_vector, y_vector, zmin, zmax) pointer im # pointer to image header real x1, y1 # starting pixel of vector real x2, y2 # ending pixel of pixel real bconstant # Boundary extension constant int btype # Boundary extension type int nvals # number of samples along the vector int width # width of strip to average over real x_vector[ARB] # Pixel numbers real y_vector[ARB] # Average pixel values (returned) real zmin, zmax # min, max of data vector double dx, dy, dpx, dpy, ratio, xoff, yoff, noff, xv, yv int i, j, k, nedge, col1, col2, line1, line2 int colb, colc, line, linea, lineb, linec pointer sp, oxs, oys, xs, ys, yvals, msi, buf real sum , lim1, lim2, lim3, lim4 pointer imgs2r() errchk msiinit begin call smark (sp) call salloc (oxs, width, TY_REAL) call salloc (oys, width, TY_REAL) call salloc (xs, width, TY_REAL) call salloc (ys, width, TY_REAL) call salloc (yvals, width, TY_REAL) # Determine sampling perpendicular to vector. dx = (x2 - x1) / (nvals - 1) dy = (y2 - y1) / (nvals - 1) if (x1 < x2) { dpx = -dy dpy = dx } else { dpx = dy dpy = -dx } # Compute offset from the nominal vector to the first sample point. ratio = dx / dy nedge = width + 1 noff = (real (width) - 1.0) / 2.0 xoff = noff * dpx yoff = noff * dpy # Initialize the interpolator and the image data buffer. call msiinit (msi, II_BILINEAR] buf = NULL # Set the boundary. col1 = int (min (x1, x2)) - nedge col2 = nint (max (x1, x2)) + nedge line1 = int (min (y1, y2)) - nedge line2 = nint (max (y2, y1)) + nedge call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant) # Initialize. xv = x1 - xoff yv = y1 - yoff do j = 1, width { Memr[oxs+j-1] = double (j - 1) * dpx Memr[oys+j-1] = double (j - 1) * dpy } # Loop over the output image lines. do i = 1, nvals { x_vector[i] = real (i) line = yv # Get the input image data and fit an interpolator to the data. # The input data is buffered in a section of size NLINES + 2 * # NEDGE. if (dy >= 0.0 && (buf == NULL || line > (linea))) { linea = min (line2, line + NLINES - 1) lineb = max (line1, line - nedge) linec = min (line2, linea + nedge) lim1 = xv lim2 = lim1 + double (width - 1) * dpx lim3 = xv + double (linea - line + 1) * ratio lim4 = lim3 + double (width - 1) * dpx colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1) colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1) buf = imgs2r (im, colb, colc, lineb, linec) call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb + 1, colc - colb + 1) } else if (dy < 0.0 && (buf == NULL || line < linea)) { linea = max (line1, line - NLINES + 1) lineb = max (line1, linea - nedge) linec = min (line2, line + nedge) lim1 = xv lim2 = lim1 + double (width - 1) * dpx lim3 = xv + double (linea - line - 1) * ratio lim4 = lim3 + double (width - 1) * dpx colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1) colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1) buf = imgs2r (im, colb, colc, lineb, linec) call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb + 1, colc - colb + 1) } # Evaluate the interpolant. call aaddkr (Memr[oxs], real (xv - colb + 1), Memr[xs], width) call aaddkr (Memr[oys], real (yv - lineb + 1), Memr[ys], width) call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width) if (width == 1) y_vector[i] = Memr[yvals] else { sum = 0.0 do k = 1, width sum = sum + Memr[yvals+k-1] y_vector[i] = sum / width } xv = xv + dx yv = yv + dy } # Compute min and max values. call alimr (y_vector, nvals, zmin, zmax) # Free memory . call msifree (msi) call sfree (sp) end # IE_GET_COL -- Average a strip perpendicular to a column vector and return # vectors of point number and average pixel value. Also returned is the min # and max value in the data vector. procedure ie_get_col (im, x1, y1, x2, y2, nvals, width, btype, bconstant, x_vector, y_vector, zmin, zmax) pointer im # pointer to image header real x1, y1 # starting pixel of vector real x2, y2 # ending pixel of pixel int nvals # number of samples along the vector int width # width of strip to average over int btype # Boundary extension type real bconstant # Boundary extension constant real x_vector[ARB] # Pixel numbers real y_vector[ARB] # Average pixel values (returned) real zmin, zmax # min, max of data vector real sum int line, linea, lineb, linec pointer sp, xs, ys, msi, yvals, buf double dx, dy, xoff, noff, xv, yv int i, j, k, nedge, col1, col2, line1, line2 pointer imgs2r() errchk msiinit begin call smark (sp) call salloc (xs, width, TY_REAL) call salloc (ys, width, TY_REAL) call salloc (yvals, width, TY_REAL) # Initialize the interpolator and the image data buffer. call msiinit (msi, II_BILINEAR] buf = NULL # Set the boundary. nedge = max (2, width / 2 + 1) col1 = int (x1) - nedge col2 = nint (x1) + nedge line1 = int (min (y1, y2)) - nedge line2 = nint (max (y1, y2)) + nedge call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant) # Determine sampling perpendicular to vector. dx = 1.0d0 if (nvals == 1) dy = 0.0d0 else dy = (y2 - y1) / (nvals - 1) # Compute offset from the nominal vector to the first sample point. noff = (real (width) - 1.0) / 2.0 xoff = noff * dx xv = x1 - xoff do j = 1, width Memr[xs+j-1] = xv + double (j - col1) yv = y1 # Loop over the output image lines. do i = 1, nvals { x_vector[i] = real (i) line = yv # Get the input image data and fit an interpolator to the data. # The input data is buffered in a section of size NLINES + 2 * # NEDGE. if (dy >= 0.0 && (buf == NULL || line > (linea))) { linea = min (line2, line + NLINES - 1) lineb = max (line1, line - nedge) linec = min (line2, linea + nedge) buf = imgs2r (im, col1, col2, lineb, linec) call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb + 1, col2 - col1 + 1) } else if (dy < 0.0 && (buf == NULL || line < linea)) { linea = max (line1, line - NLINES + 1) lineb = max (line1, linea - nedge) linec = min (line2, line + nedge) buf = imgs2r (im, col1, col2, lineb, linec) call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb + 1, col2 - col1 + 1) } # Evaluate the interpolant. call amovkr (real (yv - lineb + 1), Memr[ys], width) call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width) if (width == 1) y_vector[i] = Memr[yvals] else { sum = 0.0 do k = 1, width sum = sum + Memr[yvals+k-1] y_vector[i] = sum / width } yv = yv + dy } # Compute min and max values. call alimr (y_vector, nvals, zmin, zmax) # Free memory . call msifree (msi) call sfree (sp) end # IE_GET_ROW -- Average a strip parallel to a row vector and return # vectors of point number and average pixel value. Also returned is the min # and max value in the data vector. procedure ie_get_row (im, x1, y1, x2, y2, nvals, width, btype, bconstant, x_vector, y_vector, zmin, zmax) pointer im # pointer to image header real x1, y1 # starting pixel of vector real x2, y2 # ending pixel of pixel int nvals # number of samples along the vector int width # width of strip to average over int btype # Boundary extension type real bconstant # Boundary extension constant real x_vector[ARB] # Pixel numbers real y_vector[ARB] # Average pixel values (returned) real zmin, zmax # min, max of data vector double dx, dy, yoff, noff, xv, yv int i, j, nedge, col1, col2, line1, line2 int line, linea, lineb, linec pointer sp, oys, xs, ys, yvals, msi, buf errchk imgs2r, msifit, msiinit pointer imgs2r() begin call smark (sp) call salloc (oys, width, TY_REAL) call salloc (xs, nvals, TY_REAL) call salloc (ys, nvals, TY_REAL) call salloc (yvals, nvals, TY_REAL) # Initialize the interpolator and the image data buffer. call msiinit (msi, II_BILINEAR] buf = NULL # Set the boundary. nedge = max (2, width / 2 + 1) col1 = int (min (x1, x2)) - nedge col2 = nint (max (x1, x2)) + nedge line1 = int (y1) - nedge line2 = nint (y1) + nedge call ie_setboundary (im, col1, col2, line1, line2, btype, bconstant) # Determine sampling perpendicular to vector. if (nvals == 1) dx = 0.0d0 else dx = (x2 - x1) / (nvals - 1) dy = 1.0 # Compute offset from the nominal vector to the first sample point. noff = (real (width) - 1.0) / 2.0 xv = x1 - col1 + 1 do i = 1, nvals { Memr[xs+i-1] = xv xv = xv + dx } yoff = noff * dy yv = y1 - yoff do j = 1, width Memr[oys+j-1] = yv + double (j - 1) # Clear the accululator. call aclrr (y_vector, nvals) # Loop over the output image lines. do i = 1, width { line = yv # Get the input image data and fit an interpolator to the data. # The input data is buffered in a section of size NLINES + 2 * # NEDGE. if (dy >= 0.0 && (buf == NULL || line > (linea))) { linea = min (line2, line + NLINES - 1) lineb = max (line1, line - nedge) linec = min (line2, linea + nedge) buf = imgs2r (im, col1, col2, lineb, linec) if (buf == NULL) call error (0, "Error reading input image.") call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb + 1, col2 - col1 + 1) } else if (dy < 0.0 && (buf == NULL || line < linea)) { linea = max (line1, line - NLINES + 1) lineb = max (line1, linea - nedge) linec = min (line2, line + nedge) buf = imgs2r (im, col1, col2, lineb, linec) if (buf == NULL) call error (0, "Error reading input image.") call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb + 1, col2 - col1 + 1) } # Evaluate the interpolant. call amovkr (real (Memr[oys+i-1] - lineb + 1), Memr[ys], nvals) call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], nvals) if (width == 1) call amovr (Memr[yvals], y_vector, nvals) else call aaddr (Memr[yvals], y_vector, y_vector, nvals) yv = yv + dy } # Compute the x and y vectors. do i = 1, nvals x_vector[i] = real (i) if (width > 1) call adivkr (y_vector, real (width), y_vector, nvals) # Compute min and max values. call alimr (y_vector, nvals, zmin, zmax) # Free memory . call msifree (msi) call sfree (sp) end # IE_SETBOUNDARY -- Set boundary extension. procedure ie_setboundary (im, col1, col2, line1, line2, btype, bconstant) pointer im # IMIO pointer int col1, col2 # Range of columns int line1, line2 # Range of lines int btype # Boundary extension type real bconstant # Constant for constant boundary extension int btypes[5] int nbndrypix data btypes /BT_CONSTANT, BT_NEAREST, BT_REFLECT, BT_WRAP, BT_PROJECT/ begin nbndrypix = 0 nbndrypix = max (nbndrypix, 1 - col1) nbndrypix = max (nbndrypix, col2 - IM_LEN(im, 1)) nbndrypix = max (nbndrypix, 1 - line1) nbndrypix = max (nbndrypix, line2 - IM_LEN(im, 2)) call imseti (im, IM_TYBNDRY, btypes[btype]) call imseti (im, IM_NBNDRYPIX, nbndrypix + 1) if (btypes[btype] == BT_CONSTANT) call imsetr (im, IM_BNDRYPIXVAL, bconstant) end # IE_BUFL2R -- Maintain buffer of image lines. A new buffer is created when # the buffer pointer is null or if the number of lines requested is changed. # The minimum number of image reads is used. procedure ie_bufl2r (im, col1, col2, line1, line2, buf) pointer im # Image pointer int col1 # First image column of buffer int col2 # Last image column of buffer int line1 # First image line of buffer int line2 # Last image line of buffer pointer buf # Buffer pointer buf1, buf2 int i, ncols, nlines, nclast, llast1, llast2, nllast errchk malloc, realloc, imgs2r pointer imgs2r() begin ncols = col2 - col1 + 1 nlines = line2 - line1 + 1 # If the buffer pointer is undefined then allocate memory for the # buffer. If the number of columns or lines requested changes # reallocate the buffer. Initialize the last line values to force # a full buffer image read. if (buf == NULL) { call malloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } else if ((nlines != nllast) || (ncols != nclast)) { call realloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } # Read only the image lines with are different from the last buffer. if (line1 < llast1) { do i = line2, line1, -1 { if (i > llast1) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } else if (line2 > llast2) { do i = line1, line2 { if (i < llast2) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } # Save the buffer parameters. llast1 = line1 llast2 = line2 nclast = ncols nllast = nlines end