
1Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration

Version 1.0
December 1999

CVOS User’s Guide and
Reference Manual

Science Software Group
Science Support Division

3700 San Martin Drive
Baltimore, Maryland 21218

SPACE
TELESCOPE
SCIENCE
INSTITUTE

The Science Software Group

Version 1: Written by Michele D. De La Peña

Rick White Group Lead

Perry Greenfield Programming Supervisor

Howard Bushouse NICMOS calibration and pipeline, Synthetic Photometry

Ivo Busko Isophote, Fitting, specview (Java), Graphics support

Ed Colbert System Administration and Distribution

Michele De La Peña Python/Tkinter Programming, CVOS, HSTIO, GHRS and FOS pipe-
line and analysis

Warren Hack ACS and FOC calibration and analysis, igi, Graphics, Paper Products

Phil Hodge Table System, FOC and STIS calibration and analysis, Fourier
analysis

J.C. Hsu HSP, FGS, WF/PC, WFPC2 calibration and analysis, Paper Prod-
ucts, Dither,file format conversion tools

Dick Shaw Exposure Time Calculators, nebular

Hemant Shukla SEA ETC, WFPC2, JPython

Bernie Simon Calibration Database, Synthetic Photometry, Table Editor, FITSIO,
IRAF System Support

Eric Wyckoff User Support,Software Testing, STSDAS Web pages, CL Scripts,
Python Scripts

Copyright © 1999, Association of Universities for Research in Astronomy, Inc.
All rights reserved.

Send comments or corrections to:
Science Support Division
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, Maryland 21218

E-mail: help@stsci.edu
M3.17

Contents iii

Table of Contents
Preface:
Introduction
to the CVOS ..v

About the CVOS... ...v

Using This Manual ...v
Typographic Conventions... vi

Platform Support .. vii

Background Material ... vii

Obtaining the CVOS... viii

Chapter 1:
CVOS User’s Guide ...1

CVOS Pre-built Interfaces and Conventions...................2
File and Interface Naming Conventions2
Data Types and I/O Nomenclature..3

Building a C Application Task ...6
Preprocesser Include Files..6
Mkpkg versus Make ..6
Host-level versus Native IRAF Tasks....................................7

Host-level Task...8

Native IRAF Task...12

Error Handling...17

Exception Handling..20

Summary of CVOS Utility Functions21

An Additional Example..22

Odds and Ends...24

Chapter 2:
CVOS Reference Manual ..27

iv Contents
Appendix A:
Checklists .. 29

Host-Level Task Checklist... 30

Native IRAF Task Checklist .. 31

re
ory
es.
ng
tput
the

he
), not
ries,
is

y on
a
C

to
Preface:

Introduction
to the CVOS

In This Preface...
About the CVOS... / v
Using This Manual / v
Platform Support / vii

Background Material / vii
Obtaining the CVOS / viii

About the CVOS...

The Image Reduction and Analysis Facility (IRAF) softwa
environment developed at the National Optical Astronomy Observat
(NOAO) consists of a broad range of functionality organized into librari
The IRAF system interface, colloquially known as the Virtual Operati
System (VOS), provides access to the platform-independent Input/Ou
libraries which comprise the programming interface. The C Interface to
IRAF Virtual Operating System libraries (CVOS), developed by t
Science Software Group at Space Telescope Science Institute (STScI
only provides a mechanism to generate C interfaces to the VOS libra
giving access to IRAF functionality from C programs, but also
comprised of pre-built interfaces to the major IRAF libraries.

Using This Manual

This manual is designed to be a comprehensive document not onl
the use of the pre-built C interface functions of the CVOS, but also
detailed description on how to build interfaces (also referred to as
bindings in this manual) for the IRAF system. This manual is divided in
two main chapters:CVOS User’s GuideandCVOS Reference Manual. The
v

vi Introduction to the CVOS

e
to

es

ns

ows
d in

, a

-
d as

ach

that

ot

me
CVOS User’s Guideprovides a general overview of the contents of th
CVOS, how to use the pre-built interfaces which have been provided
build C tasks, and shows examples of C tasks. TheCVOS Reference
Manualdescribes in detail how to build additional C interfaces to librari
or packages.

Typographic Conventions
To help one understand the material in theCVOS User’s Guide and

Reference Manual, a few consistent typographic and design conventio
have been employed.

Visual Cues
The following typographic cues are used:

• Figures and examples are often labelled with annotations and arr
to help explain their meaning. These annotations are displaye
bold sans serif type.

• Bold words identify a STSDAS or IRAF task or package name
UNIX utility, or to emphasize particular CVOS keywords.

• Typewriter-like words identify a file name, directory path
name, system command, or response that is typed or displaye
shown.

• italic type indicates a new term or an important point.

Comments
Occasional side comments point out three types of information, e

identified by an icon in the left margin.

Tip: No problems...just another way to do something or a suggestion
might make life a bit easier.

Heads Up: Indicates something that is often done incorrectly or that is n
obvious.

Warning: You could corrupt data, produce incorrect results, or create so
similar problem.

Platform Support vii

e
on

that
be
the

be
ce

-
:

he
hich

nd

ge”

by

.

Platform Support

The CVOS is currently supported on all platforms for which th
STSDAS system is available. A list of supported platforms can be found
the IRAF web site
http://iraf.noao.edu.

An exception to the platform support is that native1 IRAF C tasks are
notsupported on OpenVMS platforms. Further, it should also be noted
STSDAS/TABLES Version 2.1 (09 October 1999) is the last release to
tested on OpenVMS systems. Approximately, three months after
release of v2.1, all support for OpenVMS will end.

Background Material

In order to use the CVOS effectively, it is necessary to
knowledgeable of the available functionality in the IRAF system. A ni
introduction to IRAF and an overview of the functionality available is

• “A Beginner’s Guide to Using IRAF, IRAF Version 2.10” by Jean
nette Barnes (1993). This document can be obtained on-line from
ftp://iraf.noao.edu/pub/beguide.ps.Z.

A majority of the IRAF application programs, as well as most of t
system, is written in the IRAF Subset PreProcessor (SPP) language w
is the native programming language of IRAF. An introduction a
overview of SPP can be found in the following references:

• “A Reference Manual for the IRAF Subset Preprocessor Langua
by D. Tody (1983):
ftp://iraf.noao/edu/iraf/docs/spp.txt.Z

• “Programmer’s Crib Sheet for the IRAF Programming Language”
Douglas Tody (1983):
ftp://iraf.noao.edu/iraf/docs/prog_crib.txt.Z.

A document providing implementation instructions and examples is:

• “An Introductory User’s Guide to IRAF SPP Programming” by R
Seaman (1992):
ftp://iraf.noao.edu/iraf/docs/sppguide.ps.Z.

1. See the discussion in theBuilding a C Application Task section of Chapter 1 for
details on native versus host-level IRAF C tasks.

viii Introduction to the CVOS

cu-

an
and
s the
n

rary

t to
The most comprehensive document to date on SPP is:

• “SPP Reference Manual” edited by Zoltan Levay (1992). This do
ment can be obtained on-line from:
http://ra.stsci.edu/Document3.html.

Obtaining the CVOS

The CVOS is distributed as part of the STSDAS system, which is
IRAF layered package containing the software used for calibrating
analyzing data from the Hubble Space Telescope. The CVOS serves a
underlying support library for the STIS, NICMOS, and ACS calibratio
pipelines, as well as support for the analysis tasks written in C.

This manual is a comprehensive document describing the CVOS lib
and its usage. Additional sources of information are:

• Web page: A web page providing links to acquire STSDAS is:
http://ra.stsci.edu/STSDAS.html.

• Help Desk: Questions about using CVOS or STSDAS can be sen
the STScI Help Desk via E-mail to:help@stsci.edu.

he
as
n be
he

face
hich
Chapter 1:

CVOS User’s Guide
In This Chapter...

CVOS Pre-built Interfaces and Conventions / 2
Building a C Application Task / 6

Host-level Task / 8
Native IRAF Task / 12

Error Handling / 17
Exception Handling / 20

Summary of CVOS Utility Functions / 21
An Additional Example / 22

Odds and Ends / 24

The CVOS is comprised of both pre-built interface functions which t
programmer can use “out of the box” to begin writing C applications,
well as a semi-automated interface generation mechanism which ca
used to create additional bindings to needed IRAF functionality. T
discussion in this chapter concentrates on using the pre-built inter
functions and the formalism necessary to create C application tasks w
use IRAF functionality.
1

2 Chapter 1: CVOS User’s Guide

es
ed
 1.

ry in
The

in
es
CVOS Pre-built Interfaces and Conventions

As of CVOS Version 3.2.2 (03-September-1999), the CVOS provid
pre-built interface functions to a majority of the public routines contain
in the IRAF and STSDAS/TABLES libraries or packages listed in Table

File and Interface Naming Conventions
Some discussion of the nomenclature used by the CVOS is necessa

order to understand the contents of the CVOS source directories.
majority of the CVOS source files are located instsdas$lib/cvos and
associated subdirectories; the CVOS header files are located
stsdas$lib 1. An in-depth discussion and description of the CVOS fil
is found in theCVOS Reference Manual.

Table 1: List of IRAF and STSDAS/TABLES libraries or packages with pre-built C
bindings.

Library/Package Description

clio IRAF command language interaction

curfit linear least squares curve fitting

gflib tools for the manipulation of GEIS files

gsurfit linear least squares surface fitting

iminterp image interpolation

imio image access

mwcs mini-world coordinate system

nlfit non-linear least squares fitting

qpoe1

1. Theqpoe interface files contain some manually coded wrapper interface fuc-
tions needed to support specific data conversions.

interface to position order event files

selector syntax for access to multi-extension FITS files

surfit surface fitting

synphot synthetic photometry

tables tools for manipulating STSDAS, FITS, and text tables

vops vector (array) operations

xtools2

2. Only a subset of tasks in thextools package have C interfaces.

miscellaneous tools

CVOS Pre-built Interfaces and Conventions 3

d to
to
the

e
ce

tion
iated

dle
ctual

ich
the
ge

a
e

that

code

s. In
pes,

s
ype
The naming convention adopted for the CVOS files which correspon
IRAF or STSDAS/TABLES libraries and packages is to prepend an “x”
the library or package name. For example, the CVOS header file for
IRAF imio library is ximio.h . The CVOS header files contain th
function prototypes for all of the public functions which have a C interfa
for a particular library or package. In order to build a C task properly, it is
necessary to include the appropriate CVOS header file in the applica
source code for any C interface functions used. The C source file assoc
with a CVOS header file for theimio library is namedximio.c . The
source files contain the definitions for the functions; the definitions han
any necessary data type conversions between C and IRAF, call the a
IRAF functions, and check error conditions upon return from IRAF.

The naming convention for the C interface functions themselves wh
are contained in the CVOS library/package files is to prepend a “c_” to
IRAF function name. For example, in IRAF the function to open an ima
file and obtain the data contents isimmap; the corresponding CVOS
function isc_immap. In an instance where this convention would cause
conflict with any existing IRAF functions, a “c_x” is prepended to th
IRAF function name. Thus far, only one conflict has been found such
the IRAFc_imaccess becomesc_ximaccess in the CVOS.

Data Types and I/O Nomenclature
In order to use the CVOS to create C tasks, the application source

must include the<c_iraf.h> file which contains critical declarations
and definitions needed by the C interface functions and source program
order to provide a better correspondence between C and IRAF data ty
<c_iraf.h> defines the three additional types ofBool,
IRAFPointer, andstruct IRAFComplex which can be referred to
as simplyComplex. <c_iraf.h> also defines C symbolic name
which correspond to the IRAF symbolic names representing data t

1. stsdaslib is set to the IRAF environment variablestsdas$lib in thests-
daszzsetenv.def file.

4 Chapter 1: CVOS User’s Guide

list of

e

ion
. An

ition

f

codes as listed in Table 2. The data type codes are an enumerated

IRAFType . The IRAF symbolic names are defined in th
iraf$unix/hlib/iraf.h file.

Data type codes are typically used for dynamic memory allocat
where it is necessary to know the number of bytes each value occupies
example of the use of the CVOS data type codes would be in the defin
of a new table column such as

c_tbcdef1(table->tp, &(table->back), "BACKGROUND",
"Counts/s", "", IRAF_REAL, table->array_size);

This line of C code uses the C interface function,c_tbcdef1 , to define a
single column in a tabletable->tp where the new column
&(table->back) is called BACKGROUND. The BACKGROUND
column has units ofCounts/s , no specified print format, contains data o
type IRAF_REAL, and hastable->array_size number of elements.

Table 2: Data Type Code correspondence between C and IRAF.

CVOS Data Type Codes IRAF Data Type Codes

IRAF_BOOL TY_BOOL

IRAF_CHAR TY_CHAR

IRAF_SHORT TY_SHORT

IRAF_INT TY_INT

IRAF_LONG TY_LONG

IRAF_REAL TY_REAL

IRAF_DOUBLE TY_DOUBLE

IRAF_COMPLEX TY_COMPLEX

IRAF_POINTER TY_POINTER

IRAF_STRUCT TY_STRUCT

IRAF_USHORT TY_USHORT

IRAF_UBYTE TY_UBYTE

CVOS Pre-built Interfaces and Conventions 5

er of
orm.

ini-

u-

of
on,

F

In C the number of bytes associated with theint andlong data types is
platform dependent. While these types often represent the same numb
bytes, this is not always true as is the case for the Compaq Tru64 platf
Although IRAF has bothint and long defined, these data typesalways
represent the same number of bytes in the IRAF system. In order to m
mize incompatibilities between C and IRAF, the CVOS uses only theint
data type in all interfaces. The programmer is urged to use only theint
data typefor all variables in C programs that are to be passed as arg
ments to CVOS interface functions.

File input/output access modes are also defined in the<c_iraf.h>
file as an enumerated list ofIRAFIOMode and are listed in Table 3.

An example where a file I/O mode would be used is in the reading
data from an image which would use the CVOS interface functi
c_immap:

IRAFPointer c_immap(char *, int, IRAFPointer);

and the actual line of code in a C task would look like

fileDescriptor = c_immap(filename, IRAF_READ_ONLY, 0) 2;

where the filefilename contains an image which is mapped to an IRA
image structure in read-only access mode.

Table 3: File I/O correspondence between C and IRAF

C File I/O Modes IRAF File I/O Modes

IRAF_NOMODE

IRAF_READ_ONLY READ_ONLY

IRAF_READ_WRITE READ_WRITE

IRAF_WRITE_ONLY WRITE_ONLY

IRAF_APPEND APPEND

IRAF_NEW_FILE NEW_FILE1

1. NEW_IMAGE, NEW_STRUCT, and NEW_TAPE are all synonyms
for NEW_FILE.

IRAF_TEMP_FILE TEMP_FILE

IRAF_NEW_COPY NEW_COPY

2. The null value for the IRAFPointer data type should be zero, and not NULL in C
codes.

6 Chapter 1: CVOS User’s Guide

s a

ver,

file

r

ge
ty
e C
rnal

r
n

the

s
nd

the
d be
the

s
n

Building a C Application Task

Preprocessor Include Files
In addition to the<c_iraf.h> file, any C application source code

must also include any library header files (e.g.,<ximio.h>) which
contain the prototypes for functions used in the application code. A
precaution, the<c_iraf.h> is automatically included by all of the
library/package header files included in the C application source. Howe
it is best to include the<c_iraf.h> file explicitly andbeforeany other
CVOS header files in the application source. The top of a C source code
should resemble the following:

/* Include CVOS header files */
include <c_iraf.h>
include <ximio.h>

Mkpkg versus Make
Mkpkg is a portable IRAF utility for building or updating a package o

library. Since it is implemented as a foreign task,mkpkg can be invoked
from within the IRAF environment or from the host system. The advanta
of using mkpkg is the IRAF group has already resolved the portabili
issues associated with building and maintaining code. In the event th
source code needs special compilation switches or additional exte
libraries, these can easily be accommodated in themkpkg syntax. Users of
the CVOS are strongly urged to usemkpkg to maintain CVOS
applications. Themkpkg utility determines how to build the executable o
library from the mkpkg file located in the source directory. To obtai
documentation onmkpkg, one should typehelp mkpkg in the IRAF
environment to invoke the IRAF help pages. Alternatively, one can use
Web-based IRAF help system

http://iraf.noao.edu/iraf-help.html

or the Web-based help system developed at STScI

http://ra.stsci.edu/gethelp/HelpSys.html.

Make is a UNIX-based utility for maintaining and updating program
and files. Sincemake is platform-dependent, the specific capabilities a
option switches vary between platforms. Ifmake is used to maintain the
CVOS application, it is incumbent on the programmer to determine
location of necessary libraries on the system. The programmer shoul
aware the locations of libraries can (and do) change with upgrades to
system. Themake utility determines how to build executables or librarie
typically from themakefile 3 located in the source directory. To obtai

Building a C Application Task 7

he

ion
ndent
as a

has

ich
the

ny
be

fore,
are
ve
bles

ake
ive
be
to
ters

s.
ri-

ific
documentation onmake, one should invoke the manual pages on t
specific platform.

Host-level versus Native IRAF Tasks
Any additional code which must be incorporated into the C applicat

source, as well as compilation switches which need to be set, are depe
upon the way the executable is to be built -- either as a host-level or
native IRAF task. While it is possible to set up the source code andmkpkg
files in such a manner for the code to be compiled in either mode, this
not proven to be very useful in practice.

Host-level C tasks are programs similar to any pure C program wh
have the added capability to take advantage of the functionality in
IRAF libraries. In this way, the IRAF libraries are no different than a
other public library accessible to C. Host-level tasks are designed to
executed at the host-level with command line arguments, and there
they cannot be run directly from the IRAF CL. Since host-level tasks
effectively independent from the IRAF environment, they do not ha
access to IRAF environment variables. Any needed environment varia
(e.g., shortcuts for directory pathnames)must be set at the host-levelby the
user.4

In contrast, a C program compiled as a native IRAF task can t
advantage of all the capabilities of the IRAF system. Not only do nat
IRAF tasks have access to the IRAF library functionality, but they can
run directly from the CL. Input/output and other information used
customize the functionality of a native task are handled by task parame
as is done with IRAF SPP tasks.

The following contrasts the attributes of a C task compiled as a
host-level and as a native IRAF task.

• Host-level tasks

- use the Standard C library.
- can use the IRAF libraries and packages.
- are run from the host-level with command line arguments.
- lose the convenience of the IRAF CL parameter handling capabilitie
- do not know about IRAF environment variables. Any environment va

ables must be set at the host-level.

3. The actual source file (e.g., makefile) used to build the final target file can
have several system-dependent names.

4. Defining an environment variable at the host-level is dependent upon the spec
shell interpreter in use.

8 Chapter 1: CVOS User’s Guide

out

evel

for
nd

tion

the

age
tains
s a

ther
e
m

OS
the

lity

ilt
• Native IRAF tasks

- use the IRAF C library.
- can use the IRAF libraries and packages.
- are run from the CL.
- maintain use of the IRAF CL parameter handling capabilities.
- know about defined IRAF environment variables.
- can use a wrapper routine which handles error exits gracefully with

hanging the IRAF CL.
- should not use calls to exit() or _exit().
- should not use the return statement to return a value from the top l

routine.

The following two sections present a very simple C program strictly
the purpose of illustrating and contrasting attributes of being written a
compiled as either a host-level or native IRAF task. The presenta
includes the C source code, the correspondingmkpkg file, an example of
running the task, and any other files or information needed to execute
task.

Host-level Task

Example 1 is a simple example of a C task which opens a FITS im
and obtains some information regarding the image. This example con
all of the critical components needed for the C program to compile a
host-level task. A barebonesmkpkg file shows how to compile and link
the source code in Example 2. CVOS related files and functions and o
important items are represented inbold characters in both the C source fil
and themkpkg file. Finally, the program is compiled and executed fro
the host command line5 in Example 3.

As one examines Example 1, keep in mind the necessary CV
components for the C task to be compiled as a host-level task;
components are summarized here.

• The C source code must include:

- <c_iraf.h>,
- any necessary header files which contain the prototypes for functiona

used in the program (e.g.,<ximio.h>, <xclio.h>, etc.),

5. C tasks can be built using the IRAFmkpkg mechanism or UNIXmakefiles.
Sincemkpkg is a system independent utility, it is strongly encouraged that tasks be bu
in this manner.

Host-level Task 9

t the
- and the IRAF VOS must be initialized by callingc_irafinit () .

• The mkpkg file must include:

- an XFLAGS-Inolibc flag,
- an XFLAGS-p stsdas,6

- an LFLAGS-H flag,
- an LFLAGS-p stsdas,6

- and the link must include the CVOS library,-lcvos.

• Environment setup:

- If any environment variables are needed, they need to be defined a
host-level before the task can be run correctly.

6. There exists an alternative to having XFLAGS and LFLAGS-p stsdasswitches
present in themkpkg file. An alternative is discussed in the paragraphs following the
host-level IRAF C taskmkpkg example.

10 Chapter 1: CVOS User’s Guide
Example 1: Host-level IRAF C task source file, openimage.c.

/* C standard header files */
include <stdio.h>
include <string.h>

/* CVOS header files */
include <c_iraf.h>
include <ximio.h>

define SZ_FNAME 255

/*
** Simple C program written which illustrates the necessary components
** for a host-level task.
*/

int main(int argc, char **argv) {
IRAFPointer in;

 IRAFType pixtype;
 int ndim, dim1, dim2;
 int linevector[] = {1, 1, 1, 1, 1, 1, 1};
 char input[SZ_FNAME+1];

 /* Need to initialize the IRAF libraries *
 * for host-level tasks */

c_irafinit (argc, argv);

 if (argc < 2) {
 printf (“syntax: openimage input\n”);
 exit (1);
 }
 strcpy (input, argv[1]);

 /* Open the input image */
 in = c_immap (input, IRAF_READ_ONLY, 0);

 /* Check the input image was opened without error */
 if (c_iraferr()) {
 printf (“IRAF error code%d\nIRAF message: %s\n”,

c_iraferr() , c_iraferrmsg());
 exit (1);
 }

 /* Get the image dimensions */
 ndim = c_imgndim (in);
 if (ndim != 2) {
 printf (“Sorry! This example only works for two dimensions.\n”);
 exit (1);
 }

 /* Get the size of each dimension */
 dim1 = c_imglen (in, 1);
 dim2 = c_imglen (in, 2);
 /* ...and the pixel type */
 pixtype = (IRAFType) c_imgtypepix (in);
 printf (“Input: %d dimensions -- dim1 = %d dim2 = %d of type %d\n”,
 ndim, dim1, dim2, pixtype);

 /* Close the image and end */
c_imunmap (in);

 return (0);
}

Data type defined in <c_iraf.h>.

C bindings from this library are used in this

The IRAFType(s) are listed in Table 2.

Critical to include for host-level tasks.

File I/O mode.

routine (e.g., c_immap).

Example of a C interface
function call.

Basic error handling.
Functions are
declared in
<c_iraf.h>.

All CVOS tasks need this header file.

Host-level Task 11

to
lity.
are
rror
of
rror
ould

ter
to

to
The
he

ost

in
e
be

e this
y).

ces.

rched
the
ive
As noted, the program in Example 1 is quite simplistic, but it serves
illustrate the basics of how a C program would access IRAF functiona
Previously, it has been briefly noted the C interface definitions
responsible for performing several functions, one of which is to check e
conditions upon return from the underlying IRAF function. The lines
code in Example 1 noted as basic error handling show how the e
checking can be accessed and used. In theory, this type of checking sh
be done aftereverycall to a C interface routine. In practice, there is a bet
way to handle error checking. A full discussion of this issue is deferred
theError Handlingsection of this document.

Example 2: Host-level IRAF C task mkpkg file.

The mkpkg file depicted in Example 2 uses some of the newxc
compiler command line flags implemented in IRAF 2.11 specifically
improve support for multi-language and host software development.
XFLAGS -Inolibc flag formally indicates that one does not want to use t
header files located iniraf$unix/hlib/libc . This, in effect, disables
the use of the IRAF version of the C library. In this example, the h
system files will be used instead. The XFLAGS-p stsdas is needed in
order for the compiler to find the CVOS include files which are located
stsdaslib$. The LFLAGS -H flag indicates the program should b
linked as a host-level program, but the IRAF libraries should still
searched to resolve symbol references. The LFLAGS-p stsdasindicates
the STSDAS layered package should be loaded; this is necessary sinc
package includes the definition of the CVOS (i.e., the CVOS librar
Finally, the-lcvos tells the linker to include the CVOS library, in addition
to the standard libraries which are included, to resolve symbol referen

In this example, the-p stsdasswitch is included with both the XFLAGS
and LFLAGS as the safest way to ensure the STSDAS package is sea
not only for the CVOS header files during the compilation, but also for
CVOS library during the link stage when building the task. An alternat
to including the-p stsdasswitch with both the XFLAGS and LFLAGS in

#
Example mkpkg file for host-level task, openimage.
#
$set XFLAGS = “ -Inolibc -p stsdas $(XFLAGS)”
$omake openimage.c

$set LFLAGS = “ -H -z -p stsdas $(LFLAGS)”

$link openimage.o -lcvos -o openimage
$exit

Indicator not to use
IRAF LIBC.

The CVOS header files are
located in the STSDAS package.

Load the STSDAS package for linking
to access the CVOS library.

Link as a host program, but search the
IRAF libraries.

Link to the CVOS library.

12 Chapter 1: CVOS User’s Guide

o

line

t
e
n a
r

ram
mple
are

the
le
CL
of

ere
ave a

as a

lity

ne
themkpkg file is to include the-p stsdasas a command line argument t
themkpkg task,

enkidu> mkpkg -p stsdas

where the programmer must remember to use the command
argument when invokingmkpkg. If the -p stsdas is included on the
command line as well as in themkpkg file itself, it is not a problem.

Example 3: Compilation and execution of a host-level IRAF C task, openimage.

Example 3 shows theopenimage executable being built on the hos
system with themkpkg file in Example 2 and then being run at th
command line. This particular example shows the task being built o
system running Solaris; thexc lines echoed here may be different for othe
platforms. See Appendix A for the Host-Level task checklist.

Native IRAF Task

Using the same algorithm as depicted in Example 1, the actual prog
has been rewritten as a native IRAF task; the results are shown in Exa
4. CVOS related files and functions and other important items
represented inbold characters in both the C source file and themkpkg
file. The presentation includes the C source code (Example 4),
correspondingmkpkg file (Example 5), a simple parameter file (Examp
6), and an example of compiling and then running the task from the
(Example 7). A parameter file is a way to specify the attributes
input/output values which are read/written by a task from the CL. If th
are parameters associated with a native IRAF task, it is necessary to h
parameter file associated with the task. Please see theSPP Reference
Manualfor details.

The necessary CVOS components for the C task to be compiled
native IRAF task are summarized here.

• The C source code must include:

- <c_iraf.h>,
- any necessary header files which contain the prototypes for functiona

used in the program (e.g.,<ximio.h>, <xclio.h>, etc.),
- instead of main(), use theIRAFTASK(taskname) macro. This macro

performs several functions and invokes the IRAF initialization routi

enkidu> mkpkg
xc -Inolibc -p stsdas -c -DSYSV -DSOLARIS -/libmil openimage.c
xc -H -z -p stsdas -/Bstatic openimage.o -lcvos -o openimage
enkidu> openimage “o3tt03040_raw.fits[1]”
Input: 2 dimensions -- dim1 = 1062 dim2 = 1044 of type 11

Native IRAF Task 13

alue
be

ment
.

for native tasks automatically. The programmer doesnot need to make
any explicit calls to an initialization routine.

• The C source code mustnot include:

- any calls to exit() or _exit(),
- the top level routine should not use the return statement to pass a v

to the CL. In the top level routine a return statement with no value can
used, or no return statement needs to be present at all. A return state
can be used to pass values from subroutines to the top level routine

• The mkpkg file must include:

- an XFLAGS-Inolibc flag,
- an XFLAGS flag to use the CVOS version of<stdio.h> in

stsdaslib$cvos/irafstdio,
- an XFLAGS-p stsdas,
- an LFLAGS-H flag,
- an LFLAGS-p stsdas,
- the link must include the CVOS library, -lcvos,
- and the link must include the C library,-lc (this is the default on some

platforms, but it does not hurt to include the library explicitly.

14 Chapter 1: CVOS User’s Guide
Example 4: Native IRAF C task source file, openimage.c.
/* C standard header files */
include <stdio.h>

/* CVOS header files */
include <c_iraf.h>
include <xclio.h>
include <ximio.h>

define SZ_FNAME 255

/* C program which illustrates the necessary components for a native IRAF task. */

/* Wrapper which serves as the main entry/exit routine. This wrapper is **
** needed to handle error exits which might hang the IRAF CL. */
IRAFTASK (openimage) {

 /* Declare a local variable and the function prototype */
 int i;
 int openIt (void);

 i = openIt ();
}

/* Real work routine */
int openIt (void) {

IRAFPointer in;
IRAFType pixtype;

 int ndim, dim1, dim2;
 int linevector[] = {1, 1, 1, 1, 1, 1, 1};
 char input[SZ_FNAME+1];

c_clgstr (“input”, input, SZ_FNAME);

 /* Open the input image */
 in = c_immap (input, IRAF_READ_ONLY, 0);

 /* Check the input image was opened without error */
 if (c_iraferr()) {
 printf (“IRAF error code: %d\nIRAF message: %s\n”,

 c_iraferr() , c_iraferrmsg());
 return (1);
 }

 /* Get the image dimensions */
 ndim = c_imgndim (in);
 if (ndim != 2) {
 printf (“Sorry! This example only works for two dimensions.\n”);
 return (1);
 }

 /* Get the size of each dimension */
 dim1 = c_imglen (in, 1);
 dim2 = c_imglen (in, 2);

 /* Get the pixel type */
 pixtype = (IRAFType) c_imgtypepix (in);
 printf (“Input: %d dimensions -- dim1 = %d dim2 = %d of type %d\n”,
 ndim, dim1, dim2, pixtype);

 /* Close the image and return */
c_imunmap (in);

 return (0);
}

C interface function call to read a
string from the CL.

Special macro which must be used in native IRAF C tasks.

No return(), exit(), or _exit() statement.

Never use exit() or _exit(). OK to use return with a value
here to pass information to the top level.

Native IRAF Task 15

in
not

n

the
e
r file

task
tive
the

.
o the

will
will)
tion

ass

ask
o
ply

tally,
the
The native IRAF task in Example 4 differs from the host-level task
Example 1 in several fundamental respects. The main entry point is
through a “main” routine

int main (int argc, char **argv)

but rather through the use of

IRAFTASK (taskname).

IRAFTASK is a macro defined in<c_iraf.h>; IRAFTASK itself has
a main() and includes a call toirafcmain () which is the initialization
routine for a native IRAF task. This is in contrast to the initializatio
routine,c_irafinit() , which is used by host-level tasks andmustbe called
explicitly by the programmer. The programmer doesnot need to call an
IRAF initialization routine explicitly when writing a native IRAF C task.

Note there is no return type for theIRAFTASK macro, so there is no
return() statement in the main entry routine.7 In this example, the native
IRAF task routine obtains a single string input value from the CL using
C interface routine,c_clgstr(). Since this routine is reading input from th
CL, it is necessary to have a parameter file for this task. The paramete
is described in Example 6.

Perhaps the most fundamental difference between a native IRAF
and a host-level task which are both written in C is the need for the na
IRAF task to use a main entry point routine, as defined by
IRAFTASK(taskname) macro, as a wrapper for the entire algorithm
Since no return value is expected to be passed from the native task t
IRAF CL, it is critical that the entire algorithm not useexit() or _exit() to
terminate the task upon detection of an error. Both of these functions
cause an immediate termination of the C task, and can (and probably
cause problems in the CL. The problems are manifested as corrup
and/or hanging of the CL. The task should use thereturn() statement
when errors are detected in any lower-level subroutines in order to p
control back to the top level routine for a clean termination.

Although Example 4 has been written such that the majority of the t
functionality is contained in theopenIt() subroutine, it is not necessary t
create a C native IRAF task in this manner. The important issue is sim
that IRAFTASK(taskname) replacesint main (argc, argv), and the task
should not exit to the CL (viareturn() , exit(), or _exit()) with a returned
value.

The programmer should notetaskname in IRAFTASK(taskname)
must not be surrounded by quotes. If quotes are included acciden
excessive errors will be generated when compiling the task. Also,

7. Actually, there can be areturn statement from the main entry routine as long as it
doesnot return a value.

16 Chapter 1: CVOS User’s Guide

se

tran
66

d the
final

sed,
y

he
. The

the
me as
the

L.

L.
the
length oftasknameis not restricted to six characters and may include u
of the underscore character.All the characters oftasknameare significant.
This is in contrast to SPP task names which are mapped to For
identifiers that conform to Fortran 66 standards. The SPP to Fortran
mapping removes any underscores and only the first five characters an
last character of the task name are significant and are used for the
identifier.

The native taskmkpkg file shown in Example 5 differs from the
host-levelmkpkg file in two ways: use of-Istsdaslib$cvos/irafstdiofor
the compilation and the-lc flag for the link. In this case, the-Inolibc flag is
working in conjunction with the-Istsdaslib$cvos/irafstdio flag. The
-Inolibc indicates that the host system C header files should be u
except for<stdio.h> which is found in the directory as indicated b
-Istsdaslib$cvos/irafstdio. This is a customized version of<stdio.h>
which is needed to support native IRAF tasks. The-lc indicates the
Standard C library must be linked to the compiled object.

Example 5: Native IRAF C task mkpkg file.

Running the task from within the IRAF CL requires one to define t
new task and set the parameters as would be done with any IRAF task
parameter file for the task should be located in the same directory as
task executable. The parameter file should also have the same rootna
the associated task, appended with a “.par”. In this example
openimage executable is located in the directory/mydir/iraf/ ; the
associated parameter file isopenimage.par . Example 6 illustrates a
very simple parameter file which only reads a string from the IRAF C
Please see theSPP Reference Manual for details on parameter files.

Example 6: Native IRAF C task parameter file, openimage.par.

Example 7 shows how the task executable is built. Themkpkg
command can be issued at the host-level or from within the IRAF C
Once the executable is built, a typical user will run the task from within
CL as depicted. It is necessary first to define the new task via thetask
command. This example then invokeslpar on the taskname to verify the

#
Example mkpkg file for native IRAF C task, openimage.
#
$set XFLAGS = “ -Inolibc ‘-Istsdaslib$cvos/irafstdio’ -p stsdas $(XFLAGS)”
$omake openimage.c

$set LFLAGS = “ -H -z -p stsdas $(LFLAGS)”

$link openimage.o -lcvos -lc -o openimage
$exit

A special version of <stdio.h> to support
native tasks is stored here.

Link in the Standard C library.

input,s,a,””,,,”Input image name”

Error Handling 17

endix

AF

h

is

be

ny
eared
not

r

parameter file is accessible, and lastly, the task is executed. See App
A for the Native IRAF task checklist.

Example 7: Compilation, definition, and execution of a Native IRAF C task.

Error Handling

As seen in Example 1, after invoking any C interface function, the IR
error status can be checked by using thec_iraferr() and c_iraferrmsg()
functions; these functions have no parameters.C_iraferr() returns the
IRAF error number;c_iraferrmsg() returns the text string associated wit
the error number. If no error has occurred,c_iraferr() returns zero, and
c_iraferrmsg() is a null string. An example of these functions in use
illustrated by the following code snippet from Example 1.

Example 8: Code snippet illustrating the use of the basic error handling functions.

If the input image did not exist, the following message would
generated when using the host-level task, openimage:

enkidu> openimage “ack.fits”
IRAF error code 827
IRAF error message: Cannot open image (ack.fits)

As part of the implementation for each CVOS interface function, a
previously set error codes and corresponding error messages are cl
before the underlying SPP functions are invoked. Consequently, it is
safe to call a series of C interface functions and then checkc_iraferr() at
the end of the series. Ifc_iraferr() is to be useful, it must be invoked afte
every C interface function call.

enkidu> mkpkg
xc -Inolibc ‘-Istsdaslib$cvos/irafstdio’ -p stsdas -c -DSYSV -DSOLARIS -/libmil
openimage.c
xc -H -z -p stsdas -/Bstatic openimage.o -lcvos -lc -o openimage
enkidu> cl
cl> task openimage = /mydir/iraf/openimage
cl> lpar openimage
 input = ““ Input image name
 (mode = “ql”)
cl> openimage
Input image name: o3tt03040_raw.fits[1]
Input: 2 dimensions -- dim1 = 1062 dim2 = 1044 of type 11
cl>

Define a new task.

Execute the task.

/* Check the input image was opened without error */
if (c_iraferr()) {
 printf (“IRAF error code%d\nIRAF message: %s\n”,
 c_iraferr(), c_iraferrmsg());
 exit (1);
}

18 Chapter 1: CVOS User’s Guide

ry

dler
d not
ndler
ed

r
the
dle
the

r
last
n
he
error

dler
ping

9
pon
been
een

note

a
lue

rror
A practical alternative to inserting error checking code after eve
invocation of a C interfacein a host-level taskis to use the CVOS
c_pusherr() function. The c_pusherr() is a mechanism for installing
global customized error handlers. The advantage of the global error han
is the error status of each C interface function used in the source nee
be checked after each invocation. Rather, if an error occurs and a ha
function has been installed, the handler function will be call
automatically upon detection of the error.

The c_pusherr() function works in conjunction with an error handle
stack which can accommodate up to thirty-two entries. This gives
programmer the ability to define a series of error functions to han
special situations. The functions are installed by pushing them onto
error handler stack viac_pusherr(); c_pusherr() takes one paramete
which is a pointer to a function. Due to the nature of a stack, only the
function pushed onto the stack is “active”. It is this “active” error functio
that will be called automatically when an error is detected. T
programmer can manipulate the action associated with any detected
by pushing and popping, via a stack pop functionc_poperr(), different
handler functions onto the stack; thec_poperr() function has no
parameters. In order to prevent temporarily any particular error han
function from being called, a zero can be pushed onto the stack. Pop
the zero will then restore the previous handler function. Example
illustrates the use of an error handler. This illustration is based u
Example 1 which is the source code for a host-level task; the code has
modified to incorporate the use of a global error handler and has b
slightly abridged in order to fit the example on a single page. Please
the global error handler canonly be used with host-level tasks.Since native
IRAF tasks can only use thereturn() statement to terminate execution of
subroutine and transfer control back to the top level routine and no va
can be passed to the IRAF CL, it is not possible to use the global e
handler for native IRAF C tasks.

Error Handling 19
Example 9: Host-level IRAF C task using a global error handler.

/* C standard header files */
include <stdio.h>
include <string.h>

/* CVOS header files */
include <c_iraf.h>
include <ximio.h>

define SZ_FNAME 255
/*
** Define a global error handler for this routine.
*/
static void detect_iraferr () {
 fprintf (stderr, “\nIRAF error %d: %s\n”, c_iraferr(), c_iraferrmsg());
 fflush (stderr);
 exit (1);
}
/*
** Simple C program written which illustrates the
** necessary components for a host-level task.
*/
int main(int argc, char **argv) {

IRAFPointer in;
IRAFType pixtype;

 int ndim, dim1, dim2;
 int linevector[] = {1, 1, 1, 1, 1, 1, 1};
 char input[SZ_FNAME+1];

 /* Need to initialize the IRAF libraries *
 * for host-level tasks */

c_irafinit (argc, argv);

 /* Push a function onto the error handler stack. */
c_pusherr (detect_iraferr);

 if (argc < 2) {
 printf (“syntax: globalhandler input\n”);
 exit (1);
 }
 strcpy (input, argv[1]);

 /* Open the input image */
 in = c_immap (input, IRAF_READ_ONLY, 0);

 /* Get the size of each dimension */
 dim1 = c_imglen (in, 1);
 dim2 = c_imglen (in, 2);
 /* ...and the pixel type */
 pixtype = (IRAFType) c_imgtypepix (in);
 printf (“Input dimensions -- dim1 = %d dim2 = %d of type %d\n”,
 dim1, dim2, pixtype);

 /* Close the image and remove the function from the error handler stack */
c_imunmap (in);
c_poperr () ;

 return (0);
}

Install the handler function.

No longer need to check c_iraferr().

Define the global error handler function.

Remove the error handler function from the stack.

20 Chapter 1: CVOS User’s Guide

he
clear

om
, bus

the
y the
f the
rror
task
to

ndle
eral

and
no
the
n is

on

r a
tion
ler.
for

ent.

are
an
d, all

the
the
an

ient
the
re
Exception Handling

While the handling of exceptions is done automatically for t
programmer by the system, a short digression at this time can serve to
up misconceptions. For this discussion,exceptionsshould be differentiated
from errors in that exceptions are asynchronous problems which arise fr
situations in the task that cannot be reasonably anticipated (e.g., ^C
errors, segmentation violations, divide by zero) and are detected by
hardware as illegal conditions. Because exceptions are detected b
hardware, the task does not necessarily know its state at the time o
exception. This makes exception handling more complex than e
handling. When an exception is detected, the normal execution of the
is disrupted, and the flow of control is transferred out of the task and
system-level procedures which have been specifically designed to ha
exceptions. The default exception handling procedure performs sev
clean-up functions and exits.

In contrast, basic errors represent situations which could be checked
handled by code in the task itself (e.g., cannot find or open a file,
memory to allocate a pointer). Since an error condition is detected by
task, the state of the task is known at the time of the error. This situatio
more easily handled by the system or the programmer.

For C programs compiled as native IRAF tasks, the IRAF initializati
step which is implicitly invoked by theIRAFTASK macro posts a default
exception handler. This situation is identical to what would be done fo
task written in SPP, the native language of IRAF. In the event an excep
occurs, the exception will be handled by the IRAF system default hand
It is possible for the programmer to post alternate exception handlers
native IRAF tasks, but this issue is beyond the scope of this docum
Please see theSPP Reference Manualfor further details.

For C programs compiled as host-level IRAF tasks, exceptions
handled by CVOS routines in a straightforward fashion. When
exception is detected, the associated IRAF error messages are poste
output buffers are flushed, and the task exits to the host environment.

This discussion is presented so that programmers do not confuse
CVOS error handling mechanism described in the previous section with
handling of exceptions. The CVOS error handler appears to mimic
exception handler by seeming to detect error conditions in an omnisc
fashion. However, this is not the situation. The function on the top of
error handler stack is explicitly invoked by the error checking softwa
imbedded in each of the C interface functions.

Summary of CVOS Utility Functions 21

d
are

The
for

s

.

d
the
er

ters

e
ber
m

o

the

de
ed-
Summary of CVOS Utility Functions

Most of the CVOS public utility functions have been mentione
throughout this document and used in examples. These functions
declared in the<c_iraf.h> file found in thestsdaslib$ directory;
the programmer is encouraged to examine the contents of this file.
utility function prototypes and native task macro are summarized here
convenience.

• Compilation mode functions:

- IRAFTASK (taskname) - This macro is used for source compiled a
native IRAF C tasks. Taskname is the logical IRAF task name.

- void c_irafinit (int argc, char **argv) - A call to this function must be
included for all host-level IRAF C tasks to invoke IRAF initialization
The argc and argv variables are not actually used.

• Error handler stack manipulation functions:

- int c_pusherr (c_IRAFErrHandler) - This routine pushes the name
function onto the top of the error handler stack. The return value is
number of functions currently on the stack or -1 if the maximum numb
of error functions has already been reached.

- typedef void (*c_IRAFErrHandler) (void) - This defines
c_IRAFErrHandler as a pointer to a function which has no parame
and does not return any values.

- int c_poperr (void) - This routine removes the function residing on th
top of the error handler stack. The return value is the remaining num
of functions on the stack or -1 if there were no functions to remove fro
the stack.

• Error message functions:

- int c_iraferr (void) - This routine returns the IRAF error code or zer
for no error.

- char * c_iraferrmsg (void) - This routine returns the IRAF error string
associated with the IRAF error code. If there is no error condition,
empty string is returned.

- void clear_cvoserr (void) - This routine sets the IRAF error code to
zero and the IRAF error string to the empty string. The IRAF error co
and error string are set, if necessary, by a private CVOS function imb
ded in the C binding routines.

22 Chapter 1: CVOS User’s Guide

e is
files

e

An Additional Example

An example of a host-level IRAF C task which creates a simple tabl
depicted in Example 10. As in the previous examples, CVOS related
and functions, as well as other notable issues, are represented inbold
characters. Themkpkg file is shown in Example 11. The contents of th
resultant table,wrtableTest.tab , are displayed in Example 12.

Example 10: Host-level IRAF C task to work with tables, wrtable.c.

/* C standard header files */
include <stdlib.h>
include <stdio.h>

/* CVOS header files */
include <c_iraf.h>
include <xtables.h>

/* Define the number of columns */
define NCOLS 7

/*
 * Define the global error handler for this routine
 */
void iraferr () {
 printf (“IRAF error code %d\nIRAF message: %s\n”,

c_iraferr (), c_iraferrmsg ());
 exit (1);
}

/*
** Simple C program which uses tools from the tables package
** in a host-level task.
*/

int main (int argc, char **argv) {

 const int REGION = 0; /* region plate is located in */
 const int PLATE = 1; /* plate id */
 const int RA = 2; /* right ascension */
 const int DEC = 3; /* declination */
 const int EPOCH = 4; /* epoch of observation */
 const int SURVEY = 5; /* type of survey */
 const int DISK = 6; /* CD-ROM disk plate is on */
 int row = 0;
 int disk;
 char *region;
 char *plate;
 double ra;
 double dec;
 double epoch;
 char *survey;

IRAFPointer tab; /* pointer to table struct */
IRAFPointer col[NCOLS]; /* pointers to column info */

 /* Need to initialize the IRAF libraries *
 * for host-level tasks */

c_irafinit (argc, argv);

C bindings from this library are used in
this routine.

Critical for host-level tasks.

Define the global
error handler.

All CVOS tasks need this header file.

An Additional Example 23
Example 10 (Continued): Continuation of wrtable.c.
 /* Install a global error handler */

 c_pusherr (iraferr);

 /* Open the output table */
 tab = c_tbtopn (“wrtableTest.tab”, IRAF_NEW_FILE, 0);

 /* Define columns. The “Name” column is a string up to 20 char long. */
c_tbcdef1 (tab, &col[REGION], “REGION”, ““, ““, -6, 1);
c_tbcdef1 (tab, &col[PLATE], “PLATE”, ““, ““, -4, 1);
c_tbcdef1 (tab, &col[RA], “RA”, “hours”, “%14.3h”, IRAF_DOUBLE, 1);
c_tbcdef1 (tab, &col[DEC], “DEC”, “degrees”, “%14.3h”, IRAF_DOUBLE, 1);
c_tbcdef1 (tab, &col[EPOCH], “EPOCH”, “years”, “%10.3f”, IRAF_DOUBLE, 1);

 c_tbcdef1 (tab, &col[SURVEY], “SURVEY”, ““, ““, -3, 1);
c_tbcdef1 (tab, &col[DISK], “DISK”, ““, “%3d”, IRAF_INT , 1);

 /* Create the output table file */
 c_tbtcre (tab);

 /* Add a history record */
 c_tbhadt (tab, “history”, “Simple test program to create a table.”);

 /* Add a few rows in a simple manner */
 row++;
 region = “S256”;
 plate = “000Y”;
 ra = 105.37155;
 dec = -45.07291;
 epoch = 1980.122;
 survey = “UK”;
 disk = 18;

 c_tbeptt (tab, col[REGION], row, region);
c_tbeptt (tab, col[PLATE], row, plate);
c_tbeptd (tab, col[RA], row, ra);
c_tbeptd (tab, col[DEC], row, dec);
c_tbeptd (tab, col[EPOCH], row, epoch);
c_tbeptt (tab, col[SURVEY], row, survey);
c_tbepti (tab, col[DISK], row, disk);

 row++;
 region = “S734”;
 plate = “006Q”;
 ra = 275.68950;
 dec = -9.97406;
 epoch = 1978.647;
 survey = “UK”;
 disk = 50;

c_tbeptt (tab, col[REGION], row, region);
 c_tbeptt (tab, col[PLATE], row, plate);

c_tbeptd (tab, col[RA], row, ra);
c_tbeptd (tab, col[DEC], row, dec);
c_tbeptd (tab, col[EPOCH], row, epoch);
c_tbeptt (tab, col[SURVEY], row, survey);
c_tbepti (tab, col[DISK], row, disk);

 /* Close the table and clean up */
c_tbtclo (tab);

 printf (“Created and closed the tables\n”);

 /* Remove the function from the error handler stack */
c_poperr () ;

 return (0);
}

Install the error handler on the stack.

Remove the error handler function from the stack.

Close the output table.

Create the table.

Write a single element
to a table.

Create the
table descriptor.

24 Chapter 1: CVOS User’s Guide

uld
the
S
to

ich
ing
The mkpkg file is similar to the file in Example 2. However, this
example is also using the TBTABLES library. The LFLAGS-p stsdas -p
tables indicates both the STSDAS and TABLES layered packages sho
be loaded. This is necessary since the CVOS library is located in
STSDAS package and the TBTABLES library is located in the TABLE
package. The TBTABLES library must be included in the link stage
resolve symbol references.

Example 11: Host-level C task mkpkg file using the tables library.

After running thewrtable executable, thewrtableTest.tab file
should be present in the current directory. Using thetprint task, the
contents of the wrtableTest.tab file contains information as
illustrated in Example 12.

Example 12: Contents of the wrtableTest.tab file.

Odds and Ends

The CVOS defines and uses a version macro, CVOS_VERSION, wh
is a string indicating the version number of the library and a correspond
date of installation. The macro is defined in thec_iraf_priv.c file as

const char CVOS_VERSION[] = {“CVOS Version N (DD-MMM-YYYY)”};

#
Example mkpkg file for host-level task, openimage.
#
$set XFLAGS = “ -Inolibc -p stsdas $(XFLAGS)”
$omake wrtable.c

$set LFLAGS = “ -H -z -p stsdas -p tables $(LFLAGS)”

$link wrtable.o -lcvos -ltbtables -o wrtable
$exit

Load both STSDAS and
TABLES packages.

Link to the TBTABLES library.

Link to the CVOS library.

cl> tprint wrtableTest.tab
Table wrtableTest.tab Mon 16:47:08 25-Oct-1999

#K HISTORY Simple test program to create a table.

row REGION PLATE RA DEC EPOCH SURVEY DISK
hours degrees years

 1 S256 000Y 105:22:17.580 -45:04:22.476 1980.122 UK 18
 2 S734 006Q 275:41:22.200 -9:58:26.616 1978.647 UK 50
cl>

Odds and Ends 25

the

est
In order to determine the version of the CVOS library or the version of
library used by an executable, the following can be done.

> strings libcvos.a | grep “CVOS V”

> strings myprog.e | grep “CVOS V”

In both of these instances, the output looks like the following for the lat
version of the CVOS:

CVOS Version 3.2.2 (03-September-1999).

26 Chapter 1: CVOS User’s Guide

ew C
Chapter 2:

CVOS Reference Manual

In the works!
In the meantime,A C Interface to IRAF’s VOS Librarywritten by A.

Farris (1996) can be used as a reference guide in order to generate n
interface routines.
27

28 Chapter 2: CVOS Reference Manual
This page intentionally blank.

in
ists
ssary
F C
Appendix A:

Checklists

For the convenience of programmers new to building C tasks
conjunction with the IRAF system, this appendix contains two checkl
which can be used to make sure that one has implemented all the nece
syntax and procedures to build successful host-level and native IRA
tasks.
29

30 Checklists

ort
Host-Level Task Checklist

C source code
Did you remember to...

• include <c_iraf.h> before any other CVOS header file?

• include all CVOS library/package header files needed to supp
functionality used in the source (e.g., <ximio.h>, etc.)?

• call the c_irafinit() function to initialize the IRAF libraries?

Mkpkg file
Did you remember to...

• use the XFLAGS, -Inolibc?

• use the XFLAGS, -p -stsdas?

• use the LFLAGS, -H?

• use the LFLAGS, -p stsdas?

• use an LFLAGS, -p tables,if the program requires linking libraries
which are part of the TABLES package?

• link the CVOS library, -lcvos?

• link any other needed IRAF or package libraries?

Host System settings
Did you remember to...

• set any needed system environment variables?

Native IRAF Task Checklist 31

ort

trol
top
ssed

cial
Native IRAF Task Checklist

C source code
Did you remember to...

• include <c_iraf.h> before any other CVOS header file?

• include all CVOS library/package header files needed to supp
functionality used in the source (e.g., <ximio.h>, etc.)?

• use the IRAFTASK(taskname) macro instead of main()?

• not make any calls to exit() or _exit()?

• only use the return statement with a value to transfer flow of con
from subroutines to the top level routine? It is not necessary in the
level routine to have a return statement as no values should be pa
to the IRAF CL.

Mkpkg file
Did you remember to...

• use the XFLAGS, -Inolibc?

• use the XFLAGS, -p -stsdas?

• use the XFLAGS, -Istsdaslib$cvos/irafstdio to access the spe
<stdio.h>?

• use the LFLAGS, -H?

• use the LFLAGS, -p stsdas?

• use an LFLAGS, -p tables,if the program requires linking libraries
which are part of the TABLES package?

• link the CVOS library, -lcvos?

• link the C library, -lc?

• link any other needed IRAF or package libraries?

	Introduction to the CVOS
	About the CVOS...
	Using This Manual
	Typographic Conventions
	Visual Cues
	Comments

	Platform Support
	Background Material
	Obtaining the CVOS

	CVOS User’s Guide
	CVOS Pre-built Interfaces and Conventions
	Table 1: List of IRAF and STSDAS/TABLES libraries or packages with pre-built C bindings.
	File and Interface Naming Conventions
	Data Types and I/O Nomenclature
	Table 2: Data Type Code correspondence between C and IRAF.
	Table 3: File I/O correspondence between C and IRAF

	Building a C Application Task
	Preprocessor Include Files
	Mkpkg versus Make
	Host-level versus Native IRAF Tasks

	Host-level Task
	Example 1: Host-level IRAF C task source file, openimage.c.
	Example 2: Host-level IRAF C task mkpkg file.
	Example 3: Compilation and execution of a host-level IRAF C task, openimage.

	Native IRAF Task
	Example 4: Native IRAF C task source file, openimage.c.
	Example 5: Native IRAF C task mkpkg file.
	Example 6: Native IRAF C task parameter file, openimage.par.
	Example 7: Compilation, definition, and execution of a Native IRAF C task.

	Error Handling
	Example 8: Code snippet illustrating the use of the basic error handling functions.
	Example 9: Host-level IRAF C task using a global error handler.

	Exception Handling
	Summary of CVOS Utility Functions
	An Additional Example
	Example 10: Host-level IRAF C task to work with tables, wrtable.c.
	Example 10 (Continued): Continuation of wrtable.c.
	Example 11: Host-level C task mkpkg file using the tables library.
	Example 12: Contents of the wrtableTest.tab file.

	Odds and Ends

	CVOS Reference Manual
	This page intentionally blank.

	Checklists
	Host-Level Task Checklist
	Did you remember to...
	Did you remember to...
	Did you remember to...

	Native IRAF Task Checklist
	Did you remember to...
	Did you remember to...

