# EBMVLFUNC -- Evaluation of Howarth's LMC extinction curve # # Values of LMC extinction are from Howarth's 1983 paper MNRAS, 203, 301. # # Extinction: # x = 1/lambda(microns) = 10000/lambda(angstroms) # X(x) = A(lambda)/E(B-V) # R = A(V)/E(B-V) = 3.1 # # Infrared # x <= 1.83 # X(x) = [(1.86 - 0.48*x)*x - 0.1]*x # # Visible (Optical) # 1.83 <= x <= 2.75 # X(x) = R + 2.04*(x - 1.83) + 0.094*(x - 1.83)**2 # # Ultra Violet # 2.75 <= x <= 9.0 # X(x) = R - 0.236 + 0.462*x + 0.105*x*x + 0.454/[(x - 4.557)**2 + 0.293] procedure ebmvlfunc (extval, nwave, wave, band) real extval # i: extinction value int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- int iwave real x, extl begin do iwave = 1, nwave { # Convert wavelength in angstroms to 1/microns x = 10000.0 / wave[iwave] # Infrared - extend optical results linearly to 0 at 1/lam = 0 if ( x <= 1.83) extl = ((1.86 - 0.48 * x) * x - 0.1) * x else if ( x <= 2.75 ) { extl = 3.1 + 2.04 * (x - 1.83) + 0.094 * (x - 1.83) * (x - 1.83) # Continue out to lambda = 912 A } else { x = min (x, 10.96) extl = 3.1 - 0.236 + 0.462 * x + 0.105 * x * x + 0.454 / ((x - 4.557) * (x - 4.557) + 0.293) } extl = extl * extval band[iwave] = 10.0 ** (-0.4 * extl) } end