define GAL1 1 define GAL2 2 define GAL3 3 define SMC 4 define LMC 5 define XGAL 6 # EBMVXFUNC -- Extended reddening law extinction function procedure ebmvxfunc (extval, redlaw, nwave, wave, band) real extval # i: extinction value char redlaw[ARB] # i: extinction function name int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- int ftype, iwave pointer sp, func string funclist "gal1,gal2,gal3,smc,lmc,xgal" string badredlaw "Unrecognized redenning law name" int word_match() begin # Convert function name to lower case call smark(sp) call salloc (func, SZ_FNAME, TY_CHAR) call strcpy (redlaw, Memc[func], SZ_FNAME) call strfix (Memc[func]) # Call selected extinction function to compute # extinction in magnitudes ftype = word_match (Memc[func], funclist) switch (ftype) { case GAL1: call ebmv_gal1 (nwave, wave, band) case GAL2: call ebmv_gal2 (nwave, wave, band) case GAL3: call ebmv_gal3 (nwave, wave, band) case SMC: call ebmv_smc (nwave, wave, band) case LMC: call ebmv_lmc (nwave, wave, band) case XGAL: call ebmv_xgal (nwave, wave, band) default: call synphoterr (badredlaw, redlaw) } # Convert extinction from magnitudes do iwave = 1, nwave band[iwave] = 10.0 ** (-0.4 * extval * band[iwave]) call sfree (sp) end # EBMV_GAL1 -- First galactic reddening law (Seaton's) # # Seaton's paper in M.N.R.A.S. vol 187, page 75p (1979). # the formulae are based on an adopted value of R = 3.20. # # Note that Seaton's representation of of the interstellar reddening law # differs substantially from Schild's representation (Astron. J. 82, 339, # table ii, 1977) in the region of overlap. Schild also adopted r = 3.20. # For wavelengths > 3704 angstroms, the program interpolates # linearly in 1/lambda in Seaton's table 3. For wavelengths < 3704 # angstroms, the program uses the formulae from Seaton's table 2. # The formulae match at the endpoints of their respective intervals. # there is a mismatch of 0.009 mag/ebmv at nu=2.7 (lambda=3704 angstroms). # Seaton's tabulated value of 1.44 mags at 1/lambda = 1.1 may be in error; # 1.64 seems more consistent with his other values. # # Sources: # lambda < 1000 same formula as lambda = 1000. # 1000 < lambda < 3704 Seaton(1979) MNRAS 187,73p. # 3704 < lambda < 10,000 Nandy(1975) A+A 44, 195. (corrected to R=3.2) # 10000 < lambda extrapolate linearly in 1/lam (can be improved) procedure ebmv_gal1 (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- real xtable[19] # tabulated inverse wavelengths real etable[19] # tabulated extinctin at E(B-V)=1. int i, iwave real x data (xtable(i),i=1,19) / 0., 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 / data (etable(i),i=1,19) / 0., 1.36, 1.64, 1.84, 2.04, 2.24, 2.44, 2.66, 2.88, 3.14, 3.36, 3.56, 3.77, 3.96, 4.15, 4.26, 4.40, 4.52, 4.64 / begin do iwave = 1, nwave { # Convert wavelength in angstroms to 1/microns x = 10000.0 / wave[iwave] # Infrared: extend optical results linearly to 0 at 1/lam = 0 if (x <= 1.0) { band[iwave] = etable[2] * x * x # Optical region interpolates in Seaton's table 3 } else if (x < 2.7) { call ebmv_interp (19, xtable, etable, x, band[iwave]) # Ultraviolet uses analytic formulae from Seaton's table 2 } else if (x < 3.65) { band[iwave] = 1.56 + 1.048 * x + 1.01 / ((x - 4.6) * (x - 4.6) + 0.280) # More ultraviolet } else if (x < 7.14) { band[iwave] = 2.29 + 0.848 * x + 1.01 / ((x - 4.6) * (x - 4.6) + 0.280) # And more ultraviolet still } else { x = min(x, 50.0) band[iwave] = 16.17 + x * (-3.20 + 0.2975 * x) } } end # EBMV_GAL2 -- Second galactic reddening law (Savage and Mathis's) # # Evaluation of the average interstellar extinction function the Galaxy # published by Savage & Mathis 1979, ARA&A, vol. 17, 73-111. procedure ebmv_gal2 (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- real xtable[28] # tabulated inverse wavelengths real etable[28] # tabulated extinction at E(B-V)=1. int i, iwave real x # Tabulated inverse wavelengths in microns: data (xtable(i),i=1,28) / 0.00, 0.29, 0.45, 0.80, 1.11, 1.43, 1.82, 2.27, 2.50, 2.91, 3.65, 4.00, 4.17, 4.35, 4.57, 4.76, 5.00, 5.26, 5.56, 5.88, 6.25, 6.71, 7.18, 8.00, 8.50, 9.00, 9.50, 10.00 / # Tabulated extinction function, A(lambda)/E(B-V): data (etable(i),i=1,28) / 0.00, 0.16, 0.38, 0.87, 1.50, 2.32, 3.10, 4.10, 4.40, 4.90, 6.20, 7.29, 8.00, 8.87, 9.67, 9.33, 8.62, 8.00, 7.75, 7.87, 8.12, 8.15, 8.49, 9.65, 10.55, 11.55, 12.90, 14.40 / begin do iwave = 1, nwave { # Convert wavelength in angstroms to 1/microns x = 10000.0 / wave[iwave] # Interpolate for extinction call ebmv_interp (28, xtable, etable, x, band[iwave]) } end # EBMV_GAL3 -- Third galactic reddening law (Cardelli, Clayton & Mathis) # # Computes the interstellar extinction function A(lambda)/A(V) # of Cardelli, Clayton & Mathis 1989, ApJ 345, 245-256. procedure ebmv_gal3 (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- int iwave real x, y, a, b begin do iwave = 1, nwave { # Convert input wavelength to inverse microns x = 10000.0 / wave[iwave] # Linear continuation of formula for 0.3 <= x < 1.1 if (x < 0.30) { a = 0.2754 * x b = -0.2528 * x # Compute a(x) and b(x) } else if (x < 1.1) { y = x ** 1.61 a = 0.574 * y b = -0.527 * y } else if (x < 3.3) { y = x - 1.82 a = 1 + y * (0.17699 + y * (-0.50447 + y * (-0.02427 + y * (0.72085 + y * (0.01979 + y * (-0.77530 + y * 0.32999)))))) b = y * (1.41338 + y * (2.28305 + y * (1.07233 + y * (-5.38434 + y * (-0.62251 + y * (5.30260 - y * 2.09002)))))) } else if (x < 5.9) { a = 1.752 - 0.316 * x - 0.104 / ((x - 4.67) ** 2 + 0.341) b = -3.090 + 1.825 * x + 1.206 / ((x - 4.62) ** 2 + 0.263) } else if (x < 8.0) { a = 1.752 - 0.316 * x - 0.104 / ((x - 4.67) ** 2 + 0.341) b = -3.090 + 1.825 * x + 1.206 / ((x - 4.62) ** 2 + 0.263) y = x - 5.9 a = a - 0.04473 * y**2 - 0.009779 * y**3 b = b + 0.2130 * y**2 + 0.1207 * y**3 # Truncate range of ISEF to that for 1000 Ang. } else { x = min (x, 10.0) y = x - 8.0 a = -1.073 - 0.628 * y + 0.137 * y**2 - 0.070 * y**3 b = 13.670 + 4.257 * y - 0.420 * y**2 + 0.374 * y**3 } # Compute A(lambda) band[iwave] = 3.1 * a + b } end # EBMV_SMC -- Reddening law for Small Magellanic Cloud # # Computes the interstellar extinction function of Prevot et al. # (1984), A&A, 132, 389-392. procedure ebmv_smc (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- real xtable[33] # tabulated inverse wavelengths real etable[33] # tabulated extinction at E(B-V)=1. int i, iwave real x, val # Tabulated inverse wavelengths in microns: data (xtable(i),i=1,33) / 0.00, 0.29, 0.45, 0.80, 1.11, 1.43, 1.82, 2.35, 2.70, 3.22, 3.34, 3.46, 3.60, 3.75, 3.92, 4.09, 4.28, 4.50, 4.73, 5.00, 5.24, 5.38, 5.52, 5.70, 5.88, 6.07, 6.27, 6.48, 6.72, 6.98, 7.23, 7.52, 7.84 / # Tabulated extinction function, E(lambda-V)/E(B-V): data (etable(i),i=1,33) /-3.10, -2.94, -2.72, -2.23, -1.60, -0.78, 0.00, 1.00, 1.67, 2.29, 2.65, 3.00, 3.15, 3.49, 3.91, 4.24, 4.53, 5.30, 5.85, 6.38, 6.76, 6.90, 7.17, 7.71, 8.01, 8.49, 9.06, 9.28, 9.84, 10.80, 11.51, 12.52, 13.54 / begin do iwave = 1, nwave { # Convert wavelength in angstroms to 1/microns x = 10000.0 / wave[iwave] x = min (x, 10.0) # Interpolate for extinction call ebmv_interp (33, xtable, etable, x, val) band[iwave] = val + 3.1 } end # EBMV_LMC -- Reddening law for the Large Magellanic Cloud # # Evaluation of LMC extinction curve as published by Howarth 1983, # MNRAS, 203, 301. procedure ebmv_lmc (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- real xtable[7] # tabulated inverse wavelengths real etable[7] # tabulated extinction at E(B-V)=1. int i, iwave real x, delt # Tabulated inverse wavelengths in microns: data (xtable(i),i=1,7) / 0.00, 0.29, 0.45, 0.80, 1.11, 1.43, 1.83 / # Tabulated extinction function, A(lambda)/E(B-V), from Savage & Mathis: data (etable(i),i=1,7) / 0.00, 0.16, 0.38, 0.87, 1.50, 2.32, 3.10 / begin do iwave = 1, nwave { # Convert wavelength in angstroms to 1/microns x = 10000.0 / wave[iwave] # Interpolate for extinction if ( x < 1.83) { call ebmv_interp (7, xtable, etable, x, band[iwave]) # Violet } else if ( x <= 2.75 ) { delt = x - 1.83 band[iwave] = 3.1 + (2.04 + 0.094 * delt) * delt # Ultraviolet out to lambda = 1000 A } else { x = min (x, 10.0) delt = x - 4.557 band[iwave] = 3.1 - 0.236 + 0.462 * x + 0.105 * x * x + 0.454 / (delt**2 + 0.293) } } end # EBMV_XGAL -- Extragalactic reddening function # # Computes the extragalactic extinction function # of Calzetti, Kinney and Storchi-Bergmann, 1994, ApJ, 429, 582 procedure ebmv_xgal (nwave, wave, band) int nwave # i: length of wavelength and bandpass arrays real wave[ARB] # i: wavelength set output is produced on real band[ARB] # o: output bandpass #-- int iwave real x, y begin do iwave = 1, nwave { # Convert input wavelength to inverse microns x = 10000.0 / wave[iwave] # Formula from paper with zero point moved to (x = 0) y = ((0.011 * x - 0.198) * x + 1.509) * x # Normalize the result according to Kailash Sahu's calculations band[iwave] = 2.43 * y } end # EBMV_INTERP -- Linear interpolation routine for ebmv functions procedure ebmv_interp (ntab, xtable, etable, x, ext) int ntab # i: table length real xtable[ARB] # i: inverse wavelength table real etable[ARB] # i: extinction table real x # i: inverse wavelength (in microns) real ext # o: interpolated extinction value (in magnitudes) #-- int itab real a, b begin # Starting at 2 and ending at ntab-1 ensures a pair of points # for the interpolation even if the input value lies outside # of the table and the interpolation is thus an extrapolation for (itab = 2; itab < ntab; itab = itab + 1) { if (x <= xtable[itab]) break } # Standard linear interpolation formula a = (xtable[itab] - x) / (xtable[itab] - xtable[itab-1]) b = 1.0 - a ext = a * etable[itab-1] + b * etable[itab] end