c The following is the IDL version of the regression routine by Bevington c Some modification have been made to the book version in regard to the input c X array and the data type of some of the arrays. c FUNCTION REGRESS,X,Y,W,YFIT,A0,SIGMA,FTEST,R,RMUL,CHISQ c; c;+ c; NAME: c; REGRESS c; PURPOSE: c; Multiple linear regression fit. c; Fit the function: c; Y(i) = A0 + A(0)*X(0,i) + A(1)*X(1,i) + ... + c; A(Nterms-1)*X(Nterms-1,i) c; CATEGORY: c; G2 - Correlation and regression analysis. c; CALLING SEQUENCE: c; Coeff = REGRESS(X,Y,W,YFIT,A0,SIGMA,FTEST,RMUL,CHISQ) c; INPUTS: c; X = array of independent variable data. X must c; be dimensioned (Nterms, Npoints) where there are Nterms c; coefficients to be found (independent variables) and c; Npoints of samples. c; Y = vector of dependent variable points, must c; have Npoints elements. c; W = vector of weights for each equation, must c; be a Npoints elements vector. For no c; weighting, set w(i) = 1., for instrumental weighting c; w(i) = 1/standard_deviation(Y(i)), for statistical c; weighting w(i) = 1./Y(i) c; c; OUTPUTS: c; Function result = coefficients = vector of c; Nterms elements. Returned as a column c; vector. c; c; OPTIONAL OUTPUT PARAMETERS: c; Yfit = array of calculated values of Y, Npoints c; elements. c; A0 = Constant term. c; Sigma = Vector of standard deviations for c; coefficients. c; Ftest = value of F for test of fit. c; Rmul = multiple linear correlation coefficient. c; R = Vector of linear correlation coefficient. c; Chisq = Reduced weighted chi squared. c; COMMON BLOCKS: c; None. c; SIDE EFFECTS: c; None. c; RESTRICTIONS: c; None. c; PROCEDURE: c; Adapted from the program REGRES, Page 172, c; Bevington, Data Reduction and Error Analysis for the c; Physical Sciences, 1969. c; c; MODIFICATION HISTORY: c; Written, DMS, RSI, September, 1982. c;- c; c SY = SIZE(Y) ;GET DIMENSIONS OF X AND Y. c SX = SIZE(X) c IF (N_ELEMENTS(W) NE SY(1)) OR (SX(0) NE 2) OR (SY(1) NE SX(2)) THEN BEGIN c PRINT,'REGRESS - Incompatible arrays' c RETURN,0 c ENDIF c; c NTERM = SX(1) ;# OF TERMS c NPTS = SY(1) ;# OF OBSERVATIONS c ; c SW = TOTAL(W) ;SUM OF WEIGHTS c YMEAN = TOTAL(Y*W)/SW ;Y MEAN c XMEAN = (X * (REPLICATE(1.,NTERM) # W)) # REPLICATE(1./SW,NPTS) c WMEAN = SW/NPTS c WW = W/WMEAN c ; c NFREE = NPTS-1 ;DEGS OF FREEDOM c SIGMAY = SQRT(TOTAL(WW * (Y-YMEAN)^2)/NFREE) ;W*(Y(I)-YMEAN) c XX = X- XMEAN # REPLICATE(1.,NPTS) ;X(J,I) - XMEAN(I) c WX = REPLICATE(1.,NTERM) # WW * XX ;W(I)*(X(J,I)-XMEAN(I)) c SIGMAX = SQRT( XX*WX # REPLICATE(1./NFREE,NPTS)) ;W(I)*(X(J,I)-XM)*(X(K,I)-XM) c R = WX #(Y - YMEAN) / (SIGMAX * SIGMAY * NFREE) c ARRAY = INVERT((WX # TRANSPOSE(XX))/(NFREE * SIGMAX #SIGMAX)) c A = (R # ARRAY)*(SIGMAY/SIGMAX) ;GET COEFFICIENTS c YFIT = A # X ;COMPUTE FIT c A0 = YMEAN - TOTAL(A*XMEAN) ;CONSTANT TERM c YFIT = YFIT + A0 ;ADD IT IN c FREEN = NPTS-NTERM-1 > 1 ;DEGS OF FREEDOM, AT LEAST 1. c CHISQ = TOTAL(WW*(Y-YFIT)^2)*WMEAN/FREEN ;WEIGHTED CHI SQUARED c SIGMA = SQRT(ARRAY(INDGEN(NTERM)*(NTERM+1))/WMEAN/(NFREE*SIGMAX^2)) ;ERROR TERM c RMUL = TOTAL(A*R*SIGMAX/SIGMAY) ;MULTIPLE LIN REG COEFF c IF RMUL LT 1. THEN FTEST = RMUL/NTERM / ((1.-RMUL)/FREEN) ELSE FTEST=1.E6 c RMUL = SQRT(RMUL) c RETURN,A c END subroutine regren (x, ndim1, ndim2, y, weight, npts, nterms, yfit, *a0, a, sigmaa, chisqr) double precision sum, ymean, sigma, chisq integer npts, nterms double precision x(ndim1,ndim2),y(1),yfit(1) double precision r(20), array(20,20), sigmax(20), xmean(20) double precision chisqr, a0, a(1) real weight(1), sigmaa(1) real sigma0, ftest, freen, free1, rmul real fnpts, det, varnce, wmean, freej integer i, j, k c c initialize sums and arrays c 11 sum=0. ymean=0. sigma=0. chisq=0. rmul=0. do 17 i=1,npts 17 yfit(i)=0. 21 do 28 j=1,nterms xmean(j)=0. sigmax(j)=0. r(j)=0. a(j)=0. sigmaa(j)=0. do 28 k=1,nterms 28 array(j,k)=0. c c accumulate weighted sums c 30 do 50 i=1,npts sum=sum+weight(i) ymean=ymean+weight(i)*y(i) do 44 j=1,nterms 44 xmean(j)=xmean(j)+weight(i)*x(j,i) 50 continue 51 ymean=ymean/sum do 53 j=1,nterms 53 xmean(j)=xmean(j)/sum fnpts=npts wmean=sum/fnpts do 57 i=1,npts 57 weight(i)=weight(i)/wmean c c accumulate matrices r and array c 61 do 67 i=1,npts sigma=sigma+weight(i)*(y(i)-ymean)**2 do 67 j=1,nterms sigmax(j)=sigmax(j)+weight(i)*(x(j,i)-xmean(j))**2 r(j)=r(j)+weight(i)*(x(j,i)-xmean(j))*(y(i)-ymean) do 67 k=1,j 67 array(j,k)=array(j,k)+weight(i)*(x(j,i)-xmean(j))* *(x(k,i)-xmean(k)) 71 free1=npts-1 72 sigma=dsqrt(sigma/free1) do 78 j=1,nterms 74 sigmax(j)=dsqrt(sigmax(j)/free1) r(j)=r(j)/(free1*sigmax(j)*sigma) do 78 k=1,j array(j,k)=array(j,k)/(free1*sigmax(j)*sigmax(k)) 78 array(k,j)=array(j,k) c c invert symmetric matrix c 81 call minv20 (array,nterms,det) if (det) 101,91,101 91 a0=0. sigma0=0. rmul=0. chisqr=0. ftest=0. goto 150 c c calculate coefficients, fit, and chi square c 101 a0=ymean 102 do 108 j=1,nterms do 104 k=1,nterms 104 a(j)=a(j)+r(k)*array(j,k) 105 a(j)=a(j)*sigma/sigmax(j) 106 a0=a0-a(j)*xmean(j) 107 do 108 i=1,npts 108 yfit(i)=yfit(i)+a(j)*x(j,i) 111 do 113 i=1,npts yfit(i)=yfit(i)+a0 113 chisq=chisq+weight(i)*(y(i)-yfit(i))**2 freen=npts-nterms-1 115 chisqr=chisq*wmean/freen c c calculate uncertainties c 124 varnce=chisqr 131 do 133 j=1,nterms 132 sigmaa(j)=array(j,j)*varnce/(free1*sigmax(j)**2) sigmaa(j)=sqrt(sigmaa(j)) 133 rmul=rmul+a(j)*r(j)*sigmax(j)/sigma freej=nterms c +noao: When rmul = 1, the following division (stmt 135) would blow up. c It has been changed so ftest is set to -99999. in this case. if (1. - rmul) 135, 935, 135 135 ftest=(rmul/freej)/((1.-rmul)/freen) goto 136 935 ftest = -99999. c -noao 136 rmul=sqrt(rmul) 141 sigma0=varnce/fnpts do 145 j=1,nterms do 145 k=1,nterms 145 sigma0=sigma0+varnce*xmean(j)*xmean(k)*array(j,k)/ *(free1*sigmax(j)*sigmax(k)) 146 sigma0=sqrt(sigma0) 150 return end c subroutine matinv.f c c source c bevington, pages 302-303. c c purpose c invert a symmetric matrix and calculate its determinant c c usage c call matinv (array, norder, det) c c description of parameters c array - input matrix which is replaced by its inverse c norder - degree of matrix (order of determinant) c det - determinant of input matrix c c subroutines and function subprograms required c none c c comment c dimension statement valid for norder up to 20 c subroutine minv20 (array,norder,det) double precision array,amax,save dimension array(20,20),ik(20),jk(20) c 10 det=1. 11 do 100 k=1,norder c c find largest element array(i,j) in rest of matrix c amax=0. 21 do 30 i=k,norder do 30 j=k,norder 23 if (dabs(amax)-dabs(array(i,j))) 24,24,30 24 amax=array(i,j) ik(k)=i jk(k)=j 30 continue c c interchange rows and columns to put amax in array(k,k) c 31 if (amax) 41,32,41 32 det=0. goto 140 41 i=ik(k) if (i-k) 21,51,43 43 do 50 j=1,norder save=array(k,j) array(k,j)=array(i,j) 50 array(i,j)=-save 51 j=jk(k) if (j-k) 21,61,53 53 do 60 i=1,norder save=array(i,k) array(i,k)=array(i,j) 60 array(i,j)=-save c c accumulate elements of inverse matrix c 61 do 70 i=1,norder if (i-k) 63,70,63 63 array(i,k)=-array(i,k)/amax 70 continue 71 do 80 i=1,norder do 80 j=1,norder if (i-k) 74,80,74 74 if (j-k) 75,80,75 75 array(i,j)=array(i,j)+array(i,k)*array(k,j) 80 continue 81 do 90 j=1,norder if (j-k) 83,90,83 83 array(k,j)=array(k,j)/amax 90 continue array(k,k)=1./amax 100 det=det*amax c c restore ordering of matrix c 101 do 130 l=1,norder k=norder-l+1 j=ik(k) if (j-k) 111,111,105 105 do 110 i=1,norder save=array(i,k) array(i,k)=-array(i,j) 110 array(i,j)=save 111 i=jk(k) if (i-k) 130,130,113 113 do 120 j=1,norder save=array(k,j) array(k,j)=-array(i,j) 120 array(i,j)=save 130 continue 140 return end