C @(#)igaussa.for 17.1.1.1 (ES0-DMD) 01/25/02 17:10:49 C=========================================================================== C Copyright (C) 1995 European Southern Observatory (ESO) C C This program is free software; you can redistribute it and/or C modify it under the terms of the GNU General Public License as C published by the Free Software Foundation; either version 2 of C the License, or (at your option) any later version. C C This program is distributed in the hope that it will be useful, C but WITHOUT ANY WARRANTY; without even the implied warranty of C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the C GNU General Public License for more details. C C You should have received a copy of the GNU General Public C License along with this program; if not, write to the Free C Software Foundation, Inc., 675 Massachusetss Ave, Cambridge, C MA 02139, USA. C C Corresponding concerning ESO-MIDAS should be addressed as follows: C Internet e-mail: midas@eso.org C Postal address: European Southern Observatory C Data Management Division C Karl-Schwarzschild-Strasse 2 C D 85748 Garching bei Muenchen C GERMANY C=========================================================================== C SUBROUTINE IGAUSA(INDEP,X,NP,PARAM,Y1,DERIV) C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C.COPYRIGHT: Copyright (c) 1987 European Southern Observatory, C all rights reserved C C.VERSION: 1.0 ESO-FORTRAN Conversion, AA 18:01 - 21 DEC 1987 C C.LANGUAGE: F77+ESOext C C.AUTHOR: J.D.PONZ C C-------------------------------------------------------------- C******************************************************* C FIT WITH AN INTEGRATED GAUSSIAN (STANDARD DEFINITION) C IMPLICIT NONE C******************************************************* C C Y1 = P(1)/(SQRT(2.*PI)*P(3) * C INTEGRAL [ EXP(-0.5*((X-P(2))/P(3))**2) ] C from -infinity to X C C******************************************************* C C Authors: M. Rosa and O.-G. Richter, ESO Garching C INTEGER NP,INDEP REAL X(INDEP) DOUBLE PRECISION Y1,PARAM(NP),DERIV(NP) DOUBLE PRECISION A,A2,A3 DOUBLE PRECISION ERF C A = (X(1)-PARAM(2))/PARAM(3) A2 = DEXP(-0.5D0*A*A) A3 = PARAM(3)*2.506628274631001 DERIV(1) = ERF(A) Y1 = DERIV(1)*PARAM(1) DERIV(2) = -PARAM(1)*A2/A3 DERIV(3) = DERIV(2)*A RETURN END