C @(#)lognorm.for 17.1.1.1 (ES0-DMD) 01/25/02 17:10:49 C=========================================================================== C Copyright (C) 1995 European Southern Observatory (ESO) C C This program is free software; you can redistribute it and/or C modify it under the terms of the GNU General Public License as C published by the Free Software Foundation; either version 2 of C the License, or (at your option) any later version. C C This program is distributed in the hope that it will be useful, C but WITHOUT ANY WARRANTY; without even the implied warranty of C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the C GNU General Public License for more details. C C You should have received a copy of the GNU General Public C License along with this program; if not, write to the Free C Software Foundation, Inc., 675 Massachusetss Ave, Cambridge, C MA 02139, USA. C C Corresponding concerning ESO-MIDAS should be addressed as follows: C Internet e-mail: midas@eso.org C Postal address: European Southern Observatory C Data Management Division C Karl-Schwarzschild-Strasse 2 C D 85748 Garching bei Muenchen C GERMANY C=========================================================================== C SUBROUTINE LOGNRM(IND,X,NP,PARAM,Y,DERIV) C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C.COPYRIGHT: Copyright (c) 1987 European Southern Observatory, C all rights reserved C C.VERSION: 1.0 ESO-FORTRAN Conversion, AA 18:01 - 21 DEC 1987 C C.LANGUAGE: F77+ESOext C C.AUTHOR: J.D.PONZ C C-------------------------------------------------------------- C C Logarithmic normal distribution C IMPLICIT NONE C C Y = P1*EXP(-0.5*((LN(X-P4)-P2)/P3)**2)/((X-P4)*P3*SQRT(2*PI)) C INTEGER NP,IND,I DOUBLE PRECISION Y,PARAM(NP),DERIV(NP) REAL X(IND) DOUBLE PRECISION A,B,C,D,E C Y = 0.0D0 DO 10 I = 1,4 DERIV(I) = 0.0D0 10 CONTINUE A = X(1) - PARAM(4) IF (A.LE.0.0D0) RETURN C B = DLOG(A) - PARAM(2) C = 1.0D0/PARAM(3) D = B*C*C E = B*D DERIV(1) = 3.989422803D-1*C*DEXP(-0.5D0*E)/A Y = PARAM(1)*DERIV(1) DERIV(2) = Y*D DERIV(3) = Y*C* (E-1.0D0) DERIV(4) = Y* (D+1.0D0)/A RETURN END