/* @(#)fitnol.c 17.1.1.1 (ESO-IPG) 01/25/02 17:51:58 */ /* Based on code by Christan Levin fitnol.c various fitting functions */ /* system includes */ #include /* FEROS specific includes */ #include #include #ifndef FALSE #define FALSE 0 #define TRUE (!FALSE) #endif void mrqmin #ifdef __STDC__ ( double x[], double y[], double sig[], int ndata, double a[], int ma, int lista[], int mfit, double **covar, double **alpha, double *chisq, void (*funcs) ( double, double *, double *, double *, int), double *alamda ) #else ( x, y, sig, ndata, a, ma, lista, mfit, covar, alpha, chisq, funcs, alamda ) double x[],y[],sig[],a[],**covar,**alpha,*chisq,*alamda; int ndata,ma,lista[],mfit; void (*funcs) (); #endif { int k,kk,j,ihit; static double *da,*atry,**oneda,*beta,ochisq; if (*alamda < 0.0) { oneda=dmatrix(1,mfit,1,1); atry=dvector(1,ma); da=dvector(1,ma); beta=dvector(1,ma); kk=mfit+1; for (j=1;j<=ma;j++) { ihit=0; for (k=1;k<=mfit;k++) if (lista[k] == j) ihit++; if (ihit == 0) lista[kk++]=j; else if (ihit > 1) nrerror("Error in non linear fitting"); } if (kk != ma+1) nrerror("Error in non linear fitting"); *alamda=0.001; mrqcof(x,y,sig,ndata,a,ma,lista,mfit,alpha,beta,chisq,funcs); ochisq=(*chisq); } for (j=1;j<=mfit;j++) { for (k=1;k<=mfit;k++) covar[j][k]=alpha[j][k]; covar[j][j]=alpha[j][j]*(1.0+(*alamda)); oneda[j][1]=beta[j]; } gaussj(covar,mfit,oneda,1); for (j=1;j<=mfit;j++) da[j]=oneda[j][1]; if (*alamda == 0.0) { covsrt(covar,ma,lista,mfit); free_dvector(beta,1,ma); free_dvector(da,1,ma); free_dvector(atry,1,ma); free_dmatrix(oneda,1,mfit,1,1); return; } for (j=1;j<=ma;j++) atry[j]=a[j]; for (j=1;j<=mfit;j++) atry[lista[j]] = a[lista[j]]+da[j]; mrqcof (x, y, sig, ndata, atry, ma, lista, mfit, covar, da, chisq, funcs); if (*chisq < ochisq) { *alamda *= 0.1; ochisq=(*chisq); for (j=1;j<=mfit;j++) { for (k=1;k<=mfit;k++) alpha[j][k]=covar[j][k]; beta[j]=da[j]; a[lista[j]]=atry[lista[j]]; } } else { *alamda *= 10.0; *chisq=ochisq; } return; } void mrqcof #ifdef __STDC__ ( double x[], double y[], double sig[], int ndata, double a[], int ma, int lista[], int mfit, double **alpha, double beta[], double *chisq, void (*funcs)(double,double *,double *,double *, int) ) #else ( x, y, sig, ndata, a, ma, lista, mfit,alpha, beta, chisq, funcs ) double x[],y[],sig[],a[],**alpha,beta[],*chisq; int ndata, ma, lista[], mfit; void (*funcs)(); #endif { int k,j,i; double ymod,wt,sig2i,dy,*dyda; dyda=dvector(1,ma); for (j=1;j<=mfit;j++) { for (k=1;k<=j;k++) alpha[j][k]=0.0; beta[j]=0.0; } *chisq=0.0; for (i=1;i<=ndata;i++) { (*funcs)(x[i], a, &ymod, dyda, ma); sig2i=1.0/(sig[i]*sig[i]); dy=y[i]-ymod; for (j=1;j<=mfit;j++) { wt=dyda[lista[j]]*sig2i; for (k=1;k<=j;k++) alpha[j][k] += wt*dyda[lista[k]]; beta[j] += dy*wt; } (*chisq) += dy*dy*sig2i; } for (j=2;j<=mfit;j++) for (k=1;k<=j-1;k++) alpha[k][j]=alpha[j][k]; free_dvector(dyda,1,ma); } void covsrt #ifdef __STDC__ ( double **covar, int ma, int lista[], int mfit ) #else ( covar, ma, lista, mfit ) double **covar; int ma, lista[],mfit; #endif { int i,j; double swap; for (j=1;j lista[i]) covar[lista[j]][lista[i]]=covar[i][j]; else covar[lista[i]][lista[j]]=covar[i][j]; } swap=covar[1][1]; for (j=1;j<=ma;j++) { covar[1][j]=covar[j][j]; covar[j][j]=0.0; } covar[lista[1]][lista[1]]=swap; for (j=2;j<=mfit;j++) covar[lista[j]][lista[j]]=covar[1][j]; for (j=2;j<=ma;j++) for (i=1;i<=j-1;i++) covar[i][j]=covar[j][i]; } /************************************************************ fgauss(): optimized adding fac1, fac2. (C.Levin) optimized using only 3 coefs. (1 gaussian) (C.Levin). */ void fgauss #ifdef __STDC__ ( double x, double a[], double *y, double dyda[], int na ) #else ( x, a, y, dyda,na ) double x,a[],*y,dyda[]; int na; #endif { /* na/3 gauss-function with A, x0, sigma in a[1], a[2], a[3]... */ int i; double fac, ex, arg; *y = 0.0; for(i = 1; i < na; i += 3) { arg = (x - a[i+1]) / a[i+2]; ex = exp(-0.5 * arg * arg); *y += a[i] * ex; dyda[i] = ex; fac = a[i] * ex * arg / a[i+2]; dyda[i+1] = fac; dyda[i+2] = fac * arg; } } /************************************************************ * * fit_gauss(): Gaussian fitting. * * calls : fitnol.c{mrqmin} * modified: Criterium of stopping is more relaxed (C.Levin). * ************************************************************/ #define EPS 0.001 int fit_gauss #ifdef __STDC__ ( double *x, double *y, int n, double *a, int nfp ) #else ( x, y, n, a, nfp ) double *x, *y, *a; int n, nfp; #endif { int *lista; int nfit, ncoefs; int i, iter = 1; double **covar, **alpha; double *sig, chisq, ochisq, alamda = -1.; nfit = nfp; ncoefs = nfp; sig = dvector(1, n); lista = ivector(1, ncoefs); covar = dmatrix(1, nfit, 1, nfit); alpha = dmatrix(1, ncoefs, 1, ncoefs); for(i = 1; i <= n; i++) sig[i] = 1.0; for(i = 1; i <= ncoefs; i++) lista[i] = i; mrqmin(x, y, sig, n, a, ncoefs, lista, nfit, covar, alpha, &chisq, fgauss, &alamda); do { iter++; ochisq = chisq; mrqmin(x, y, sig, n, a, ncoefs, lista, nfit, covar, alpha, &chisq, fgauss, &alamda); } while ( (ochisq - chisq) / chisq > EPS ); alamda = 0.; /* To de-allocate memory */ mrqmin(x, y, sig, n, a, ncoefs, lista, nfit, covar, alpha, &chisq, fgauss, &alamda); free_dvector(sig, 1, n); free_ivector(lista, 1, ncoefs); free_dmatrix(covar, 1, nfit, 1, nfit); free_dmatrix(alpha, 1, ncoefs, 1, ncoefs); return 0; }