# Automatic nth-order derivatives # # Written by Konrad Hinsen # last revision: 2000-6-5 # """This module provides automatic differentiation for functions with any number of variables up to any order. An instance of the class DerivVar represents the value of a function and the values of its partial derivatives with respect to a list of variables. All common mathematical operations and functions are available for these numbers. There is no restriction on the type of the numbers fed into the code; it works for real and complex numbers as well as for any Python type that implements the necessary operations. If only first-order derivatives are required, the module FirstDerivatives should be used. It is compatible to this one, but significantly faster. Example: 'print sin(DerivVar(2))' produces the output '(0.909297426826, [-0.416146836547])' The first number is the value of sin(2); the number in the following list is the value of the derivative of sin(x) at x=2, i.e. cos(2). When there is more than one variable, DerivVar must be called with an integer second argument that specifies the number of the variable. Example: >>>x = DerivVar(7., 0) >>>y = DerivVar(42., 1) >>>z = DerivVar(pi, 2) >>>print (sqrt(pow(x,2)+pow(y,2)+pow(z,2))) produces the output >>>(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365]) The numbers in the list are the partial derivatives with respect to x, y, and z, respectively. Higher-order derivatives are requested with an optional third argument to DerivVar. Example: >>>x = DerivVar(3., 0, 3) >>>y = DerivVar(5., 1, 3) >>>print sqrt(x*y) produces the output >>>(3.87298334621, >>> [0.645497224368, 0.387298334621], >>> [[-0.107582870728, 0.0645497224368], >>> [0.0645497224368, -0.0387298334621]], >>> [[[0.053791435364, -0.0107582870728], >>> [-0.0107582870728, -0.00645497224368]], >>> [[-0.0107582870728, -0.00645497224368], >>> [-0.00645497224368, 0.0116189500386]]]) The individual orders can be extracted by indexing: >>>print sqrt(x*y)[0] >>>3.87298334621 >>>print sqrt(x*y)[1] >>>[0.645497224368, 0.387298334621] An n-th order derivative is represented by a nested list of depth n. When variables with different differentiation orders are mixed, the result has the lower one of the two orders. An exception are zeroth-order variables, which are treated as constants. Caution: Higher-order derivatives are implemented by recursively using DerivVars to represent derivatives. This makes the code very slow for high orders. Note: It doesn't make sense to use multiple DerivVar objects with different values for the same variable index in one calculation, but there is no check for this. I.e. >>>print DerivVar(3, 0)+DerivVar(5, 0) produces >>>(8, [2]) but this result is meaningless. """ import Numeric # The following class represents variables with derivatives: class DerivVar: """Variable with derivatives Constructor: DerivVar(|value|, |index| = 0, |order| = 1) Arguments: |value| -- the numerical value of the variable |index| -- the variable index (an integer), which serves to distinguish between variables and as an index for the derivative lists. Each explicitly created instance of DerivVar must have a unique index. |order| -- the derivative order Indexing with an integer yields the derivatives of the corresponding order. """ def __init__(self, value, index=0, order = 1, recursive = None): self.value = value if recursive: d = 0 else: d = 1 if type(index) == type([]): self.deriv = index elif order == 0: self.deriv = [] elif order == 1: self.deriv = index*[0] + [d] else: self.deriv = [] for i in range(index): self.deriv.append(DerivVar(0, index, order-1, 1)) self.deriv.append(DerivVar(d, index, order-1, 1)) self.order = order def toOrder(self, order): "Returns a DerivVar object with a lower derivative order." if self.order <= order: return self if order == 0: return self.value return DerivVar(self.value, map(lambda x, o=order-1: x.toOrder(o), self.deriv), order) def __getitem__(self, item): if item < 0 or item > self.order: raise ValueError, 'Index out of range' if item == 0: return self.value else: return map(lambda d, i=item-1: _indexDeriv(d,i), self.deriv) def __repr__(self): return repr(tuple(map(lambda n, x=self: x[n], range(self.order+1)))) def __str__(self): return str(tuple(map(lambda n, x=self: x[n], range(self.order+1)))) def __coerce__(self, other): if isDerivVar(other): if self.order==other.order or self.order==0 or other.order==0: return self, other order = min(self.order, other.order) return self.toOrder(order), other.toOrder(order) else: return self, DerivVar(other, [], 0) def __cmp__(self, other): return cmp(self.value, other.value) def __neg__(self): return DerivVar(-self.value,map(lambda a: -a, self.deriv), self.order) def __pos__(self): return self def __abs__(self): if self.value > 0: return self elif self.value < 0: return self.__neg__() else: raise ValueError, "can't differentiate abs() at zero" def __nonzero__(self): return self.value != 0 def __add__(self, other): return DerivVar(self.value + other.value, _mapderiv(lambda a,b: a+b, self.deriv, other.deriv), max(self.order, other.order)) __radd__ = __add__ def __sub__(self, other): return DerivVar(self.value - other.value, _mapderiv(lambda a,b: a-b, self.deriv, other.deriv), max(self.order, other.order)) def __rsub__(self, other): return DerivVar(other.value - self.value, _mapderiv(lambda a,b: a-b, other.deriv, self.deriv), max(self.order, other.order)) def __mul__(self, other): if self.order < 2: s1 = self.value else: s1 = self.toOrder(self.order-1) if other.order < 2: o1 = other.value else: o1 = other.toOrder(other.order-1) return DerivVar(self.value*other.value, _mapderiv(lambda a,b: a+b, map(lambda x,f=o1: f*x, self.deriv), map(lambda x,f=s1: f*x, other.deriv)), max(self.order, other.order)) __rmul__ = __mul__ def __div__(self, other): if not other.value: raise ZeroDivisionError, 'DerivVar division' if self.order < 2: s1 = self.value else: s1 = self.toOrder(self.order-1) if other.order < 2: o1i = 1./other.value else: o1i = 1./other.toOrder(other.order-1) return DerivVar(_toFloat(self.value)/other.value, _mapderiv(lambda a,b: a-b, map(lambda x,f=o1i: x*f, self.deriv), map(lambda x,f=s1*pow(o1i, 2): f*x, other.deriv)), max(self.order, other.order)) def __rdiv__(self, other): return other/self def __pow__(self, other, z=None): if z is not None: raise TypeError, 'DerivVar does not support ternary pow()' if len(other.deriv) > 0: return Numeric.exp(Numeric.log(self)*other) else: if self.order < 2: ps1 = other.value*pow(self.value, other.value-1) else: ps1 = other.value*pow(self.toOrder(self.order-1), other.value-1) return DerivVar(pow(self.value, other.value), map(lambda x,f=ps1: f*x, self.deriv), max(self.order, other.order)) def __rpow__(self, other): return pow(other, self) def _mathfunc(self, f, d): if self.order < 2: fd = d(self.value) else: fd = d(self.toOrder(self.order-1)) return DerivVar(f(self.value), map(lambda x, f=fd: f*x, self.deriv), self.order) def exp(self): return self._mathfunc(Numeric.exp, Numeric.exp) def log(self): return self._mathfunc(Numeric.log, lambda x: 1./x) def sqrt(self): return self._mathfunc(Numeric.sqrt, lambda x: 0.5/Numeric.sqrt(x)) def sin(self): return self._mathfunc(Numeric.sin, Numeric.cos) def cos(self): return self._mathfunc(Numeric.cos, lambda x: -Numeric.sin(x)) def tan(self): return self._mathfunc(Numeric.tan, lambda x: 1.+pow(Numeric.tan(x),2)) def sinh(self): return self._mathfunc(Numeric.sinh, Numeric.cosh) def cosh(self): return self._mathfunc(Numeric.cosh, Numeric.sinh) def tanh(self): return self._mathfunc(Numeric.tanh, lambda x: 1./pow(Numeric.cosh(x),2)) def arcsin(self): return self._mathfunc(Numeric.arcsin, lambda x: 1./Numeric.sqrt(1.-pow(x,2))) def arccos(self): return self._mathfunc(Numeric.arccos, lambda x: -1./Numeric.sqrt(1.-pow(x,2))) def arctan(self): return self._mathfunc(Numeric.arctan, lambda x: 1./(1+pow(x,2))) # Type check def isDerivVar(x): "Returns 1 if |x| is a DerivVar object." return hasattr(x,'value') and hasattr(x,'deriv') and hasattr(x,'order') # Map a binary function on two first derivative lists def _mapderiv(func, a, b): nvars = max(len(a), len(b)) a = a + (nvars-len(a))*[0] b = b + (nvars-len(b))*[0] return map(func, a, b) # Convert argument to float if it is integer def _toFloat(x): if type(x) == type(0): return float(x) return x # Subscript for DerivVar or ordinary number def _indexDeriv(d, i): if isDerivVar(d): return d[i] if i != 0: raise ValueError, 'Internal error' return d # Define vector of DerivVars def DerivVector(x, y, z, index=0, order = 1): """Returns a vector whose components are DerivVar objects. Arguments: |x|, |y|, |z| -- vector components (numbers) |index| -- the DerivVar index for the x component. The y and z components receive consecutive indices. |order| -- the derivative order """ from Scientific.Geometry.Vector import Vector if isDerivVar(x) and isDerivVar(y) and isDerivVar(z): return Vector(x, y, z) else: return Vector(DerivVar(x, index, order), DerivVar(y, index+1, order), DerivVar(z, index+2, order))