# Physical quantities with units # # Written by Konrad Hinsen # last revision: 1999-7-23 # # hacked 1998/09/28 GPW: now removes __args__ from local dict after eval # 1998/09/29 GPW: now supports conversions with offset # (for temperature units) # $Id: PhysicalQuantities.py,v 1.3.1.7 1999/01/11 21:49:36 gward Exp $ """Physical quantities with units. This module provides a data type that represents a physical quantity together with its unit. It is possible to add and subtract these quantities if the units are compatible, and a quantity can be converted to another compatible unit. Multiplication, subtraction, and raising to integer powers is allowed without restriction, and the result will have the correct unit. A quantity can be raised to a non-integer power only if the result can be represented by integer powers of the base units. The values of physical constants are taken from the 1986 recommended values from CODATA. Other conversion factors (e.g. for British units) come from various sources. I can't guarantee for the correctness of all entries in the unit table, so use this at your own risk! """ import re, string, umath from Scientific.NumberDict import NumberDict # Class definitions class PhysicalQuantity: """Physical quantity with units Constructor: - PhysicalQuantity(|value|, |unit|), where |value| is a number of arbitrary type and |unit| is a string containing the unit name. - PhysicalQuantity(|string|), where |string| contains both the value and the unit. This form is provided to make interactive use more convenient. PhysicalQuantity instances allow addition, subtraction, multiplication, and division with each other as well as multiplication, division, and exponentiation with numbers. Addition and subtraction check that the units of the two operands are compatible and return the result in the units of the first operand. A limited set of mathematical functions (from module Numeric) is applicable as well: sqrt -- equivalent to exponentiation with 0.5. sin, cos, tan -- applicable only to objects whose unit is compatible with 'rad'. """ def __init__(self, *args): if len(args) == 2: self.value = args[0] self.unit = _findUnit(args[1]) else: s = string.strip(args[0]) match = PhysicalQuantity._number.match(s) if match is None: raise TypeError, 'No number found' self.value = string.atof(match.group(0)) self.unit = _findUnit(s[len(match.group(0)):]) _number = re.compile('[+-]?[0-9]+(\\.[0-9]*)?([eE][+-]?[0-9]?)?') def __str__(self): return str(self.value) + ' ' + self.unit.name() def __repr__(self): return (self.__class__.__name__ + '(' + `self.value` + ',' + `self.unit.name()` + ')') def _sum(self, other, sign1, sign2): if not isPhysicalQuantity(other): raise TypeError, 'Incompatible types' new_value = sign1*self.value + \ sign2*other.value*other.unit.conversionFactorTo(self.unit) return self.__class__(new_value, self.unit) def __add__(self, other): return self._sum(other, 1, 1) __radd__ = __add__ def __sub__(self, other): return self._sum(other, 1, -1) def __rsub__(self, other): return self._sum(other, -1, 1) def __cmp__(self, other): diff = self._sum(other, 1, -1) return cmp(diff.value, 0) def __mul__(self, other): if not isPhysicalQuantity(other): return self.__class__(self.value*other, self.unit) value = self.value*other.value unit = self.unit*other.unit if unit.isDimensionless(): return value*unit.factor else: return self.__class__(value, unit) __rmul__ = __mul__ def __div__(self, other): if not isPhysicalQuantity(other): return self.__class__(self.value/other, self.unit) value = self.value/other.value unit = self.unit/other.unit if unit.isDimensionless(): return value*unit.factor else: return self.__class__(value, unit) def __rdiv__(self, other): if not isPhysicalQuantity(other): return self.__class__(other/self.value, pow(self.unit, -1)) value = other.value/self.value unit = other.unit/self.unit if unit.isDimensionless(): return value*unit.factor else: return self.__class__(value, unit) def __pow__(self, other): if isPhysicalQuantity(other): raise TypeError, 'Exponents must be dimensionless' return self.__class__(pow(self.value, other), pow(self.unit, other)) def __rpow__(self, other): raise TypeError, 'Exponents must be dimensionless' def __abs__(self): return self.__class__(abs(self.value), self.unit) def __pos__(self): return self def __neg__(self): return self.__class__(-self.value, self.unit) def __nonzero__(self): return self.value != 0 def convertToUnit(self, unit): """Changes the unit to |unit| and adjusts the value such that the combination is equivalent. The new unit is by a string containing its name. The new unit must be compatible with the previous unit of the object.""" unit = _findUnit(unit) self.value = _convertValue (self.value, self.unit, unit) self.unit = unit def inUnitsOf(self, *units): """Returns one or more PhysicalQuantity objects that express the same physical quantity in different units. The units are specified by strings containing their names. The units must be compatible with the unit of the object. If one unit is specified, the return value is a single PhysicalObject. If several units are specified, the return value is a tuple of PhysicalObject instances with with one element per unit such that the sum of all quantities in the tuple equals the the original quantity and all the values except for the last one are integers. This is used to convert to irregular unit systems like hour/minute/second. The original object will not be changed. """ units = map(_findUnit, units) if len(units) == 1: unit = units[0] value = _convertValue (self.value, self.unit, unit) return self.__class__(value, unit) else: units.sort() result = [] value = self.value unit = self.unit for i in range(len(units)-1,-1,-1): value = value*unit.conversionFactorTo(units[i]) if i == 0: rounded = value else: rounded = _round(value) result.append(self.__class__(rounded, units[i])) value = value - rounded unit = units[i] return tuple(result) # Contributed by Berthold Hoellmann def inBaseUnits(self): new_value = self.value * self.unit.factor num = '' denom = '' for i in xrange(9): unit = _base_names[i] power = self.unit.powers[i] if power < 0: denom = denom + '/' + unit if power < -1: denom = denom + '**' + str(-power) elif power > 0: num = num + '*' + unit if power > 1: num = num + '**' + str(power) if len(num) == 0: num = '1' else: num = num[1:] return self.__class__(new_value, num + denom) def isCompatible (self, unit): unit = _findUnit (unit) return self.unit.isCompatible (unit) def sqrt(self): return pow(self, 0.5) def sin(self): if self.unit.isAngle(): return umath.sin(self.value * \ self.unit.conversionFactorTo(_unit_table['rad'])) else: raise TypeError, 'Argument of sin must be an angle' def cos(self): if self.unit.isAngle(): return umath.cos(self.value * \ self.unit.conversionFactorTo(_unit_table['rad'])) else: raise TypeError, 'Argument of cos must be an angle' def tan(self): if self.unit.isAngle(): return umath.tan(self.value * \ self.unit.conversionFactorTo(_unit_table['rad'])) else: raise TypeError, 'Argument of tan must be an angle' class PhysicalUnit: def __init__(self, names, factor, powers, offset=0): if type(names) == type(''): self.names = NumberDict() self.names[names] = 1 else: self.names = names self.factor = factor self.offset = offset self.powers = powers def __repr__(self): return '' __str__ = __repr__ def __cmp__(self, other): if self.powers != other.powers: raise TypeError, 'Incompatible units' return cmp(self.factor, other.factor) def __mul__(self, other): if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0): raise TypeError, "cannot multiply units with non-zero offset" if isPhysicalUnit(other): return PhysicalUnit(self.names+other.names, self.factor*other.factor, map(lambda a,b: a+b, self.powers, other.powers)) else: return PhysicalUnit(self.names+{str(other): 1}, self.factor*other, self.powers, self.offset * other) __rmul__ = __mul__ def __div__(self, other): if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0): raise TypeError, "cannot divide units with non-zero offset" if isPhysicalUnit(other): return PhysicalUnit(self.names-other.names, self.factor/other.factor, map(lambda a,b: a-b, self.powers, other.powers)) else: return PhysicalUnit(self.names+{str(other): -1}, self.factor/other, self.powers) def __rdiv__(self, other): if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0): raise TypeError, "cannot divide units with non-zero offset" if isPhysicalUnit(other): return PhysicalUnit(other.names-self.names, other.factor/self.factor, map(lambda a,b: a-b, other.powers, self.powers)) else: return PhysicalUnit({str(other): 1}-self.names, other/self.factor, map(lambda x: -x, self.powers)) def __pow__(self, other): if self.offset != 0: raise TypeError, "cannot exponentiate units with non-zero offset" if type(other) == type(0): return PhysicalUnit(other*self.names, pow(self.factor, other), map(lambda x,p=other: x*p, self.powers)) if type(other) == type(0.): inv_exp = 1./other rounded = int(umath.floor(inv_exp+0.5)) if abs(inv_exp-rounded) < 1.e-10: if reduce(lambda a, b: a and b, map(lambda x, e=rounded: x%e == 0, self.powers)): f = pow(self.factor, other) p = map(lambda x,p=rounded: x/p, self.powers) if reduce(lambda a, b: a and b, map(lambda x, e=rounded: x%e == 0, self.names.values())): names = self.names/rounded else: names = NumberDict() if f != 1.: names[str(f)] = 1 for i in range(len(p)): names[_base_names[i]] = p[i] return PhysicalUnit(names, f, p) else: raise TypeError, 'Illegal exponent' raise TypeError, 'Only integer and inverse integer exponents allowed' def conversionFactorTo(self, other): if self.powers != other.powers: raise TypeError, 'Incompatible units' if self.offset != other.offset and self.factor != other.factor: raise TypeError, \ ('Unit conversion (%s to %s) cannot be expressed ' + 'as a simple multiplicative factor') % \ (self.name(), other.name()) return self.factor/other.factor def conversionTupleTo(self, other): # added 1998/09/29 GPW if self.powers != other.powers: raise TypeError, 'Incompatible units' # let (s1,d1) be the conversion tuple from 'self' to base units # (ie. (x+d1)*s1 converts a value x from 'self' to base units, # and (x/s1)-d1 converts x from base to 'self' units) # and (s2,d2) be the conversion tuple from 'other' to base units # then we want to compute the conversion tuple (S,D) from # 'self' to 'other' such that (x+D)*S converts x from 'self' # units to 'other' units # the formula to convert x from 'self' to 'other' units via the # base units is (by definition of the conversion tuples): # ( ((x+d1)*s1) / s2 ) - d2 # = ( (x+d1) * s1/s2) - d2 # = ( (x+d1) * s1/s2 ) - (d2*s2/s1) * s1/s2 # = ( (x+d1) - (d1*s2/s1) ) * s1/s2 # = (x + d1 - d2*s2/s1) * s1/s2 # thus, D = d1 - d2*s2/s1 and S = s1/s2 factor = self.factor / other.factor offset = self.offset - (other.offset * other.factor / self.factor) return (factor, offset) def isCompatible (self, other): # added 1998/10/01 GPW return self.powers == other.powers def isDimensionless(self): return not reduce(lambda a,b: a or b, self.powers) def isAngle(self): return self.powers[7] == 1 and \ reduce(lambda a,b: a + b, self.powers) == 1 def setName(self, name): self.names = NumberDict() self.names[name] = 1 def name(self): num = '' denom = '' for unit in self.names.keys(): power = self.names[unit] if power < 0: denom = denom + '/' + unit if power < -1: denom = denom + '**' + str(-power) elif power > 0: num = num + '*' + unit if power > 1: num = num + '**' + str(power) if len(num) == 0: num = '1' else: num = num[1:] return num + denom # Type checks def isPhysicalUnit(x): return hasattr(x, 'factor') and hasattr(x, 'powers') def isPhysicalQuantity(x): "Returns 1 if |x| is an instance of PhysicalQuantity." return hasattr(x, 'value') and hasattr(x, 'unit') # Helper functions def _findUnit(unit): if type(unit) == type(''): name = string.strip(unit) unit = eval(name, _unit_table) for cruft in ['__builtins__', '__args__']: try: del _unit_table[cruft] except: pass if not isPhysicalUnit(unit): raise TypeError, str(unit) + ' is not a unit' return unit def _round(x): if umath.greater(x, 0.): return umath.floor(x) else: return umath.ceil(x) def _convertValue (value, src_unit, target_unit): (factor, offset) = src_unit.conversionTupleTo(target_unit) return (value + offset) * factor # SI unit definitions _base_names = ['m', 'kg', 's', 'A', 'K', 'mol', 'cd', 'rad', 'sr'] _base_units = [('m', PhysicalUnit('m', 1., [1,0,0,0,0,0,0,0,0])), ('g', PhysicalUnit('g', 0.001, [0,1,0,0,0,0,0,0,0])), ('s', PhysicalUnit('s', 1., [0,0,1,0,0,0,0,0,0])), ('A', PhysicalUnit('A', 1., [0,0,0,1,0,0,0,0,0])), ('K', PhysicalUnit('K', 1., [0,0,0,0,1,0,0,0,0])), ('mol', PhysicalUnit('mol', 1., [0,0,0,0,0,1,0,0,0])), ('cd', PhysicalUnit('cd', 1., [0,0,0,0,0,0,1,0,0])), ('rad', PhysicalUnit('rad', 1., [0,0,0,0,0,0,0,1,0])), ('sr', PhysicalUnit('sr', 1., [0,0,0,0,0,0,0,0,1])), ] _prefixes = [('Y', 1.e24), ('Z', 1.e21), ('E', 1.e18), ('P', 1.e15), ('T', 1.e12), ('G', 1.e9), ('M', 1.e6), ('k', 1.e3), ('h', 1.e2), ('da', 1.e1), ('d', 1.e-1), ('c', 1.e-2), ('m', 1.e-3), ('mu', 1.e-6), ('n', 1.e-9), ('p', 1.e-12), ('f', 1.e-15), ('a', 1.e-18), ('z', 1.e-21), ('y', 1.e-24), ] _unit_table = {} for unit in _base_units: _unit_table[unit[0]] = unit[1] def _addUnit(name, unit): if _unit_table.has_key(name): raise KeyError, 'Unit ' + name + ' already defined' if type(unit) == type(''): unit = eval(unit, _unit_table) for cruft in ['__builtins__', '__args__']: try: del _unit_table[cruft] except: pass unit.setName(name) _unit_table[name] = unit def _addPrefixed(unit): for prefix in _prefixes: name = prefix[0] + unit _addUnit(name, prefix[1]*_unit_table[unit]) # SI derived units; these automatically get prefixes _unit_table['kg'] = PhysicalUnit('kg', 1., [0,1,0,0,0,0,0,0,0]) _addUnit('Hz', '1/s') # Hertz _addUnit('N', 'm*kg/s**2') # Newton _addUnit('Pa', 'N/m**2') # Pascal _addUnit('J', 'N*m') # Joule _addUnit('W', 'J/s') # Watt _addUnit('C', 's*A') # Coulomb _addUnit('V', 'W/A') # Volt _addUnit('F', 'C/V') # Farad _addUnit('ohm', 'V/A') # Ohm _addUnit('S', 'A/V') # Siemens _addUnit('Wb', 'V*s') # Weber _addUnit('T', 'Wb/m**2') # Tesla _addUnit('H', 'Wb/A') # Henry _addUnit('lm', 'cd*sr') # Lumen _addUnit('lx', 'lm/m**2') # Lux _addUnit('Bq', '1/s') # Becquerel _addUnit('Gy', 'J/kg') # Gray _addUnit('Sv', 'J/kg') # Sievert del _unit_table['kg'] for unit in _unit_table.keys(): _addPrefixed(unit) # Fundamental constants _unit_table['pi'] = umath.pi _addUnit('c', '299792458.*m/s') # speed of light _addUnit('mu0', '4.e-7*pi*N/A**2') # permeability of vacuum _addUnit('eps0', '1/mu0/c**2') # permittivity of vacuum _addUnit('Grav', '6.67259e-11*m**3/kg/s**2') # gravitational constant _addUnit('hplanck', '6.6260755e-34*J*s') # Planck constant _addUnit('hbar', 'hplanck/(2*pi)') # Planck constant / 2pi _addUnit('e', '1.60217733e-19*C') # elementary charge _addUnit('me', '9.1093897e-31*kg') # electron mass _addUnit('mp', '1.6726231e-27*kg') # proton mass _addUnit('Nav', '6.0221367e23/mol') # Avogadro number _addUnit('k', '1.380658e-23*J/K') # Boltzmann constant # Time units _addUnit('min', '60*s') # minute _addUnit('h', '60*min') # hour _addUnit('d', '24*h') # day _addUnit('wk', '7*d') # week _addUnit('yr', '365.25*d') # year # Length units _addUnit('inch', '2.54*cm') # inch _addUnit('ft', '12*inch') # foot _addUnit('yd', '3*ft') # yard _addUnit('mi', '5280.*ft') # (British) mile _addUnit('nmi', '1852.*m') # Nautical mile _addUnit('Ang', '1.e-10*m') # Angstrom _addUnit('lyr', 'c*yr') # light year _addUnit('Bohr', '4*pi*eps0*hbar**2/me/e**2') # Bohr radius # Area units _addUnit('ha', '10000*m**2') # hectare _addUnit('acres', 'mi**2/640') # acre _addUnit('b', '1.e-28*m') # barn # Volume units _addUnit('l', 'dm**3') # liter _addUnit('dl', '0.1*l') _addUnit('cl', '0.01*l') _addUnit('ml', '0.001*l') _addUnit('tsp', '4.92892159375*ml') # teaspoon _addUnit('tbsp', '3*tsp') # tablespoon _addUnit('floz', '2*tbsp') # fluid ounce _addUnit('cup', '8*floz') # cup _addUnit('pt', '16*floz') # pint _addUnit('qt', '2*pt') # quart _addUnit('galUS', '4*qt') # US gallon _addUnit('galUK', '4.54609*l') # British gallon # Mass units _addUnit('amu', '1.6605402e-27*kg') # atomic mass units _addUnit('oz', '28.349523125*g') # ounce _addUnit('lb', '16*oz') # pound _addUnit('ton', '2000*lb') # ton # Force units _addUnit('dyn', '1.e-5*N') # dyne (cgs unit) # Energy units _addUnit('erg', '1.e-7*J') # erg (cgs unit) _addUnit('eV', 'e*V') # electron volt _addPrefixed('eV') _addUnit('Hartree', 'me*e**4/16/pi**2/eps0**2/hbar**2') _addUnit('invcm', 'hplanck*c/cm') # Wavenumbers/inverse cm _addUnit('Ken', 'k*K') # Kelvin as energy unit _addUnit('cal', '4.184*J') # thermochemical calorie _addUnit('kcal', '1000*cal') # thermochemical kilocalorie _addUnit('cali', '4.1868*J') # international calorie _addUnit('kcali', '1000*cali') # international kilocalorie _addUnit('Btu', '1055.05585262*J') # British thermal unit # Power units _addUnit('hp', '745.7*W') # horsepower # Pressure units _addUnit('bar', '1.e5*Pa') # bar (cgs unit) _addUnit('atm', '101325.*Pa') # standard atmosphere _addUnit('torr', 'atm/760') # torr = mm of mercury _addUnit('psi', '6894.75729317*Pa') # pounds per square inch # Angle units _addUnit('deg', 'pi*rad/180') # degrees # Temperature units -- can't use the 'eval' trick that _addUnit provides # for degC and degF because you can't add units kelvin = _findUnit ('K') _addUnit ('degR', '(5./9.)*K') # degrees Rankine _addUnit ('degC', PhysicalUnit (None, 1.0, kelvin.powers, 273.15)) _addUnit ('degF', PhysicalUnit (None, 5./9., kelvin.powers, 459.67)) del kelvin # Some demonstration code. Run with "python -i PhysicalQuantities.py" # to have this available. if __name__ == '__main__': from umath import * l = PhysicalQuantity(10., 'm') big_l = PhysicalQuantity(10., 'km') print big_l + l t = PhysicalQuantity(314159., 's') print t.inUnitsOf('d','h','min','s') p = PhysicalQuantity # just a shorthand... e = p('2.7 Hartree*Nav') e.convertToUnit('kcal/mol') print e print e.inBaseUnits() freeze = p('0 degC') print freeze.inUnitsOf ('degF')