/* heliocentric rectangular equatorial coordinates of Jupiter to Pluto; * from Chapront's expansion of DE200/extension of DE200; mean equator J2000.0 * * calculation time (milliseconds) on an HP 715/75, Jupiter to Pluto: * (each coordinate component counted as 1 term, * secular terms included for JD 2448908.5 = 1992 Oct 13.0) * * prec terms rates no rates * 0.0 2256 5.1 4.6 * * 1e-7 792 2.6 2.4 --> nominal precision rel. to DE200 * 1e-6 535 2.1 2.0 * 1e-5 350 1.8 1.6 * 1e-4 199 1.5 1.4 * 1e-3 96 1.2 1.1 * * no drop 2256 4.5 3.9 (code without test criterion) */ #include #include "P_.h" #include "astro.h" #include "chap95.h" extern void zero_mem P_((void *loc, unsigned len)); #define CHAP_MAXTPOW 2 /* NB: valid for all 5 outer planets */ /* chap95() * * input: * mjd modified JD; days from J1900.0 = 2415020.0 * * prec precision level, in radians. * if (prec = 0.0), you get the full precision, namely * a deviation of not more than 0.02 arc seconds (1e-7 rad) * from the JPL DE200 integration, on which this expansion * is based. * * obj object number as in astro.h (jupiter=3, saturn=4, ...) * * output: * ret[6] cartesian components of position and velocity * * return: * 0 Ok * 1 time out of range [CHAP_BEGIN .. CHAP_END] * 2 object out of range [JUPITER .. PLUTO] * 3 precision out of range [0.0 .. 1e-3] */ int chap95 (mjd, obj, prec, ret) double mjd; int obj; double prec; double *ret; { static double a0[] = { /* semimajor axes for precision ctrl */ 0.39, 0.72, 1.5, 5.2, 9.6, 19.2, 30.1, 39.5, 1.0 }; double sum[CHAP_MAXTPOW+1][6]; /* [T^0, ..][X,Y,Z,X',Y',Z'] */ double T, t; /* time in centuries and years */ double ca, sa, Nu; /* aux vars for terms */ double precT[CHAP_MAXTPOW+1]; /* T-augmented precision threshold */ chap95_rec *rec; /* term coeffs */ int cooidx; /* check parameters */ if (mjd < CHAP_BEGIN || mjd > CHAP_END) return (1); if (obj < JUPITER || obj > PLUTO) return (2); if (prec < 0.0 || prec > 1e-3) return (3); /* init the sums */ zero_mem ((void *)sum, sizeof(sum)); T = (mjd - J2000)/36525.0; /* centuries since J2000.0 */ /* modify precision treshold for * a) term storing scale * b) convert radians to au * c) account for skipped terms (more terms needed for better prec) * threshold empirically established similar to VSOP; stern * d) augment for secular terms */ precT[0] = prec * CHAP_SCALE /* a) */ * a0[obj] /* b) */ / (10. * (-log10(prec + 1e-35) - 2)); /* c) */ t = 1./(fabs(T) + 1e-35); /* d) */ precT[1] = precT[0]*t; precT[2] = precT[1]*t; t = T * 100.0; /* YEARS since J2000.0 */ ca = sa = Nu = 0.; /* shut up compiler warning 'uninitialised' */ switch (obj) { /* set initial term record pointer */ case JUPITER: rec = chap95_jupiter; break; case SATURN: rec = chap95_saturn; break; case URANUS: rec = chap95_uranus; break; case NEPTUNE: rec = chap95_neptune; break; case PLUTO: rec = chap95_pluto; break; default: return (2); /* wrong object: severe internal trouble */ } /* do the term summation into sum[T^n] slots */ for (; rec->n >= 0; ++rec) { double *amp; /* NOTE: The formula * X = SUM[i=1,Records] T**n_i*(CX_i*cos(Nu_k*t)+SX_i*sin(Nu_k*t)) * could be rewritten as SUM( ... A sin (B + C*t) ) * "saving" trigonometric calls. However, e.g. for Pluto, * there are only 65 distinct angles NU_k (130 trig calls). * With that manipulation, EVERY arg_i would be different for X, * Y and Z, which is 3*96 terms. Hence, the formulation as * given is good (optimal?). */ for (cooidx = 0, amp = rec->amp; cooidx < 3; ++cooidx) { double C, S, term, termdot; short n; /* fast access */ C = *amp++; S = *amp++; n = rec->n; /* drop term if too small * this is quite expensive: 17% of loop time */ if (fabs(C) + fabs(S) < precT[n]) continue; if (n == 0 && cooidx == 0) { /* new Nu only here */ double arg; Nu = rec->Nu; arg = Nu * t; arg -= floor(arg/(2.*PI))*(2.*PI); ca = cos(arg); /* blast it - even for Nu = 0.0 */ sa = sin(arg); } term = C * ca + S * sa; sum[n][cooidx] += term; #if CHAP_GETRATE termdot = (-C * sa + S * ca) * Nu; sum[n][cooidx+3] += termdot; if (n > 0) sum[n - 1][cooidx+3] += n/100.0 * term; #endif } /* cooidx */ } /* records */ /* apply powers of time and sum up */ for (cooidx = 0; cooidx < 6; ++cooidx) { ret[cooidx] = (sum[0][cooidx] + T * (sum[1][cooidx] + T * (sum[2][cooidx] )) )/CHAP_SCALE; } /* TEST: if the MAIN terms are dropped, get angular residue ret[0] = sqrt(ret[0]*ret[0] + ret[1]*ret[1] + ret[2]*ret[2])/a0[obj]; */ #if CHAP_GETRATE for (cooidx = 3; cooidx < 6; ++cooidx) { ret[cooidx] /= 365.25; /* yearly to daily rate */ } #endif return (0); } /* For RCS Only -- Do Not Edit */ static char *rcsid[2] = {(char *)rcsid, "@(#) $RCSfile: chap95.c,v $ $Date: 1997/05/19 18:21:12 $ $Revision: 1.1 $ $Name: $"};