PYyRAF Programmer’s Guide

Philip E. Hodge

May 11, 2004

Version 1.0
Space Telescope Science | nstitute
Email: help@stsci.edu

1 General Introduction

The main goa of thisguideisto describe how to write scriptsthat take full advantage of the features PyRAF provides.
The presumption is that the scripts will be written in Python, but the use of IRAF CL scripts in PyRAF will be
described aswell. We will often show how an operation can be donein both Python and in the IRAF CL, primarily to
help those who are familiar with the IRAF CL to find the corresponding operation in Python.

A Python script can call IRAF tasks, and a Python script can be defined as an IRAF-like task in PyRAF. These are
not mutually exclusive options, but they are two distinct features of PyRAF. The first will be described in the section
“Writing Python Scriptsthat Use IRAF/PyRAF Tasks,” whilethelatter will be described in the section “ Python Tasks.”
Other sections will explain how to define tasks in PyRAF based on IRAF executables, CL scripts, or host operating
system commands (“foreign” tasks).

Whilethisdocument isan introductionto programming with PyRAF, it will be assumed that the reader isfamiliar with
Python and with the calling conventions for Python functions, classes and methods. Python functions and IRAF CL
scripts have some features in common, such as positiona as well as keyword arguments, and a variable argument list.

2 Writing Python Scripts that Use IRAF/PyRAF Tasks

Hereisavery simple exampl e to show the essential components of a Python script that calls an IRAF task, in this case
i met ati stics. Thefile‘imstat_example.py’ containsthe following:

#!' [usr/bin/env python

i mport sys
from pyraf inport iraf

def run_instat(input):
iraf.imges()
for image in input:
iraf.inmstat(imge)

if _name__ == "__main_":
run_instat (sys.argv[1:])

Thiscalsi nmst ati sti cs onalist of images. This can be run either from the shell or from a Python or PyRAF

session. To run it from the shell, typei nst at _exanpl e. py (which must have execute permission) followed by
one or more image names. To run it from Python or PyRAF, first typei nport i st at _exanpl e; thenit can be
run as follows (for example): i st at _exanpl e.run_instat (["file.fits[1]", "file.fits[2]",
"file.fits[3]"]).Theargumentisalist, and one or more images may be specified in thelist.

The statement from pyraf inport iraf makes IRAF tasks in general available. The statement
i raf . i mages() loadsthei mages package, which containsi nst ati stics. If i mages is aready loaded,
then callingi r af . i mages() does nothing; a package may be loaded any number of times. Ther un_i nst at ()
function accepts alist of images and runsthei nst at i st i cs task (abbreviated asi nst at) on each of them.

Like many IRAF tasks, i mst ati sti cs accepts a “file name template” as input, i.e. a string containing one or
more image names, separated by commas, and possibly making use of wildcard characters. An aternativeto running
i mst at separately on each image is to construct such a string containing all the image names, and to call i st at
just once, with that string as input. Here is another version of r un_i st at that concatenates the list elementsto a
comma-separated string. Other differences with thisversion are described below.

def run_inmstat (input):
i raf.images(_doprint=0)
all _exist =1 # bool ean flag
for image in input:
if not iraf.inaccess(inage):
all _exist =0

print "Error: can’t open", image
if not all_exist:
return
iraf.imstat(",".join(input))

Asinthepreviousversion, i r af . i nages() isusedtoloadthei nages package, but the _dopri nt =0 argument
has been included to disable printing of the tasks in the package. The default for _dopri nt (a boolean flag) is 1;
unless _dopr i nt =0 isexplicitly specified, when a package isloaded for thefirst time the names of thetasksin that
package will be printed to the screen. Showing the tasks is OK for interactive use, but when loading a package in a
script, the user wouldn’t normally want to see such output. If the package is aready loaded (and images may well
be), then the tasks will not be shown anyway, but in general it’'spreferableto specify _dopr i nt =0 when loading any
package in a script.

A bit of error handling was aso added to this version of run_i nst at . i nst at itsef just prints a warning and
continues if one or more of the input images do not exist. Much of the time, that may be al the error handling
that is needed. Additiona checking may be useful in cases where the functions being called take a lot of time or
write intermediate files that would need to be cleaned up if one of the input files did not exist. Thei maccess()
function used in thisexampleis actually of limited use for error checking, however. It does not catch an invalid image
section, for example, and for aFITSfile, the extension number isignored. See the section on error handling for further
discussion.

Frequently, one wants something even simpler than this, such asafilethat just invokes one or more IRAF taskswithout
defining a function. For example, suppose the followingisin thefile ‘simple.py’:

iraf.imges()

iraf.imstat("file. fits[1]")
iraf.imstat("file. fits[2]")
iraf.imstat("file. fits[3]")

Then it could be run by typing execfi | e("si npl e. py") . Commands in thisfile could aso be executed (once)
byi mport si npl e, butinorder to do that thefile would need to begin withthe statement f r om pyr af i nport
i raf. Using execfileissimpler, and it is aso much easier to repeat; import can only be done once, after which you
must use reload.

Here is another example, using dightly different style, and with comments that explain what is being done.

2 2 Writing Python Scripts that Use IRAF/PYRAF Tasks

#!' [usr/bin/env python

This takes a range of nunbers fromthe command |ine, constructs

the filename by appendi ng each nunber to the root "ca" and appendi ng
".fits[0]", and splots the files one at a tine. It’'s intended as a
little pyraf demp script.

i mport sys
from pyraf inport iraf

This function is invoked when running fromthe shell
def nultiSplot():
if len(sys.argv) < 2 or len(sys.argv) > 3:
print >> sys.stderr, "syntax: runSplot.py first <l ast>"
print >> sys.stderr, "first..last is the range of integers (inclusive)

1 i

print >> sys.stderr, "to append to the root nane ’ca
sys.exit()
The command-line argunments are strings; convert to integer.
ifirst = int(sys.argv[1])
if len(sys.argv) > 2:
ilast = int(sys.argv[2])
el se:
ilast = ifirst
for i in range(ifirst, ilast+1)
runSpl ot (i)

Use this function when running from Python or PyRAF
def runSplot(i, root="ca", extension=0):

Load packages; splot is in the onedspec package, which is in noao
The special keyword _doprint=0 turns off displaying the tasks

when | oadi ng a package.

i raf . noao(_dopri nt =0)

i raf . onedspec(_dopri nt=0)

Construct the image nane.
imame = "%%.fits[%l]" % (root, i, extension)
print i mane # just to see it

Set/view | RAF task paraneter.
(This is done only to show how it can be done.)
i raf . onedspec. splot.save file = "splot_%.10g" % (root,)

Call |RAF task, and specify sone paraneters.
i raf . onedspec. spl ot (i mane, function="chebyshev", order=6)

Standard Python nmechani sm for handling tasks called fromthe comand |ine
(see for exanple Martelli, Python in a Nutshell, chapter 7, "The Main
Program " or Beazley, Python Essential Reference, chapter 8).
if _name__ == "__main_":
mul ti Spl ot ()

3 Defining Tasks in PyRAF

As with the IRAF CL, one can define tasks around IRAF executables, CL scripts, or “foreign” tasks. But the big
advantage of PyRAF isthat it allows oneto write a Python program (that need not use IRAF at al) that can be treated
likean IRAF task with thefamiliar CL command-line syntax and parameter editing facilities. Inthisway it ispossible
to integrate IRAF and Python programs into the same user environment and take advantage of the strengths of both.

3.1 Python Tasks

This section describes how to define PyRAF tasks that are implemented as Python scripts. We have aready described
Python scriptsthat call IRAF tasks. The scripts described in this section may or may not call IRAF tasks; the rel evant
featureisthat these are PyRAF tasks. From the user’s perspective, theselook the same as any other PyRAF/IRAF task,
i.e. they will typically have parameters, and they can be runin so-called “command mode,” without using parentheses
or enclosing stringsin quotes.

Note that Python tasks can only be used in PyRAF, not in the IRAF CL, because the CL cannot run Python. It is
possible to write IRAF package CL scripts that define a mixture of IRAF and Python tasks that will work gracefully
with both PyRAF and the IRAF CL in the sense that both types of task will work in PyRAF, and if the package is
loaded in the CL awarning message will be printed that indicates that some tasks require PyRAF. If one attempts to
run such a Python task from the IRAF CL, another warning message will be printed. While the task doesn’t work, it
doestell the user why not (i.e. it requires PyRAF).

A Simple Example

Here is a bare-bones example for creating atask ‘xyz' writtenin Python that can be called from PyRAF just like any
other IRAF task. Two files are used, ‘xyz.py’ and ‘xyz.par’. In this example, the name “xyz" is used throughout, but
thisis not required. While the rootname of the parameter file does need to be the same as the task name (as in the
IRAF CL), the other names may differ. There is another example below that uses different file names.

The parameter file ‘xyz.par’ isan ordinary IRAF par file. In thisexample the file contains the following:

input,s,a,"",,,"string to print"
node, s, h, "al "

‘xyz.py’ contains the following. <pat h> should actualy be the name of the directory that includes ‘xyz.par’ (see
below for clarification):

from pyraf inport iraf

def xyz(input):

print input
parfile = iraf.osfn("<path>xyz.par")
t = iraf.lraf TaskFactory(taskname="xyz", val ue=parfile,

functi on=xyz)

In PyRAF, define ‘xyz' as atask by runningthe pyexecut e() function:
--> pyexecut e("<pat h>xyz. py")

At thispoint ‘xyz' isaPyRAF task; you can ‘Ipar xyz', ‘epar xyz', or just run it.

Theval ue parameter in | r af TaskFact or y isthe complete path name of the parameter file ‘xyz.par’. Thiscould

4 3 Defining Tasks in PyRAF

be given explicitly, but it is cleaner touse thei r af . osf n() functiontotake an IRAF “virtua file name” and return
an operating-system dependent directory and file name. For example, if ‘xyz.par’ were in the scripts subdirectory of
the user’s IRAF home directory, the argument to i r af . osf n would be" hone$scri pt s/ xyz. par". Itisdso
possible to use the Python functionsin the os and os.path modules to find files, fill in path names, etc. The rootname
of a parameter file must be the same as the task name, and the filename extension must be “.par” (asin IRAF).

Note that the value of the f unct i on parameter in | r af TaskFact ory isxyz, not " xyz". It's areference to
the function, not a string containing the function name. Thisis the function to be executed when the task is invoked.
| raf TaskFact ory can be used to create a wide variety of tasks, such as a package, CL script, pset, or “foreign”
task; thef unct i on parameter isonly used when the task being defined is a Python function.

The argument to pyexecut e should include the directory (using IRAF notation), unless ‘xyz.py’ is in the default
directory when pyexecut e is called. The task will be defined after | r af TaskFact ory has executed. Run-
ning pyexecut e is the recommended way to do this, but it isn’t the only way. You could instead use exec-
file("<path>xyz.py"), using host syntax for the directory and file name. Or you could usei nport xyz if
‘xyz.py’ isin your PY THONPATH. One advantage of pyexecut e is that you can cal it from a CL script. If the
script isrun from aPyRAF session, the Python/PyRAF task will be defined; if the script isrun from the IRAF CL (and
STSDAS has been loaded), awarning will be printed to say that PyRAF isrequired, but it will not raise an exception.
Thisworks because there are files ‘ pyexecute.cl’ and ‘nopyraf.cl' inthe STSDAS directory, and this pyexecute is what
will berunif the user isin the IRAF CL rather than in PyRAF.

Note that ‘pyexecute.cl’ has no intrinsic connection to STSDAS. If you wish to have the flexibility to include Python
scriptsin your IRAF packages and till be abletorun either PyRAF or the IRAF CL, but STSDAS will not necessarily
be loaded, you can simply copy ‘pyexecute.cl' and ‘nopyraf.cl' from STSDAS to some IRAF package that will be
loaded and define these astasks. You can install thesein the IRAF tree if you have permission to do so.

The statement i nport i raf can beused in scriptsthat run in PyRAF. If a script might be run from Python or from
the host operating system command line, use f r om pyraf i nport iraf instead. IRAF parameters, tasks and
packages are objects, just like everything el sein Python. Packages in IRAF may beloaded by executing them, whichis
very similar to the way they are loaded inthe IRAF CL; for example: i r af . i mages() . The primary way that tasks
are invoked in PyRAF isby using the __cal | __() method of the task object, i.e. it looks like any other function
cal. Since tasks (and parameters, etc.) are objects, they can be assigned to variables and passed to functions:

t = iraf.inhead
| paran(t)

An Example Using the _iraf Filename Convention

Here is another example, this one using different file names, partly to illustrate a convention that’s used in STSDAS,
to separate the PyRAF interface from the main Python script and to use a name ending in ‘ _iraf.py’ for the former.
Thefiles are assumed to be in the scripts subdirectory of IRAF “home”’. Thetask nameisncount s, and thefilesare
‘ncounts.par’, ‘xyz_iraf.py’ and ‘nc.py’. Note that the task name and root of the par file name are the same; the other
names may differ.

Thistask usesthei mages. i st at task to compute the total number of countsin an image. The standard output of
i mst at isassigned to a Python variablet ext _out put , whichisalist of stringsthat in this case contains just one
string, [*npix mean’] (not this literal string, but rather the numerical values). The spl it () method splits thisinto
two strings, one with npi x and one with mean. Theresult is simply the product of these two, after converting from
string to float. The result is assigned to the task parameter t ot al , and itisaso printed if ver bose=yes.

The parameter file ‘ncounts.par’ containsthe following:

3.1 Python Tasks 5

imge,s,a,"",,,"imge nane"
verbose, b, h,yes,,,"print the val ue?"
total,r,h,0.,,,"(task output) nunber of counts in the inage"

node, s, h,"al "

‘xyz_iraf.py’ containsthefollowing:

from pyraf inport iraf
i mport nc

def _abc(image, verbose, total):

total = nc.cal c_ncounts(inage=i nage, verbose=verbose)
if verbose:
print "total =", total

Update the value in the par file.

iraf.ncounts.total = total
parfile = iraf.osfn("home$scripts/ ncounts. par")
t = iraf.lraf TaskFactory(taskname="ncounts", value=parfile,

functi on=_abc)

‘nc.py’ containsthefollowing:

from pyraf inport iraf

def cal c_ncount s(i nage, verbose):
"""use instat to get the total nunber of counts in an image"""

iraf.images(_doprint=0) # |l oad the inages package
text _output = iraf.instatistics(inmge, fields="npix, nean",
format =0, Stdout=1)

values = text_output[0].split()

nunber of pixels nmean val ue
return float(val ues[0]) * float(val ues[1])

In PyRAF, define ncounts as atask:

--> pyexecute("home$scripts/ xyz_iraf. py")

The statement i r af . i mages(_dopri nt =0) loads the i mages package (without printing the task names and
subpackage names). This could be skipped if thei nages package is aready loaded, e.g. by the user’s ‘login.cl’ file,
but it is generally not safe to make such an assumption, and it is harmless to load a package more than once.

The St dout =1 parameter in the call to i nst at means that the standard output of the task will be returned as the
i mst at function value. In this example the output is assigned to a Python variable t ext _out put , which isthen
processed using Python. The variablet ext _out put isalist of strings, one for each line of output from the task, in
this case just one line. Thisfeature serves as a substitutefor 1/O redirection, but for many applicationsit is also much
more convenient than using atemporary file. Thisisdiscussed further in the section on 1/0O redirection.

Inthe above ncount s example, separating the Python code into two files‘xyz_iraf.py’ and ‘nc.py’ was hot necessary,
it's a convention to isolate the PyRAF-specific code. ‘xyz_iraf.py’ contains the part that defines the task, deals with

6 3 Defining Tasks in PyRAF

the parameters, and calls a Python function to do the work. The latter function isin ‘nc.py’. The separation in this
caseisalittleartificial, sincecal c_ncount s in ‘nc.py’ still callsan IRAF task. On the other hand, ‘nc.py’ could be
imported into Python or (with minor additions) invoked from the shell, while ‘xyz_iraf.py’ defines atask and requires
a parameter file, which is more closely associated with the interactive aspect of PyRAF.

IRAF and Python Interfaces

Python and IRAF use different conventions for undefined values. The interface for an IRAF task should use IRAF
conventions. If the script includes a Python function that could be used stand-alone, however, it would be more
reasonabl e if that function used Python conventions. For example, atask might havei nput and out put arguments,
and it might modify the input file in-place if an output file name was not specified. In the IRAF CL a string may
be left unspecified by setting it to null (" ") or blank, and there is a special | NDEF value for numeric variables. In
Python, None is used for any unspecified value. One purpose for the * _iraf.py’ file isto convert unspecified values
from one convention to the other. Another purpose isto check that input files do exist and that all required parameters
have actually been specified. It'svery helpful to the user of a script to check for parameter problems at the beginning,
especidly if the task could run for some time.

Importing Modules

Notethat ‘xyz_iraf.py’ usesi nport nc. Inorder for thisto work, ‘nc.py’ must beinyour Python path (sys. pat h)
when you run pyexecut e. For tasks in the STSDAS directory tree, this is accomplished by having a ‘python’
subdirectory of st sdas, with alink to each of the packages (in the Python sense) that may be imported; the st s-

das$pyt hon/ directory isincluded in sys. pat h when the st sdas package is loaded in PyRAF. When writing
your own tasks that are not to be included in the STSDAS tree, one option is to simply put al the source filesin one
directory and add that to your Python path. Another option isto create a package subdirectory for each task or related
set of tasks, with the root of these subdirectoriesin your Python path.

3.2 |IRAF Executables

IRAF executables are created by compiling and linking code written typically in SPP (but Fortran and C can aso be
used). Thet ask statement in the SPP code is converted by the SPP preprocessor into code that makes the connection
with the CL. One executable may contain multiple tasks. A task in an IRAF executable can be defined in a Python
script by using thet ask() function, for example: i r af . t ask(xyz = "honme$scri pts/ abc. e") . Notethat
the keyword argument has the same syntax as would be used in the IRAF CL (or interactively in PyRAF) for defining
atask, except that quotes are required. There must be a parameter file with the same root name as the task name and
extension ‘.par’, in the same directory as specified for the executable. Additional keyword arguments PkgNarne and
PkgBi nary may be used to specify the package name and list of directories to be searched for the executable (e.g.
PkgName="cl package", PkgBi nary=["bin$"]).

Thel r af TaskFact or y() functionmay beusedinstead of t ask() . | r af TaskFact or y was described earlier
for defining Python scripts, but both of these functions are quite genera in terms of the types of tasks that they can
define.

The SPP t ask statement can define multiple tasks (these are just different subroutines) to be included in the same
executable. It iscommon practice to use just one or perhaps afew executables for the tasksin an IRAF package. This
saves disk space for the executables (since the IRAF libraries are common to al tasks), and it reduces loading time.
The syntax for defining multiple tasks in the same executable is a little peculiar. Each task except the last isgiven in
guotes as an argument, and the last task is given as a keyword argument using the syntax shown earlier. For example,
iraf.task("task_a", "task_b", task_c = "home$stuff.e").

One obscure feature of IRAF that you need to be aware of isthat when the CL looksfor the executable for a task, it
looksfirst in the bin directories (e.g. ‘iraf$bin.redhat’); it only looksin the directory specified in the task statement if
the file is not found in any of the bin directories. Thus if you use an executable name that happens to be the same

3.2 IRAF Executables 7

as one in an IRAF package (e.g. ‘x_tools.e’ isin STSDAS), your executable will not be found. This explains the
peculiar wording in the first paragraph of this section, “in the same directory as specified for the executable.” Thetask
statement might say the executable isin ‘home$scripts/’, whileit might actually have been installed in abin directory;
nevertheless, the parameter file must bein ‘home$scripts/’, not in the bin directory.

3.3 IRAF CL Scripts

CL scripts may be defined as tasks in PyRAF using the task() function, eg. iraf.task(jqgz
"honme$scripts/jgz.cl"). A PkgNanme could be defined, but it wouldn't make sense to specify
PkgBi nary. Interactively in PyRAF, the same syntax is used as in the IRAF CL, eg. task jqz
honme$scripts/jqgz.cl".

N Il

The got o statement is not yet supported (though its addition is being considered for a future version of PyRAF), so
CL scriptsthat use got o statements cannot currently be defined as tasks in PyRAF without being revised to avoid the
use of got o.

Even if you intend to use a CL script exclusively in the IRAF CL, defining it as a task in PyRAF is useful for
testing and debugging, since PyRAF prints informative error messages. In PyRAF, the CL script is trandated into
a Python script when the task is defined, and it is the Python script that is executed when the task is run. You can
obtain a copy of the Python script using get Code(), which is a method of the | r af CLTask class, eg. p =
i raf.jgz. get Code().Thecodeisintheform of aPython string, so it can be executed using theexec statement
or theeval () built-infunction.

3.4 Foreign Tasks

Thet ask() function can be used for defining “foreign” tasks. Interactively, atask could be defined by, for example,
task $emacs = "$forei gn". Theword $enmacs cannot be used as a keyword argument because of the dol-
lar sign, however, so thet ask() function for this example would be as follows: i r af . t ask(DOLLARermacs =
"$f or ei gn") . To define both emacs and vim as foreign tasksin one cal, usei r af . t ask(" $emacs”, DOL-
LARvim = "$foreign").

The dollar sign before the task hame (emacs or vim, in this example) means that the task has no parameter file.
Arguments may be given when invoking the foreign task, however, and those arguments will be passed directly to
the command (except that file names using IRAF environment variables will be converted to host file names). The
dollar signin $f or ei gn indicates aforeign task, whilethe word “foreign” means thetask name and command name
are the same. Here is an example where the names are not thesame: i raf . t ask(DOLLARI I = "$ls -1g’);
interactively, thiswouldbet ask $I1 = "$ls -1g".

4 Dealing with I/O Redirection

IRAF supports1/O redirection using the same syntax asin Unix, e.g.

[istpix x.fits[1][371:375,290: 281] wcs="physical" > x.txt. Python does not have this op-
tion, but PyRAF has a workaround, making use of “specia” task parameters St di n, St dout and St derr. They
are special in the sense that they are not in the parameter file for any task, but you can specify them when calling a
task in PyRAF.

St dout and St der r can besetto anumerica value (0or 1), whichwill be taken as abool ean flag, or the value can be
afile name or Python file handle for afilethat is open for writing (or appending). The example at the beginning of this
section redirected the listpixels output to a text file ‘x.txt’; this can be done in PyRAF asfollows: i raf . | i st pi x
("x.fits[1][371: 375, 290: 281]", wcs="physical", Stdout="x.txt"). Notetha Python syn-
tax is used, rather than IRAF “command mode”’ syntax. If St dout or St der r isset to 1, the task standard output
or standard error respectively will be returned as the value of the task, rather than being printed to the terminal win-
dow or written to a file. For example, x_txt = iraf.listpix ("x.fits[1][371:375,290:281]",

8 4 Dealing with 1/0O Redirection

wes="physi cal ", Stdout=1). The function vaue (x_txt, in this example) will be alist of strings, one string
for each line of text in the output (the newlines will not be included).

If only St der r is specified, then both St der r and St dout are written to the specified St der r location. If both
St derr and St dout are specified, the output for the two streams are redirected separately. It is possible to specify
redirection of only St der r , though the syntax is a bit weird:

task(parans, Stderr=filenane, Stdout="STDOUT")

" STDOUT" isa“magic” valuethat causes output to be redirected tothenormal sys. st dout . Similarly," STDERR"
and " STDI N' are magic for their corresponding redirection keywords. Thisis included for compatibility with the
IRAF CL, which does the same thing.

Here is a simple example of using this list-of-strings output from listpixels. The first two “words’ in each string are
the pixel coordinatesinthe X and Y directions, and the image pixel value isthe third word. This example computes
the flux-weighted sums of X and Y pixel values, then divides by the sum of the weightsto get the X and Y centroids.

--> sumw = 0.

--> sumwx = 0.

--> sumwy = 0.

--> for line in x_txt:
words = line.split()

X float (words[0])
y float (words[1])
w = float(words[2])
sumw += w

sumwx += w * x
sumwy += w * vy

--> print sumwx / sumw
22.6071772774
--> print sumwy / sumw
62. 0303834708

The St di n special parameter can be used to specify the standard input for atask. The value for St di n can be a
Python list of strings containing the text (i.e. the same format as the variable returned as standard output when using
St dout =1), or it can be afile name or a Python file handle for afile open for reading. A pipe may be emulated by
using a Python variable to pass the standard output of one task to another, without using atemporary file.

Setting St der r =1 (instead of St dout =1) may be used to capture messages that were sent explicitly to standard
error, but see the discussion below about errors vs. warnings. Some tasks write messages about an error condition to
the standard output rather than to standard error; inthat case, using St der r =1 isnot sufficient to separate the normal
text output from an error message. When an error condition is encountered, PyRAF raises an exception rather than
writing the error message and traceback to the standard error. Thisinformation can be captured (see the next section),
but not by using St der r =1.

5 Dealing with Errors

One of the mgjor advantages to writing scripts in Python rather than in the IRAF CL is the ability to handle errors
usingt ry and except . Thisworkseven when calling IRAF tasks; that is, an errorinaCL scriptoracal | error
in an SPP program can be caught usingt r y in Python. For example,

--> try:
iraf.colums ("garbage", 37)
except iraf.lrafError, e:
print "error was caught”
print e

Killing | RAF task ‘colums’

error was caught

Error running | RAF task col ums

| RAF task termnated abnornally

ERROR (741, "Cannot open file (garbage)")

There's a catch, however. Many IRAF tasks can operate on alist of input files, and these tasks usually convert some
errors (such as file not found) into a warning, allowing the task to continue trying to process the other input files. But
warnings are not caught by t ry and except . Thei nst at task used by ‘nc.py’ inthencount s exampleisacase
inpoint; at ry statement was not used there because it would not trap the most common problems, such as a mistake
in the name of theinput image. If you want to do robust error handling, it is best to check parameter values in Python
before caling the IRAF task to ensure predictabl e behavior when errors occur.

6 Task Parameters

One of the strengths of IRAF is the way it handles task parameters. The very useful IRAF commands | par am
dparam eparam unl ear n are available in PyRAF with the same syntax. One significant difference is that
epar ambrings up a GUI parameter editor, rather than the IRAF text-based parameter editor. This section describes
parameter files and in-memory parameter lists, the copy of a par filein the uparm directory, and afew useful methods
for handling parameters and par files.

6.1 Parameter Files, Parameter Lists

Not every task has a parameter file, as was mentioned earlier (that was in the section on foreign tasks, but other
tasks may lack parameter files as well). For atask that does have parameters, there is a template parameter file (or
a CL script file) that specifies the default values, the types, and other information. Thisfileistypicaly found in the
package directory, has root name equal to the task name, and has extension “.par” (or “.cl”). There is another copy
of that parameter file in the user's ‘uparm’ directory, which by default is a subdirectory of the user's IRAF home
directory. Thiscopy iswhat isdeleted when unl ear n isused. After running epar amon atask, or after successfully
executing the task, the copy in the uparm directory will be updated (or created, if necessary) to reflect the values set
using epar amor specified when the task was run (but see below for further details). The name of the file in the
uparm directory is somewhat garbled (“scrunched,” in PyRAF terminology). The file name begins with the first two
characters of the package that containsthetask, followed by thelast character of the package name (or just the package
name if itislessthan or equal tothree characters). Therest of the root name isthe first five characters of the task name
and the last character of the task name (or just the task name if it islessthan or equa to six characters). The extension
is‘.par’. This scheme dates back to the 1980’s, when file names on some operating systems were severely limited in
length. For example, the uparm file names for i ncopy andi nt r anspose are ‘imlimcopy.par’ and ‘immimtrae.par’
respectively (these tasks are in the imutil and imgeom subpackages of images).

PyRAF uses the same template and uparm parameter files, and there can aso be in-memory copies of the parameters
for atask. In the PyRAF code these parameter lists are called the _defaultParList, the _runningParList and the
_currentParList. The default par list iswhat you have after atask is unlearned; the parameter values are copied from
the template par file. The running par lististhe set that isused when atask isrun, i.e. it would include val ues assigned
on the command line. If the task completes successfully, the running par list will be copied to the current par list and
to the uparm copy of the parameter file (but see below). The current par list contains updates after running atask or
by direct assignment to the parameters, e.g. using eparam. The current par list generally (but not aways) agrees with

10 6 Task Parameters

the uparm file.

6.2 The uparm Copy of the Parameter File

It was stated above that the uparm copy of the parameter file will be updated after atask runs successfully. Thisis not
always true. This section describes the conditions under which the uparm file will or will not be updated, and which
parameter values will be modified.

If atask is executed using Python syntax, then the uparm copy of the par file will not be updated (unless the specia
boolean keyword _save=1 was specified). This is the case regardless of whether the task is run interactively or in
a Python script. On the other hand, if atask is run interactively using the ordinary command-line syntax that looks
likeIRAF's*“command mode,” then query/learn parameters (node="ql " or " al ") will be updated inthe uparmfile;
hidden parameters will not normally be updated. When using Python syntax, if _save=1 isspecified then query/learn
parameters will be updated inthe uparm file, i.e. the uparm update behavior isthe same as when using command mode.
Except for the _save keyword, thisisintended to closely emulate the way |RAF handles updating the uparm file. The
significant difference is that PyRAF either updates the uparm file or not depending on the syntax (IRAF's command
mode vs. Python syntax). IRAF updates the uparm file if the task was run interactively, and it does not update the
uparm fileif the task was invoked from a script or was run as a background job.

Running a task in command mode normally does not result in hidden parameters (node="h") being updated in the
uparm file. Parameters may be set explicitly, either by direct assignment (e.g.iraf. i nstat. fi el ds="nean")
or by caling theset Par an{) method. Doing so does not update the uparm file immediately; however, if the task
is subsequently run in command mode, the values thus set will be updated in the uparm file, and thisis so even if the
parameters are hidden.

There are two simple ways to get an entire parameter list updated in the uparm copy of the par file, regardless of
whether the parameters are query or hidden. One way is to run eparam and click on “Save’; in this case al the
parameters in the uparm file will be set to the values shown by eparam. The other way, which can conveniently be
used inascript, isto cal thesavePar Li st () method for the task.

6.3 Getting and Setting Parameters

In PyRAF, IRAFtasksarel r af Task (or related) objects. Four of the most useful methods of thisclass are described
bel ow.

The IRAF CL syntax for printingthevalue of atask parameter is, for example, pri nt (fxheader.fits_file),
or =fxheader.fits_file. A parameter may be set using similar syntax, fxheader.fits_file
= "xyz.fits". A dsmilar syntax works in Python, too: print iraf.fxheader.fits_file,
iraf.fxheader.fits file = "xyz.fits".ThePyRAFmethodsget Par an{) andset Par am() serve
asimilar purpose, and they allow more control over prompting (for query parameters), datatype of the returned value,
and access to the “p_" fields (described below). The first argument to get Par an{) and set Par an() isqual i -
fi edNane, whichinitssimplest form isaparameter name. The “quaified” aspect means that the parameter may be
qualified with a package name, task name, or field, with the various parts separated by periods. The parameter name
may include an array index in bracketsif the parameter isan array. If a package name is specified, then atask name
must be given; otherwise, the package would appear to be atask name.

You may be wondering why one would give a task name, when these methods are dready as
sociated with an IRAF task object. The answer is that you can access the parameters of any
loaded task this way. For example, print iraf.incopy.getParam("fxheader.fits file") and
print iraf.fxheader.getParam("fits_file") are equivdent. To get the vaue of a parame-
ter in the task's package, precede the parameter name with the “_. " qudifier; for example, pri nt
i raf.incopy. getParanm(" _. version") prints the version parameter in the imutil package par file.
The fidlds are referred to as “parameter attributes’ in the IRAF help page (type phel p par anet ers).
The fiddds are p_nane, p_value, p_default, p_xtype, p_type, p_pronpt, p_filenaneg,
p_m ni mum p_maxi mum p_node. InIRAFthereisasoap_| engt h, whichisamaximum string length, but

6.2 The uparm Copy of the Parameter File 11

in PyRAF thisisnot needed and is not included. Notethat for string and (in PyRAF) integer parameters, p_mi ni mum
isused for thelist of allowed values; for example:

--> print iraf.imarith. getParan("op.p_type")

S

--> print iraf.imarith. getParan("op.p_mn ni muni)
[+ -1*|/|mn| max|

The calling sequence for get Par an{) is get Paran(qual i fi edNane, native=0, node=None, ex-
act =0, pronpt=1). Thevauewill be gotten from the running par list if that is defined, or the current par list if
that is defined, or the default par list. The value returned is by default a string; specifying nat i ve=1 givesthevalue
in the native type of the parameter. Minimum matching is supported unless exact =1 was specified. The default
pr onpt =1 means that the current value will be printed to the terminal window, and the user will have the option to
specify anew value.

The cdling sequence for set Param() is set Paran{qualifiedNane, newal ue, check=1, ex-

act =0) . The vaue will be set in the running parameter list if that is defined, or the current par list if that is de-
fined. Values set don't typically appear in the copy of thefile in the uparm directory until after the task has been run
successfully. The parameter fields that may be set are p_val ue, p_pronpt, p_filenane, p_m ni mum

p_maxi mum p_node. The default exact =0 means that minimum matching is supported, but exact can be set to
1 to require an exact match. The default check=1 means that the specified parameter value will be compared with
the minimum and maximum allowed values (or the choiceligt, for a string), and avalue that is out of range will not be
accepted. However, sometimes one wantsto give an out-of-rangeval ue, e.g. for testing how thetask deals with it, and
that can be done by specifying check=0.

savePar Li st (fil ename=None) writes the current parameter list to fi | enan®e, or to the file in the uparm
directory if f i | enanme was not specified. The format of such afileisa standard IRAF parameter file.

Parameters can be restored from a file using set Par Li st (), with the file specified using the specia keyword
Par Li st. The keyword value can be either afile name or an | r af Par Li st object. If afile name is given, the
filename extension must be ‘.par’. An dternativeisto specify the special keyword Par Li st when running the task.

--> # Save the paraneters to the file hedit. par.

--> iraf.hedit.saveParList(filenane="hedit.par")

--> # Restore the paraneters fromthe file, and then run hedit.
--> iraf.hedit.setParList(ParList="hedit.par")

--> iraf. hedit(nmode="h")

--> # Alternatively, restore paraneters from saved file

--> # and run hedit in one call.

--> iraf.hedit(ParList="hedit.par")

7 Handy Functions

eparam(*args, **kw) invokesaGUI parameter editor.

| param(), dparam(), updat e() and unl earn() work like their namesakes in the IRAF CL, except that
multipletask nhames may be given:

--> # The argunents may be strings ...
--> | param("i ntopy", "hedit")

--># ... or lrafTask objects.

--> | paran(iraf.incopy, iraf.hedit)

The set Ver bose(val ue=1, **kw) function sets the verbosity level that determines how much extrainforma

12 7 Handy Functions

tion is printed when running atask. You can usepri nt iraf. Ver bose to see the current verbosity level, which
defaults to 0. The default val ue=1 for set Ver bose results in only dightly more output. Use val ue=2 (the
maximum) for considerably more output, very likely more than you would want to see on aregular basis, but possibly
useful for debugging.

ThesaveToFi | e(savefile, **kw) andrestoreFronfil e(savefile, doprint=1, **kw) func-
tions respectively write the IRAF environment to savef i | e and read from that file. IRAF filename syntax may be
used for savefi | e, eg. “home$pyraf.save’. The default dopr i nt =1 means that the tasks and packages at the CL
level will belisted; thisis equivalent to typing “?" in PyRAF.

envget (var, defaul t =None) issimilar tothe IRAF CL envget () function. The show command can aso
be used to print the value of an environment variable. The variable may either be one defined in IRAF or in the host
operating system. If the variableis not defined, a KeyError exception will be raised, unlessdef aul t isnot None, in
which case thevalue of def aul t will be returned. These options (the ability to catch an exception and thedef aul t
parameter) are new with the PyRAF version of envget .

osf n(fil enane) returns the operating-system file name equivaent of fi | enane. This works the same as the
IRAF function of the same name,

nkt emp(root) appends a string based on the process ID and a letter (or two) to r oot and returns the resulting
string, similar to the IRAF function of the same name. Thisisintended to return a unique string each timeitiscalled.

ni nt (x) returns the nearest integer to x. If x is an odd multiple of 0.5, rounding is done away from zero (i.e.
ni nt (0.5) isl,and ni nt (- 0. 5) is-1). Thetype of theresultisinteger.

frac(x) returnsthefractiona part of x, or 0.0if x isan integer. The returned value has the same sign as x.

real (x) acceptsafloat, integer or string and returnsafloat, similar to the corresponding IRAF function. If x isfloat
it isreturned unchanged. If it is a string the contents can be numerical, or it can bein d:m:s.sor d:m.m format.

--> print iraf.real ("57:18:30")
57. 3083333333

--> print iraf.real ("57:18.5")
57. 3083333333

cl Drs(x, digits=1, seconds=1) returns x as a string in degrees, minutes, seconds (d:m:s.s) format, with
di gi t s figures after the decima point. If seconds=0, theresult is degrees, minutes and decimals of minutes.

--> print iraf.cl Drs(89.3083333333)

89:18:30.0

--> print iraf.cl Drs(89.3083333333, digits=3, seconds=0)
89: 18. 500

Andternativeisto usethe‘%h’ or ‘%m’ format with the printf function, which workswith PyRAF and with the IRAF
CL.

cl> printf("%l2.1h\n", 89.3083333333) | scan (sl)
cl> print(sl)

89:18:30.0

cl> printf("%l2.3mn", 89.3083333333) | scan (sl)
cl> print(sl)

89: 18. 500

--> iraf.printf("9d2.1h", 89.3083333333, Stdout=1)[0]
* 89:18:30.0’

--> iraf.printf("9d2.3nt, 89.3083333333, Stdout=1)][0]
* 89:18. 500’

radi x(val ue, base=10, | ength=0) returnsastringwithval ue converted to base. The base must be an

13

integer between 2 and 36 inclusive. If | engt h is specified, the output string will be padded on the left with zeros to
aminimum length of | engt h.

--> print iraf.radi x(0x21, 2)
100001
--> print iraf.radix(31, 2, 7)
0011111

Thereisaso aradix functionin the IRAF CL:

cl> print(radix(21x, 2))
100001
cl> print(radix(31, 2))
11111

pyexecut e(fil enanme) hasbeen described before. Thisusesthe Pythonexecfi | e() functiononfi | enane,
in the namespace of the current IRAF package. IRAF environment variables and syntax can be used for f i | enane.
Optiona arguments include PkgNarne and PkgBi nary.

8 Locating and Examining Translated CL Scripts

When the source for a PyRAF task is an IRAF CL script, PyRAF converts that CL script into an equivalent Python
script, and it is that Python script that is actually executed when the task is invoked. The trandation from CL to
Python is normally done just once, when the task is first referenced, for example by using | par or by running the
task. Clearly, then, the trandated script must be saved. The trandlated script (the Python equivaent of the CL script)
issaved in a cache directory, which by default isthe ‘pyraficlcache’ subdirectory of the user’s IRAF home directory.

The file names in the clcache directory ook peculiar (e.g. ‘uJJQIVVFrkg-9jg2znC40A=="). Each name is constructed
from the hash() of the contents of the corresponding CL script file, so the clcache files are tied to the contents of
the CL scripts rather than to their names. One advantage of thisis that if there are two or more identical CL scripts,
they will map to the same clcache filename; such duplication does occur within the IRAF system. Another advantage
to this scheme isthat a CL script can be moved from one package to another (e.g. installing a script after testingin a
local directory) without requiring recompilation of the cached version. It also alows multipleversions of IRAF on the
same file system.

Thefilesintheclcache directory arein Python pickleformat. Theget Code() method of thetask retrievesthe Python
version of the script from the clcache directory and returnsit as a string. Using the ‘jgz.cl’ example given above, the
syntax wouldbex = iraf.jqz. get Code() . The cached version of the CL script will be regenerated automati-
caly if the CL script is edited (and then used). However, sometimes it may be necessary to force regeneration of the
Python version without touching the original CL script. For example, thiswould be necessary if PyRAF itself were
modified in away that affected the parameter handling mechanism. Ther eConpi | e() method recreates the Python
equivalent of the CL script and saves the result in the clcache directory; for example, i raf . j qz. reCompi | e() .

9 Debugging Tips

When an error is encountered while running a Python script, you normally get a traceback that shows the location
in al the functions that were called. This can be very verbose, and it is often not very helpful to see the complete
traceback, so by default PyRAF only shows the most relevant portion of the traceback. If you really do want to see
the full traceback, however, usethe. f ul | t r aceback command directive (which can be abbreviated, e.g. . f ul I),
which printsthe complete traceback from the last error encountered.

There is a verbosity attribute which controls how much information is printed to the termina window when running

14 9 Debugging Tips

atask. Theset Ver bose(val ue=1) function sets the verbosity level to the specified value. You can use pri nt
i raf. Verbose to see the current verbosity level, or i f i raf. Verbose: totestit. When PyRAF is started,
set Ver bose(val ue=0) isrunto initializethe valueto 0. Setting it to 1 resultsin only slightly more output, but
setting it to 2 printsinformation about starting, running and shutting down a task.

10 Function and Object Reference

Note: This section isincomplete. More informationwill be added | ater.

The base classes for PyRAF tasks and parameters are | r af Task and | r af Par respectively; | r af Par Li st is
the class for a list of PyRAF parameters. These are used in the Python equivalent of CL scripts, and they include
methods that are generally useful as well. get Code(), for example, is a method of | r af CLTask (which inher-
its | raf Task). This section describes some of the more useful methods of these classes, as well as some utility
functions. A more compl ete description of these and some other classes will be added to this document at alater time.

10.1 Example

As an example, it may be helpful to explain the syntax of the Python equivaent of thisvery simple CL script:
procedure ttt(input)

string input ="" {pronpt = "name of input image"}
string node = "al"
begi n

i mstat (i nput)
end

Thisisthe Python equivalent, obtained by i raf . ttt. get Code() :

from pyraf inport iraf

from pyraf.irafpar inport makelrafPar, |rafParlList
from pyraf.irafglobals inmport *

inmport math

def ttt(input="", node="al’, DOLLARnargs=0, taskObj=None):

Vars = lrafParList("ttt’)

Var s. addPar an{ makel raf Par (i nput, datatype='string’ , name='input’', node="a’,
pronpt =" i nput inage’))

Var s. addPar an{ nakel r af Par (node, datatype='string’, nane=' node’', node="h'))

Var s. addPar an{ nakel r af Par (DOLLARnar gs, datatype='int’', nane= $nargs’,
node="h"))

iraf.imstat (Vars.input)

The makel r af Par () functionand | r af Par Li st classare imported from pyr af . i r af par because the script
will use these for defining the task parameters. Thei r af gl obal s module defines a variety of things that may be
used in CL scripts, such as the IRAF boolean valuesyes and no, ECF (end of file), and | NDEF, which is often used
astheinitia valuefor task parameters.

| raf Par Li st returns an object (Var s) that will contain a list of all the parameters for the task, in the form of
| raf Par objects. makel raf Par () returnsan | r af Par object. An dternative to makel r af Par () is the
| raf Par Fact or y() function, but its arguments correspond to the comma-separated descriptorsin IRAF par files,

15

and thisis not very intuitive unless one is rather familiar with these files. The addPar an{) method of I r af -
Par Li st appendsthel r af Par object to the parameter list.

Thei nstati stics task is caled with the value of thettt. i nput parameter as the image name. Note that
attribute syntax is used to get the value of this parameter. An aternative would be to use the get Val ue() method
of I raf Par Li st , butunlessnat i ve=1 isspecified, get Val ue returns thevalue as a string, which could conflict
with the data type expected by the called task. Using attribute syntax with the parameter name, the parameter valueis
returned with the “native” datatype.

10.2 IrafTask

I r af Task isthebase classfor several more specific classes, such as| r af CLTask, | r af Pkg, | r af Pset , | r af -

Pyt honTask and| r af For ei gnTask. Thesewouldnot normally beinstantiated directly by auser or programmer.
Once atask has been defined in PyRAF, the IRAF task object is“i r af . ” followed by the task name. The task name
can be abbreviated as long as the portion that was specified is unique (“minimum match”). The code for | r af Task
isin ‘iraftask.py’ inthe pyraf directory. The following describes some of the methodsin | r af Task.

Parameter values may be set or gotten usingtheset Par an() orget Par an() method respectively. Intheargument
list, qual i fi edName isthe parameter name; the “quaified” part means that it may be prefixed by the task or pack-
age name, or it may have an index (for an array parameter) or afield specification. The field iswhat isreferred to as
a “parameter attribute” in the IRAF help page for parameters (type phel p par anet er s). The fields that may
be set are p_val ue, p_pronpt, p_filename, p_m ninmum p_nmaxi rum p_node. The fieds that
may begottenarep_name, p_val ue, p_default, p_xtype, p_type, p_pronpt, p_filenane,

p_m ni mum p_maxi mum p_node. Specify exact =1 to disable minimum matching for the parameter name
and qudifiers. The default check=1 in set Par an{) means that the new value will be checked to see that it is
within the minimum and maximum, or within the choice list for astring. The default nat i ve=0 in get Par am()

means that the returned value will be a string; specify nat i ve=1 to ensure that the returned value be in the “ native”
data type for the parameter.

get Par Obj ect (par ammane, exact=0, all di ct=0) returnsthel r af Par object for par anmane. The
default exact =0 means that minimum matching is allowed for the parameter name. Thedefaultal | di ct =0 means
that the parameter will be searched for only within the parameter list(s) for the current task, i.e. the parameter list
for the task itself and all its psets. Specify al | di ct =1 to enable searching for the parameter in al loaded tasks
and packages, including the CL. One reason why it may be useful to get the | r af Par object isto make use of the
methods in that class (see below).

Thel Par am(ver bose=0) and dPar an{ cl =1) methods are like the | par amand dpar amcommands, or the
iraf.l paranm() andiraf.dparan() functionsin thei raf module. Specifying ver bose=1 when caling
| Par ammeans that the minimum and maximum values or the choice list will aso be printed, if these are defined.
By default, dPar amprints parameters and values the way IRAF s dpar amdoes. The default cl =1 means that the
output will bein IRAF syntax, whilespecifying cl =0 resultsin Python syntax. One differenceisthat withcl =0 each
linewill beginwith“iraf.”, eg.iraf.instatistics.imges = '161h.fits[1]’.Anotheristhatifa
parameter value was not specified, cl =0 resultsin par = None, while cl =1 resultsin par = . Note that “not
specified” in thiscase is not the same as | NDEF or " " ; it means that the parameter file does not give a default value
and none has been assigned.

unl ear n() deletesthe copy of the parameter file from the user’s uparm directory and resets the “ current” parameter
list to the default values which are defined in the original (template) parameter file.

10.3 IrafPar

| raf Par isthe base class for scalar parameters. There is one subclass for each data type (or set of closely related
types) that a parameter may have. Other base classes are | r af ArrayPar and | r af Par L, for array parameters
and list-directed parameters respectively. Multipleinheritance with a“mix-in” design is used to construct classes for
different parameter types, such as stringsand list-directed parameters. The codefor | r af Par isin ‘irafpar.py’ in the

16 10 Function and Object Reference

pyraf directory. The following describes some of the methodsin thel r af Par class.

get Wt hPronpt () printsthe prompt string and current value, gives the user the option to supply anew value (using
tkreadline), and it updates the value attribute in the Iraf Par object with the new value. It does not return the value.

get (fi el d=None, i ndex=None, |par=0, pronmpt=1, native=0, nmode="h") returns the vaue
(or other field) of the parameter, prompting the user if node="q" (or if node inherits “q" from the CL). The
parameter value (p_val ue) isthe default for f i el d; the optionsfor fi el d are (these are all strings, and mini-
mum matching may be used when specifyingthem): p_nanme, p_type, p_xtype, p_value, p_pronpt,
p_m ni mum p_maxi mum p_fil ename, p_node, p_default. Note that p_I ength is defined for
IRAF string parameters, but thisisnot needed in PyRAF and has not been defined.

set (val ue, field=None, index=None, check=1) setsthevaue (or other field) of the parameter. Spec-
ifying check=0 allows the parameter value to be outside the range from minimum to maximum (or not in the choice
list for astring or integer parameter).

checkVal ue(val ue, strict=0) checkswhether the specified valueiswithin therange of alowed values, i.e.
between the minimum and maximum for numeric parameters, or in the choice list if the object is a string or integer
parameter. The specified value does not need to be of the same type as the parameter; the value will be converted to
the correct type before being compared with the range of legal values. If the valueis legal, the value converted to the
correct type (or None) will be returned; if not, a ValueError exception will be raised.

dpar (cl =1) returns a string with “name = vaue” for the parameter. If the parameter is a string, the value will be
enclosed in quotes. ¢l =1 meanswrite the assignmentsin aformat that would be accepted by theiraf cl; cl =0 means
that if the parameter isastring and itsvaueis null, the value will be shown as None instead of “”.

pretty(verbose=0) returnsastring with the parameter description as it would appear if the user typed the IRAF
| par amcommand. String values will not be enclosed in quotes. If ver bose=1 is specified, the string includes the
choicelist or allowed range. For example:

--> print iraf.imarith. getParObject("op").pretty(verbose=1)
op = + Qper at or
[+ -1*|/]m n|max|
--> print iraf.sgraph. getParCbject("left").pretty(verbose=1)
(left = 0.0) Left edge of viewport [NDC
0.0 <= left <= 1.0

save(dol i st =0) returnsastring with the parameter information formatted as you would see it in a parameter file.
If dol i st =1, the returned value will instead be alist of strings, one for each of the various components.

Themakel r af Par () factory functionisa convenient way to create an | r af Par object from scratch:

makel r af Par (i nit _val ue, datatype=None, nane="<anonynous>", node="h", ar-

ray_si ze=None, list_flag=0, nmin=None, nmax=None, enunrNone, pronmpt="",
strict=0)

i nit_val ue canbeaninitia value, but an aternativeisfor it to dready bean | r af Par object, in which case that
object will smply bereturned unchanged. dat at y pe must be specified; the optionsare (theseare strings): st ri ng,
char, file, struct, int, bool, real, double, gcur, incur, ukey, pset. Leave ar-
ray_si ze=None (not 0) for a scalar parameter. Leave mi n=None when specifying enum (a choice list of pos-
sible values for a string parameter). A choice list can be given for an integer parameter as well, eg. enum =
"36| 37| 38"; thisis an option which is not supported in IRAF. Thereisaso afi | enane argument, but its use
is deprecated. The default st ri ct =0 means that the function attempts to work around errors when reasonable; use
stri ct =1 toraisean exception for any error.

10.3 IrafPar 17

--> print pyraf.irafpar. makelraf Par(3.141592653589793, datatype="real",
name="pi", pronpt="test")
<lrafParR pi r h 3.1415926535900001 None None "test">

There are a number of utility functionsin PyRAF that are defined in the file ‘iraffunctions.py’ in the pyraf directory.
There are of order 100 of these functions. Some implement functions in the IRAF CL, while others are unique to
PyRAF.

Here are descriptions of the more useful of these functionsin ‘iraffunctions.py’.

Note: More detailed descriptions for these functionswill be added |ater. The descriptions shown are taken from the
doc strings.

hel p(obj ect=__mai n__, vari abl es=1, functions=1, nodul es=1, tasks=0, pack-
ages=0, hidden=0, padchars=16, regexp=None, htnl =0, **kw)
(Thisfunctionisactualy defined in *irafhelp.py’.)

List thetype and value of all the variablesin the specified object.

- help() with no arguments will list al the defined variables.

- help("taskname”) or help(Iraf TaskObject) displays IRAF help for the task

- help(object) where object is a module, instance, etc., will display information on the attributes and methods of the
object.

- help(function) will give the calling sequence for the function.

Optional keyword arguments specify what informationisto be printed. The keywords can be abbreviated:

variables=1 Print info on variables/attributes

functions=1 Print info on function/method calls

modules=1 Print info on modules

tasks=0 Print info on Iraf Task objects

packages=0 Print info on IrafPkg objects

hidden=0 Print info on hidden variables/attributes (starting with ' _’
html=0 Use HTML help instead of standard IRAF help for tasks

regexp=None Specify aregular expression that matches the names of variables of interest. For example, hel p(sys,
regexp="std’) will givehelponal attributes of systhat start with std. All the re patterns can be used.

Other keywords are passed on to the IRAF help task if it iscalled.

def par (par ammarne)
Returnstrueif parameter is defined.

access(fil enamne)
Returnstrueif file exists.

i maccess(fil enane)
Returnstrue if image matching name exists and is readable.

def var (var nane)
Returnstrueif CL variableisdefined.

def t ask(t asknane)
Returnstrueif CL task is defined.

def pac(pkgnane)
Returnstrueif CL package is defined and loaded.

bool ean(val ue)
Convert Python native types (string, int, float) to IRAF bool ean.

fscan(locals, line, *nanelist, **kw)
fscan function sets parameters from a string or list parameter.

18 10 Function and Object Reference

Uses local dictionary (passed as first argument) to set variables specified by list of following names. (This is a bit
messy, literaly using call-by-name for these variables.)

Accepts an additiona keyword argument strconv with names of conversion functionsfor each argument in namelist.

Returns number of arguments set to new values. If there are too few space-delimited arguments on the input line, it
does not set al the arguments. Returns EOF on end-of-file.

fscanf(locals, line, format, *nanelist, **kw)
fscanf function sets parameters from a string/list parameter with format.

Implementation is similar to fscan but isa bit smpler because special struct handling is not needed. Does not allow
strconv keyword.

Returns number of arguments set to new values. If there are too few space-delimited arguments on the input line, it
does not set al the arguments. Returns EOF on end-of-file

scan(l ocal s, *namelist, **kw)
Scan function sets parameters from line read from stdin.

This can be used either as afunction or as atask (it accepts redirection and the _save keyword.)

scanf(locals, format, *namelist, **kw)
Formatted scan function sets parameters from line read from stdin.

This can be used either as afunction or as atask (it accepts redirection and the _save keyword.)

nscan()

Return number of itemsread in last scan function.
set(*args, **kw)

Set IRAF environment variables.

show(*ar gs, **kw)
Print value of IRAF or OS environment variables.

unset (*args, **kw)
Unset IRAF environment variables.

Thisis not a standard IRAF task, but it is obvioudy useful. It makes the resulting variables undefined. It silently
ignores variablesthat are not defined. It does not change the OS environment variables.

time(**kw)

Print current time and date.

beep(**kw)
Beep to termina (even if output isredirected).

cl CGscmd(s, **kw)
Execute a system-dependent command in the shell, returning status.

stty(term nal =None, **kw)

IRAF stty command (mainly not implemented).
edit(*args, **kw)

Edit text files.

clear(*args, **kw)

Clear screen if outputisterminal.

fl prcache(*args, **kw)

Flush process cache. Takes optional list of tasknames.

prcache(*args, **kw)
Print process cache. If args are given, locks tasks into cache.

10.3 IrafPar 19

gf l ush(*args, **kw)

Flush any buffered graphics output.

hi story(n=20, *args, **kw)
Print history.

Does not replicate the IRAF behavior of changing default number of linesto print.
hi det ask(*args, **kw)

Hidethe CL task in package listings.

task(*args, **kw)

Define IRAF tasks.

redefine(*args, **kw)

Redefine an existing task.

package(pkgnane=None, bi n=None, PkgName="", PkgBi nary="", **kw)
Define IRAF package, returning tuple with new package name and binary.

PkgName, PkgBinary are old default values. If St dout =1 is specified, returns output as string array (normal task
behavior) instead of returning PkgName, PkgBinary. This inconsistency is necessary to replicate the inconsistent
behavior of the package command in IRAF.

cl Print(*args, **kw)

CL print command —emulates CL spacing and uses redirection keywords.
printf(format, *args, **kw)

Formatted print function.

pwd(**kw)
Print working directory.

chdi r (di rect ory=None, **kw)
Change working directory.

cd(directory=None, **kw)
Change working directory (same aschdi r).

back(**kw)
Go back to previousworking directory.

Expand(i nstring, noerror=0)
Expand a string with embedded IRAF variables (IRAF virtud filename).

Allows commarseparated lists. Also uses 0s. pat h. expanduser toreplace’ ™’ symbols. Set noerror flag to
silently replace undefined variables with just the variable name or null (so Expand(" abc$def ") = "abcdef"
and Expand(" (abc)def") = "def"). Thisisthe RAF behavior, thoughit isconfusing and hides errors.

| oad(pkgname, args=(), kw=None, doprint=1, hush=0, save=1)
Load an IRAF package by name.

run(taskname, args=(), kw=None, save=1)
Run an IRAF task by name.

get Al | Tasks(t asknane)
Returnslist of names of al IRAF tasks that may match taskname.

get Al | Pkgs(pkgnane)
Returnslist of names of al IRAF packages that may match pkgname.

get Task(tasknanme, found=0)
Find an IRAF task by name using minimum match.

Returnsan | r af Task object. Name may be either fully qualified (package.taskname) or just the taskname. taskname

20 10 Function and Object Reference

is aso alowed to be an | r af Task object, in which case it is simply returned. Does minimum match to alow
abbreviated names. If found is set, returns None when task is not found; default is to raise exception if task is not

found.

get Pkg(pkgnane, found=0)
Find an IRAF package by name using minimum match.

Returnsan | r af Pkg object. pkgnameisalso allowed to bean | r af Pkg object, in which case it issimply returned.

If found is set, returns None when package is not found; default isto raise exception if package is not found.

get TaskLi st ()
Returns list of names of all defined IRAF tasks.

get TaskObj ect s()
Returnslist of al defined | r af Task objects.

get PkgLi st ()
Returnslist of names of al defined IRAF packages.

get LoadedLi st ()
Returnslist of names of al loaded IRAF packages.

get Var Di ct ()
Returns dictionary of al IRAF variables.

get Var Li st ()
Returnslist of names of all IRAF variables.

[istAll (hidden=0, **kw)
List IRAF packages, tasks, and variables.

i stPkgs(**kw)
List IRAF packages.

listLoaded(**kw)
List loaded IRAF packages.

i st Tasks(pkglist=None, hidden=0, **kw)

List IRAF tasks, optionally specifying alist of packages to include.

Package(s) may be specified by name or by | r af Pkg objects.

listCurrent(n=1, hidden=0, **kw)
List IRAF tasksin current package (equivalentto‘? inthecd).

If parameter n is specified, listsn most recent packages.

listVars(prefix="", equals="\t=", **kw)
List IRAF variables.

cur pack()
Returns name of current CL package.

cur Pkgbi nary()

Returns name of pkgbinary directory for current CL package.
pkgHel p(pkgnanme=None, **kw)

Give help on package (equivaent to CL *? [taskname]’).

al | PkgHel p(**kw)

Give help on all packages (equivalentto CL ‘??).

cl Conpati bilityMdde(verbose=0, _save=0)
Start up full CL-compatibility mode.

10.3 IrafPar

21

cl Array(array_si ze, datatype, nane="<anonynous>", node="h", ni n=None,
max=None, enunxNone, pronpt=None, init_val ue=None, strict=0)
Createan | r af Par object that can be used asa CL array.

cl Execut e(s, |ocal s=None, node="proc", |ocal _vars_dict=, |ocal _vars_list=[],
ver bose=0, **kw)
Execute asinglecl statement.

I raf TaskFactory(prefix="", taskname=None, suffix="", val ue=None, pkgname=None,
pkgbi nar y=None, redefine=0, function=None)
Returnsanew or existing | r af Task, | r af Pset , or | r af Pkg object.

Type of returned object depends on value of suffix and value.

Returns anew object unlessthistask or package is aready defined. In that case if the old task appears consistent with
the new task, a reference to the old task is returned. Otherwise a warning is printed and a reference to anew task is
returned.

If redefine keyword is set, the behavior is the same except awarning is printed if it does not exist.

22 10 Function and Object Reference

